

Sammie Bae

JavaScript Data Structures and

Algorithms

An Introduction to Understanding and
Implementing Core Data Structure and
Algorithm Fundamentals

ApPress’

Sammie Bae
Hamilton, ON, Canada

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at www.apress.com/9781484239872 . For more
detailed information, please visit www.apress.com/source-code .

ISBN 978-1-4842-3987-2 e-ISBN 978-1-4842-3988-9
https://doi.org/10.1007 /978-1-4842-3988-9

Library of Congress Control Number: 2019930417
© Sammie Bae 2019

This work is subject to copyright. All rights are reserved by the
Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather
than use a trademark symbol with every occurrence of a trademarked
name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark. The use in this publication of
trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion
as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and
accurate at the date of publication, neither the authors nor the editors

http://www.apress.com/9781484239872
http://www.apress.com/source-code
https://doi.org/10.1007/978-1-4842-3988-9

nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express
or implied, with respect to the material contained herein.

Distributed to the book trade worldwide by Springer Science+Business
Media New York, 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

This book is dedicated to Dr. Hamid R. Tizhoosh for inspiring me in my
studies and to my mother, Min Kyoung Seo, for her kindness and support.

Introduction

The motivation for writing this book was the lack of resources available
about data structures and algorithms written in JavaScript. This was
strange to me because today many of the job opportunities for software
development require knowledge of JavaScript; it is the only language that
can be used to write the entire stack, including the front-end, mobile
(native and hybrid) platforms, and back-end. It is crucial for JavaScript
developers to understand how data structures work and how to design
algorithms to build applications.

Therefore, this book aims to teach data structure and algorithm
concepts from computer science for JavaScript rather than for the more
typical Java or C++. Because JavaScript follows the prototypal inheritance
pattern, unlike Java and C++ (which follow the inheritance pattern),
there are some changes in writing data structures in JavaScript. The
classical inheritance pattern allows inheritance by creating a blueprint-
like form that objects follow during inheritance. However, the prototypal
inheritance pattern means copying the objects and changing their
properties.

This book first covers fundamental mathematics for Big-O analysis
and then lays out the basic JavaScript foundations, such as primitive
objects and types. Then, this book covers implementations and
algorithms for fundamental data structures such as linked lists, stacks,
trees, heaps, and graphs. Finally, more advanced topics such as efficient
string search algorithms, caching algorithms, and dynamic programming
problems are explored in great detail.

Acknowledgments

Thank you, Phil Nash, for the valuable feedback that helped me improve
the technical content of this book with clear explanations and concise
code.

Special thanks to the Apress team. This includes James Markham,
Nancy Chen, Jade Scard, and Chris Nelson. Finally, I want to thank Steve
Anglin for reaching out to me to publish with Apress.

Table of Contents
Chapter 1: Big-O Notation

Big-O Notation Primer
Common Examples
Rules of Big-O Notation
Coefficient Rule: “Get Rid of Constants”
Sum Rule: “Add Big-Os Up”
Product Rule: “Multiply Big-Os”
Polynomial Rule: “Big-O to the Power of kK”
Summary
Exercises
Answers
Chapter 2: JavaScript: Unique Parts
JavaScript Scope
Global Declaration: Global Scope
Declaration with var: Functional Scope
Declaration with let: Block Scope
Equality and Types
Variable Types
Truthy/Falsey Check

Objects
Summary
Chapter 3: JavaScript Numbers
Number System

JavaScript Number Object

Integer Rounding
Number.EPSILON
Maximums
Minimums
Size Summary
Number Algorithms
Prime Factorization
Random Number Generator
Exercises
Summary
Chapter 4: JavaScript Strings
JavaScript String Primitive
String Access
String Comparison
String Search
String Decomposition
String Replace
Regular Expressions
Basic Regex
Commonly Used Regexes
Encoding
Base64 Encoding
String Shortening
Encryption
RSA Encryption

Summary

Chapter 5: JavaScript Arrays

Introducing Arrays
Insertion
Deletion
Access

Iteration
for (Variables; Condition; Modification)
for (in)
for (of)
forEach()

Helper Functions
.slice(begin,end)
.splice(begin,size,element1,element?2...)
.concat()
Jdength Property
Spread Operator

Exercises

JavaScript Functional Array Methods
Map
Filter
Reduce

Multidimensional Arrays

Exercises

Summary

Chapter 6: JavaScript Objects
JavaScript Object Property

Prototypal Inheritance

Constructor and Variables

Summary

Exercises

Chapter 7: JavaScript Memory Management

Memory Leaks
Reference to an Object
Leaking DOM
Global window Object
Limiting Object References
The delete Operator

Summary

Exercises

Chapter 8: Recursion

Introducing Recursion

Rules of Recursion
Base Case
Divide-and-Conquer Method
Classic Example: Fibonacci Sequence
Fibonacci Sequence: Tail Recursion
Pascal’s Triangle

Big-0 for Recursion
Recurrence Relations
Master Theorem

Recursive Call Stack Memory

Summary

Exercises
Chapter 9: Sets
Introducing Sets
Set Operations
Insertion
Deletion
Contains
Other Utility Functions
Intersection
isSuperSet
Union
Difference
Summary
Exercises
Chapter 10: Searching and Sorting
Searching
Linear Search
Binary Search
Sorting
Bubble Sort
Selection Sort
Insertion Sort
Quicksort
Quickselect
Mergesort

Count Sort

JavaScript’s Built-in Sort
Summary
Exercises
Chapter 11: Hash Tables
Introducing Hash Tables
Hashing Techniques
Prime Number Hashing
Probing
Rehashing/Double-Hashing
Hash Table Implementation
Using Linear Probing
Using Quadratic Probing
Using Double-Hashing with Linear Probing
Summary
Chapter 12: Stacks and Queues
Stacks
Peek
Insertion
Deletion
Access
Search
Queues
Peek
Insertion
Deletion

Access

Search
Summary
Exercises
Chapter 13: Linked Lists
Singly Linked Lists
Insertion
Deletion by Value
Deletion at the Head
Search
Doubly Linked Lists
Insertion at the Head
Insertion at the Tail
Deletion at the Head
Deletion at the Tail
Search
Summary
Exercises
Chapter 14: Caching
Understanding Caching
Least Frequently Used Caching
Least Recently Used Caching
Summary
Chapter 15: Trees
General Tree Structure
Binary Trees

Tree Traversal

Pre-order Traversal
In-Order Traversal
Post-order Traversal
Level-Order Traversal
Tree Traversal Summary
Binary Search Trees
Insertion
Deletion
Search
AVL Trees
Single Rotation
Double Rotation
Balancing the Tree
Insertion
Putting It All Together: AVL Tree Example
Summary
Exercises
Chapter 16: Heaps
Understanding Heaps
Max-Heap
Min-Heap
Binary Heap Array Index Structure
Percolation: Bubbling Up and Down
Implementing Percolation
Max-Heap Example

Min-Heap Complete Implementation

Max-Heap Complete Implementation
Heap Sort
Ascending-Order Sort (Min-Heap)
Descending-Order Sort (Max-Heap)
Summary
Exercises
Chapter 17: Graphs
Graph Basics
Undirected Graphs
Adding Edges and Vertices
Removing Edges and Vertices
Directed Graphs
Graph Traversal
Breadth-First Search
Depth-First Search
Weighted Graphs and Shortest Path
Graphs with Weighted Edges
Dijkstra’s Algorithm: Shortest Path
Topological Sort
Summary
Chapter 18: Advanced Strings
Trie (Prefix Tree)
Boyer-Moore String Search
Knuth-Morris-Pratt String Search
Rabin-Karp Search
The Rabin Fingerprint

Applications in Real Life
Summary
Chapter 19: Dynamic Programming
Motivations for Dynamic Programming
Rules of Dynamic Programming
Overlapping Subproblems
Optimal Substructure
Example: Ways to Cover Steps
Classical Dynamic Programming Examples
The Knapsack Problem
Longest Common Subsequence
Coin Change
Edit (Levenshtein) Distance
Summary
Chapter 20: Bit Manipulation
Bitwise Operators
AND
OR
XOR
NOT
Left Shift
Right Shift
Zero-Fill Right Shift
Number Operations
Addition

Subtraction

Multiplication
Division
Summary

Index

About the Author and About the Technical
Reviewer

About the Author

Sammie Bae

is a data engineer at Yelp and previously
worked for the data platform engineering
team at NVIDIA. He developed a deep
interest in JavaScript during an internship
at SMART Technologies (acquired by
Foxconn), where he developed Node.js-
based JavaScript APIs for serial port
communication between electronic board
drivers and a web application. Despite
how relevant JavaScript is to the modern
software engineering industry, currently
no books besides this one teach
algorithms and data structures using
JavaScript. Sammie understands how
difficult these computer science concepts
are and aims to provide clear and concise explanations in this book.

About the Technical Reviewer

Phil Nash

is a developer evangelist for Twilio, serving developer communities in
London and all over the world. He is a Ruby, JavaScript, and Swift
developer; Google Developers Expert; blogger; speaker; and occasional
brewer. He can be found hanging out at meetups and conferences,
playing with new technologies and APIs, or writing open source code.

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_1

1. Big-O Notation

Sammie Bae!

(1) Hamilton, ON, Canada

O(1) is holy.
—Hamid Tizhoosh

Before learning how to implement algorithms, you should
understand how to analyze the effectiveness of them. This chapter will
focus on the concept of Big-O notation for time and algorithmic space
complexity analysis. By the end of this chapter, you will understand how
to analyze an implementation of an algorithm with respect to both time
(execution time) and space (memory consumed).

Big-O Notation Primer

The Big-O notation measures the worst-case complexity of an algorithm.
In Big-O notation, n represents the number of inputs. The question asked
with Big-0 is the following: “What will happen as n approaches infinity?”

When you implement an algorithm, Big-O notation is important
because it tells you how efficient the algorithm is. Figure 1-1 shows some
common Big-0 notations.

https://doi.org/10.1007/978-1-4842-3988-9_1

Time

O(log n)

/

Data Input

Figure 1-1 Common Big-0 complexities

The following sections illustrate these common time complexities
with some simple examples.

Common Examples

O(1) does not change with respect to input space. Hence, O(1) is referred
to as being constant time. An example of an O(1) algorithm is accessing

an item in the array by its index. O(n) is linear time and applies to
algorithms that must do n operations in the worst-case scenario.

An example of an O(n) algorithm is printing numbers from 0 to n-1,
as shown here:

1 function examplelinear (n) {

2 for (var 1 =0 ; 1 < n;
i++) |

3 console.log (1)

4 }

5 '}

Similarly, O(n?) is quadratic time, and O(n3) is cubic time. Examples
of these complexities are shown here:

1 function exampleQuadratic(n) {
2 for (var 1 =0 ; 1 < n;
i++) |
3 console.log (i)
4 for (var J
= 1; 3 < n; J++) |
5 con

1 function exampleCubic(n) {

2 for (var 1 =0 ; 1 < n;
i++) |

3 console.log (1)

4 for (var J
= 1; 3 < n; J++) |

5 co
nsole.log(j);

6

for (var k = 73; 73 < n; J++t) |

.
console.log(k);

8

}

9 }

10 }

11 }

Finally, an example algorithm of logarithmic time complexity is
printing elements that are a power of 2 between 2 and n. For example,
exampleLogarithmic (10) will print the following:

2,4,8,16,32,064

The efficiency of logarithmic time complexities is apparent with large
inputs such as a million items. Although n is a million,
exampleLogarithmic will print only 19 items because

log,(1,000,000) = 19.9315686. The code that implements this
logarithmic behavior is as follows:

1 function examplelogarithmic(n) {

2 for (var 1 =2 ; 1 <= n;
i= 1*2) {

3 console.log (i)

4 }

5 }

Rules of Big-O Notation

Let’s represent an algorithm’s complexity as f(n). n represents the
number of inputs, f(n)n,, represents the time needed, and f(n),ace

represents the space (additional memory) needed for the algorithm. The
goal of algorithm analysis is to understand the algorithm’s efficiency by
calculating f(n). However, it can be challenging to calculate f(n). Big-O

notation provides some fundamental rules that help developers compute
for f(n).

e Coefficient rule: If f(n) is O(g(n)), then kf(n) is O(g(n)), for any constant
k > 0. The first rule is the coefficient rule, which eliminates coefficients
not related to the input size, n. This is because as n approaches infinity,
the other coefficient becomes negligible.

o Sum rule: If f(n) is O(h(n)) and g(n) is O(p(n)), then f(n)+g(n) is
O(h(n)+p(n)). The sum rule simply states that if a resultant time
complexity is a sum of two different time complexities, the resultant
Big-O notation is also the sum of two different Big-O notations.

e Productrule: If f(n) is O(h(n)) and g(n) is O(p(n)), then f(n)g(n) is
O(h(n)p(n)). Similarly, the product rule states that Big-O is multiplied
when the time complexities are multiplied.

o Transitive rule: If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is
O(h(n)). The transitive rule is a simple way to state that the same time
complexity has the same Big-0.

e Polynomial rule: If f(n) is a polynomial of degree k, then f(n) is O(nX).
Intuitively, the polynomial rule states that polynomial time
complexities have Big-O of the same polynomial degree.

e Log of a power rule: 1og(nk) is O(log(n)) for any constant k > 0. With
the log of a power rule, constants within a log function are also ignored
in Big-O notation.

Special attention should be paid to the first three rules and the
polynomial rule because they are the most commonly used. I'll discuss
each of those rules in the following sections.

Coefficient Rule: “Get Rid of Constants”

Let’s first review the coefficient rule . This rule is the easiest rule to
understand. It simply requires you to ignore any non-input-size-related
constants. Coefficients in Big-O are negligible with large input sizes.
Therefore, this is the most important rule of Big-O notations.

If f(n) is O(g(n)), then kf(n) is O(g(n)), for any constant k > 0.
This means that both 5f(n) and f(n) have the same Big-O notation of

O(f(n)).

Here is an example of a code block with a time complexity of O(n):

1 function a (n) {
2 var count =0;

for (var i=0;i<n;i++) {
count+=1;

}

return count;

~ o U1 b W

}

This block of code has f(n) = n. This is because it adds to countn
times. Therefore, this function is O(n) in time complexity:

function a (n) {
var count =0;
for (var 1=0;1<5*n;i++) {
count+=1;
}

return count;

N oy U LW DN

}

This block has f(n) = 5n. This is because it runs from 0 to 5n.
However, the first two examples both have a Big-O notation of O(n).
Simply put, this is because if n is close to infinity or another large
number, those four additional operations are meaningless. It is going to
perform it n times. Any constants are negligible in Big-O notation.

The following code block demonstrates another function with a linear
time complexity but with an additional operation on line 6:

function a(n) {
var count =0;
for (var 1i=0;i<n;i++) {
count+=1;
}
count+=3;
return count;

O J o Ul W N

}

Lastly, this block of code has f(n) = n+1. There is +1 from the last
operation (count+=3). This still has a Big-O notation of O(n). This is
because that 1 operation is not dependent on the input n. As n
approaches infinity, it will become negligible.

Sum Rule: “Add Big-Os Up”

The sum rule is intuitive to understand; time complexities can be added.
Imagine a master algorithm that involves two other algorithms. The Big-
O notation of that master algorithm is simply the sum of the other two
Big-0 notations.

If f(n) is O(h(n)) and g(n) is O(p(n)), then f(n)+g(n) is O(h(n)+p(n)).

It is important to remember to apply the coefficient rule after
applying this rule.

The following code block demonstrates a function with two main
loops whose time complexities must be considered independently and
then summed:

function a(n) {

var count =0;

for (var 1=0;i<n;i++) {
count+=1;

}

for (var i1i=0;i<5*n;i++) {
count+=1;

}

return count;

O W oo Joy Ul WDN

H

}

In this example, line 4 has f(n) = n, and line 7 has f(n) = 5n. This

results in 6n. However, when applying the coefficient rule, the final result
is O(n) =n.

Product Rule: “Multiply Big-0Os”
The product rule simply states how Big-Os can be multiplied.
If f(n) is O(h(n)) and g(n) is O(p(n)), then f(n)g(n) is O(h(n)p(n)).

The following code block demonstrates a function with two nested
for loops for which the product rule is applied:

1 function (n) {
2 var count =0;

3 for (var i=0;i<n;i++) {

4 count+=1;

5 for (var 1i=0;i<5*n;i++) {
6 count+=1;

7 }

8 }

9 return count;
10 }

In this example, f(n) = 5n*n because line 7 runs 5n times for a total of
n iterations. Therefore, this results in a total of 5n? operations . Applying
the coefficient rule, the result is that O(n)=n?.

Polynomial Rule: “Big-0 to the Power of k”

The polynomial rule states that polynomial time complexities have a Big-
O notation of the same polynomial degree.
Mathematically, it’s as follows:

If f(n) is a polynomial of degree k, then f(n) is O(nX).

The following code block has only one for loop with quadratic time
complexity:

function a(n) {
var count =0;
for (var i=0;i<n*n;i++) {
count+=1;
}

return count;

oy Ul i LW DN

}

In this example, f(n) = n"2 because line 4 runs n*n iterations.
This was a quick overview of the Big-O notation. There is more to
come as you progress through the book.

Summary
Big-O is important for analyzing and comparing the efficiencies of

algorithms. The analysis of Big-0 starts by looking at the code and
applying the rules to simplify the Big-O notation. The following are the
most often used rules:

Eliminating coefficients/constants (coefficient rule)

Adding up Big-Os (sum rule)

Multiplying Big-Os (product rule)

Determining the polynomial of the Big-O notation by looking at loops
(polynomial rule)

Exercises
Calculate the time complexities for each of the exercise code snippets.

Exercise 1

1 function someFunction (n) {

2

3 for (var i1i=0;i<n*1000;i++) {
4 for (var j=0;j<n*20;J++) {
5 console.log (i+7) ;

6 }

7 }

8

9 }

Exercise 2

function someFunction (n) {

for (var 1=0;i<n;i++) {
for (var 7=0;j<n;Jj++) {
for (var k=0;k<n;k++) {
for (var 1=0;1<10;1++) {
console.log (i+j+k+1);

O Jo Ul W DN

10 }

11 }

12

13 t

Exercise 3

1 function someFunction(n) {
2

3 for (var i=0;i<1000;1i++) {
4 console.log("hi"™);
5 }

6

7 }

Exercise 4

1 function someFunction(n) {
2

3 for (var i1i=0;i<n*10;i++) {
4 console.log(n);

5 }

6

7 }

Exercise 5

1
2
3
4
5

function someFunction(n) {

for

(var i=0;i<n;i*2) {
console.log(n);

6

7 }

Exercise 6

1 function someFunction (n) {
2

3 while (true) {

4 console.log(n);

5 }

6 }

Answers
1.
0(n?)
There are two nested loops. Ignore the constants in front of n.
2.
0(n?)
There are four nested loops, but the last loop runs only until 10.
3.
0(1)

Constant complexity. The function runs from 0 to 1000. This does

not depend on n.
4,
O(n)

Linear complexity. The function runs from 0 to 10n. Constants

are ignored in Big-O.
5.
O(log,n)

Logarithmic complexity. For a given n, this will operate only log,n
times because i is incremented by multiplying by 2 rather than
adding 1 as in the other examples.

6.

O()
Infinite loop. This function will not end.

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_2

2. JavaScript: Unique Parts

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will briefly discuss some exceptions and cases of
JavaScript’s syntax and behavior. As a dynamic and interpreted
programming language, its syntax is different from that of traditional
object-oriented programming languages. These concepts are
fundamental to JavaScript and will help you to develop a better
understanding of the process of designing algorithms in JavaScript.

JavaScript Scope

The scope is what defines the access to JavaScript variables. In JavaScript,
variables can belong to the global scope or to the local scope. Global
variables are variables that belong in the global scope and are accessible
from anywhere in the program.

Global Declaration: Global Scope

In JavaScript, variables can be declared without using any operators.
Here’s an example:

1 test = "sss";
2 console.log(test); // prints "sss"

However, this creates a global variable, and this is one of the worst
practices in JavaScript. Avoid doing this at all costs. Always use var or

let to declare variables. Finally, when declaring variables that won’t be

https://doi.org/10.1007/978-1-4842-3988-9_2

modified, use const.

Declaration with var: Functional Scope

In JavaScript, var is one keyword used to declare variables. These

variable declarations “float” all the way to the top. This is known as

variable hoisting. Variables declared at the bottom of the script will not

be the last thing executed in a JavaScript program during runtime.
Here’s an example:

function scopel () {
var top = "top";
bottom = "bottom";

console.log (bottom) ;

var bottom;

}

scopel(); // prints "bottom" - no error

O J oy Ul dx W DN K

How does this work? The previous is the same as writing the
following:

function scopel () {
var top = "top";
var bottom;
bottom = "bottom"
console.log (bottom) ;
}

scopel(); // prints "bottom" - no error

o U » LW DN

The bottom variable declaration, which was at the last line in the
function, is floated to the top, and logging the variable works.

The key thing to note about the var keyword is that the scope of the
variable is the closest function scope. What does this mean?

In the following code, the scope?2 function is the function scope
closest to the print variable:

1 function scope?2 (print) {

if (print) {
var insideIf = '12';
}

console.log(insideIf);

}

scope? (true); // prints 'l2' - no error

o O b WD

To illustrate, the preceding function is equivalent to the following:

function scope2 (print) {
var insidelf;

if (print) {
insideIf = '12"';
}

console.log(insideIf);

}

scope? (true); // prints 'l2' - no error

O 0 J o U Wi

In Java, this syntax would have thrown an error because the
insideIf variable is generally available only in that i f statement
block and not outside it.

Here’s another example:

var a = 1;
function four () {
if (true) {
var a = 4;

}

console.log(a); // prints '4'

O J o Ul W DN

}

4 was printed, not the global value of 1, because it was redeclared
and available in that scope.

Declaration with let: Block Scope

Another keyword that can be used to declare a variable is 1et. Any

variables declared this way are in the closest block scope (meaning
within the { } they were declared in).

1 function scope3 (print) {

2 if (print) {

3 let insideIf = '12"';
4 }

5 console.log(insidelIf);

6 '}

7 scope3(true); // prints "'

In this example, nothing is logged to the console because the
insideIf variable is available only inside the i f statement block.

Equality and Types

JavaScript has different data types than in traditional languages such as
Java. Let’s explore how this impacts things such as equality comparison.

Variable Types

In JavaScript, there are seven primitive data types: boolean, number,
string, undefined, object, function, and symbol (symbol won’t be
discussed). One thing that stands out here is that undefined is a primitive
value that is assigned to a variable that has just been declared. t ypeof is
the primitive operator used to return the type of a variable.

var is20 = false; // boolean
typeof i1s20; // boolean

var age = 19;
typeof age; // number

var lastName = "Rae";
typeof lastName; // string

O © O Joy Ul LWDN B

l_\

var fruits = ["Apple", "Banana", "Kiwi"];

11 typeof fruits; // object

12

13 wvar me = {firstName:"Sammie", lastName:"Bae"};
14 typeof me; // object

15

16 war nullVar = null;
17 typeof nullVar; // object

18

19 war functionl = function () {
20 console.log(l);
21}

22 typeof functionl // function
23

24 wvar blank;
25 typeof blank; // undefined

Truthy/Falsey Check
True/false checking is used in i f statements. In many languages, the
parameter inside the i f () function must be a boolean type. However,

JavaScript (and other dynamically typed languages) is more flexible with
this. Here’s an example:

1 if (node) {
2
3}

Here, node is some variable. If that variable is empty, null, or
undefined, it will be evaluated as false.
Here are commonly used expressions that evaluate to false:

e false

e 0

e Empty strings (' ' and "")
e NaN

e undefined

e null

Here are commonly used expressions that evaluate to true:

® true

Any number other than 0
Non-empty strings
Non-empty object

Here’s an example:

var printIfTrue = ";

if (printIfTrue) {
console.log('truthy');

} else {
console.log('falsey'); // prints

o U LW DN

'falsey'
7T}

===VS ==

JavaScript is a scripting language, and variables are not assigned a type

during declaration. Instead, types are interpreted as the code runs.
Hence, === is used to check equality more strictly than ==. ===

checks for both the type and the value, while == checks only for the

value.

1 "5" ==5 // returns true

2 "H5" === 5 // returns false

"5" == 5 returns true because "5" is coerced to a number before
the comparison. On the other hand, "5" === 5 returns false because

the type of "5" is a string, while 5 is a number.

Objects

Most strongly typed languages such as Java use isEquals () to check
whether two objects are the same. You may be tempted to simply use the
== operator to check whether two objects are the same in JavaScript.

However, this will not evaluate to true.

1 war ol = {};

2 wvar o2 = {};

3

4 ol == 02 // returns false
5 o0l === 02 // returns false

Although these objects are equivalent (same properties and values),
they are not equal. Namely, the variables have different addresses in
memory.

This is why most JavaScript applications use utility libraries such as
lodash'! or underscore,” which have the i sEqual (object],
object?2) function to check two objects or values strictly. This occurs
via implementation of some property-based equality checking where
each property of the object is compared.

In this example, each property is compared to achieve an accurate
object equality result.

1 function isEquivalent(a, b) {

2 // arrays of property names
3 var aProps =
Object.getOwnPropertyNames (a) ;
4 var bProps =
Object.getOwnPropertyNames (b) ;
5
6 // If their property lengths are
different, they're different objects
7 if (aProps.length != bProps.length) {
8 return false;
9 }
10
11 for (var 1 = 0; 1 < aProps.length; i++)
{
12 var propName = aProps[i];
13
14 // If the values of the property are

different, not equal
15 if (a[propName] !== b[propName]) {

16 return false;

17 }

18 }

19

20 // If everything matched, correct
21 return true;

22 '}

23 isEquivalent ({'hi':12},{'hi':12}); // returns
true

However, this would still work for objects that have only a string or a
number as the property.

1 war objl = {'propl': 'test',6 'prop2': function
O{r s

2 var obj2 = {'propl': 'test', 'prop2': function
OLr 1z

3

4 isEquivalent (objl,0obj2); // returns false

This is because functions and arrays cannot simply use the ==
operator to check for equality.

1 war functionl = function() {console.log(2) };

2 var function? = function () {console.log(2) };

3 console.log(functionl == function2); // prints
'false'

Although the two functions perform the same operation, the
functions have different addresses in memory, and therefore the equality
operator returns false. The primitive equality check operators, == and
===, can be used only for strings and numbers. To implement an

equivalence check for objects, each property in the object needs to be
checked.

Summary

JavaScript has a different variable declaration technique than most
programming languages. var declares the variable within the function
scope, 1et declares the variable in the block scope, and variables can be

declared without any operator in the global scope; however, global scope
should be avoided at all times. For type checking, t ypeof should be

used to validate the expected type. Finally, for equality checks, use == to
check the value, and use === to check for the type as well as the value.

However, use these only on non-object types such as numbers, strings,
and booleans.

Footnotes

1 https://lodash.com/

2 http://underscorejs.org/

https://lodash.com/
http://underscorejs.org/

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_3

3. JavaScript Numbers

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will focus on JavaScript number operations, number
representation, Numbe r objects, common number algorithms, and
random number generation. By the end of this chapter, you will
understand how to work with numbers in JavaScript as well as how to
implement prime factorization, which is fundamental for encryption.
Number operations of a programming language allow you to compute
numerical values. Here are the number operators in JavaScript:

+ addition

- subtraction

/ division

* multiplication
% modulus

These operators are universally used in other programming
languages and are not specific to JavaScript.

Number System

JavaScript uses a 32-bit floating-point representation for numbers, as
shown in Figure 3-1. In this example, the value is 0.15625. The sign bit
(the 31st bit) indicates that the number is negative if the sign bitis 1. The
next 8 bits (the 30th to 23rd bits) indicate the exponent value, e. Finally,
the remaining 23 bits represent the fraction value.

https://doi.org/10.1007/978-1-4842-3988-9_3

Sign Exponent (8-bit) Fraction (23-bit)
I || |

00111110001000000000000000000000 =0.15625

31 23 0

Figure 3-1 The 32-bit floating-point number system

With the 32 bits, the value is computed by this esoteric formula:
23
value = (—1)%&" x 2¢71%7 x (1 + Z b23,2’J
=1

Figure 3-1 shows the following break down of the 32 bits:
sign=0
e=(0111100), = 124 (in base 10)

23
1 +Zb23_,-2—" =1+0+025+0
=1

1=

This results in the following:

value = 1x 2124127 x 1,25 =1x23x 1.25 = 0.15625

With decimal fractions, this floating-point number system causes
some rounding errors in JavaScript. For example, 0.1 and 0.2 cannot be
represented precisely.

Hence, 0.1 + 0.2 === 0.3 yields false.

1 0.1 + 0.2 === 0.3; // prints 'false'

To really understand why 0.1 cannot be represented properly as a
32-bit floating-point number, you must understand binary. Representing
many decimals in binary requires an infinite number of digits. This
because binary numbers are represented by 2" where n is an integer.

While trying to calculate 0.1, long division will go on forever. As
shown in Figure 3-2, 1010 represents 10 in binary. Trying to calculate
0.1 (1/10) results in an indefinite number of decimal points.

0.0011...

10000
1010

1100
1010

100 repeated in a)
Figure 3-2 Long division for 0.1
JavaScript Number Object

Luckily, there are some built-in properties of the Number object in
JavaScript that help work around this.

Integer Rounding

Since JavaScript uses floating point to represent all numbers, integer
division does not work.

Integer division in programming languages like Java simply evaluates
division expressions to their quotient.

For example, 5/4 is 1 in Java because the quotient is 1 (although
there is a remainder of 1 left). However, in JavaScript, it is a floating
point.

1 5/4; // 1.25

This is because Java requires you to explicitly type the integer as an
integer. Hence, the result cannot be a floating point. However, if
JavaScript developers want to implement integer division, they can do
one of the following:

Math.floor - rounds down to nearest integer
Math.round - rounds to nearest integer
Math.ceil - rounds up to nearest integer

Math.floor (0.9); // 0
Math.floor (1.1); // 1

Math.round (0.49); // 0
Math.round (0.5); // 1

Math.round(2.9); // 3
Math.ceil (0.1); // 1 Math.ceil(0.9); // 1
Math.ceil (21); // 21 Math.ceil (21.01); // 22

Number.EPSILON

Number.EPSTLON returns the smallest interval between two

representable numbers. This is useful for the problem with floating-point
approximation.

1 function numberEquals(x, y) {

2 return Math.abs(x - y) < Number.EPSILON;
3}
4

5 numberEquals (0.1 + 0.2, 0.3); // true

This function works by checking whether the difference between the
two numbers are smaller than Number . EPSTLON. Remember that

Number .EPSILON is the smallest difference between two representable
numbers. The difference between 0.1+0.2 and 0.3 will be smaller than
Number .EPSILON.

Maximums
Number.MAX SAFE INTEGER returns the largestinteger.

1 Number.MAX SAFE INTEGER + 1 ===
Number .MAX SAFE INTEGER + 2; // true

This returns t rue because it cannot go any higher. However, it does
not work for floating-point decimals.

1 Number.MAX SAFE INTEGER + 1.111 ===
Number .MAX SAFE INTEGER + 2.022; // false

Number.MAX VALUE returns the largest floating-point number

possible.
Number .MAX VALUE is equal to 1.7976931348623157e+308.

1 Number.MAX_VALUE + 1 === Number.MAX_VALUE + 2;
// true

Unlike like Number .MAX SAFE INTEGER, this uses double-
precision floating-point representation and works for floating points as
well.

1 Number. MAX_VALUE + 1.111 === Number. MAX_VALUE
+ 2.022; // true

Minimums

Number.MIN SAFE INTEGER returns the smallestinteger.
Number.MIN SAFE INTEGERis equalto-9007199254740991.

1 Number.MIN SAFE INTEGER - 1 ===
Number .MIN SAFE INTEGER - 2; // true

This returns t rue because it cannot get any smaller. However, it
does not work for floating-point decimals.

1 Number.MIN SAFE INTEGER - 1.111 ===
Number .MIN SAFE INTEGER - 2.022; // false

Number.MIN VALUE returns the smallest floating-point number

possible.
Number.MIN VALUE is equal to 5e-324. This is not a negative

number since it is the smallest floating-point number possible and means
that Number .MIN VALUE is actually bigger than Number .MIN -

SAFE INTEGER.
Number .MIN VALUE is also the closest floating point to zero.

1 Number.MIN VALUE - 1 == -1; // true
This is because this is similar to writing0 - 1 == -1.
Infinity

The only thing greater than Number .MAX VALUEis Infinity,and
the only thing smaller than Number .MAX SAFE INTEGERIs -
Infinity.

1 Infinity > Number.MAX SAFE INTEGER; // true
2 -Infinity < Number.MAX SAFE INTEGER // true;,
3 -Infinity -32323323 == -Infinity -1; // true

This evaluates to t rue because nothing can go smaller than -
Infinity.

Size Summary

This inequality summarizes the size of JavaScript numbers from smallest
(left) to largest (right):

—-Infinity < Number.MIN SAFE INTEGER <
Number .MIN VALUE < 0 < Number.MAX SAFE IN- TEGER <
Number .MAX VALUE < Infinity

Number Algorithms

One of the most discussed algorithms involving numbers is for testing
whether a number is a prime number. Let’s review this now.

Primality Test

A primality test can be done by iterating from 2 to n, checking whether
modulus division (remainder) is equal to zero.

1 function isPrime (n) {

2 if (n <= 1) {

3 return false;

4 }

5

6 // check from 2 to n-1

7 for (var i=2; i<n; 1i++) {
8 if (n%i == 0) {

9 return false;
10 }
11 }
12
13 return true;
14 }

Time Complexity: O(n)

The time complexity is O(n) because this algorithm checks all
numbers from 0 to n.

This is an example of an algorithm that can be easily improved. Think
about how this method iterates through 2 to n. Is it possible to find a
pattern and make the algorithm faster? First, any multiple of 2s can be
ignored, but there is more optimization possible.

Let’s list some prime numbers.

2,3,57,11,13,17,19,23,29,31,37,41,43,47,53,59, 61

,07,71,73,79,83,89,97

This is difficult to notice, but all primes are of the form 6k + 1, with
the exception of 2 and 3 where k is some integer. Here’s an example:

5= (6-1) , 7= ((1*6) + 1), 13 = ((2*6) + 1) etc

Also realize that for testing the prime number n, the loop only has to
test until the square root of n. This is because if the square root of n is not
a prime number, n is not a prime number by mathematical definition.

1 function isPrime (n) {

2 if (n <= 1) return false;

3 if (n <= 3) return true;

4

5 // This 1is checked so that we can skip
6 // middle five numbers in below loop

7 if (n%2 == || n$3 == 0) return false;
8

9 for (var i=5; i*i<=n; 1i=i+06) {
10 if (n%1i == 0 || n%(1i+2) == 0)
11 return false;
12 }
13
14 return true;
15 }

Time Complexity: O(sqrt(n))
This improved solution cuts the time complexity down significantly.

Prime Factorization

Another useful algorithm to understand is for determining prime
factorization of a number. Prime numbers are the basis of encryption
(covered in Chapter 4) and hashing (covered in Chapter 11), and prime
factorization is the process of determining which prime numbers
multiply to a given number. Given 10, it would print 5 and 2.

1 function primeFactors (n) {

2 // Print the number of 2s that divide
3 while (n%2 == 0) {

4 console.log(2);

5 n =n/2;

6 }

7

8 // n must be odd at this point. So we
can skip one element (Note 1 = 1 +2)

9 for (var i = 3; 1i*1 <= n; 1 = 1i+2) {
10 // While i divides n, print i and
divide n
11 while (n%i == 0) {
12 console.log (i)
13 n =n/i;
14 }
15 }
16 // This condition is to handle the case
when n 1s a prime number

17 // greater than 2

18 if (n > 2) {

19 console.log(n);
20 }
21 }

22 primeFactors (10); // prints '5' and '2'

Time Complexity: O(sqrt(n))
This algorithm works by printing any number that is divisible by i

without a remainder. In the case that a prime number is passed into this

function, it would be handled by printing whether n is greater than 2.

Random Number Generator

Random number generation is important to simulate conditions.
JavaScript has a built-in function for generating numbers:
Math.random ().

Math.random () returns a float between 0 and 1.

You may wonder how you get random integers or numbers greater
than 1.

To get floating points higher than 1, simply multiply
Math.random () by the range. Add or subtract from it to set the base.

Math.random() * 100; // floats between
0O and 100

Math.random() * 25 + 5; // floats between
5 and 30

Math.random() * 10 - 100; // floats between -100
and =90

To get random integers, simply use Math.floor (),
Math.round(),orMath.ceil () toround to an integer.

Math.floor (Math.random() * 100); // integer
between 0 and 99

Math.round (Math.random() * 25) + 5; // integer
between 5 and 30

Math.ceil (Math.random() * 10) - 100; // integer
between -100 and -90

Exercises
1.

Given three numbers x, y, and p, compute (x"y) % p. (This is modular e
Here, x is the base, y is exponent, and p is the modulus.
Modular exponentiation is a type of exponentiation performed ove

which is useful in computer science and used in the field of public-key

algorithms.
At first, this problem seems simple. Calculating this is a one-line so|
here:

1 function modularExponentiation (base, expons

2 return Math.pow (base, exponent) % modt

This does exactly what the question asks. However, it cannot handl
exponents.

Remember that this is implemented with encryption algorithms. In
cryptography, the base is often at least 256 bit (78 digits).

Consider this case, for example:

Base: 6x1077, Exponent: 27, Modulus: 497

In this case, (6x1077)?7 is a very large number and cannot be storec
floating point.

There is another approach, which involves some math. One must ol
following mathematical property:

For arbitrary a and b,

o\

C m = (a
C m = [

o\°

Using this mathematical property, you can iterate 1 to the exponen
each time by multiplying the current modulus value with the last.
Here is the pseudocode:

1 Set value = 1, current exponent = 0.
2 Increment current exponent by 1.
3 Set value = (base wvalue) mod modulus until «

exponent 1is reached exponent

Example: Base: 4, Exponent: 3, Modulus: 5
43%5=64%5=4

value = (lastValue x base) % modulus:
value=(1x4) % 5=4%5=4
value=(4x4)% 5=16%5=1
value=(1x4)%5=4%5=4

Finally, here is the code:

1 function modularExponentiation (base, expor
if (modulus == 1) return 0;

var value = 1;

g w N

2

O W 00 I O

1

}

{

moc

for (var i=0; i<exponent; i++
value = (value * base)

%

}

return value;

Time Complexity: O(n)
The time complexity is O(n) where n is equal to the exponent value

Print all primes less than n.
To do this, use the i sPrime function covered in this chapter. Simp
to n and print any prime numbers where i sPrime () evaluates to tr1

o J o Ul Ww N

NMNNOMNNMNNOMNNRERRRRRRRRRE
BSWNERE OWOWJoU ™ WN EF O W

function allPrimeslLessThanN (n) {

}

for (var 1=0; i<n; 1i++) {
if (isPrime (1)) {
console.log (i) ;

function isPrime (n) {

if (n <= 1) return false;
if (n <= 3) return true;

// This 1is checked so that we can skip
// middle five numbers in below loop
if (n%2 == || n%¥3 == 0) return false;

for (var i=5; 1i*i<=n; 1=1+4+6) {

if (n%i == || n%(1+2) == 0)
return false;

return true;

25 allPrimesLessThanN(15);
26
27 // prints 2, 3, 5, 7, 11, 13

Time Complexity: O(nsqrt(n))
This is because i sPrime (covered earlier in this chapter) with a ti
O(sqrt(n)) is run n times.

Check for a set of prime factors.

Let’s define ugly numbers as those whose only prime factors are 2,
sequence 1, 2, 3,4,5,6,8,9, 10,12, 15, ... shows the first 11 ugly numb
convention, 1 is included.

To do this, divide the number by the divisors (2, 3, 5) until it canno
without a remainder. If the number can be divided by all the divisors, i
after dividing everything.

1 function maxDivide (number, divisor) {
2 while (number % divisor == 0) {
3 number /= divisor;

4 }

5 return number;

6}

7

8 function 1sUgly (number) {

9 number = maxDivide (number, 2);
10 number = maxDivide (number, 3);
11 number = maxDivide (number, 5);
12 return number === 1;

13 1}

[terate this over n, and now the list of ugly numbers can be returne

1 function arrayNUglyNumbers (n) {

2 var counter = 0, currentNumber = 1,
=[]

3

4 while (counter != n) {

5

6 if (isUgly (currentNumber)
7 counter++;
8 uglyNumbers.push (cu:
9 }
10
11 currentNumber++;
12 }
13
14 return uglyNumbers;
15 }

Time Complexity for maxDivide(number, divisor):
O(logdivisor(number))

The time complexity of maxDivide is a logarithmic function which
depends on divisor and the number. When testing primes of 2, 3, and
5, the logarithmic of 2 (log, (n)) yields the highest time complexity.
Time Complexity for isUgly: O(log,(n))

Time Complexity for arrayNUglyNumbers: O(n(log,(n)))

The 1sUgly function is limited by the time complexity of
maxDivide (number, 2).Hence, arrayNUglyNumbers has ntimes
that time complexity.

Summary

Recall that all numbers in JavaScript are in 32-bit floating point format.
To get the smallest possible floating point increment, you should use
Number .EPILSON. The maximum and minimum numbers of JavaScript

can be summarized by the following inequality:

—Infinity < Number.MIN SAFE INTEGER <
Number .MIN VALUE < 0

< Number.MAX SAFE INTEGER < Number.MAX VALUE <
Infinity

Prime number validation and prime factorization are concepts used

in various computer science applications such as encryption, as covered
in Chapter 4. Finally, random number generation in JavaScript works via
Math.random ().

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_4

4. JavaScript Strings

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will focus on working with strings, the JavaScript String
object, and the St ring object’s built-in functions. You will learn how to

access, compare, decompose, and search strings for commonly used real-
life purposes. In addition, the chapter will explore string encoding,
decoding, encryption, and decryption. By the end of this chapter, you will
understand how to effectively work with JavaScript strings and have a
fundamental understanding of string encoding and encryption.

JavaScript String Primitive

JavaScript’s native St ring primitive comes with various common string
functions.

String Access
For accessing characters, you use .chartAt ().

1 ‘'dog'.charAt(1l); // returns "o"

.charAt (index) takes an index (which starts at 0) and returns the
character at that index location in the string.

For string (multiple-character) access, you can use
.substring(startIndex, endIndex),which will return the
characters between the specified indices.

https://doi.org/10.1007/978-1-4842-3988-9_4

1 'YouTube'.substring(l,2); // returns 'o'
2 YouTube'.substring(3,7); // returns 'tube'

If you do not pass a second parameter (endIndex), it will return all
the character values from the specified start position until the end.

1 return 'YouTube'.substring(l); // returns
"outube'!

String Comparison

Most programming languages have a function that allows you to
compare strings. In JavaScript, this can be done simply by using less-than
and greater-than operators.

1 war a = 'a';
2 wvar b = 'b';
3 console.log(a < b); // prints 'true'

This can be really useful for comparing strings when sorting
algorithms, which is covered later in the book.

However, if you are comparing two strings of different lengths, it
starts comparing from the start of the string until the length of the
smaller string.

var a = 'add';
var b = 'b';

console.log(a < b); // prints 'true'

In this example, a and b are compared. Since a is smaller than b, a <
b evaluates to true.

1 war a = 'add';
2 wvar b = 'ab';
3 console.log(a < b); // prints 'false'

In this example, after 'a' and 'b' are compared, 'd' and 'b"' are
compared. Processing cannot continue because everything in 'ab"' has

been looked at. This is the same as comparing 'ad"' with "ab"'.

1 console.log('add'<'ab' == 'ad'<'ab'); //
prints 'true'

String Search

To find a specific string within a string, you can use

.indexOf (searchValue[, fromIndex]). This takesa parameter
that is the string to be searched as well as an optional parameter for the
starting index for the search. It returns the position of the matching
string, but if nothing is found, then -1 is returned. Note that this function
IS case sensitive.

'Red Dragon'.indexOf ('Red"'); // returns 0
'Red Dragon'.indexOf ('RedScale'); // returns -1
'Red Dragon'.indexOf ('Dragon', 0); // returns 4
'Red Dragon'.indexOf ('Dragon', 4); // returns 4
'Red Dragon'.indexOf (", 9); // returns 9

g W N

To check for the occurrence of a search string inside a larger string,
simply check whether -1 was returned from .indexOf.

1 function existsInString (stringValue, search)

2 return stringValue.indexOf (search) !==
_1;

3}

4 console.log(existsInString('red','r")); //
prints 'true';,

5 console.log(existsInString('red','b")); //
prints 'false';

You can use an additional parameter to search after a certain index in
a string. An example is counting occurrences of certain letters . In the
following example, the occurrences of the character 'a' will be counted:

1 war str = "He's my king from this day

until his last day";

2 wvar count = 0;

3 wvar pos = str.indexOf('a');
4 while (pos !== -1) {

5 count++;

o pos = str.indexOf('a', pos + 1);
7T}

8 console.log(count); // prints '3’

Finally, startsWith returns true (boolean) if the string starts with
the specified input, and endsWith checks whether the string ends with
the specified input.

1 'Red Dragon'.startsWith('Red'); // returns
true

2 'Red Dragon'.endsWith('Dragon'); // returns
true

3 'Red Dragon'.startsWith('Dragon'); // returns
false

4 'Red Dragon'.endsWith('Red'); // returns false

String Decomposition

For decomposing a string into parts, you can use

.split (separator), which is a great utility function. It takes one
parameter (the separator) and creates an array of substrings.

1 wvar testl = 'chicken,noodle, soup,broth';
2 testl.split(","); // ["chicken'", "noodle",
"soup", "broth']

Passing an empty separator will create an array of all the characters.
1 war testl = 'chicken';
2 teStl.Spllt(""),’ // ["C"/ "h", "i", "c", "k",

n n n n
e, "n"]

This is useful for when there are items listed in a string. The string

can be turned into an array to easily iterate through them.

String Replace
.replace (string, replaceString) replaces a specified string
within a string variable with another string.

1 "Wizard of Oz".replace ("Wizard","Witch"); //
"Witch of Oz"

Regular Expressions

Regular expressions (regexes) are a set of characters that define a search
pattern. Learning how to use regexes is a massive task of its own, but as a
JavaScript developer, it is important you know the basics of regexes.
JavaScript also comes with the native object RegExp, which is used
for regular expressions.
The constructor for the RegExp object takes two parameters: the
regular expression and the optional match settings, as shown here:

i Perform case-insensitive matching

g Perform a global match (find all matches
rather than stopping after first match)

m Perform multiline matching

RegExp has the following two functions:

e search (): Tests for matches in a string. This returns the index of the
match.
e match (): Tests for matches. This returns all the matches.

The JavaScript St ring object also has the following two regex-
related functions that accept the RegExp object as an argument:

e exec (): Tests for matches in a string. This returns the first match.

e test (): Tests for matches in a string. This returns true or false.

Basic Regex
Here are the basic regex rules:

~: Indicates the start of a string/line
\ d: Finds any digit
[abc]: Finds any character between the brackets
[~abc]: Finds any character not between the brackets
[0-9]: Finds any digit between the brackets
[~0-91]: Finds any digit not between the brackets
(x|y) : Finds any of the alternatives specified
The following returns index 11, which is the index of the character D,
which is the first character of the matched regex:

1 wvar str = "JavaScript DataStructures";
2 wvar n = str.search(/DataStructures/) ;
3 console.log(n); // prints '11'

Commonly Used Regexes
Regexes are immensely helpful for checking the validity of user input in
JavaScript. One common type of input check is to validate whether it has
any numeric characters.

The following are five regexes that developers often use.

Any Numeric Characters

/\d+/
var reg /\d+/;
reg.test ("123"); // true

reg.test ("5asdasd"); // true
reg.test ("asdasd"); // false

o b W N

(

reg.test ("33asd"); // true
(
(

Only Numeric Characters
/"\d+S$/

1 wvar reg = /"\d+$/;
2 reg.test("123"); // true
3 reg.test("1l23a"); // false

4 reg.test("a"); // false

Floating Numeric Characters

/7[0=-91*.[0-9]1*[1-9]+3%/

1 wvar reg = /"[0-9]1*.[0-9]*[1-9]1+S/;
2 reg.test("12"™); // false
3 reg.test("12.2"); // true

Only Alphanumeric Characters

/[a-zA-20-9]/

1 wvar reg = /[a-zA-7Z20-9]1/;

2 reg.test("somethingELSE"); // true
3 reg.test("hello"); // true

4 reg.test("11l2a"); // true

5 reg.test("112"); // true

6 reg.test("""); // false

Query String

/([h2=&]+) (=(["&]*))/

In web applications, web URLs often pass in parameters in the URL
for routing or database query purposes.

For example, for the URL
http://your.domain/product.aspx?

category=4&product id=2140&query=lcd+tv,the URL might
respond to a back-end SQL query like the following:

1 SELECT LCD, TV FROM database WHERE Category =
4 AND Product 1d=2140;

To parse these parameters, regexes can be useful.

1 var uri = 'http://your.domain/product.aspx?

http://your.domain/product.aspx%253Fcategory%253D4%2526product_id%253D2140%2526query%253Dlcd%252Btv

category=4&product id=2140&query=lcd+tv' ;

2 var queryString = {};

3 uri.replace(

4 new RegExp (" (["?=&]+) (=
([r&l*))2" , "g"),

5 function ($0, $1, $2, S$3) {
queryString[$1l] = $3; }

6)

7 console.log('ID: ' + queryString['product id'
1); // ID: 2140

8 console.log('Name: '
+ queryString['product name']); // Name: undefined

9 console.log('Category:
+ queryString['category' 1); // Category: 4
Encoding

Encoding is a general concept in computer science that represents
characters in a specialized format for efficient transmission or storage.
All computer file types are encoded in specific structures.
For example, when you upload a PDF, the encoding may look like this:

1 JVBERi10OxLJMKMSAwIG91ago8PCAVVHIWZSAVQ2FOYWxVZ
wovT3VObGluZXMgMiAwWIFIKL1BhZ2VzIDMgMCBS\

2 ID44+CmVuzG9iagoyIDAgb2JgCjw8IC9UeXB1ICI9PdXRsa
W51cyAvQ291bnQgMCA+PgplbmRVYMOKMYAWIGI1i\

3 ago8PCAVVHIWZSAVUGFNnZXMKLOtpZHMgWzYgMCBSC1O0KL
ONvAW50IDEKL1J1c291cmNl1cyA8PAOVUHIVY1INI\

4 dCAOIDAgUgovRm9udCA8PCAKLOYxIDggMCBSCj4+Cj4+C
1 INZWRpYUJveCBbMC4wMDAGMC4wMDAGN I EyLjAw\

5 MCA30TIuMDAWXQogPj4KZW5kb2JIgCjQgMCBVYmMoKWy 9QOR
EYgL1R1eHQgXQplbmRvYmMoKNSAWIG9iago8PAoV\

6 Q3J1YXRvVCciAOREINUERGKQoVQ3J1YXRpb25EYXR1IChEO
JIWMTUWNZ IwMTMzMz I zKzAyJzAwJykKLO1vZERK\

7 dGUgKEQ6MJjAXNTA3MjAxMzMzMjMrMDInMDANKQo+Pgplb
MRVYMOKNiIAWIG91ago8PCAVVHIWZSAVUGENnZQov\

8 UGFyZW50IDMgMCBSCi9Db250ZW50cyA3IDAGUgo+Pgplb

MRVYMOKNYAWIG91ago8PCAVRM1sdGVyICIGbGFO\
9 ZUR1Y29kZQovTGVuZ3RoIDY2ID4+CnNOcmVhbQp4nOMyO0
DMwMFBAJOVSUZXCFIXNO9AWMZRTMDS31DCxXNFUJS\
10 FPTADBWMgKIKIWkKCtEalanFJzZgxCiFeCg4hAO4PDOMKZ
W5kc3RyZWFtCmVuzZG9iago4 IDAgb2JgCijw8IC9U\
11 eXBlIC9Gb250C1i9TdWJ0eXB1ICI9UeXBIMQovTmFtZSAVR
JEKLOJhc2VGb250IC9UaWllcylChb2xkCi9FbmNw\
12 ZGluzZyAvV21uQW5zaUlVuY¥29kaWbnCjd4d+CmVuzG9iagp4c
mvVmCjAgOQowWMDAWMDAWMDAWIDYINTM1IGYGC AW\
13 MDAwWMDAwWMDggMDAWMDAgbiAKMDAWMDAWMDA3MyAwWMDAWM
CBUuIAowWMDAWMDAWMTESIDAWMDAWIGA4gCjAWMDAW \
14 MDAyNzMgMDAwMDAgbiAKMDAWMDAWMDMwWMiAWMDAWMCBuUI
AoWMDAWMDAWNDE 2 I DAWMDAwWIG4gCjAwWMDAWMDAOQ \
15 NzkgMDAwWMDAgbiAKMDAWMDAWMDYxN1iAwWMDAWMCBuUIApPOC
MFpbGVyCijw8C1i9TaXplIDkKL1Jvb3QgMSAWIFIK\
16 LO1uZm8gNSAwWIFIKPJ4Kc3RhcnR4cmVmCjcyNQolJUVPR

This is a Base64-encoded PDF string. Data like this is often passed to
the server when a PDF file is uploaded.

Base64 Encoding

The btoa () function creates a Base64-encoded ASCII string from a
string. Each character in the string is treated as a byte (8 bits: eight 0 and
1s).

The .atob () function decodes a string of data that has been
encoded using Base64 encoding. For example, the string “hello I love
learning to computer program” in a Base64-encoded string looks like
this:
aGVsbG8gSSBsb3ZIIGxlYXJuaW5nIHRVIGNvbXB1dGVyIHByb2dyYWO.

1 btoa('hello I love learning to computer
program') ;

2 // aGVsbG8gSSBsb3Z1IGx1YXJuaW5s5nIHRvIGNvbXB1dG
VyIHByb2dyYW0

1 atob('aGVsbG8gSSBsb3Z21IGx1YXJuaWbnIHRVIGNvbXB1
dGVyIHByb2dyYWO"') ;

2 // hello I love learning to computer program

Learn more about Base64 at
https://en.wikipedia.org/wiki/Base64.

String Shortening

Have you ever wondered how URL-shortening sites such as Bit.ly work?

A simplified URL compression algorithm follows a certain structure, as
shown here for www.google.com:

1.
The database creates a unique integer-based ID for the URL. In

Figure 4-1, www.google.com has the entry 11231230 in the
database.

Relational Database
Id url

0 www.youtube.com

11231230 www.google.com

Figure 4-1 Database entries

2.
The integer ID is shortened into a string. When shortened with
Base62 encoding, 11231230 will be VhU2.

https://en.wikipedia.org/wiki/Base64
http://bit.ly
http://www.google.com
http://www.google.com

Relational Database

Id url Shortened Id
0 www.youtube.com a
11231230 | www.google.com VhU2

Figure 4-2 Database entries after shortening

For the shortening part, the following algorithm can be used. There
are 62 possible letters and numbers, consisting of 26 lowercase letters,
26 uppercase letters, and 10 numbers (0 to 9).

1 wvar DICTIONARY =
"abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVIWXY
20123456789" .split(");

2

3 function encodeId (num) {

4 var base = DICTIONARY.length;

5 var encoded =" ;

6

7 if (num ===) |

8 return DICTIONARY[O];

9 }

10

11 while (num > 0) {

12 encoded
+= DICTIONARY [(num % Dbase)];

13 num = Math .floor (num
/ base);

14 }

15

16 return reverseWord (encoded) ;

17 }

18

19 function reverseWord(str) {

20 var reversed = ""

21 for (var 1 = str.length - 1 ;
i >0 ; 1i--) {

22 reversed
+= str.charAt(1i);

23 }

24 return reversed;

25 '}

26

27 function decodeId(id) {

28 var base = DICTIONARY.length;

29 var decoded = 0 ;

30

31 for (var 1ndex = 0 ; index
< id.split("").length; index++) {

32 decoded = decoded
* base + DICTIONARY.indexOf (id.charAt (index));

33 }

34

35 return decoded;

36}

37

38 console.log(encodeId (11231230)); // prints
'Vhu2'

39 console.log(decodeId('VhU2')); // prints
'11231230"

Encryption

Encryption is extremely important when protecting people’s information
online. Have you ever seen the warning in Figure 4-3 in the Google
Chrome browser?

Your connection to this site is not
secure

You should not enter any sensitive information on
this site (for example, passwords or credit cards),
because it could be stolen by attackers. Learn

more

& Cookies (3 in use)

£ Site settings

Figure 4-3 SSL warning

This likely means the web site you are trying to access does not have
the proper Secure Sockets Layer (SSL) certificate.

Browser 2 > Web Server

Figure 4-4 TSL process

TSL is a standard security technology for establishing an encrypted
link between the server and the client (browser). The following are the
simplified steps of the TSL process. In this process, asymmetric
encryption is used for different keys for encryption and decryption by
the server. The browser only uses symmetric encryption, which uses a
single key to both encrypt and decrypt the data.

1.
The server sends its asymmetric public key to the browser.

The browser creates a symmetric key for the current session, which
is encrypted by the server’s asymmetric public key.

The server decrypts the browser’s session via its private key and
retrieves the session key.

Both systems have the session key and will use this to transmit data
securely.

This is secure because only the browser and the server know the
session key. If the browser was to connect to the same server the next
day, a new session key would be created.

The SSL warning message is a sign that the browser and server may
not be encrypting the data on that connection.

The most commonly used public-key encryption algorithm is the RSA
algorithm.

RSA Encryption
RSA is an encryption algorithm based on the difficulty of factoring large
integers. In RSA, two large prime numbers and a supplementary value
are generated as the public key. Anyone can use the public key to encrypt
a message, but only those with the prime factors can decode the
message.

There are three phases in the process: key generation, encryption,
and decryption.

Key generation: The public key (shared) and private key (kept secret)
are generated. The construction method of the keys generated should
be also secret.

Encryption: The secret message can be encrypted via the public key.
Decryption: Only the private key can be used to decrypt the message.

Here’s an overview of the algorithm:

1.
Select two (usually large) prime numbers, p and q.

a.
The product of p and q is denoted as n.

b. The product of (p-1) and (g-1) is denoted as phi.

2.
Choose two exponents, e and d.

a.
e is typically 3. Other values greater than 2 can be used.

b.
d is a value such that (e x d) % phi = 1.

Encryption process is as shown:

m - message:
mte $ n = C
c - encrypted message

Decryption process 1is as shown:
c™ % n=m

This is the implementation of calculating d:

1 function modInverse (e, phi) {
2 var mO = phi, t, g;
3 var x0 = 0, x1 = 1;
4
5 if (phi == 1)
6 return O;
5
8 while (e > 1) {
9 // g 1s quotient
10 q = Math.floor (e / phi);
11
12 t = phi;
13
14 // phi is remainder now, process same
as
15 // Euclid's algo
16 phi = e $ phi, e = t;

17
18
19
20
21
22
23
24
25
26
277
28
29
30
31

x0 = x1 - g * x0;

x1l = t;
}

// Make x1 positive
if (x1 < 0)
x1 += mO0;

return x1;

}
modInverse (7,40); // 23

Key pairs of a public key and a private key also need to be generated.

oY U i W N

same

10
11
12
13
14
15
[d,n]
16
17

function RSAKeyPair (p, qg) {
// Need to check that they are primes
if (! (isPrime(p) && isPrime(q)))
return;

// Need to check that they're not the

if (p==q)
return;

var n = p * q,
phi = (p-1)*(g-1),
e = 3,
d = modInverse (e,phi);

// Public key: [e,n], Private key:

return [[e,n], [d,n]]

Let's pick 5 and 11 as the primes and see an example where
message is 50.

1 RSAKeyPair (5,11); //Public key: [3,55],
Private key: [27,55]

p =5, 11
n =pxg= 55
phi = (5-1) x (11-1) = 4 x 10 = 40
e = 3
(e x d) $ phi =1 (3 xd) % 40 =1
(81) $ 40 = 1. 81 = 3 xd =3 x 27
d = 27
Encryption:

m - message: 50

mte $ n = C

5073 % 55 = 40

Encrypted message.,cC:
40
Decryption:
c™d $ n=m
40727 % 55 = 50

This fully encrypts 50, and the receiver can decrypt that back to 50.
Typically the prime numbers chosen are very large for the RSA
algorithm. This is because the prime factorization of large numbers takes
a long time to compute. Today's standard is to use a 4,096-bit prime
product. Computing its prime factors would take years even for
advanced computers to compute. Figure 4-5 shows the largest possible
value for a 4,096-bit number.

1044388881413152506 691752710716624 382 579964 249 047 383780 ",
384233483283 953907971557456 848 826811 934997558 340 890106 .
714439262837 987573438 185793607 263236 087851 365277 945956 "
076543709998 340361590134 383718 314428070011855946 226 376 "
318839397712745672334684 344586 617496 807908 705803 704071 "
284048740118 609 114467977783 598 029006 686 938 976881 787785 "
946905630 190 260940 599579453432 823469 303026 696443 059025,
015972399867 714215541693 835559 885291486 318 237914 434496 "
734087811872 639496475100189041349008417061675093 668 333 ".
850551032972 088269550769 983616 369411933015213796 825837 "
188091833656 751221318492 846 368 125550225998 300412 344 784",
862595674492 194617023806505913 245610825731835380 087608 .
622102834270 197698202313169017 678006 675195485079 921636 .
419370285375124784014907159135459982790513399611 551794 "
271106831134 090584 272884279791 554849782954 323534 517065 .
223269061394 905987693002 122963 395 687 782878 948440 616007 "
412945674919 823050571642377154 816 321380631045902916 136"
926708 342856 440730447899971901 781465763473 223850 267253 "
059899795996 090799469201774624 817718449867455659 250178 .
329070473119433165550807568221 846571 746 373296884 912819 "
520317457002440926616910874 148 385078411929804522 981857 .
338977648103 126 085903001302413467189726673216491 511131 ",
602920781738 033436 090243804708 340403 154190 336

Figure 4-5 24096

Summary
Various natively implemented string functions were covered in this

chapter and are summarized in Table 4-1.

Table 4-1 String Function Summary

Function Usage

charAt (index) Accesses a single character at index

substring (startIndex, Accesses part of string from startIndex to

endIndex) endIndex

strl > str2 Returns true if strl is lexicographically bigger than
str2

indexOf (str, startlIndex) Index of the desired str starting at startIndex

str.split(delimiter) Breaks a string into an array with the specified
delimiter

str.replace (original, new) Replaces original with new

In addition, a JavaScript native Regex object can be used for
commonly used string validation. Table 4-2 provides a summary.

Table 4-2 Regex Summary

Regex Pattern Usage
/\d+/ Any numeric characters
/\d+8/ Only numeric characters

/"[0-91*.[0-91*[1-91+$/ Float numeric characters

/la-zA-20-91/ Only alphanumeric characters

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_5

5. JavaScript Arrays

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will focus on working with JavaScript arrays. As a JavaScript
developer, you will use the array often; it is the most commonly used
data structure. Arrays in JavaScript come with a lot of built-in methods.
In fact, there are various ways to do the same type of array operations
for each use case. By the end of this chapter, you will understand how to
work with arrays and be able to choose the right method for the
situation.

Introducing Arrays

Arrays are one of the most fundamental data structures. If you have ever
programmed before, you've most likely used an array.

1 var arrayl = [1,2,3,4];

For any data structure, developers are interested in time and space
complexity associated with the four fundamental operations: access,
insertion, deletion, and search. (For a review of Big-O notations, please
refer to Chapter 1.)

Insertion

Insertion means adding a new element inside a data structure. JavaScript
implements array insertion with the .push (element) method. This

method adds a new element at the end of the array.

https://doi.org/10.1007/978-1-4842-3988-9_5

1 var arrayl = [1,2,3,4];

2 arrayl.push(5); //arrayl = [1,2,3,4,5]

3 arrayl.push(7); //arrayl = [1,2,3,4,5,7]
4 arrayl.push(2); //arrayl = [1,2,3,4,5,7,2]

The time complexity of this operation is O(1) in theory. It should be
noted that, practically, this depends on the JavaScript engine that runs
the code. This applies to all natively supported JavaScript objects.

Deletion
JavaScript implements array deletion with the . pop () method . This

method removes the last-added element of the array. This also returns
the removed element.

1 var arrayl = [1,2,3,4];
2 arrayl.pop(); //returns 4, arrayl = [1,2,3]
3 arrayl.pop(); //returns 3, arrayl = [1,2]

The time complexity of . pop is O(1) similarly to . push.
Another way to remove an element from an array is with the
.shift () method. This method will remove the first element and

return it.

1 arrayl = [1,2,3,4];
2 arrayl.shift(); //returns 1, arrayl = [2,3,4]
3 arrayl.shift(); //returns 2, arrayl = [3,4]

Access

Accessing an array at a specified index only takes O(1) because this

process uses that index to get the value directly from the address in
memory. It is done by specifying the index (remember that indexing
starts at 0).

1 var arrayl = [1,2,3,4];
2 arrayl[0]; //returns 1
3 arrayl([1l]; //returns 2

Iteration

Iteration is the process of accessing each of the items contained within a
data structure. There are multiple ways to iterate through an array in
JavaScript. They all have a time complexity of O(n) since the iteration is
visiting n number of elements.

for (Variables; Condition; Modification)
for is the most common method of iteration. It is most often used in this
form:

1 for (var 1i=0, len=arrayl.length; i<len; i++) {
2 console.log(arrayl[i]);
3 }

The previous code simply means initialize the variable i, check
whether the condition is false before executing the body (i<len), and
then modify (i++) until the condition is false. Similarly, you can use a
while loop. However, the counter will have to be set outside.

var counter=0;

while (counter<arrayl.length) {
// insert code here
counter++;

O b W N

}

You can implement an infinite loop using a while loop, as shown
here:

1 while (true) {

2 if (breakCondition) {
3 break;
4

5

}

Similarly, a for loop can implement an infinite loop by not setting a
condition, as shown here:

1 for (; ;) |
2 if (breakCondition) {
3 break
4 }
5 }
for (in)

Another way to iterate a JavaScript array is to call the indices one by one.
The variable specified before in is the index of the array, as follows:

var arrayl = ['all','cows',6 'are','big'];

for (var index in arrayl) {
console.log(index) ;

o w N

}

This prints the following: 0,1, 2, 3.
To print the content, use this:

1 for (var index in arrayl) {

2 console.log(arrayl[index]) ;
3 }

This printsall, cows,are,and big.

for (of)

The variable specified before of is the element (the value) of the array,
as follows:

1 for (var element of arrayl) {
2 console.log(element) ;
3 }

This printsoutall, cows, are,and big.

forEach()

The big difference between forEach and other methods of iteration is

that forEach cannot break out of the iteration or skip certain elements
in the array. forEach is more expressive and explicit by going through
each element.

var arrayl = ['all',6'cows', 'are', 'big'];

arrayl.forEach(function (element, index) {
console.log(element) ;

1) ;

arrayl.forEach(function (element, index) {
console.log(arrayl [index]) ;

O O J o U Ww DN

1)

Both printall, cows, are,and big.

Helper Functions

The following sections discuss other commonly used helper functions for
processing. In addition, working with arrays will be covered.

.slice(begin,end)

This helper function returns a portion of an existing array without
modifying the array. . s1ice () takes two parameters: the beginning
index and the ending index of the array.

1 var arrayl = [1,2,3,4];

2 arrayl.slice(1,2); //returns [2], arrayl =
[1,2,3,4]

3 arrayl.slice(2,4); //returns [3,4], arrayl =
[1,2,3,4]

If only the beginning index is passed, the ending will be assumed to
be the maximum index.

1 arrayl.slice(l); //returns [2,3,4], arrayl =
[(1,2,3,4]

2 arrayl.slice(1,4); //returns [2,3,4], arrayl
= [1,2,3,4]

If nothing is passed, this function simply returns a copy of the array.
It should be noted that arrayl.slice () === arrayl evaluatesto
false. This is because although the contents of the arrays are the same,
the memory addresses at which those arrays reside are different.

1 arrayl.slice(); //returns [1,2,3,4], arrayl =
[1,2,3,4]

This is useful for copying an array in JavaScript. Remember that
arrays in JavaScript are reference-based, meaning that if you assign a
new variable to an array, changes to that variable apply to the original
array.

1 var arrayl = [1,2,3,4],
2 arrayZ2 = arrayl;

3

4 arrayl // [1,2,3,4]

5 arrav2 // [1,2,3,4]

6

7 array2[0] = 5;

8

9 arravyl // [5,2,3,4]
10 arravy2 // [5,2,3,4]

The changing element of array2 changed the original array by
accident because it is a reference to the original array. To create a new
array, you canuse . fromf().

var arrayl = [1,2,3,4];
var array2 = Array.from(arrayl);

arravyl // [1,2,3,4]
arrayz2 // [1,2,3,4]

<~ o U1 W DN

array2[0] = 5;

8
9 arrayl // [1,2,3,4]
10 array2 // [5,2,3,4]

.from () takes O(n), where n is the size of the array. This is intuitive
because copying the array requires copying all n elements of the array.

.splice(begin,size,elementl,element2...)
This helper function returns and changes the contents of an array by
removing existing elements and/or adding new elements.

.splice () takes three parameters: the beginning index, the size of
things to be removed, and the new elements to add. New elements are
added at the position specified by the first parameter. It returns the
removed elements.

1 var arrayl = [1,2,3,4];
2 arrayl.splice(); //returns [], arrayl =
[1,2,3,4]

3 arrayl.splice(1,2); //returns [2,3], arrayl =
[1,4]

This example demonstrates removal. [2, 3] was returned because it
selected two items starting from an index of 1.

1 var arrayl = [1,2,3,4];
2 arrayl.splice(); //returns [], arrayl =
[1,2,3,4]

3 arrayl.splice(1,2,5,6,7); //returns
(2,3] ,arrayl = [1,5,6,7,4]

Anything (any object type) can be added to the array. This is the
beauty (and odd part) of JavaScript.

1 var arrayl = [1,2,3,4];

2 arrayl.splice(1,2,([5,0,7])); //returns [2,3],
arrayl = [1,[5,6,7],4]

3 arrayl = [1,2,3,4];

4 arrayl.splice(1,2,{'ss':1}); //returns [2,3],

arrayl = [1,{'ss':1},4]

.splice () is, worst case, O(n). Similarly to copying, if the range
specified is the whole array, each n item has to be removed.

.concat()

This adds new elements to the array at the end of the array and returns
the array.

1 var arrayl = [1,2,3,4];

2 arrayl.concat(); //returns [1,2,3,4], arrayl =
[112/3/4]

3 arrayl.concat([2,3,4]); //returns

(1,2,3,4,2,3,4] ,arrayl = [1,2,3,4]

Jength Property

The . length property returns the size of the array. Changing this
property to a lower size can delete elements from the array.

1 var arrayl = [1,2,3,4];
2 console.log(arrayl.length); //prints 4
3 arrayl.length = 3; // arrayl = [1,2,3]

Spread Operator

The spread operator, denoted by three periods (...), is used to expand
arguments where zero arguments are expected.

1 function addFourNums (a, b, ¢, d) {

2 return a + b + ¢ + d;

3 }

4 var numbers = [1, 2, 3, 41;

5 console.log (addFourNums (...numbers)); // 10

Both the Math.max and Math .min functions take an unlimited
number of parameters, so you can use the spread operator for the
following operations.

To find the maximum in an array, use this:

1 var arrayl = [1,2,3,4,5];
2 Math.max (arrayl); // 5

To find the minimum in an array, use this:

1 var array?2 = [3,2,-123,2132,12];
2 Math.min (array2); // -123

Exercises

All the code for the exercises can be found on GitHub.!

Find Two Array Elements in an Array That Add Up to a Number
Problem: Given the array arr, find and return two indices of the array
that add up to weight or return -1 if there is no combination that
adds up to weight.

For example, in an array like [1,2,3,4,5], what numbers add up to
9?7

The answers are 4 and 5, of course.

The simple solution is to try every combination by having two for
loops, as shown here:

1 function findSum(arr, weight) {
2 for (var 1=0,arrlLength=arr.length;
i<arrLength; i++) {
3 for (var j=i+l; j<arrLength; j++)
{
4 if (arr[il+arr[j]==weight) {
5 return [i,7]];
6 }
7 }
8 }
9 return -1;
10 }

This solution iterates through an array looking to see whether a
matching pair exists.

Two for loops over n elements of the array yields a high time
complexity. However, no extra memory was created. Similar to how
time complexity describes the time required relative to input size, n,
to finish the algorithm, the space complexity describes the additional
memory needed for implementation. The space complexity, O(1), is
constant.

Time Complexity: 0(n?)

Space Complexity: O(1)

Let’s think about how to do this in linear time of O(n).

What if any previously seen array elements were stored and could
be checked easily?

Here’s the input:

1 var arr = [1,2,3,4,5];
2 var weight = 9;

Here, 4 and 5 are the combination, and their indices are [3, 4].
How could it be determined that a solution exists when 5 is visited?

If the current value is at 5 and the weight is 9, the remaining
required weight is just 4 (9-5=4). Since 4 is shown before 5 in the
array, this solution can work in O(n). Finally, to store the seen
elements, use a JavaScript object as a hash table. The implementation
and use of a hash table will be discussed in later chapters. Storing into
and retrieving a JavaScript object property is O(1) in time.

1 function findSumBetter (arr, weight) {

2 var hashtable = {};

3

4 for (var 1=0, arrlLength=arr.length;
i<arrLength; i++) {

5 var currentElement = arr[i],

6 difference = weight -
currentElement;

7

8 // check the right one already
exists

9 if (hashtable[currentElement] !=

undefined) {

10 return [i, hashtable[weight-
currentElement]] ;

11 } else {

12 // store index

13 hashtable[difference] = 1i;

14 }

15 }

106 return -1;

17 }

Time Complexity: O(n)

Space Complexity: O(n)

Storing into a hash table and looking an item up from a hash table
is only O(1). Space complexity has increased to O(n) to store the
visited array indices inside the hash table.

Implement the Array.Slice() Function from Scratch
Let’s review what the . s1ice () function does.

.slice () takes two parameters: the beginning index and the last
ending index of the array. It returns a portion of an existing array
without modifying the array function arraySlice (array,
beginIndex, endIndex).

1 function arraySlice(array, beginlIndex,
endIndex) {

2 // If no parameters passed, return the array
3 if (! beginIndex && ! endIndex) {

4 return array;

S) }

6

7 // If only beginning index is found, set
endIndex to size
8 endIndex = array.length;

9
10 var partArray = [];

11

12 // If both begin and end index specified
return the part of the array

13 for (var 1 = DbeginIndex; 1 < endIndex;
i++) |

14 partArray.push (arrayl[i])

15 }

16

17 return partArray;

18 }

19 arraySlice([(1 , 2 , 3, 471, 1, 2); //
[2]

20 arraySlice([1 , 2 , 3, 41, 2, 4); //
[3,4]

Time Complexity: O(n)

Space Complexity : O(n)

The time complexity is O(n) because all n items in the array must
be accessed. Space complexity is also O(n) to hold all n items when
copying the array.

Find the Median of Two Sorted Arrays of the Same Size
Recall that median in an even number of a set is the average of the two
middle numbers. If the array is sorted, this is simple.

Here’s an example:
[1,2,3,4] has the median of (2+3)/2 = 2.5.

1 function medianOfArray(array) {

2 var length = array.length;

3 // odd

4 if (length % 2 == 1) {

5 return
array[Math.floor (length/2)1;

o } else {

7 // Even

8 return

(array[length/2]+array[length/2 - 11)/2;

10 }

Now, you can iterate through both of the arrays and compare
which is bigger to track the median. If the two arrays are the same
size, the total size will be an even number.

This is because both two even numbers and two odd numbers add
up to an even number. Please refer to Chapter 8 for more background.

Since both of the arrays are sorted, this function can be recursively
called. Each time, it checks which median is greater.

If the second array’s median is greater, the first array is cut in half,
and only the higher half is passed recursively.

If the first array’s median is greater, the second array is cut in half,
and only the higher half is passed in as the first array for the next
function call because the array?2 parameter in the function must
always be bigger than the array1 parameter. Finally, the size of the
array represented as pos is required to check whether the size of the
array is even or odd.

Here’s another example:

arrayl = [1,2,3] and array2 = [4, 5, 6]

Here, the median of arrayl is 2, and the median of array?2 is 5.
So, the median must be present within [2,3] and [4,5]. Since there are
only four elements left, the median can be computed as follows:

max(arrl[0], arr2[0]) + min(arr1[1], arr2[1]) / 2;

1 function medianOfArray(array) {

2 var length = array.length;

3 // odd

4 if (length % 2 ==) |

5 return array([Math .floor (length / 2
)17

6 } else {

7 // Even

8 return (arrayl[length / 2]
+ arrayl[length / 2 -1 1) / 2 ;

9 }

10}

11 // arr2 is the bigger array
12 function medianOfTwoSortedArray(arrl, arr2z,

pos) A

13 if (pos <= 0) {

14 return -1 ;

15 }

16 if (pos ==) |

17 return (arrl1[0] + arr2[0]) / 2 ;

18 }

19 if (pos ==) |

20 return (Math .max(arrl[0], arr2[0])
+ Math .min(arrl[l], arr2[1l])) / 2 ;

21 }

22

23 var medianl = medianOfArray(arrl),

24 median2 = medianOfArray(arr?);

25

26 if (medianl == median2?2) {

277 return medianl;

28 }

29

30 var evenOffset = pos $ 2 == 0 2 1 : O
14

31 offsetMinus = Math .floor(pos / 2)
- evenOffset,

32 offsetPlus = Math .floor(pos / 2)
+ evenOffset;

33

34

35 if (medianl < median2?) {

36 return medianOfTwoSortedArray(arrl.

slice(offsetMinus), arr2.slice(offsetMinus),
offsetPlus);

37 } else {

38 return medianOfTwoSortedArray(arr2.
slice(offsetMinus), arrl.slice(offsetMinus),
offsetPlus) ;

39 }

40 }

41

42 medianOfTwoSortedArray ([l , 2 , 3 1, [4 , 5
, 61, 3); // 3.5

43 medianOfTwoSortedArray ([11 , 23 , 24], [32
, 33 , 450 1, 3); // 28

44 medianOfTwoSortedArray([1 , 2 , 31, [2 , 3
, 51, 3): // 2.5

Time Complexity: O(log,(n))
By cutting the array size by half each time, logarithmic time
complexity is achieved.

Find Common Elements in K-Sorted Arrays

1 var arrl = [1, 5, 5, 101;

2 var arr? = [3, 4, 5, 5, 101;
3 var arr3 = [5, 5, 10, 201;

4 var output = [5 ,10];

In this example with three arrays, k=3.

To do this, simply iterate over each array and count instances of
every element. However, do not track repeated ones (5 and 5.5 should
be counted once in one array iteration). To do this, check whether the
last element is the same before incrementing. This will work only if it
is sorted.

After all three arrays have been iterated, iterate through the hash
table’s properties. If the value matches 3, it means that the number
showed up in all three arrays. This can be generalized to k number of
arrays by putting the k-loop check into another for loop.

1 function commonElements (kArray) {
2 var hashmap = {},

3 last, answer = [1;

4

5 for (var 1 = 0 , kArrayLength

kArray.length; i1 < kArrayLength; i++) {

6
7
8

9
10

var currentArray = kArrayl[i];
last = null

for (var J = 0 , currentArraylen
currentArray.length;
7 < currentArraylLen; J++) |

var currentElement

currentArray[]];
if (last != currentElement) {

11
12

if (!

hashmap[currentElement]) {
hashmap[currentElement] =

1

13

14

14
15
16
17
18
19
20
21
22
23
24

} else {
hashmap [currentElement]++ ;
}
}
last = currentElement;
}
}

// Iterate through hashmap
for (var prop in hashmap) {
if (hashmap|[prop]

kArray.length) {

25
26
277
28
29
30
31

11)7

answer .push (parselInt (prop)):

}
}

return answer;

}

commonElements ([[1 ,2 ,3 1,11 ,2 ,3 ,4
/1, 2]

Time Complexity: O(kn)
Space Complexity: O(n)
Here, n is longest array length, and k is the number of arrays.

JavaScript Functional Array Methods

Some parts of JavaScript can be written just like a functional
programming language. Unlike imperative programming, JavaScript does
not focus on the state of the program. It does not use loops, only function
(method) calls. You can learn more about functional programming in
JavaScript from Beginning Functional JavaScript by Anto Aravinth
(Apress, 2017).

In this section, only three functional array methods in JavaScript will
be explored: map, filter, and reduce. These methods do not change
the original array contents.

Map
The map function applies passed function transformation to every
element in the array and returns a new array with those transformations
applied.

For example, you can multiply every element by 10, as shown here:

1 [1,2,3,4,5,6,7] .map (function (value) {
2 return value*10;

3 1)

4 // [10, 20, 30, 40, 50, 60, 70]

Filter
The filter function returns only those elements of the array that meet a
passed condition parameter. Again, this does not change the original
array.

For example, this filters elements greater than 100:

1 [100,2003,10,203,333,12].filter (function
(value) {
2 return value > 100;

3 1) s
4 // [2003, 203, 333]

Reduce
The reduce function combines all the elements in the array into one

value using a passed transformation function parameter.
For example, this adds all the elements:

1 var sum = [0,1,2,3,4] .reduce(function
(prevVal, currentVal, index, array) {
2 return prevVal + currentVal;

3 })
4 console.log(sum); // prints 10

This function also can take initialValue as its second argument,
which initializes the reduce value. For example, providing an
initialValue of 1 in the previous example will yield 11, as shown
here:

1 var sum = [0,1,2,3,4].reduce(function
(prevVal, currentVal, index, array) {

2 return prevVal + currentVal;

3 Yoo 1)

4 console.log(sum); // prints 11

Multidimensional Arrays

Unlike Java and C++, JavaScript does not have multidimensional arrays
(see Figure 5-1).

Column
00/0,1]0,2|03

1,011,111,2(1,3

Row 2012112223

y 3,0]13,113,2]3,3

Figure 5-1 Multidimensional array

Instead, there are “jagged” arrays. A jagged array is an array whose
elements are arrays. The elements of a jagged array can be of different
dimensions and sizes (see Figure 5-2).

— —>» 1

C

agged Array » 4[5 6]7

—>»| 8/ 9

Figure 5-2 Jagged array

Here is a helper function to create a jagged array like the one in
Figure 5-3:

1 function Matrix (rows, columns) {

2 var jaggedarray = new Array (rows) ;
3 for (var i=0; i1 < columns; i +=1) {
4 jaggedarray[i]=new Array (rows);

}

return jaggedarray;

}
console.log (Matrix(3,3));

oo J o Ul

Figure 5-3 Three-by-three matrix

To access elements in a jagged array, specify a row and a column (see
Figure 5-4).

Figure 5-4 Three-by-three matrix of numbers

1 var matrix3by3 = [[1,2,3],14,5,6],17,8,9]1;
2 matrix3by3([(0]; // [1,2,3]
3 matrix3by3([1]; // [4,5,6]
4 matrix3by3[11; // [7,8,9]
5
6 matrix3by3[0][0]; // 1

7 matrix3by3([0][1]; // 2

8 matrix3by3[0][2]; // 3
9

10 matrix3by3[1]([0]; // 4

11 matrix3by3[1]I[1]; // 5

12 matrix3by3[1][2]; // 6

13

14 matrix3by3([2]1[01; // 7

15 matrix3by3([2]([1]; // 8

16 matrix3by3[2]([2]; // 9

Exercises

All the code for the exercises can be found on GitHub.?

Spiral Print
Let's create an example problem with a matrix. Given a matrix, print
the elements in a spiral order, like in Figure 5-5.

1
+6
11
16

<

Figure 5-5 Spiral print

3 4 5
8 9| 10
13 14 15

18 19 20,

AR NN
~N N

This looks like a daunting task at first. However, the problem can
be broken down to five main components.

Printing from left to right

Printing from top to bottom

Printing from right to left

Printing from bottom to top

Keeping a limit on these four operations

In other words, keep four key variables that indicate the following:

Top row
Bottom row
Left column
Right column

Each time one of the four print functions is successfully

executed, simply increment one of the four variables. For example,
after printing the top row, increment it by 1.

var
’ 2/ 3/ 4/ 5]/
’ 7/ 8/ 9/ lO],
1, 12, 13, 14, 15],
o, 17, 18, 19, 20]

b W N

17
function spiralPrint (M) {

o J O

var topRow = 0,

9 leftCol = O,

10 btmRow = M.length - 1,

11 rightCol = M[0].length - 1;

12

13 while (topRow < btmRow && leftCol <
rightCol) {

14 for (var col = 0; col <= rightCol;
col++) {

15 console.log(M[topRow] [col]) ;

16 }

17 topRow++;

18 for (var row = topRow; row <=
btmRow; row++) {

19 console.log(M[row] [rightCol]);

20 }

21 rightCol--;

22 if (topRow <= btmRow) {

23 for (var col = rightCol; col
>= 0; col--) {

24 console.log (M[btmRow]
[coll)

25 }

26 btmRow--;

277 }

28 if (leftCol <= rightCol) {

29 for (var row = btmRow; row >
topRow; row—--) {

30 console.log(M[row]
[leftCol]) ;

31 }

32 leftCol++;

33 }

34 }

35 }

36 spiralPrint (M) ;

Time Complexity: O(mn)

Space Complexity: O(1)

Here, m is the number of rows, and n is the number of columns.
Each item in the matrix is visited only once.

Tic-Tac-Toe Check
Given a matrix representing a tic-tac-toe board , determine whether
someone won, whether it was a tie, or whether the game has not
ended yet.?

Here are some examples.

Here, X won:

OX-
-X0O
OX
Hereitisasamatrix: [['O', 'X', '-'], ['-' ,'X"',
IOI], ['O', lxl’ v_v]].
Here, O won:
0-X
O
-X0O
Hereitisasamatrix: [['O','-",'X"'], ['-','0O"','-"],

['_', 'X', 'O']].
To do this, check all three rows using a for loop, check all
columns using a for loop, and check diagonals.

function checkRow (rowArr, letter) {
for (var 1i=0; 1 < 3; 1i++) {
if (rowArr[i]!=letter) {
return false;

oY U LW DN

7 return true;

8 }
9

10 function checkColumn (gameBoardMatrix,
columnIndex, letter) {

11 for (wvar i1i=0; 1 < 3; 1i++) {

12 if (gameBoardMatrix([i]
[columnIndex] !=letter) {

13 return false;

14 }

15 }

16 return true;

17 }

18

19 function ticTacToeWinner (
gameBoardMatrix, letter) {

20

21 // Check rows

22 var rowWin =
checkRow (gameBoardMatrix[0], letter)

23 | | checkRow (gameBoardMatrix[1],
letter)

24 | | checkRow (gameBoardMatrix([2],
letter) ;

25

26 var colWin =
checkColumn (gameBoardMatrix, 0, letter)

277 | | checkColumn (gameBoardMatrix, 1,
letter)

28 | | checkColumn (gameBoardMatrix, 2,
letter);

29

30 var diagonalWinLeftToRight =

(gameBoardMatrix[0] [0]==letter &&
gameBoardMatrix[1l] [1]==letter &&
gameBoardMatrix[2] [2]==letter);

31 var diagonalWinRightToLeft =

(gameBoardMatrix[0] [2]==letter && gameBoardMatr
ix[1l][1l]==letter && gameBoardMatrix|[2]
[0]==letter);

32

33 return rowWin || colWin | |
diagonalWinLeftToRight || diagonalWinRightTolLeft;

34 }

35

36 var board = [['O','-",'X"],['=-"','O"',"'-"],

['_'I'X'I'O']];
37 ticTacToeWinner (board, 'X'); // false
38 ticTacToeWinner (board, '0O'); // true

Path Finding
In Figure 5-6, given the location x, find the exit e.

207767 %076 76767
... %.%...%
%.%.%.%. %Xk

767676 7676 26 76 26 7 X %

Figure 5-6 Finding a path

\n is the set of characters used to break a line in JavaScript, like in
many standard programming languages. Combining it with backticks,
you can create line breaks during the variable-to-string assignment.

1
2
3 IR SR
4

QO J o Ul
o\
o\
o\°
o\
o\°
o\°
o\
o\
~
3

var rows = board.split ("\n")

Then use . map over the array to divide by certain characters into
each column.

function generateColumnArr (arr) {
return arr.split("");

}

var mazeMatrix = rows.map (generateColumnArr) ;

This will generate the proper matrix where each row is an array of
the characters and the board is the array of those rows.

Now, first find the entrance, e, and exit, x. This function will return
the row position, i, and the column position, j, of the character to be
searched for:

1 function findChar (char , mazeMatrix) {

2 var row
= mazeMatrix.length,
3 column = mazeMatrix][O0
] .1length;
4
5 for (var 1 =0 ; 1 < row;
i++) |
6 for (var J =
0 ; 3 < column; J++) {
7
if (mazeMatrix[i][]] == char) {
8
return [1, J];
9 }
10 }

11 }

12}

Of course, there also needs to be a function to print the matrix
nicely as a string, as shown here:

1 function printMatrix(matrix) {

2 var mazePrintStr = "" ,

3 row = matrix.length,
4 column = matrix|[O0

o for (var 1 =0 ; 1 < row;

8 for (var 7 =
0 ; jJ < column; Jj++) {
9
mazePrintStr += mazeMatrix[i][]];
10 }
11
12 mazePrintStr +=
"\n" ;
13
14 }
15 console.log(mazePrintStr) ;
lo }

Finally, define a function called path . This recursively checks up,
right, down, and left.

Up: path (x+1,vy)
Right: path (x,y+1)
Down: path (x-1,vy)
Left: path (x,y-1)

function mazePathFinder (mazeMatrix) {
var row = mazeMatrix.length,
column = mazeMatrix[0].length,
startPos = findChar('e', mazeMatrix),

endPos = findChar('x', mazeMatrix);
path (startPos[0], startPos[1l]);

function path(x, y) {

if (x > row - 1 || y > column - 1 || X
<0 |y <0) {
return false;
}
// Found
if (x == endPos[0] && y == endPos[1l]) {

return true;

}
if (mazeMatrix[x][y] ==

mazeMatrix([x] [y] == "+') {
return false;

}
// Mark the current spot

mazeMatrix[x][y] = "+';
printMatrix (mazeMatrix) ;

if (path(x, y - 1) || path(x + 1, vy) I

path(x, v + 1) || path(x - 1, vy)) {
return true;

}

mazeMatrix([x] [y] = '.";
return false;

}

Figure 5-7 shows the console output.

o 2505960696969 76
B s s B dls s 5l
%.%.%.%. %

A %
% . tototo . Bodo .
A SR %.%

o
oL
oL
oL
oL
o8
oL
of
oL
s

e

- A S %
% %%t . Jodb . 6
M %.%

%¥++%.%. %
% %+% . % . %%

% Y+ ++++++Y
X ANKK, X+,

YRS ANANN AN
y Sy A S 4
%.%%% . % . %%l
% .S+ +++++4Y
% . 6l dots . Bots 26
%.%. ... %+2%
% %%626%% 0606 1K %

Figure 5-7 Console output

Time Complexity: O(mn)

Space Complexity: O(1)

Here, m is the row length , and n is the column length. Each
element is visited only once.

Matrix Rotation
Rotate a matrix to the left by 90 degrees.
For example, the following:

101
001
111

rotates to this:

111
001
101

Figure 5-8 shows the rotation.

1 1 1 1 0
0 0 1 0 0
1 0 1 1 1

Figure 5-8 Matrix counterclockwise rotation

As shown in Figure 5-8, when rotated 90 degrees left, the
following happens:

1.
The third column of the matrix becomes the first row of the result.

The second column of the matrix becomes the second row of the
result.

The first column of the matrix becomes the third row of the result.

The following rotation turns the third column of the original:

1 var matrix = [[1,0,1],[0,0,1],[1,1,1]1];

2

3

4 function rotateMatrix90Left (mat) {

5 var N = mat.length;

6

7 // Consider all squares one by one

8 for (var x = 0; x < N / 2; x++) {

9 // Consider elements in group of 4
in

10 // current square

11 for (var v = x; vy < N-x-1; y++) {

12 // store current cell in temp
variable

13 var temp = mat([x][vy];

14

15 // move values from right to
top

16 mat[x] [y] = mat[y] [N-1-x];

17

18 // move values from bottom to
right

19 mat[y] [N-1-x] = mat[N-1-x] [N-
1-v];

20

21 // move values from left to
bottom

22 mat [N-1-x] [N-1-y] = mat[N-1-y]
[x];
23

24 // assign temp to left

25 mat [N-1-vy] [x] = temp;

26 }

277 }

28 }

29 rotateMatrix90Left (matrix):;

30 console.log(matrix); // [[1,1,1],[0,0,1],
[1,0,1]]

Time Complexity: O(mn)

Space Complexity: O(1)

Here, m is the row length, and n is the column length . Each
element is visited only once. The space complexity is O(1) because the
original array is modified instead of creating a new array.

Summary

Various natively implemented array functions were covered in this
chapter and are summarized in Table 5-1.

Table 5-1 Array Function Summary

Function Usage

push (element) Adds an element to the end of the array
pop () Removes the last element of the array
shift () Removes the first element of the array

slice (beginIndex, Returns a partof the array from beginIndex to endIndex
endIndex)

splice (beginIndex, Returns a part of the array from beginIndex to endIndex and
endIndex) modifies the original array by removing those elements

concat (arr) Adds new elements (from arr) into the array at the end of array

In addition to the standard while and for loop mechanisms, an

iteration of array elements can use the alternative loop mechanisms
shown in Table 5-2.

Table 5-2 Iteration Summary

Function Usage
for (var prop in arr) Iterates by the index of the array element
for (varelem of arr) Iterates by the value of the array element

arr.forEach (fnc) Applies the fnc value on each element

Finally, recall that JavaScript utilizes jagged arrays, an array of arrays,
to get multidimensional array behavior. With two-dimensional arrays,
two-dimensional surfaces such as a tic-tac-toe board and maze can easily
be represented.

Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

2 https://github.com/Apress/js-data-structures-and-algorithms

3 To read more about the rules of tic-tac-toe, visit
https://en.wikipedia.org/wiki/Tic-tac-toe.

https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms
https://en.wikipedia.org/wiki/Tic-tac-toe

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_6

6. JavaScript Objects

Sammie Bae!

(1) Hamilton, ON, Canada

JavaScript objects are what makes the JavaScript programming language
so versatile. Before diving into data structures and algorithms, let’s
review how JavaScript objects work. This chapter will focus on what
JavaScript objects are, how they are declared, and how their properties
can be changed. In addition, this chapter will cover how JavaScript
classes are implemented using prototypal inheritance.

JavaScript Object Property

JavaScript objects can be created via the object literal { } or via the
syntax newObject () ;.Additional properties can be added or accessed
in one of two ways: object .propertyName or
object ['propertyName'].

var javaScrlptObject = {1}
var testArray = [1,2,3,4];

1

2

3

4 javaScriptObject.array = testArray;

5 console.log(javaScriptObject); // {array:
[1,2,3,4]}
6
7
8
[

JavaScriptObject.title = 'Algorithms'
console.log(javaScriptObject); // {array:
1,2,3,4], title:'Algorithms'}

https://doi.org/10.1007/978-1-4842-3988-9_6

As shown in the previous code, the tit1le property was dynamically

added in line 7 to the JavaScript object. Similarly, functions in JavaScript
classes are added this way by dynamically adding them to the object.

Prototypal Inheritance

In most strongly typed languages such as Java, the methods of a class are
defined at the same time as the class. However, in JavaScript, the function
has to be added as a JavaScript Object property of that class.

Here is an example of a class in JavaScript using

this.functionName = function () {}:

1 function ExampleClass () {

2 this.name = "JavaScript";

3 this.sayName = function () {

4 console.log(this.name) ;

S }

6 }

.

8 //new object

9 var examplel = new ExampleClass{();
10 examplel.sayName (); //"JavaScript"

This class dynamically adds the sayName function in the constructor.
This pattern is known as prototypal inheritance .

Prototypal inheritance is the only method of inheritance in JavaScript.
To add functions of a class, simply use the . prototype property and
specify the name of function.

When you use the .prototype property, you are essentially
dynamically extending the JavaScript Object property of the object.
This is the standard because JavaScript is dynamic and classes can add
new function members as needed later. This isn’t possible for compiled
languages such as Java because they will throw an error on compilation.
This unique property of JavaScript lets developers take advantage of the
prototypical inheritance.

Here’s an example of using .prototype:

O 0 J o U Wb+

10
11
12
13

function ExampleClass () {
this.array = [1,2,3,4,5];
this.name = "JavaScript";

}

//new object
var examplel = new ExampleClass();

ExampleClass.prototype.sayName = function ()

console.log(this.name) ;

}

examplel.sayName (); //"JavaScript"

To reiterate, adding functions to a class dynamically is how JavaScript
implements prototypical inheritance. Functions of a class are added
either in the constructor or via . prototype.

Constructor and Variables

Because variables of a class in JavaScript are properties of that class
object, any properties declared with this.propertyName will be
available publicly. This means that the object’s properties can be directly
accessed in other scopes.

&)
O OO O~ IO Ul xWwWw DN

'_\

function ExampleClass (name, size) {

this.name = name;
this.size = size;
}
var example = new ExampleClass ("Public",5);

console.log (example); // {name:"Public", size:

// accessing public variables
console.log (example.name); // "Public"

11 console.log (example.size); // 5

To mimic a private variable, instead of using this.propertyName,
you can declare a local variable and have getter/setters that allow access
to that variable. This way, the variable is available only to the
constructor’s scope. Notably, however, these mimicked private variables
are now accessible only through the defined interfacing functions (getter
getName and setter setName). These getters and setters cannot be
added outside of the constructor.

1 function ExampleClass (name, size) {

2 var privateName = name;

3 var privateSize = size;

4

5 this.getName = function () {return

privateName; }

6 this.setName = function (name)
{privateName = name; }
7
8 this.getSize = function() {return
privateSize;}
9 this.setSize = function(size)
{privateSize = size;}
10 }
11

12 var example = new ExampleClass ("Sammie", 3);
13 example.setSize (12);

14 console.log (example.privateName); //
undefined

15 console.log (example.getName ()); // "Sammie"

16 console.log (example.size); // undefined

17 console.log (example.getSize()); // 3

Summary

In JavaScript, unlike other object-oriented programming languages,
prototypical inheritance is the preferred method of inheritance.

Prototypical inheritance works by adding new functions to a JavaScript
class via . prototype. Private variables are explicitly declared in Java
and C++. However, a private variable is not supported in JavaScript, and
to mimic the functionality of a private variable, you need to create a
variable that is scoped to the constructor function. Declaring a variable
as part of that object in the constructor via this.variableName
automatically makes that property public.

Exercises

Adding a Property to an Object
Add an exampleKey property to an empty JavaScript object in two
different ways and set it to exampleValue.

As discussed earlier in this chapter, a property can be added to an
object in two ways. There is no performance advantage or
disadvantage of using one way over the other; the choice comes down
to style.

1 var emptyJdSOb] = {};
2 emptyJSObj ['exampleKey'] = 'exampleValue';
3 emptyJSObj.exampleKey = 'exampleValue';

Defining Classes

Create two classes: Animal and Dog. The Animal class should take
two parameters in the constructor (name and animal Type). Set
them as its public properties.

In addition, the Animal class should have two functions:
sayName and sayAnimalType. sayName prints name, and
sayAnimalType prints animalType initialized in the constructor.

Finally, the Dog class inherits from the Animal class.

1.
Let’s first define the Animal class and the specified required

functions.

() A

1 function Animal (name, animalType) {
2 this.name = name;

3 this.animalType = animalType;

4 }

5 Animal .prototype.sayName = function
6 console.log(this.name);

7 }

8 Animal .prototype.sayAnimalType = function

() A

9 console.log(this.animalType) ;
10 }

2

For the Dog class to inherit this, define the Dog class and then

copy its prototype, as shown in the following code block:

function Dog (name) {

Animal.call (this, name, "Dog");
}
// copy over the methods
Dog.prototype =
Object.create (Animal.prototype) ;

o var myAnimal = new Animal ("ditto",
"pokemon") ;

7 myAnimal.sayName (); // "ditto"

o b w N

8 myAnimal.sayAnimalType (); // "pokemon"

9 var myDog = new Dog("candy", "dog");
10 myDog.sayName (); // "candy"
11 myDog.sayAnimalType(); // "dog"

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_7

7.JavaScript Memory Management

Sammie Bae!

(1) Hamilton, ON, Canada

In any program, a variable takes up some memory. In low-level
programming languages such as C, the programmer must allocate and
deallocate memory manually. In contrast, the V8 JavaScript engine and
other modern JavaScript engines have garbage collectors that delete
unused variables for the programmer. Despite this memory management
done by the JavaScript engine, however, there are common pitfalls that
developers can fall into. This chapter will show some basic examples of
these pitfalls and present techniques to help the garbage collector
minimize the key JavaScript memory problems.

Memory Leaks

A memory leak is a failure in a program to release discarded memory,
causing impaired performance and sometimes even failure. Memory
leaks can happen when JavaScript engines’ garbage collectors do not free
memory properly.

Follow the key principles outlined in this chapter to avoid memory
leaks during JavaScript development.

Reference to an Object

If there is a reference to an object, it is in memory. In this example, say
that the memory () function returns some array with 5KB of data.

1 var foo = {

https://doi.org/10.1007/978-1-4842-3988-9_7

barl: memory (), // 5kb
bar2: memory () // 5kb

}

function clickEvent ()
alert (foo.barl[0]);

O 1oy U WD

}

You might expect the clickEvent () function to use 5KB of
memory since it is only referencing bar1 from the foo object. However,
the truth is that it is using 10KB of memory since it has to load the whole
foo object into the function’s into scope to access the bar1 property.

Leaking DOM

If a variable pointing to a DOM element is declared outside of an event
callback, then it is in memory and leaks DOM if the element is deleted.

In this example, there are two DOM elements selected by
document.getElementByID.

1 <div id="one">One</div>
2 <div id="two">Two</div>

The following JavaScript code demonstrates the DOM memory leak.
When one is clicked, it removes two. When one is clicked again, it still

tries to reference the removed two.

var one = document.getElementById("one");
var two = document.getElementById("two"):;
one.addEventListener ('click', function|() {
two.remove () ;
console.log(two); // will print the html
even after deletion

6 1)

g w N

The event listener on the one element will cause the two to

disappear from the web page when clicked. However, even if the DOM is
deleted in the HTML, reference to it will remain if used in an event

callback. When the two element is no longer in use, this is a memory leak
and should be avoided.

This can easily be fixed so that it won’t cause a memory leak, as
shown here:

var one = document.getElementById("one");

one.addEventListener ('click', function () {
var two = document.getElementById("two"):;
two.remove () ;

o Ul b W DN

1)

Another way to address this is by unregistering the click handler
once it has been used, as shown here:

1 var one = document.getElementById("one");
2 function callBackExample () {
3 var two =

document.getElementById ("two") ;

4 two.remove () ;

5 one.removekEventListener ("click",callB
ackExample) ;

6 }

7 one.addEventListener ("click",callBackExam
ple);

8 }) s
Global window Object

If an object is on the global window obiject, it is in memory. The window

object is a global object in a browser and comes with various built-in
methods suchasalert () and setTimeout (). Any additional objects

declared as a property of window will not be cleared because window is

a required object for the browser to run. Remember that any global
variable declared will be set as a property of the window object.

In this example, there are two global variables declared.

1 var a = "apples"; //global with var

b = "oranges"; //global without var

2
3
4 console.log(window.a); // prints "apples"
5 console.log(window.b); // prints "oranges"

It is good to avoid global variables whenever possible. This will help
save memory.

Limiting Object References

An object is cleared when all references are cleared. Always remember to
limit the amount of scope the function pulls and pass the property of an
object only into functions instead of the entire object. This is because the
object’s memory footprint can be very large (e.g., an array of 100,000
integers for data visualization project); if only one of the object’s
properties is needed, you should avoid using the entire object as a
parameter.

For example, do not do this:

var test = {
propl: 'test'
}

function printPropl (test) {
console.log(test.propl);
}

O 0 J o U W N

printPropl (test); //'test'

Instead, pass the property like this:

var test = {
propl: 'test'
}

function printPropl (propl) {
console.log(propl);
}

O J o Ul W DN

9 printPropl (test.propl); //'test'

The delete Operator
Always remember that the delete operator can be used to delete an
unwanted object property (though it does not work on nonobjects).

1 var test = {

2 propl: 'test'

3 }

4 console.log (test.propl); // 'test'

5 delete test.propl;

6 console.log(test.propl); // undefined
Summary

Although memory in JavaScript is not allocated by the programmer,
there are still numerous ways to mitigate memory leaks where
applicable. If the object is in reference, it is in memory. Similarly, HTML
DOM elements should not be referenced once deleted. Finally, only
reference objects in a function that are needed. In many cases, it is more
applicable to pass in a property of the object rather than the object itself.
Also, be extremely mindful when declaring a global variable.

Exercises

In this chapter, exercises are about identifying memory inefficiencies and
optimizing a given piece of code.

ANALYZING AND OPTIMIZING A PROPERTY CALL
Analyze and optimize the call for printProperty.

1 function somel.argeArray () {

2 return new Array(1000000) ;
3 }

4 var exampleObject = {

5 'propl': somelLargeArray(),
6

'prop2': somelargeArray ()

}

function printProperty (obj) {
console.log(obj['propl']):;

}

printProperty (exampleObject) ;

= O W 0

Problem: An excessive amount of memory is used in
printProperty because the entire object is brought into the
printProperty function. To fix this, only the property being
printed should be brought in as a parameter of the function.

Answer:

function somelargeArray () {
return new Array(1000000) ;

}

var exampleObject = {
'propl': somelargeArray (),
'orop2': someLargeArray ()

}

function printProperty (prop) {
console.log(prop) s

}
printProperty (exampleObject['propl']):;

R O W oo Joy Ul id LWDN K

o

ANALYZING AND OPTIMIZING SCOPE
Analyze and optimize the global scope for the following code block:

1 var RED = 0,

2 GREEN = 1,

3 BLUE = 23

4

5 function redGreenBlueCount (arr) {

o var counter = new Array(3) .fill(0);
7 for (var i=0; 1 < arr.length; i++) {
8 var curr = arr[i];

9

if (curr == RED) {

10 counter [RED] ++;

11 } else if (curr == GREEN) {

12 counter [GREEN] ++;

13 } else if (curr == BLUE) {

14 counter [BLUE] ++;

15 }

16 }

17 return counter;

18 }

19 redGreenBlueCount ([0,1,1,1,2,2,21); // [1, 3,
3]

Problem: Global variables are used where not necessary. Albeit
small, the global variables RED, GREEN, and BLUE bloat the global

scope and should be moved inside the redGreenBlueCount
function.

Answer:
1 function redGreenBlueCount (arr) {
2 var RED = 0,
3 GREEN = 1,
4 BLUE = 2,
5 counter = new Array(3) .fil1l(0);
o for (var i=0; 1 < arr.length; i++) {
7 var curr = arr[i];
8 if (curr == RED) {
9 counter [RED] ++;
10 } else if (curr == GREEN) {
11 counter [GREEN] ++;
12 } else if (curr == BLUE) {
13 counter [BLUE] ++;
14 }
15 }
16 return counter;
17 }
18 redGreenBlueCount ([0,1,1,1,2,2,21); // [1,

w
~
w

ANALALYZING AND REPAIRING MEMORY ISSUES
Analyze and fix memory issues for the following code.
HTML:

<button id="one">Button 1</button>
<button id="two">Button 2</button>

JavaScript:

1 var one = document.querySelector ("#one");

2 var two = document.querySelector ("#two");

3 function callBackExample () {

4 one.removeEventListener ("",callBackExa
mple) ;

S }

o one.addEventListener ('hover', function() {

7 two.remove () ;

8 console.log(two); // will print the

html even after deletion

9 });
10 two.addEventListener ('hover', function() {
11 one.remove () ;
12 console.log(one); // will print the
html even after deletion
13 })

Problem: This is the “leaking DOM” issue discussed earlier in the
chapter. When elements are removed, they are still referenced by the
callback function. To address this, put the one and two variables into
a callback’s scope and remove the event listener after.

Answer:

HTML:

<button id="one"> Button 1 </button>
<button id="two"> Button 2 </button>

JavaScript:

1 var one = document.querySelector ("#one");
2 var two = document.querySelector ("#two");
3 function callbackOne () {
4 var two =
document.querySelector ("#two") ;
5 if (!'two)
6 return;
7 two.remove () ;
8 one.removeEventListener ("hover",
callbackOne) ;
9 }
10
11 function callbackTwo () {
12 var one =
document.querySelector ("#one") ;
13 if (!one)
14 return;
15 one.remove () ;
16 two.removeEventListener ("hover",
callbackTwo) ;
17 }
18 one.addEventListener ("click",
callbackOne) ;
19 two.addEventListener ("click",

callbackTwo) ;

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_8

8. Recursion

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter introduces the concept of recursion and recursive
algorithms. First, the definition of recursion and fundamental rules for
recursive algorithms will be explored. In addition, methods of analyzing
efficiencies of recursive functions will be covered in detail using
mathematical notations. Finally, the chapter exercises will help solidify
this information.

Introducing Recursion

In math, linguistics, and art, recursion refers to the occurrence of a thing
defined in terms of itself. In computer science, a recursive function is a
function that calls itself. Recursive functions are often elegant and solve
complex problems through the “divide-and-conquer” method. Recursion
is important because you will see it again and again in the
implementation of various data structures. Figure 8-1 shows a visual
illustration of recursion where the picture has smaller pictures of itself.

https://doi.org/10.1007/978-1-4842-3988-9_8

Recursion

Recursion

Recursion
Recursion

Figure 8-1 Recursion illustrated

Rules of Recursion

When recursive functions are implemented incorrectly, it causes fatal
issues because the program will get stuck and not terminate. Infinite
recursive calls result in stack overflow. Stack overflow is when the
maximum number of call stacks of the program exceeds the limited
amount of address space (memory).

For recursive functions to be implemented correctly, they must
follow certain rules so that stack overflow is avoided. These rules are
covered next.

Base Case

In recursion, there must be a base case (also referred to as terminating
case). Because recursive methods call themselves, they will never stop
unless this base case is reached. Stack overflow from recursion is most
likely the result of not having a proper base case. In the base case, there
are no recursive function calls.

Let’s examine the following function, which prints numbers counting
down from n to 0 as an example:

1 function countDownToZero (n) {

2 // base case. Stop at 0

3 if (n < 0) {

4 return; // stop the function
5 } else {

6 console.log(n);

7 countDownToZero(n - 1); // count

down 1

8 }

9 }
10 countDownToZero (12) ;

The base case for this function is when n is smaller or equal to 0. This
is because the desired outcome was to stop counting at 0. If a negative
number is given as the input, it will not print that number because of the
base case. In addition to a base case, this recursive function also exhibits
the divide-and-conquer method.

Divide-and-Conquer Method
In computer science, the divide-and-conquermethod is when a problem is
solved by solving all of its smaller components. With the countdown
example, counting down from 2 can be solved by printing 2 and then
counting down from 1. Here, counting down from 1 is the part solved by
“dividing and conquering.” It is necessary to make the problem smaller
to reach the base case. Otherwise, if the recursive call does not converge
to a base case, a stack overflow occurs.

Let’s now examine a more complex recursive function known as the
Fibonacci sequence .

Classic Example: Fibonacci Sequence

The Fibonacci sequence is a list of infinite numbers, each of which is the
sum of the past two terms (starting with 1).

1,1,2,3,5,8,13,21 ...

How might you program something to print the Nth term of the
Fibonacci sequence?

Iterative Solution: Fibonacci Sequence
An iterative solution using a for loop may look something like this:

1 function getNthFibo (n) {
2 if ((n <= 1) return n;
3 var sum = O,
4 last = 1,
5 lastlast = 0;
6
7 for (var 1 = 1; 1 < n; 1i++) {
8 sum = lastlast + last;
9 lastlast = last;
10 last = sum;
11 }
12 return sum;
13 }

A for loop can be used to keep track of the last two elements of the

Fibonacci sequence, and its sum yields the Fibonacci number.
Now, how might this be done recursively?

Recursive Solution: Fibonacci
The following shows the recursive solution:

1 function getNthFibo (n) {

2 if (n <= 1) {

3 return n;

4 } else {

5 return getNthFibo(n - 1) + getNthFibo (n
- 2);

6 }

7 }

Base case: The base case for the Fibonacci sequence is that the first
element is 1.

Divide and conquer: By definition of the Fibonacci sequence, the
Nth Fibonacci number is the sum of the (n-1)th and (n-2)th Fibonacci

numbers. However, this implementation has a time complexity of O(2"),
which is discussed in detail later in this chapter. We will explore a more
efficient recursive algorithm for the Fibonacci sequence using tail
recursion in the next section.

Fibonacci Sequence: Tail Recursion

A tail recursivefunction is a recursive function in which the recursive call
is the last executed thing in the function. First let’s look at the iterative
solution:

1 function getNthFibo (n) {

2 if (n <= 1) return n;

3 var sum = O,

4 last = 1,

5 lastlast = 0;

6

7 for (var i = 1; 1 < n; 1i++) {
8 sum = lastlast + last;
9 lastlast = last;
10 last = sum;
11 }
12 return sum;
13 }

At each iteration, the following update happens: (lastlast,
last) = (last, lastlast+last).With this structure, the
following recursive function can be formed:

1 function getNthFiboBetter (n, lastlast, last)

if (n == 0) {
return lastlast;

}

if (n == 1) {
return last;

}
return getNthFiboBetter (n-1, last,

O 1oy U b WD

lastlast + last);
9 }

Time Complexity: O(n)

At most, this function executes n times because it's decremented by
n-1 each time with only single recursive call.

Space Complexity: O(n)

The space complexity is also O(n) because of the stack call used for
this function . This will be further explained in the “Recursive Call Stack
Memory” section later in this chapter.

To conclude the rules of recursion, let’s examine another example,
which is more complex.

Pascal’s Triangle

In this example, a function for calculating a term of Pascal’s triangle will
be explored. Pascal’s triangle is a triangle whose element value is the
summation of its top two (left and right) values, as shown in Figure 8-2.

11
121

1331
14641
1510105 1

Figure 8-2 Pascal’s triangle

Base case: The base case for Pascal’s triangle is that the top element
(row=1, col=1) is 1. Everything else is derived from this fact alone.
Hence, when the column is 1, return 1, and when the row is 0, return 0.

Divide and conquer: By the mathematical definition of Pascal’s
triangle, a term of Pascal’s triangle is defined as the sum of its upper
terms . Therefore, this can be expressed as the following:
pascalTriangle (row - 1, col) + pascalTriangle (row -
1, col - 1).

1 function pascalTriangle (row, col) {
2 if (col == 0) {

3 return 1;

4 } else if (row == 0) {

5 return 0O;

6 } else {

7 return pascalTriangle(row - 1, col)
+ pascalTriangle(row - 1, col - 1);

8 }

9 }

10 pascalTriangle (5, 2); // 10

This is the beauty of recursion! Look next at how short and elegant
this code is.

Big-0 for Recursion

In Chapter 1, Big-O analysis of recursive algorithms was not covered.
This was because recursive algorithms are much harder to analyze. To
perform Big-O analysis for recursive algorithms, its recurrence relations
must be analyzed.

Recurrence Relations
In algorithms implemented iteratively, Big-O analysis is much simpler
because loops clearly define when to stop and how much to increment in
each iteration. For analyzing recursive algorithms, recurrence relations
are used. Recurrence relations consist of two-part analysis: Big-O for
base case and Big-O for recursive case.

Let’s revisit the naive Fibonacci sequence example:

function getNthFibo (n) {
if (n <= 1) {
return n;
} else {
return getNthFibo(n - 1) + getNthFibo(n -
2);
}

}
getNthFibo (3) ;

The base case has a time complexity of O(1). The recursive case calls

itself twice. Let’'s represent thisas T (n) =T (n-1) + T (n - 2) + O(1).

e Base case:T (n) =0(1)
e Recursivecase:T(n)=T(n-1)+T(n-2)+0(1)

Now, this relation means thatsince T (n) =T (n-1) + T (n - 2) + O(1),
then (by replacing n withn-1), T(n-1)=T(n-2)+ T (n-3) + O(1).
Replacing n-1 with n-2yields T(n-2)=T(n-3)+ T (n-4) + O(1).
Therefore, you can see that for every call, there are two more calls for
each call. In other words, this has a time complexity of O(2").

It helps to visualize it as such:

F(6) * <-- only once

EF(5) *

F(4) * *

F(3) * k% %k %

F(Z) * kKX Kk kK *kx*k

F(l) R a b b b b b b b b b i b i ¢ < == 16
F(O) P b b b b b b b b b b b b b b b b b b i b b b b b b b b b i b <—— 32

Calculating Big-O this way is difficult and prone to error. Thankfully,
there is a concept known as the master theorem to help. The master
theorem helps programmers easily analyze the time and space
complexities of recursive algorithms.

Master Theorem
The master theorem states the following:

Given a recurrence relation of the form T (n) = aT (n/b) + O(n‘) where
a>=1and b >=1, there are three cases.

a is the coefficient that is multiplied by the recursive call. b is the
“logarithmic” term, which is the term that divides the n during the
recursive call. Finally, c is the polynomial term on the nonrecursive
component of the equation.

The first case is when the polynomial term on the nonrecursive

component O(n°) is smaller than log,(a).

Case 1:c < log,(a) then T (n) = O(nU°gb(a))),

For example, T (n) = 8T (n/2) + 1000n?
Identifya,b,c:a=8,b=2,c=2
Evaluate:log,(8) = 3. ¢ < 3 is satisfied.
Result:T (n) = 0(n3)

The second case is when c is equal to log,(a).

Case 2:c = log,(a) then T (n) = O(n‘log(n)).

For example, T (n) = 2T (n/2) + 10n.

Identifya,b,cca=2,b=2,c=1

Evaluate:log,(2) = 1. ¢ = 1 is satisfied.

Result:T (n) = 0(n¢log(n)) = T (n) = O(n'log(n)) = T (n) = O(nlog(n))
The third and final case is when c is greater than log,(a).

Case 3:c > log,(a) then T (n) = O(f (n)).
For example, T (n) = 2T (n/2) + n?.
Identify a,b,c:a=2,b=2,c=2
Evaluate:log,(2) = 1. ¢ > 1 is satisfied.

Result:T (n) = f(n) = 0(n?)

This section covered a lot about analyzing the time complexity of
recursive algorithms. Space complexity analysis is just as important. The
memory used by recursive function calls should also be noted and
analyzed for space complexity analysis.

Recursive Call Stack Memory

When a recursive function calls itself, that takes up memory, and this is
really important in Big-O space complexity analysis.

For example, this simple function for printing from n to 1 recursively
takes O(n) in space:

1 function printNRecursive (n) {
2 console.log(n);

3 if (n > 1) {

4 printNRecursive (n-1);
5

}

6 }
7 printNRecursive (10) ;

A developer can run this on a browser or any JavaScript engine and
will see the result shown in Figure 8-3 in the call stack.

DAYt @ Oaync | Scope | Watch
v Call Stack 4| v Local
: : | :
® printNRecursive testinghtml:115 M| "R
A ' _ . ‘ P this: Window
printNRecursive testing.ntml:117 _
_ ' _ | PGlobal Window
printNRecursive testing.ntml:117 ‘
printNRecursive testing.ntml:117 \
printNRecursive testing.html:117
printNRecursive testing.ntml:117
printNRecursive testing.ntml:117
printNRecursive testinghtml:117 |
\

mcnath I Dacsiesinn tactina bhinali117

Figure 8-3 Call stack in Developer Tools

As shown in Figures 8-3 and 8-4, each recursive call must be stored in
memory until the base case is resolved. Recursive algorithms take extra
memory because of the call stack.

printNRecursive(1)

printNRecursive(2)

printNRecursive(3)

printNRecursive(4)

Figure 8-4 Call stack memory

Recursive functions have an additional space complexity cost that
comes from the recursive calls that need to be stored in the operating
system’s memory stack. The stack is accumulated until the base case is
solved. In fact, this is often why an iterative solution may be preferred
over the recursive solution. In the worst case, if the base case is
implemented incorrectly, the recursive function will cause the program
to crash because of a stack overflow error that occurs when there are
more than the allowed number of elements in the memory stack.

Summary

Recursion is a powerful tool to implement complex algorithms. Recall
that all recursive functions consist of two parts: the base case and the

divide-and-conquer method (solving subproblems).

Analyzing the Big-O of these recursive algorithms can be done
empirically (not recommended) or by using the master theorem. Recall
that the master theorem needs the recurrence relation in the following
form: T (n) = aT (n/b) +0O(n€). When using the master theorem, identify q,
b, and c to determine which of the three cases of the master theorem it
belongs to.

Finally, when implementing and analyzing recursive algorithms,
consider the additional memory caused by the call stack of the recursive
function calls. Each recursive call requires a place in the call stack at
runtime; when the call stack accumulate n calls, then the space
complexity of the function is O(n).

Exercises

These exercises on recursion cover varying problems to help solidify the
knowledge gained from this chapter. The focus should be to identify the
correct base case first before solving the entire problem. You will find all

the code for the exercises on GitHub.!

CONVERT DECIMAL (BASE 10) TO BINARY NUMBER
To do this, keep dividing the number by 2 and each time calculate the
modulus (remainder) and division.

Base case: The base case for this problem is when the n is less
than 2. When it is less than 2, it can be only 0 or 1.

function baselOToString (n) {
var binaryString = "";

function baselOToStringHelper (n) {
if (n < 2) {
binaryString += n;
return;
} else {
basel(OToStringHelper (Math.floo

H

=

O WwwJo U WwWN
N

Q

basel0ToStringHelper(n % 2);

11 }

12 }

13 basel(0ToStringHelper (n) ;
14

15 return binaryString;

16 }

17

18 console.log(basel0ToString (232)); //
11101000

Time Complexity: O(log,(n))

Time complexity is logarithmic because the recursive call divides
the n by 2, which makes the algorithm fast. For example, for n = 8, it
executes only three times. For n=1024, it executes 10 times.

Space Complexity: O(log,(n))

PRINT ALL PERMUTATIONS OF AN ARRAY

This is a classical recursion problem and one that is pretty hard to
solve. The premise of the problem is to swap elements of the array in
every possible position.

First, let’s draw the recursion tree for this problem (see Figure 8-
5).

Figure 8-5 Permutation of array recursion tree

Base case: beginIndex is equal to endIndex.

When this occurs, the function should print the current
permutation.

Permutations: We will need a function to swap elements:

1 function swap(strArr, indexl, 1ndex2)
2 var temp = strArr[indexl];

3 strArr[indexl] = strArr[index2];
4 strArr[index2] = temp;

5 }

1 function permute (strArr, begin, end)

2 if (begin == end) {

{

{

3 console.log(strArr);
4 } else {
5 for (var i = begin; i < end + 1;

6 swap (strArr, begin, 1i);
7 permute (strArr, begin + 1,

8 swap (strArr, begin, 1);

10 }

11 }

12

13 function permuteArray (strArr) {
14 permute (strArr, 0, strArr.length - 1);
15 }

16

17 permuteArray (["A", "C", "D"]);
18 // ["A", "C", "D"]

19 // ["A", "D", "C"]

20 // ["CH/ "A", "D"]

21 // ["C"/ "D", "A"]

22 // ["D", "c", "A"]

23 // ["D", "A", "C"]

Time Complexity: O(n!)
Space Complexity: O(n!)
There are n! permutations, and it creates n! call stacks.

FLATTEN AN OBJECT

Given a JavaScript array like this:
1 var dictionary = {
2 'Keyl': '1",
3 '"Key2': {
4 v a v . v 2 v ,
5 'b v . v 3 v ,
6 'c' o |

7 'd' o '3r,

8 e’ o1

9 }

10 }

11 }
flattenitinto { 'Keyl': '1', 'Key2.a': '2','Key2.b'
'3', 'Key2.c.d' : '3', 'Key2.c.e' : '1'},wherethe

child is denoted by . between the parent and child (see Figure 8-6).

Figure 8-6 Flatten a dictionary recursion tree

To do this, iterate over any property and recursively check it for
child properties, passing in the concatenated string name.

Base case: The base case for this problem is when input is not an
object.

1 function flattenDictionary(dictionary) {

2 var flattenedDictionary = {};

3
4 function
flattenDitionaryHelper (dictionary, propName) ({
5 if (typeof dictionary != 'object')
{
6 flattenedDictionary|[propName]
= dictionary;
7 return;
8 }
9 for (var prop in dictionary) {
10 if (propName == ") {
11 flattenDitionaryHelper (dic
tionary[prop], propNamet+prop):;
12 } else {
13 flattenDitionaryHelper (dic
tionary[prop], propName+'.'+prop);
14 }
15 }
16 }
17
18 flattenDitionaryHelper (dictionary, ");
19 return flattenedDictionary;
20 }

Time Complexity: O(n)

Space Complexity: O(n)

Each property is visited only once and stored once per
nproperties.

WRITE A PROGRAM THAT RECURSIVELY DETERMINES IF A
STRING IS A PALINDROME

A palindrome is a word spelled the same backward and forward such
as deified, racecar, testset, and aibohphobia (the fear of palindromes).

1 function isPalindromeRecursive (word) {
2 return isPalindromeHelper (word, O,

word.length-1);

3 }
4
5 function isPalindromeHelper (word, beginPos,
endPos) {
6 if (beginPos >= endPos) {
7 return true;
8 }
9 if (word.charAt (beginPos) !=
word.charAt (endPos)) {
10 return false;
11 } else {
12 return isPalindromeHelper (word,
beginPos + 1, endPos - 1);
13 }
14 }
15
16 isPalindromeRecursive('h '); // false
17 isPalindromeRecursive ('iii"); // true
18 isPalindromeRecursive ('i); // true
19 isPalindromeRecursive('albohphobla); // true
20 isPalindromeRecursive ('racecar'); // true

The idea behind this one is that with two indexes (one in front and
one in back) you check at each step until the front and back meet.

Time Complexity: O(n)

Space Complexity: O(n)

Space complexity here is still O(n) because of the recursive call
stack. Remember that the call stack remains part of memory even if it
is not declaring a variable or being stored inside a data structure.

Footnotes

1 https://github.com/Apress/js-data-structures—-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_9

9. Sets

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter focuses on working with sets. The concepts of sets from
both a mathematical definition and on the implementation level are
described and explored. Common set operations, as well as their
implementations, are covered in great detail. By end of this chapter, you
will understand how to use JavaScript’s native Set object to utilize set
operations.

Introducing Sets

Sets are one of the most fundamental data structures. The idea of a set is
simple: it is a group of definite, distinct objects. In layman’s terms, in
programming, a set is a group of unordered unique (no duplicate)
elements. For example, a set of integers may be {1, 2, 3, 4}. Within this, its
subsets are {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1,
2,3} {1, 2,4}, {1, 3,4}, and {2, 3, 4}. Sets are important for checking and
adding a unique element in O(1) constant time. The reason that sets have
constant time operations is that the implementations are based on that
of hash tables (covered in Chapter 11).

Set is natively supported in JavaScript as follows:

1 var exampleSet = new Set();

The native Set object has only one property: size (integer). This
property is the current number of elements within the set.

https://doi.org/10.1007/978-1-4842-3988-9_9

Set Operations

The set is a powerful data structure for performing uniqueness checks.
This section will cover the following key operations: insertion, deletion,
and contains.

Insertion
Set has one primary function: to check for uniqueness. Set can add
items, but duplicates are not allowed.

var exampleSet = new Set();
exampleSet.add(l); // exampleSet: Set {1}
exampleSet.add(l); // exampleSet: Set {1}
exampleSet.add (2); // exampleSet: Set {1, 2}

S w N -

Notice that adding the duplicate element does not work for a set. As
discussed in the introduction, insertion into a set occurs in constant time.
Time Complexity: O(1)

Deletion
Set can also delete items from the set. Set . delete returns a boolean
(true if that element exists and was deleted, false otherwise).

1 var exampleSet = new Set();

2 exampleSet.add(l); // exampleSet: Set {1}
3 exampleSet.delete(1l); // true

4 exampleSet.add(2); // exampleSet: Set {2}

This is useful for being able to delete items in constant time in
contrast to arrays where it would take O(n) time to delete an item.
Time Complexity: O(1)

Contains
Set .has does a quick O(1) lookup to check whether the element exists
within the set.

1 var exampleSet = new Set();

exampleSet.add(l); // exampleSet: Set {1}
exampleSet.has (1l); // true
exampleSet.has (2); // false
exampleSet.add (2); // exampleSet: Set {1, 2}
exampleSet.has (2); // true

o U W DN

Time Complexity: O(1)

Other Utility Functions

In addition to the natively supported set functions, other essential
operations are available; they are explored in this section.

Intersection

First, the intersection of two sets consists of the common elements
between those two sets. This function returns a set with common
elements between two sets:

1 function intersectSets (setA, setB) {
2 var intersection = new Set () ;

3 for (var elem of setB) {

4 if (setA.has(elem)) {

5 intersection.add(elem) ;
6 }

7 }

8 return intersection;

9 }
10 var setA = new Set([1l, 2, 3, 4]),
11 setB = new Set ([2, 31);

12 intersectSets (setA,setB); // Set {2, 3}

isSuperSet

Second, a set is a “superset” of another set if it contains all the elements
of the other set. This function checks whether a set is a superset of
another. This is implemented simply by checking whether the other set
contains all the elements of the reference set.

1 function isSuperset (setA, subset) {
2 for (var elem of subset) {
3 if (!setA.has(elem)) {
4 return false;
5 }
6 }
7 return true;
8 }
9 var setA = new Set ([1, 2, 3, 41),
10 setB = new Set([2, 31),
11 setC = new Set ([5]);
12 isSuperset (sethA, setB); // true
13 // because setA has all elements that setB does
14 isSuperset (setA, setC); // false
15 // because setA does not contain 5 which setC
contains
Union

Third, the union of two sets combines the elements from both sets. This
function returns a new set with both elements without duplicates.

1 function unionSet (setA, setB) {

2 var union = new Set (setld);

3 for (var elem of setB) {

4 union.add (elem) ;

S }

6 return union;

7 }

8 var setA = new Set ([1, 2, 3, 41),

9 setB = new Set ([2, 31),

10 setC = new Set ([5]);

11 unionSet (setA, setB); // Set (1, 2, 3, 4}
12 unionSet (setA,setC); // Set (1, 2, 3, 4, 5}
Difference

Finally, the difference of set A from set B is all of the elements in set A
that are not in set B. This function implements the difference operation

by making use of the native delete method.

1 function differenceSet (setA, setB) {
2 var difference = new Set (seth);
3 for (var elem of setB) {
4 difference.delete(elem);
5 }
6 return difference;
7 }
8 var setA = new Set([1, 2, 3, 4]),
9 setB = new Set ([2, 3]);
10 differenceSet (sethA, setB); // Set {1, 4}
Summary

A setis a fundamental data structure to represent unordered unique
elements. In this chapter, JavaScript’s native Set object was introduced.
The Set object supports insertion, deletion, and contains check, which
all have a time complexity of O(1). With these built-in methods, other
fundamental set operations such as intersection, difference, union, and
superset check are implemented. These will enable you to implement
algorithms with fast uniqueness checks in future chapters.

Table 9-1 summarizes the set operations.

Table 9-1 Set Summary

Operation

Insertion

Deletion

Contains

Intersection
(ANB)

Union (AUB)

Difference (A-
B)

Function Name Description

Set.add Native JavaScript. Adds the element to the set if it’s not
already in the set.

Set.delete Native JavaScript. Deletes the element from the set if it’s in
the set.

Set.has Native JavaScript. Checks whether an element exists within
in the set.

intersectSets Returns a set with common elements of set A and set B.

unionsSet Returns a set with all elements of set A and set B.

differenceSet Returns a set with all elements.

Exercises

USING SETS TO CHECK FOR DUPLICATES IN AN ARRAY

Check whether there are any duplicates in an array of integers using
sets. By converting the array into a set, the size of the set can be
compared with the length of the array to check for duplicates easily.

1 function checkDuplicates(arr) {

2 var mySet = new Set (arr);

3 return mySet.size < arr.length;

4 t

5 checkDuplicates ([1,2,3,4,51); // false
6 checkDuplicates ([1,1,2,3,4,5]); // true

Time Complexity: O(n)

Space Complexity: O(n)

In an array of length n, this function has to iterate through the
entire array in the worst case and also store all those elements in the
set.

RETURNING ALL UNIQUE VALUES FROM SEPARATE ARRAYS
Given two integer arrays with some of the same values, return one
array that has all the unique elements from both of the original arrays.

Using sets, unique elements can be stored easily. By concatenating
two arrays and converting them to a set, only unique items are stored.
Converting the set to an array results in an array with unique items
only.

1 function uniquelist (arrl, arr2) {
var mySet = new

Set (arrl.concat (arr?2)) ;

return Array.from(mySet);

N

3
4 }

5

6 uniquelList ([1,1,2,2],1(2,3,4,51); //
[1,2,3,4,5]

// 11,2,3,4,5]

7 uniquelList([1,2 1) ;
IRl 51); // 12,3,4,5]

8 uniquelList ([

Time Complexity: O(n + m)

Space Complexity: O(n + m)

The time and space complexity for this algorithm is O(n + m)
where n is the length of arr1 and m is the length of arr2. This is
because all elements inside both arrays need to be iterated through.

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_10

10. Searching and Sorting

Sammie Bae!

(1) Hamilton, ON, Canada

Searching data and sorting through data are fundamental algorithms.
Searching refers to iterating over the data structure’s elements to
retrieve some data. Sorting refers to putting the data structure’s
elements in order. The searching and sorting algorithms are different for
every data structure. This chapter focuses on searching and sorting for
arrays. By the end of this chapter, you will understand how to use
common sorting and searching algorithms for arrays.

Searching

As mentioned, searching is the task of looking for a specific element
inside a data structure. When searching in an array, there are two main
techniques depending on whether the array is sorted. In this section,
you’ll learn about linear and binary searching. Linear searches are
especially flexible because they can be used with both sorted and
unsorted data. Binary searches are specifically used with sorted data.
However, a linear search has a higher time complexity than a binary
search.

Linear Search

A linear search works by going through each element of the array one
index after another sequentially. The following code example is an
implementation of a linear search that iterates through the entire array
of numbers to find out whether 4 and 5 exist within the array.

https://doi.org/10.1007/978-1-4842-3988-9_10

//iterate through the array and find
function linearSearch (array,n) {
for (var 1i=0; i<array.length; i++) {
if (arrayl[i]l==n) {
return true;
}
}
return false;
}
console.log(linearSearch([1,2,3,4,5,6,7,8,9],
// true
11 console.log(linearSearch([1,2,3,4,5,6,7,8,9],
10)); // false

'_\
O © O Joy Ul WDN K

(o))
~
~—
~

Time Complexity: O(n)

As shown in Figure 10-1, when 6 is searched for, it goes through six
iterations. When 10 is searched for, it must iterate through all n elements
before returning false; therefore, the time complexity is O(n).

(o))

IL|23456789
71819
718]9
789
789
71819

Figure 10-1 Linear search

As another example, with an array of [1,2,3,4,5] and a search term of
3, it would take three iterations to complete (1, 2, 3). The reason why this
algorithm has a Big-O of O(n) is that, in the worst-case scenario, the
entire array needs to be iterated. For example, if the search term is 5, it
takes five iterations (1, 2, 3, 4, 5). If 6 is the search term, it goes through
the entire array (1, 2, 3, 4, 5) and then returns false because it was not
found.

As noted previously, a linear search algorithm like this is great
because it works whether or not the array is sorted. In a linear search
algorithm, every element of the array is checked. So, you should use a
linear search when the array is not sorted. If the array is sorted, you can
do the search faster via a binary search.

Binary Search

Binary search is a searching algorithm that works on sorted data. Unlike
the linear search algorithm, in which every element of the array is
checked, binary searches can check the middle value to see whether the
desired value is greater or smaller than it. If the desired value is smaller,
this algorithm can search through the smaller parts, or it can search
through the bigger parts if the desired value is bigger.

Figure 10-2 illustrates the process of a binary search. First, the search
range is 1 to 9. Since the middle element, 5, is bigger than 3, the search
range is restricted to 1 to 4. Finally, 3 is found as the middle element.
Figure 10-3 illustrates searching for an item in the right half of the array.

3]

2[3]4als]s6]7]sleal

Kl
SHERS
1]

2 S

Figure 10-2 Binary search in the left half of the array

Figure 10-3 Binary search in the right half of the array

The following code implements the binary search algorithm
described:

1 function binarySearch (array,n) {
2 var lowIndex = 0, highIndex =
arrayl.length-1;
3
4 while (lowIndex<=highIndex) {
5 var midIndex =
Math.floor ((highIndex+lowIndex) /2);
6 if (array[midIndex]==n) {
7 return midIndex;
8 } else if (n>array[midIndex]) {
9 lowIndex = midIndex;
10 } else {
11 highIndex = midIndex;
12 }
13 }
14 return -1;
15 }

16 console.log(binarySearch([1,2,3,4]1, 4)); //
true

17 console.log(binarySearch([1,2,3,41, 5)); //
-1

The binary search algorithm is fast but can be done only if the array is
sorted. It checks the middle element if that is the element that is being
searched for. If the search element is bigger than the middle element, the
lower bound is set to the middle element plus one. If the search element
is less than the middle element, the higher bound is set to the middle
element minus one.

This way, the algorithm is continuously dividing the array into two
sections: the lower half and the upper half. If the element is smaller than
the middle element, it should look for it in the lower half; if the element
is bigger than the middle element, it should look for it in the upper half.

Binary searches are used by humans without them even knowing. An

example is a phone directory that is arranged from A to Z by last name.

If you are given the task of finding someone with the last name of
Lezer, one would first go to the L section and open it halfway through.
Lizar is on that page; this means that the lower section contains L + [a to
i] and the upper section contains L + [i to z] last names. You would then
check the middle of the lower section. Laar appears, so you would now
check the upper section. This process repeats until Lezer is found.

Sorting

Sorting is one of the most important topics in computer science; it is
faster and easier to locate items in a sorted array than in an unsorted
sorted array. You can use sorting algorithms to sort an array in memory
for searching later in the program or to write to a file for later retrieval.
In this section, different sorting techniques will be explored. We will
start with the naive sorting algorithms and then explore efficient sorting
algorithms. Efficient sorting algorithms have various trade-offs that
should be considered during usage.

Bubble Sort

Bubble sorting is the simplest sorting algorithm. It simply iterates over
the entire array and swaps elements if one is bigger than the other, as
shown in Figure 10-4 and Figure 10-5.

Unsorted

6>1, Swap

6> 2, Swap

6 >3, Swap

6 >4, Swap

6 > 5, Swap

Figure 10-4 First run of the bubble sort

1<2,NoSwap| 1| 2| 3| 4 5.6

2<3,NoSwap| 1|1 2|3| 4|56

3<4,NoSwap| 1]|12(3|4|5|6

4<5 NoSwap| 1| 2| 3| 4[5 6

1<2,NoSwap| 1]|]2| 3|4 5 6

..NoSwaps | 1] 2| 3|4 5 6

1(2[{3|4]|5]|86]

123/ 4|5|6

1|2|3|4(5|6]

Figure 10-5 The rest of the bubble sort runs

swap is a common function used in sorting. It simply switches two

array element values and will be used as a helper function for most of the
sorting algorithms mentioned.

1 function swap(array, indexl, index2) {
2 var temp = array[indexl];

3 array|[indexl] = array[index2];

4 array[index2] = temp;

S }

The following bubbleSort code block illustrates the bubble sort
algorithm previously described:

1 function bubbleSort (array) {

2 for (var i=0, arraylLength =
array.length; i<arrayLength; i++) {

3 for (var j=0; j<=i; J++) {

4 if (array([i] < array([3j]) {
5 swap (array, 1, J);

6 }

7 }

8 }

9 return array;
10 }
11 bubbleSort([6,1,2,3,4,51); // [1,2,3,4,5,6]

Time Complexity: 0(n?)

Space Complexity: O(1)

Bubble sort is the worst type of sort because it compares every pair
possible, whereas other sorting algorithms take advantage of the
presorted parts of the array. Because bubble sort uses nested loops, it

has a time complexity of O(n?).

Selection Sort

Selection sorting works by scanning the elements for the smallest
element and inserting it into the current position of the array. This
algorithm is marginally better than bubble sort. Figure 10-6 shows this
minimum selection process.

Minls1,Swapwith7| 7| 4|1 5|1 9| 8| 2| 1
Minls2,Swapwith4| 1 1 4| 5|1 9| 8| 2| 7
Minls4,Swapwith5| 1| 2| 51 9| 8| 4| 7
Minls5,Swapwithe | 1 1 21 4|1 9| 8| 5| 7
Minls7,Swapwithe 1 1 2| 4| 5| 8| 9| 7
Minis8,Swapwithe| 1 1 2| 4| 5| 7| 9| 8
112(4|5(7|8|9
112(4|5(7|8|9

Figure 10-6 Selection sort

The following code implements the selection sort. In the code, there
is one for loop to iterate through the array and one nested for loop to

scan to get the minimum element.

function selectionSort (items) {
var len = items.length,
min;

for (var i=0; 1 < len; 1i++){

// set minimum to this position

min = 1i;

//check the rest of the array to see
if anything 1is smaller

9 for (j=i+1; 7 < len; j++){

O ~J oy Ul W

10 if (items[J] < items[min]) {

11 min = J;

12 }

13 }

14 //1f the minimum isn't in the
position, swap 1t

15 if (1 !'= min) {

16 swap (items, 1, min);

17 }

18 }

19

20 return items;

21 }

22 selectionSort([6,1,23,4,2,31); // [1, 2, 3,
4, 6, 23]

Time Complexity: 0(n?)
Space Complexity: O(1)

The time complexity for selection sort is still 0(n?) because of the
nested for loop .

Insertion Sort

Insertion sort works similarly to selection sort by searching the array
sequentially and moving the unsorted items into a sorted sublist on the
left side of the array. Figure 10-7 shows this process in detail.

14133127 (103540 (42 |44

14 < 33, no Swap. 14 inSorted Section | 14 133 |27 |10 135 (40 |42 | 44
27 < 33, Swap. 14, 27 in Sorted Section| 14 |33 |27 (10 (35 140 142 | 44
33>10,Swap.14,.27,10inSorted 14 27133110135 |40 142 |44

Section

27 > 10, Swap. 14 |27 10 33 35 40 42 144

14>10,5wap. |14110|27 33 (35|40 (42 44

10(14 127 (33 35|40 (42 |44

Figure 10-7 Insertion sort

The following code implements the insertion sort algorithm. The
outer for loop iterates over the array indices, and the inner for loop
moves the unsorted items into the sorted sublist on the left side of the
array.

1 function insertionSort (items) {

2 var len = items.length, // number of
items in the array

3 value, // the value
currently being compared

4 i, // index into
unsorted section

5 3 // index into

sorted section
6

7 for (i=0; i < len; i++) {

8 // store the current value because
it may shift later

9 value = items|[i];

10

11 // Whenever the value in the sorted
section 1s greater than the value

12 // 1n the unsorted section, shift
all items in the sorted section

13 // over by one. This creates space
in which to insert the value.

14

15 for (j=i-1; 7 > -1 && items[]] >
value; J--) {

16 items[j+1] = items[]];

17 }

18 items[J+1] = value;

19 }

20 return items;

21 }

22 insertionSort([6,1,23,4,2,31): // [1, 2, 3,
4, 6, 23]

Time Complexity: 0(n?)

Space Complexity: O(1)

Again, this sorting algorithm has a quadratic time complexity of 0(n?)
like bubble and insertion sort because of the nested for loop.

Quicksort

Quicksort works by obtaining a pivot and partitioning the array around it
(bigger elements on one side and smaller elements on the other side)
until everything is sorted. The ideal pivot is the median of the array since
it will partition the array evenly but getting the median of an unsorted
array linear time to compute. Hence, a pivot is typically obtained by
taking the median value of the first, middle, and last elements in the
partition. This sort is a recursive one and uses the divide-and-conquer
methodology to break the quadratic complexity barrier and get the time

complexity down to O(nlog,(n)). However, with a pivot that partitions

everything on one side, the time complexity is worse case: 0(n?).
Figure 10-8 shows the quicksort process’s partitioning steps in great
detail.

al1]4]1]s[o]2]6]5]|a

al1|4f1|5]|9]|2|6|5]|4

af1|2f1|s[of1|6]|5]|a

3l1|2]1]4a]|9|4a]6]5]5

3al1]|2]|1]/4|9]4]|8]|5]5

311121 8|4 6|5|5 5IsthePivot

3l1|2]|1]| |s5|4]/6]9]5

3|1 1 5|4 g6

Sort

113) |1]| [4]s]| [s]s

1[1]2]3]| [4]|s]|s]s6]9

111|2|3|4|4|5|5|6|9

Figure 10-8 Quicksort

The following code shows an implementation of the quicksort

algorithm:

1
2

3
4l
5

6
:
38

right) ;

9
10
11

index -

12
13
14
15

right);

16
17
18
19
20
21
22
left)
23
24
25
206
27

/

function quickSort (items) {

return quickSortHelper (items, O,
items.length-1);

}

function quickSortHelper (items,
var index;
if (items.length > 1) {
index = partition(items,

if (left < index - 1) {
quickSortHelper (items,

1)
}

if (index < right) {

quickSortHelper (items,

}
}

return items;

}

function partition(array, left,

2)1;
while (left <= right) {

left,

left,

right)
var pivot = array[Math.floor ((right +

while (pivot > array[left]) {

left++;
}

while (pivot < arrayl[right])

{

right)

left,

index,

{

28 right--;

29 }

30 if (left <= right) {

31 var temp = arrayl[left];
32 array[left] = arrayl[right];
33 array[right]= temp;

34 left++;

35 right--;

36 }

37 }

38 return left;

39 }

40

41 quickSort([6,1,23,4,2,31); // [1, 2, 3, 4,
6, 23]

Time Complexity: O(nlog,(n)) on average, O(n?) for worst case

Space Complexity: O(log,(n))

One downside about a quicksort algorithm is that it could potentially
be 0(n?) if a bad pivot is always picked . A bad pivot is one that it does
not partition the array evenly. The ideal pivot is the median element of

the array. In addition, a quicksort algorithm takes a bigger space
complexity of O(log,(n)) compared to other sorting algorithms because

of the call stack in recursion.

Use a quicksort algorithm when the average performance should be
optimal. This has to do with the fact that quicksort works better for the
RAM cache.

Quickselect

Quickselect is a selection algorithm to find the kth smallest element in an
unordered list. Quickselect uses the same approach as a quicksort
algorithm. A pivot is chosen, and the array is partitioned. Instead of
recursing both sides like quicksort, however, it recurses only the side for
the element. This reduces the complexity from O(nlog,(n)) to O(n).

Quickselect is implemented in the following code:

1 var array = [1,3,3,-2,3,14,7,8,1,2,2];
2 // sorted form: [-2, 1, 1, 2, 2, 3, 3, 3, 7,
8, 14]

3
4 function gquickSelectInPlace (A, 1, h, k) {
5 var p = partition(A, 1, h);
6 if (p==(k-1)) A
7 return A[p];
8 } else if (p>(k-1)) {
9 return quickSelectInPlace (A, 1, p -
1,k);
10 } else {
11 return quickSelectInPlace (A, p + 1,
h, k) ;
12 }
13 }
14
15 function medianQuickselect (array) {
16 return

quickSelectInPlace (array,0,array.length-1,
Math.floor (array.length/2));

17 }

18

19 quickSelectInPlace (array,0,array.length-
1,95): // 2

20 // 2 - because it's the fifth smallest
element

21 quickSelectInPlace (array,0,array.length-
1,10); // 7

22 // 7 - because 1it's the tenth smallest
element

Time Complexity: O(n)

Mergesort

Mergesort works by dividing the array into subarrays until each array
has one element. Then, each subarray is concatenated (merged) in a

sorted order (see Figure 10-9).

s[2]4]6]1]3]2]6
Split Split
s[2]4]6 1]3]2]s
Split Split Split Split
52 4|6 1]3 2|6
Split Split Split Split
5| (2| |4 6| |1 3 2| |6
Merge Merge Merge Merge
2|5 4|6 1]3 2|6
Merge Merge
2[4]s]6 1[2]3]e
Merge
1]2]2]3]a]s5]e]s

Figure 10-9 Mergesort

The merge function should add all the elements from both arrays in

sorted order in a “result array.” To do this, the index of each array can be
created to keep track of elements already compared. Once one array
exhausts all its elements, the rest can be appended to the result array.

1 function merge (leftA, rightA) {

2 var results= [], leftIndex= 0,
rightIndex= 0;
3

1 while (leftIndex < leftA.length &&

rightIndex < rightA.length) {

5 if(leftA[leftIndex]
<rightA[rightIndex]) {
0 results.push (leftA[leftIndex++])
7 } else {
8 results.push(rightA[rightIndex++
1)
9 }
10 }
11 var leftRemains =
leftA.slice (leftIndex),
12 rightRemains =
rightA.slice(rightIndex);
13
14 // add remaining to resultant array
15 return

results.concat (leftRemains) .concat (rightRemains) ;
16 }

The merging function works by taking the two arrays (left and right)
and merging them into one resultant array. The elements need to be
compared as they get merged to preserve order.

Now, the mergeSort function has to partition the bigger array into
two separate arrays and recursively call merge.

function mergeSort (array) {

if (array.length<?) {
return array; // Base case: array 1is
now sorted since it's just 1 element

1
2
3
4

S} }
6
7 var midpoint =
Math.floor ((array.length)/2),
8 leftArray = array.slice (0O,

midpoint),

9 rightArray = array.slice (midpoint);
10

11 return merge (mergeSort (leftArray),
mergeSort (rightArray));
12 }

13 mergeSort ([6,1,23,4,2,31); // [1, 2, 3, 4,
6, 23]

Time Complexity: O(nlog,(n))

Space Complexity: O(n)

Mergesort has a large space complexity of O(n) because of the need to
create n number of arrays to be merged later. Use mergesort when a
stable sort is needed. A stable sort is one that’s guaranteed not to reorder
elements with identical keys. Mergesort is guaranteed to be O(nlog,(n)).

A disadvantage of mergesort is that it uses O(n) in space.

Count Sort

Count sort can be done in O(k+n) because it does not compare values. It
works only for numbers and given a certain range. Instead of sorting by
swapping elements, this count works by counting occurrences of each
element in the array. Once occurrences of each element are counted, the
new array can be created using those occurrences. This sorts the data
without having to swap elements, as shown in Figure 10-10.

uUnsorted Array
o]a|2|2fofo|1]1]of1]o]2]|4]2

Count Array
index |0 1]2]|3]|4
Values| 513|402

Sorted Array
ofofofofo]1]1]1]2]2]2]2] 4]+«

Figure 10-10 Count sort

Here’s an implementation using a JavaScript object:

1 function countSort(array) {

2 var hash = {}, countArr= [];

3 for (var 1i=0;i<array.length;i++) {

4 if ('hashl[array[i]]) {

5 hash[array[i]] = 1;

6 lelse(

7 hashl[array[i]]++;

8 }

9 }
10
11 for (var key in hash) {
12 // for any number of _ element, add

it to array

13 for (var 1=0;i<hashl[key];i++) {
14 countArr.push (parselnt (key)) ;
15 }
16 }
17
18 return countArr;
19 }

20 countSort([6,1,23,2,3,2,1,2,2,3,3,1,123,123,
4,2,31; // [1, 2, 3, 4, 6, 23]

Time Complexity: O(k+n)

Space Complexity: O(k)

Use count sort when you're sorting integers with a limited range. This
will be the fastest sort for this case.

JavaScript’'s Built-in Sort
JavaScript has a built-in sort () method for an array object, which sorts
elements by ascending order. To use it, there is an optional parameter
that you can pass in a comparator function.

However, the default comparator function sorts alphabetically, so it
will not work for numbers.

1 var arrayl = [12,3,4,2,1,34,23];
2 arrayl.sort(); // arrayl: [1, 12, 2, 23, 3,
34, 4]

In the previous example, notice that numbers starting with 1 came
first (1, 12), then numbers starting with 2, and so forth. This is because
no comparator function was passed and JavaScript converted the
elements into a string and sorted it according to the alphabet.

To sort numbers correctly, use this:

var arrayl = [12,3,4,2,1,34,23];

function comparatorNumber (a,b) {
return a-b;

}

arrayl.sort (comparatorNumber) ;
// arrayl: [1, 2, 3, 4, 12, 23, 34]

O J o Ul x W DN K

a-b indicates that it should be from smallest to biggest (ascending).
Descending order can be done as follows:

var arrayl = [12,3,4,2,1,34,23];

function comparatorNumber (a,b) {
return b-a;

}

o U W DN+

arrayl.sort (comparatorNumber); // arrayl:
(34, 23, 12, 4, 3, 2, 1]

The sort () function can be useful when you need a quick way to
sort something without implementing it yourself.

Summary
There are two ways to search inside an array: linear search and binary

search. Binary search is faster with O(log,(n)) time complexity, while

linear search has O(n) time complexity. However, the binary search can
be performed only on a sorted array.

Table 10-1 summarizes time and space complexities of different
sorting algorithms. The most efficient sorting algorithms are quicksort,
mergesort, and count sort. Count sort, while the fastest, is limited to
when the range of array’s values are known.

Table 10-1 Sorting Summary

Algorithm Time Complexity Space Complexity

Quicksort O(nlog(n)) 0(nlogy(n))
Mergesort O(nlog(n)) 0(nlogy(n))
Bubble sort ¢,2) 0(n?)
Insertion sort 2y 0(n?)
Selection sort () 2y 0(n?)
Countsort O(k+n) 0(k)
Exercises

USE THE IMPLEMENT SQUARE ROOT FUNCTION FOR AN
INTEGER WITHOUT USING ANY MATH LIBRARIES

The first solution that may come to mind is trying every possibility
from 1 to the number, as follows:

function sgrtIntNaive (number) {
if (number == | | number == 1)
return number;

var index = 1, square = 1;
while (square < number) {

if (square == number) {
return square;

O W oo Joy U b wbdhdRF

'_\

11

12 index++;

13 square = index*index;
14 }

15 return index;

16 }

17 sgrtIntNaive (9) ;

Time Complexity: O(n)

This is essentially a linear search since it has to linearly check one
by one the value for the square root.

The binary search algorithm can be applied to this problem.
Instead of going up 1 by 1, partition the range into upper half and
lower half between 1 and the given number as follows:

1 function sgrtInt (number) ({
2 if (number == | | number == 1) return
number;
3
4 var start = 1, end = number, ans;
5
o while (start <= end) {
7 let mid = parselInt ((start+end)/2);
8
9 if (mid*mid == number)
10 return mid;
11
12 if (mid*mid<number) {
13 start = mid+1; // use the
upper section
14 ans = mid;
15 telse
16 end = mid-1; // use the lower
section
17 }
18 }

19 return ans;

20 }
21 sgqrtInt (9);

Time Complexity: O(log,(n))

Bonus: Find a Square Root of a Float

For this exercise, the only difference is using a threshold value to
calculate accuracy to because the square root of a double will have
decimals. Hence, the time complexity also stays the same.

1 function sgrtDouble (number) {

2 var threshold = 0.1;

3 //9 try middle,

4 var upper = number;

5 var lower = 0;

6 var middle;

7 while (upper-lower>threshold) {
8 middle = (upper+lower)/2;
9 if (middle*middle>number) {
10 upper = middle;

11 lelse/{

12 lower = middle;

13 }

14 }

15 return middle

16 }

17 sqgrtDouble (9); // 3.0234375

FIND IF TWO ELEMENTS OF AN ARRAY ADD UP TO A GIVEN
NUMBER

The simple approach to this problem is to check every other element
for each element in the array.

1 function findTwoSum(array, sum) {
2
3 for (var i1=0, arraylength = array.length;

i<arrayLength;i++) {

4 for (var j=i+1;j<arrayLength; j++) {
5 if (array[j]l+array[i] == sum) {
6 return true;

7 }

8 }

9 }

10 return false;

11 }

Time Complexity: O(n?)

Space Complexity: O(1)

There is a lot of checking, and hence it takes quadratic time.

A better approach is to store the already visited numbers and
check against them. This way, it can be done in linear time.

1 function findTwoSum(array, sum) {
2 var store = {};
3
4

for (var 1i=0, arraylLength =
array.length; i<arrayLength;i++) {

5 if (storelarray[i]]) {

6 return true;

7 lelse/{

8 store[sum-array[i]] =

array[i];

9 }
10 }

11 return false;

12 }

Time Complexity: O(n)

Space Complexity: O(n)

This algorithm cuts the time complexity to O(n) but takes O(n)
space as well to store items into the store object.

FIND AN ELEMENT WITHIN AN ARRAY THAT APPEARS ONLY
ONCE

Given a sorted array in which all elements appear twice (one after
one) and one element appears only once, find that element in O(log,n)

complexity. This can be done by modifying the binary search
algorithm and checking the addition indices.

Input: arr = [1, 1, 3, 3, 4, 5, 5, 7, 7, 8,
81 Output: 4

Input: arr = [1, 1, 3, 3, 4, 4, 5, 5, 7, 7T,
8] Output: 8

1 function findOnlyOnce (arr, low, high) {

2 if (low > high) {

3 return null;

4 }

5 if (low == high) {

o return arr[low];

7 }

8

9 var mid = Math.floor ((high+low) /2);
10

11 if (mid%2 == 0) {

12 if (arr[mid] == arr[mid+1]) {

13 return findOnlyOnce (arr, mid+2,
high) ;
14 } else {
15 return findOnlyOnce (arr, low,
mid) ;
16 }

17 } else {

18 if (arr[mid] == arr[mid-1]) {

19 return findOnlyOnce (arr, mid+1,
high) ;
20 } else {
21 return findOnlyOnce (arr, low,
mid-1);
22 }

23 }

24 }

25 function findOnlyOnceHelper (arr) {

26 return findOnlyOnce (arr, 0, arr.length);
277 }

28 findOnlyOnceHelper ([1, 1, 2, 4, 4, 5, 5, 6,
6 1);

Time Complexity: O(log,n)
Space Complexity: O(1)

CREATE A JAVASCRIPT SORT COMPARATOR FUNCTION THAT
WOULD SORT STRING BY LENGTH

This is fairly simple. If it is an array of strings, strings all have a
property of 1ength, which can be used to sort the array.

1 var mythical = ['dragon',
'slayer', 'magic', 'wizard of oz', 'ned stark'];

function sortComparator(a,b) {
return a.length - b.length;
}
mythical.sort (sortComparator) ;
// ["magic", "dragon", "slayer", "ned stark",
"wizard of of"]

N oy U1 W W DN

Examples
Sort string elements, putting strings with a first, as shown here:

1 var mythical = ['dragon',
'slayer', 'magic', 'wizard of oz', 'ned tark'];

function sortComparator (a,b) {
return a.indexOf ("a") - b.indexOf ("a");

}

N o U W

mythical.sort (sortComparator) ;

8 // ["magic", "dragon", "slayer", "wizard of
oz", "ned stark"]

Sort object elements by the number of properties, as shown here:

1 var mythical=[{propl:", prop2:"}, {propl:",

prop2:", prop3:"}, {propl:", prop2:"}1;
2

3 function sortComparator (a,b) {

4 return Object.keys (a) .length -
Object.keys (b) .length;

S }

6

7 mythical.sort (sortComparator) ;

// [{propl:", prop2:"}, {propl:", prop2:"},
{propl:", prop2:", prop3:"}]

As shown, there’s a lot of flexibility with these comparators, and
they can be used for sorting without needing to implement a sort
yourself.

IMPLEMENT A WORD COUNTER LIST
Create a function that generates an object of words (as keys) and the
number of times the words occur in a string ordered by highest to
lowest occurrences.

Here’s some example input: practice makes perfect. get perfect
by practice. just practice.

Here’s the example output: { practice: 3, perfect: 2,
makes: 1, get: 1, by: 1, just: 1 }.

1 function wordCount (sentence) {

2 // period with nothing so it doesn't
count as word

3 var wordsArray =

sentence.replace(/[.]1/g,"") .split (" ™),
4 occurencelList = {}, answerList =

{}s

5

6 for (var i=0,
wordsLength=wordsArray.length;
i<wordsLength; i++) {

7 var currentWord = wordsArray[i];
8 // doesn't exist, set as 1lst
occurrence
9 if (!occurencelist|[currentWord]) {
10 occurencelist [currentWord] =
1;
11 } else {
12 occurencelist[currentWord]++;
// add occurrences
13 }
14 }
15
16 var arrayTemp = [];
17 // push the value and key as fixed
array
18 for (var prop in occurencelist) {
19 arrayTemp.push ([occurencelList [prop
1, propl);
20 }
21
22 function sortcomp(a, b) {
23 return b[0] - al0]; // compare the
first element of the array
24 }
25
26 arrayTemp.sort (sortcomp); //sort
27
28 for (var 1 = 0, arrlength =
arrayTemp.length; i < arrlength; i++) {
29 var current = arrayTemp[i];
30 answerlList[current[l]] =

current [0]; // key value pairs
31 }

32 return answerList;

33 }

34 wordCount ("practice makes perfect. get
perfect by practice. just practice");

Time Complexity: O(nlog,(n))
Space Complexity: O(n)
Time complexity is limited by the sorting algorithm that the

JavaScript engine uses. Most use either mergesort or quicksort, which
are both O(nlog,(n)).

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_11

11. Hash Tables

Sammie Bae!

(1) Hamilton, ON, Canada

A hash table is a fixed-sized data structure in which the size is defined at
the start. This chapter explains how hash tables work by focusing on
hashing, the method of generating a unique key. By the end of this
chapter, you will understand various hashing techniques and know how
to implement a hash table from scratch.

Introducing Hash Tables

Hash tables are excellent for quick storage and retrieval of data based on
key-value pairs. In JavaScript, JavaScript objects work this way by
defining a key (property) and its associated value. Figure 11-1 shows
each key and its associated item.

https://doi.org/10.1007/978-1-4842-3988-9_11

Key Value

—» item O
»item 1
—>»item 2
—>»item 3
—>»item 4
—»item 5
6 —»item 6

||| |O

Figure 11-1 Simple hash table overview

A hash table contains two main functions: put () and get () . put ()
is used for storing data into the hash table, while get () is used for
retrieving data from the hash table. Both of these functions have a time
complexity of O(1).

In a nutshell, a hash table is analogous to an array whose index is
calculated with a hashing function to identify a space in memory
uniquely.

localStorage is an example of a data structure based on a hash
table. It is a native JavaScript object supported by all major browsers. It
lets developers persist data inside the browser, meaning it can be
accessed after a session.

1 localStorage.setItem("testKey", "testValue") ;
2 location = location; // refreshes the page
3

4)

5

localStorage.getItem ("testKey"); // prints
"testValue"

Hashing Techniques

The most important part of a hash table is the hash function. The hash
function converts a specified key into an index for an array that stores all
of the data. The three primary requirements for a good hash function are
as follows:

e Deterministic: Equal keys produce equal hash values.
e Efficiency: It should be O(1) in time.
e Uniform distribution: It makes the most use of the array.

The first technique for hashing is to use prime numbers. By using the
modulus operator with prime numbers, a uniform distribution of the
index can be guaranteed.

Prime Number Hashing

Prime numbers in hashing are important. This is because modulus
division using prime numbers yields an array index in a distributed
manner.

Modulus number: 11

4 3 11 = 4
7T %5 11 =
9 % 11 =9
15 $ 11 = 4

Collisions can be seen with 15 and 4 yielding the same key; handling
this collision is discussed later in this chapter. What is important here is
that modulus by prime numbers guarantees the best distribution for a
fixed size. Modulus by a small nonprime number such as 4 guarantees
only a range from 0 to 3 and leads to a large number of collisions.

Modulus number: 4
6 % 4 = 2
10 % 4 = 2

This is the first hashing technique that will be observed. Take a look
at Figure 11-2, which is a hash table with two arrays of size 11, and each
of the 11 elements is empty. One array is for the keys, and the other is for

values.

Keys

Values

Figure 11-2 Hash table of size 11, with all empty elements

In this example, keys are integers, and strings are being stored as
keys. Let’'s hash the following key-value pairs:

{key:7, value: "hi"}
{key:24, value: "hello"}
{key:42, value: "sunny"}
{key:34, value: "weather"}

Prime number: 11
7 % 1 = 7

o\

1
1
1
1

= e
|

2
=9
1

w DN
SN D
o°

o®

After all the key-value pairs have been inserted, the resulting hash
table is shown in Figure 11-3.

0112|3456 7|8]|9]10

34 |24 7 42

Iweathe hellol hi sunn;l

Figure 11-3 Hash table after inserting the value pairs

Now let’s hash {key:18, value: “wow”}.

Prime number: 11
18 $ 11 = 7

This is a problem because 7 already exists in the index of 7 and
causes an index collision. With a perfect hashing function, there are no
collisions. However, collision-free hashing is almost impossible in most
cases. Therefore, strategies for handling collisions are needed for hash
tables.

Probing

To work around occurring collisions, the probing hashing technique
finds the next available index in the array. The linear probing technique
resolves conflicts by finding the next available index via incremental
trials, while quadratic probing uses quadratic functions to generate
incremental trials.

Linear Probing

Linear probing works by finding the next available index by
incrementing one index at a time. For example, in the case of 18 and 7
hashing to the same key, 18 would be hashed into key 8 because that’s
the next empty spot (see Figure 11-4).

01112131456 7]|8]9]10
34 |24 7118 (42

rveathe hellol hi WOwW sunm|

Figure 11-4 Hash table 1 after using linear probing

However, now when the get (key) function is used, it has to start at

the original hash result (7) and then iterate until 18 is found.
The main disadvantage of linear probing is it easily creates clusters,
which are bad because they create more data to iterate through.

Quadratic Probing

Quadratic probing is a good technique for addressing the cluster issue.
Quadratic probing uses perfect squares instead of incrementing by 1
each time, and this helps to evenly distribute across the available indices,
as shown in Figure 11-5.

h + (1)*2, h + (2)*2, h + (3)*°2, h + (4)"2
h+ 1, h+ 4, h+ 9, h+ 16

Figure 11-5 Linear probing (on top) and quadratic probing (on bottom)

Rehashing/Double-Hashing

Another great way to uniformly distribute the keys is by having a second
hashing function that hashes the result from the original. These are the
three primary requirements for a good second hash function:

e Different: It needs to be different to distribute it better.

e Efficiency: It should still be O(1) in time.

e Nonzero: It should never evaluate to zero. Zero gives the initial hash
value.

A commonly used second hashing function is as follows:
hash2(x) =R - (x % R)

Here, x is the result from hashing the first time, and R is less than the
size of the hash table. Each hash collision is resolved by the following,
where i is the iteration trial number:

I * hash,(x)

Hash Table Implementation

Now that hash tables have been explained, let's implement one from
scratch. In this section, you will apply three different techniques to the
same example. The following are the example key-value pairs that will be
used:

7, “hi”

20, “hello”
33, “sunny”
46, “weather”
59, “wow”
72, “forty”
85, “happy”
98, “sad”

Using Linear Probing
Let’s start the example with simple linear probing.

1 function HashTable(size) {

2 this.size = size;

3 this.keys = this.initArray(size);

4 this.values = this.initArray(size);

5 this.limit = 0;

6 }

7

8 HashTable.prototype.put = function (key, value)
{

9 if (this.limit >= this.size) throw 'hash
table is full'
10
11 var hashedIndex = this.hash (key);
12
13 // Linear probing
14 while (this.keys[hashedIndex] != null) ({
15 hashedIndex++;

16

17 hashedIndex = hashedIndex % this.size;
18

19 }

20

21 this.keys[hashedIndex] = key;

22 this.values[hashedIndex] = value;

23 this.limit++;

24 }

25

26 HashTable.prototype.get = function (key) {
277 var hashedIndex = this.hash (key);

28

29 while (this.keys[hashedIndex] != key) {
30 hashedIndex++;

31

32 hashedIndex = hashedIndex % this.size;
33

34 }

35 return this.values[hashedIndex];

36 }

37

38 HashTable.prototype.hash = function (key) {
39 // Check if int

40 if (!Number.isInteger (key)) throw 'must be
int';

41 return key % this.size;

42 }

43

44 HashTable.prototype.initArray = function(size)

45 var array = [];

46 for (var 1 = 0; 1 < size; 1++) {
47 array.push (null) ;

48 }

49 return array;

50 }

51

52 var exampletable new HashTable (13);

53 exampletable.put (7, "hi");

54 exampletable.put (20, "hello");
55 exampletable.put (33, "sunny");
56 exampletable.put (46, "weather");
57 exampletable.put (59, "wow");

58 exampletable.put (72, "forty");
59 exampletable.put (85, "happy"):;
00 exampletable.put (98, "sad");

Here is the result:

Keys:
[85, 98, null, null, null, null, null,
7, 20, 33, 46, 59, 72]
Values:
["happy', 'sad', null, null, null, null,
null, 'hi', 'hello', 'sunny', 'weather', 'wow',
'"forty' |

Using Quadratic Probing
Now, let’s change the put () and get () methods to use quadratic
probing.

1 HashTable.prototype.put = function (key, wvalue)
{

2 if (this.limit >= this.size) throw 'hash
table is full'

3

4 var hashedIndex = this.hash (key),
squarelndex = 1;

5

// quadratic probing
while (this.keys[hashedIndex] != null) ({
hashedIndex += Math.pow (squarelndex, 2);

O W 00 1O

hashedIndex

11 squareIndex++;

12 }

13

14 this.keys[hashedIndex] = key;

15 this.values[hashedIndex] = value;

16 this.limit++;

17 }

18

19 HashTable.prototype.get = function (key) {
20 var hashedIndex = this.hash (key),
squarelndex = 1;

21

22 while (this.keys[hashedIndex] != key) {
23 hashedIndex += Math.pow (squarelndex,
2);

24

25 hashedIndex = hashedIndex % this.size;
26 squarelndex++;

27 }

28

29 return this.values[hashedIndex];

30 }

Here is the result:

Keys:
[null, null, null, 85, 72, null, 98, 7,
20, null, 59, 46, 33]
Values:
[null, null, null, 'happy', 'forty',
null, 'sad', 'hi', 'hello', null, 'wow',
'weather', 'sunny']

This result is more uniformly distributed than the result from linear
probing. It would be easier to see with a bigger array size and more
elements.

Using Double-Hashing with Linear Probing

Finally, let's combine double-hashing and linear probing. Recall the
common second hash function, hash,(x) = R - (x % R), where x is the

result from hashing the first time, and R is less than the size of the hash
table.

1 HashTable.prototype.put = function (key, value)

2 if (this.limit >= this.size) throw 'hash
table is full'
3
4 var hashedIndex = this.hash (key);
5
6 while (this.keys[hashedIndex] != null) ({
7 hashedIndex++;
8
9 hashedIndex = hashedIndex % this.size;
10
11 }
12 this.keys[hashedIndex] = key;
13 this.values[hashedIndex] = wvalue;
14 this.limit++;
15 }
16
17 HashTable.prototype.get = function (key) {
18 var hashedIndex = this.hash (key) ;
19
20 while (this.keys[hashedIndex] != key) {
21 hashedIndex++;
22
23 hashedIndex = hashedIndex % this.size;
24
25 }
26 return this.values[hashedIndex];
27 }
28

29 HashTable.prototype.hash = function (key) {
30 if (!Number.isInteger (key)) throw 'must be

int'; // check if int

31 return this.secondHash (key % this.size);
32 }

33

34 HashTable.prototype.secondHash =

function (hashedKey) {

35 var R = this.size - 2;
36 return R - hashedKey % R;
37 }

Here is the result:

Keys:
[null, 59, 20, 85, 98, 72, null, 7,
null, 46, null, 33, null]
Values:
[null, 'wow', 'hello', 'happy', 'sad',
'forty', null, 'hi', null, 'weather', null, 'sunny',
null]

Again, double-hashing results in a more uniformly distributed array
than the result from linear probing. Both quadratic probing and double-
hashing are great techniques to reduce the number of collisions in a hash
table. There are collision resolution algorithms far more advanced than
these techniques, but they are beyond the scope of this book.

Summary

A hash table is a fixed-sized data structure in which the size is defined at
the start. Hash tables are implemented using a hash function to generate
an index for the array. A good hash function is deterministic, efficient,
and uniformly distributive. Hash collisions should be minimized with a
good uniformly distributive hash function, but having some collisions is
unavoidable. Hash collision-handling techniques include but are not
limited to linear probing (incrementing the index by 1), quadratic
probing (using a quadratic function to increment the index), and double-
hashing (using multiple hash functions).

The next chapter explores stacks and queues, which are dynamically
sized data structures.

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_12

12. Stacks and Queues

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter covers stacks and queues; both are versatile data structures
commonly used in the implementation of other, more complex data
structures. You will learn what stacks and queues are, how and when
they are used, and how to implement them. Finally, the exercises will
help you to understand these concepts as well as when to apply stacks
and queues to an algorithmic problem.

Stacks

A stack is a data structure in which only the last inserted element can be
removed and accessed (see Figure 12-1). Think about stacking plates on
a table. To get to the bottom one, you must remove all the other ones on
the top. This is a principle known as last in, first out(LIFO). A stack is
great because it is fast. Since it is known that the last element is to be
removed, the lookup and insertion happen in a constant time of O(1).
Stacks should be used over arrays when you need to work with data in
the LIFO form where the algorithm needs to access only the last-added
element. The limitation of stacks is that they cannot access the non-last-
added element directly like arrays can; in addition, accessing deeper
elements requires you to remove the elements from the data structure.

https://doi.org/10.1007/978-1-4842-3988-9_12

—>» out

Object 4

Object 3

Object 2

Object 1

Figure 12-1 Stack, LIFO

In JavaScript, arrays have methods that define the stack class: pop
and push (as discussed in Chapter 5). With this, a stack can be easily

implemented.

Here is some skeleton code to start. You can find the code on GitHub.!

}

O ~J oy U WD

}

= e
N H O W

}

[
w

function Stack (array) {
this.array = [];
if (array) this.array = array;

Stack.prototype.getBuffer = function() {
return this.array.slice();

Stack.prototype.isEmpty = function () {
return this.array.length == 0;

14 //instance of the stack class

15 var stackl = new Stack();

16

17 console.log(stackl); // {array: []}

Let’s first consider “peeking” at the most recently added element.
This can be done simply by using the largest index of the array.

Peek

Peeking at the last added element of the stack means returning the last-
added element without removing it from the data structure. Peeking is
often used to compare the last-added element to some other variable and
to evaluate whether the last-added element should be removed from the
data structure.

1 Stack.prototype.peek = function () {
2 return this.array[this.array.length-1];
3 }
4 stackl.push (10);
5 console.log(stackl.peek()); // 10
6 stackl.push (5);
7 console.log(stackl.peek()); // 5
Time Complexity: O(1)
Insertion

Inserting into a stack can be done via the push function natively
supported with JavaScript arrays.

1 Stack.prototype.push = function (value) {
2 this.array.push (value) ;

3 }

4

5 stackl.push (1) ;

6 stackl.push (2);

7 stackl.push (3);

8 console.log(stackl); // {array: [1,2,3]}

Time Complexity: O(1)

Deletion

Deletion can also be implemented using a native JavaScript array
method, called pop.

1 Stack.prototype.pop = function () {

2 return this.array.pop ()

3 i

4

5 stackl.pop (1) ;

6 stackl.pop(2);

7 stackl.pop(3);

8

9 console.log(stackl); // {array: []}
Time Complexity: O(1)

Access

Accessing specific elements in a data structure is important. Here, let’s
take a look at how to access an element based on order.

To access the nth node from the top, you need to call popn number of
times.

1 function stackAccessNthTopNode (stack, n) {
2 var bufferArray = stack.getBuffer():;
3 if (n<=0) throw 'error'

4

5 var bufferStack = new

Stack (bufferArray) ;

6

7 while (-—n!==0) {

8 bufferStack.pop() ;

9 }
10 return bufferStack.pop();
11 }

12

13 var stack2 =
14 stack2.push (
15 stack2.push (
16 stack2.push (
17 stackAccessNthTopNode (stack2,2); // 2

new Stack () ;

1),
2);
3);

Time Complexity: O(n)
Search will be implemented in a similar way .

Search
Searching the stack data structure for a specific element is a critical
operation. To do this, you must first create a buffer stack so that pop can

be called on that buffer stack. This way, the original stack is not mutated,
and nothing is removed from it.

1 function stackSearch (stack, element) {
2 var bufferArray = stack.getBuffer();

3

4 var bufferStack = new Stack (bufferArray):;
// copy into buffer

5

6 while (!bufferStack.isEmpty ()) {

7 if (bufferStack.pop()==element) {

8 return true;

9 }
10 }
11 return false;
12 }

Time Complexity: O(n)

Queues

A queue is also a data structure, but you can remove only the first added
element (see Figure 12-2). This is a principle known as first in, first
out(FIFO). A queue is also great because of the constant time in its
operations. Similar to a stack, it has limitations because only one item

can be accessed at a time. Queues should be used over arrays when you
need to work with data in the FIFO form where the algorithm only needs
to access the first added element.

Object 4

Object 3

Object 2

Object 1

out

Figure 12-2 Queue, FIFO

In JavaScript, arrays have methods that define the queue class:
shift () and push () (as discussed in Chapter 5). Recall that the

shift () method on an array in JavaScript removes and returns the first
element of the array. Adding to a queue is commonly known as
enqueuing , and removing from a queue is known as dequeuing .

shift () can be used for the dequeue, and .push () can be used for the
enqueue.

Here is some skeleton code to start. You can find the code on GitHub.?

1 function Queue (array) {

2 this.array = [];

3 if (array) this.array = array;
4

Queue.prototype.getBuffer = function() {
return this.array.slice();

o 1 oY U1

}

9
10 Queue.prototype.isEmpty = function () {
11 return this.array.length == 0;
12 }
13
14 //instance of the queue class
15 var queuel = new Queue () ;
16

17 console.log(queuel); // { array: [] }

Peek

The peek function looks at the first item without popping it from the

queue. In the stack implementation, the last element in the array was
returned, but a queue returns the first element in the array because of
FIFO.

1 Queue.prototype.peek = function () {

2 return this.arrayl[0];
3 }
Insertion

As mentioned, insertion for a queue is known as enqueue. Since an array
is used to hold the stack data, the push () method can be used to

implement enqueue.

1 Queue.prototype.enqueue = function (value) {
2 return this.array.push(value);
3 }

Time Complexity: O(1)

Deletion
As mentioned, deletion for a queue also is known as dequeue. Since an

array is used to hold the stack data, the shift () method can be used to
remove and return the first element in the queue.

1 Queue.prototype.dequeue = function () {
2 return this.array.shift();

3 b

4

5 var queuel = new Queue () ;

6

7 queuel .enqueue (1) ;

8 queuel .enqueue (2) ;

9 queuel .enqueue (3) ;
10
11 console.log(queuel); // {array: [1,2,3]}
12
13 queuel .dequeue () ;
14 console.log(queuel); // {array: [2,3]}
15
16 queuel .dequeue () ;
17 console.log(queuel); // {array: [3]}

Time Complexity: O(n)

Because the shift () implementation removes the element at zero
indexes and then shifts remaining indexes down consecutively, all other
elements in the array need to have their indexes altered, and this takes
O(n). With a linked-list implementation, as covered in Chapter 13, this
can be reduced to O(1) .

Access

Unlike an array , items in a queue cannot be accessed via index. To access
the nth last-added node, you need to call dequeuen number of times. A
buffer is needed to prevent modification to the original queue.

1 function queueAccessNthTopNode (queue, n) {
2 var bufferArray = queue.getBuffer();
3 if (n<=0) throw 'error'

4

5 var bufferQueue = new Queue (bufferArray);
6
7 while (-—n!==0) {
8 bufferQueue.dequeue () ;
9 }
10 return bufferQueue.dequeue () ;
11 }
Time Complexity: O(n)
Search

You might need to search a queue to check whether an element exists
within a queue. Again, this involves creating a buffer queue first to avoid
modifications to the original queue.

1 function gqueueSearch (queue, element) {

2 var bufferArray = queue.getBuffer();

3

4 var bufferQueue = new Queue (bufferArray);
5

6 while (!bufferQueue.isEmpty ()) {

7 if (bufferQueue.dequeue ()==element) {
8 return true;

9 }
10 }
11 return false;
12 }

Time Complexity: O(n)

Summary

Both stacks and queues support peek, insertion, and deletion in O(1).
The most important distinction between a stack and a queue is that a
stack is LIFO and a queue is FIFO. Table 12-1 summarizes the time
complexity.

Table 12-1 Queue and Stack Time Complexity Summary

Access Search Peek Insertion Deletion

Queue O(n) O(n) o(1) 0(1) O(n)3
Stack O(n) O(n) O(1) O(1) o(1)
Exercises

All the code for the exercises can be found on GitHub.*

DESIGN A STACK USING ONLY QUEUES AND THEN DESIGN A
QUEUE USING ONLY STACKS
Stack Using Queues

A queue can be made with two stacks. A queue is a data structure
that returns the first-added element with the dequeue () method. A
stack is a data structure that returns the last-added element via pop.
In other words, a queue removes elements in the reverse direction of
a stack.

For example, examine a stack array with [1,2,3,4,5].

To reverse the order, all of the elements could be pushed onto a
second stack and pop that second stack. So, the second stack array will
look like this: [5,4,3,2,1].

When this is popped off, the last element is removed, which is 1.
So, 1 is originally the first element. Hence, a queue was implemented
using only two stacks.

function TwoStackQueue () {
this.inbox = new Stack();
this.outbox= new Stack () ;

}

o Ul W DN

TwoStackQueue.prototype.enqueue =
function (val) {
7 this.inbox.push (val) ;
8 }
9
10 TwoStackQueue.prototype.dequeue =
function () {

11 if (this.outbox.isEmpty ()) {

12 while (!this.inbox.isEmpty ()) {

13 this.outbox.push (this.inbox.po
p());

14 }

15 }

16 return this.outbox.pop();

17 }i

18 var gqueue = new TwoStackQueue() ;

19 queue.enqueue (1) ;

20 queue.enqueue (2) ;

21 queue.enqueue (3) ;

22 queue.dequeue (); // 1

23 queue.dequeue (); // 2

24 queue.dequeue (); // 3

Queue Using Stacks

A stack can be made with two queues. A stack is a data structure
that returns the last element. To implement this using a queue, simply
enqueue all the elements inside the main queue except for the last
element. Then return that last element.

1 function QueueStack () {
2 this.inbox = new Queue(); // first
stack
3 }
4
5 QueueStack.prototype.push = function (val)
{
6 this.inbox.enqueue (val) ;
7 }i
8
9 QueueStack.prototype.pop = function() {
10 var size = this.inbox.array.length-1;
11 var counter =0;
12 var bufferQueue = new Queue() ;

14
15
ueue ())
16
17
18
19
20
21
22
23
24
25
26
277
28
29
30
31
32
33
34

while (++counter<=size) {
bufferQueue.enqueue (this.inbox.deq

.
14

}

var popped = this.inbox.dequeue() ;
this.inbox = bufferQueue;
return popped

b
var stack = new QueueStack();

stack.push (1)
stack.push (2)
stack.push (3);
stack.push (4)
stack.push (5)

console.log(stack.pop()); // 5
console.log(stack.pop()); // 4
console.log(stack.pop()); // 3
console.log(stack.pop()); // 2
console.log(stack.pop()); // 1

DESIGN A CASHIER CLASS THAT TAKES IN A CUSTOMER OBJECT
AND HANDLES FOOD ORDERING ON A FIRST-COME, FIRST-
SERVED BASIS

Here are the requirements:

1.

The cashier requires a customer name and order item for the

order.
2

The customer who was served first is processed first.

Here are the required implementations:

e addOrder (customer): Enqueues a customer object to be
processed by deliverOrder ()

e deliverOrder (): Prints the name and order for the next
customer to be processed

For this exercise, the Cashier class should enqueue customer
class objects with a queue and dequeue them when finished.

function Customer (name, order) {
this.name = name;
this.order = order;

1

2

3

4

5

o function Cashier () {
7 this.customers = new Queue () ;
8

9
10

Cashier.prototype.addOrder = function
(customer) {
11 this.customers.enqueue (customer) ;
12 }
13
14 Cashier.prototype.deliverOrder =
function () {

15 var finishedCustomer =
this.customers.dequeue () ;
16
17 console.log(finishedCustomer.name+",
your "+finishedCustomer.order+" is ready!");
18 }
19
20 var cashier = new Cashier();
21 var customerl = new
Customer ('Jim', "Fries");
22 var customer? = new
Customer ('Sammie', "Burger") ;
23 var customer3 = new
Customer ('Peter',"Drink") ;
24

25 cashier.addOrder (customerl) ;

20 cashier.addOrder (customer?) ;

277 cashier.addOrder (customer3l) ;

28

29 cashier.deliverOrder(); // Jim, your Fries
is ready!

30 cashier.deliverOrder(); // Sammie, your
Burger is ready!

31 cashier.deliverOrder(); // Peter, your

Drink is ready!

DESIGN A PARENTHESIS VALIDATION CHECKER USING A STACK
((())) isavalid parentheses set, while ((() and))) arenot. A
stack can be used to check the validity of parentheses by storing the
left parenthesis and using push and triggering pop when the right
parenthesis is seen.

If there is anything left in the stack afterward, it is not a valid
parentheses set. Also, it is not a valid parentheses set if more right
parentheses are seen than left ones. Using these rules, use a stack to
store the most recent parenthesis.

1 function
isParenthesisValid(validationString) {
2 var stack = new Stack();
3 for (var
pos=0;pos<validationString.length;pos++) {
4 var currentChar =
validationString.charAt (pos);
5 if (currentChar==" (") {
o stack.push (currentChar) ;
7 }else if (currentChar==")") {
8
9 if (stack.isEmpty())
10 return false;
11

12 stack.pop () ;

13 }

14 }
15 return stack.isEmpty () ;
16 }

17 isParenthesisvalid (" ((()"); // false;
18 isParenthesisvalid (" (((("); // false;
19 isParenthesisvalid(" () ()"); // true;

Time Complexity: O(n)
This algorithm processes a string character by character. Hence,
its time complexity is O(n), where n is the length of the string.

DESIGN A SORTABLE STACK

The idea is to have two stacks, one that is sorted and one that is
nonsorted. When sorting, pop from the unsorted stack, and when any
number smaller (if descending order) or bigger (if ascending order)
on the sorted stack is on top, that sorted stack element should move
back to unsorted because it is out of order. Run a loop until the stack
is all sorted.

1 function sortableStack(size) {

2 this.size = size;

3

4 this.mainStack = new Stack();

5 this.sortedStack = new Stack();

6

7 // let's initialize it with some random
ints

8 for (var i=0;i<this.size;i++) {

9 this.mainStack.push (Math.floor (Math.r
andom () *11));

10 }

11 }

12

13 sortableStack.prototype.sortStackDescending =
function () {
14 while (!this.mainStack.isEmpty ()) {

15 var temp = this.mainStack.pop();

16 while (!this.sortedStack.isEmpty () &&
this.sortedStack.peek ()< temp) {

17 this.mainStack.push (this.sortedSt
ack.pop());

18 }

19 this.sortedStack.push (temp) ;

20 }

21 }

22

23 var ss = new sortableStack(10);

24 console.log(ss); // [8, 3, 4, 4, 1, 2,
0/ 9/ 7/ 8]

25 ss.sortStackDescending () ;

26 console.log(ss.sortedStack) ; // [9, 8,

s, 7, 4, 4, 3, 2, 1, 0]

Time Complexity: 0(n?)

This algorithm involves a reshuffling of the elements between two
stacks, which in the worst possible case takes O(n?), where n is the
number of elements to be sorted.

Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

2 https://github.com/Apress/js—-data-structures-and-algorithms

3 This could be improved to O(1) with a linked-list implementation.

4 https://github.com/Apress/js-data-structures-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms

© Sammie Bae 2019

Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_13

13. Linked Lists

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will cover linked lists. A linked list is a data structure in
which each node points to another node. Unlike arrays, which have a
fixed size, a linked list is a dynamic data structure that can allocate and
deallocate memory at runtime. By the end of this chapter, you will
understand how to implement and work with linked lists.
There are two types of linked lists discussed in this chapter: singly

and doubly linked lists. Let’s examine the singly linked list first.

Singly Linked Lists

The linked list data structure is one where each node (element) has

reference to the next node (see Figure 13-1).

Object 1

g

Object 2

Figure 13-1 Singly linked list

g

Object 3

g

Object 4

@

A node in a singly linked list has the following properties: data and
next.data is the value for the linked list node, and next is a pointer to

another instance of SinglyLinkedListNode.

https://doi.org/10.1007/978-1-4842-3988-9_13

1 function SinglyLinkedListNode (data) {
2 this.data = data;

3 this.next = null;

4 }

The following code is the base for the singly linked list example. You

can find the code on GitHub.! The code block has a helper function to
check whether the singly linked list is empty.

1 function SinglyLinkedList () {

2 this.head = null;

3 this.size = 0;

4 }

5

6 SinglyLinkedList.prototype.isEmpty =
function () {

7 return this.size == 0;

8 }

The start of the linked list is referred to as the head . This property
defaults to nul1l before inserting any element into the linked list.

Insertion

The following code block shows how to insert into a singly linked list. If
the head of the linked list is empty, the head is set to the new node.
Otherwise, the old heap is saved in temp, and the new head becomes the
newly added node. Finally, the new head’s next points to the temp (the
old head).

1 SinglyLinkedList.prototype.insert =
function (value) {

2 if (this.head === null) { //If first node

3 this.head = new
SinglyLinkedListNode (value) ;

4 } else {

5 var temp = this.head;

o this.head = new

SinglyLinkedListNode (value) ;

7 this.head.next = temp;
8 }

9 this.size++;
10 }

11 var slll = new SinglyLinkedList ()

12 slll.insert(l); // linked 1ist 1is now: 1 ->
null

13 slll.insert(12); // linked 1ist 1is now: 12 -> 1
-> null

14 slll.insert (20); // linked list is now: 20 ->
12 => 1 => null

Time Complexity: O(1)
This is a constant time operation; no loops or traversal is required.

Deletion by Value

The deletion of a node in a singly linked list is implemented by removing
the reference of that node. If the node is in the “middle” of the linked list,
this is achieved by having the node with the next pointer to that node

point to that node’s own next node instead, as shown in Figure 13-2.

Node 1 ==>{Node 2 =] Node 3 = Node 4

Node 3
Node 1] Node 2 Node 4

Figure 13-2 Interior node removal from a singly linked list

If the node is at the end of the linked list, then the second-to-last

element can dereference the node by setting its next to null.

1 SinglyLinkedList.prototype.remove =
function (value) {

2 var currentHead = this.head;
3 if (currentHead.data == wvalue) {
4 // just shift the head over. Head 1is
now this new value
5 this.head = currentHead.next;
6 this.size--;
7 } else {
8 var prev = currentHead;
9 while (currentHead.next) {
10 if (currentHead.data == wvalue) {
11 // remove by skipping
12 prev.next =
currentHead.next;
13 prev = currentHead;
14 currentHead =
currentHead.next;
15 break; // break out of the
loop
16 }
17 prev = currentHead;
18 currentHead = currentHead.next;
19 }
20 //1f wasn't found in the middle or
head, must be tail
21 if (currentHead.data == value) {
22 prev.next = null;
23 }
24 this.size--;
25 }
26 }

27 var sll1l = new SinglyLinkedList();
28 slll.insert(l); // linked 1ist 1s now: 1 ->
null

29 slll.insert (12);
> 1 -> null

30 slll.insert (20);
> 12 -> 1 -> null

31 slll.remove (12);
> 1 -> null

32 slll.remove (20);
null

Time Complexity: O(n)

// linked 1ist
// linked 1ist
// linked 1ist

// linked 1list

is

is

is

1is

nows:

now:

now:

now:

In the worst case, the entire linked list must be traversed.

Deletion at the Head

Deleting an element at the head of the linked list is possible in O(1).

When a node is deleted from the head, no traversal is required. The

implementation of this deletion is shown in the following code block.
This allows the linked list to implement a stack. The last-added item (to

the head) can be removed in O(1).

1 DoublyLinkedList.prototype.deleteAtHead =

function () {

2 var toReturn = null;

3

4 if (this.head !== null) {

5 toReturn = this.head.data;

6

7 if (this.tail === this.head) {
8 this.head = null;

9 this.tail = null;
10 } else {
11 this.head = this.head.next;
12 this.head.prev = null;
13 }
14 }
15 this.size—--;
16 return toReturn;

17 }

18 var slll = new SinglyLinkedList () ;

19 slll.insert(1l); // linked 1ist is now: 1 ->
null

20 slll.insert(12); // linked list is now: 12 -> 1
-> null

21 slll.insert (20); // linked 1list is now: 20 ->
12 -> 1 -> null

22 slll.deleteAtHead(); // linked 1list 1is now: 12
-> 1 => null

Search

To find out whether a value exists in a singly linked list, simple iteration
through all its next pointers is needed.

1 SinglyLinkedList.prototype.find =
function (value) {

2 var currentHead = this.head;

3 while (currentHead.next) {

4 if (currentHead.data == wvalue) {
5 return true;

6 }

7 currentHead = currentHead.next;
8 }

9 return false;
10 }

Time Complexity: O(n)
Like with the deletion operation, in the worst case, the entire linked
list must be traversed.

Doubly Linked Lists

A doubly linked list can be thought of as a bidirectional singly linked list.
Each node in the doubly linked list has both a next pointer and a prev
pointer. The following code block implements the doubly linked list
node:

1 function DoublyLinkedListNode (data) {
2 this.data = data;

3 this.next = null;

4 this.prev = null;

5

}

In addition, a doubly linked list has a head pointer as well as a tail
pointer. The head refers to the beginning of the doubly linked list, and
the tail refers to the end of the doubly linked list. This is implemented in
the following code along with a helper function to check whether the
doubly linked list is empty:

1 function DoublyLinkedList () {

2 this.head = null;

3 this.tail = null;

4 this.size = 0;

>)

6 DoublyLinkedList.prototype.isEmpty =
function () {

7 return this.size == 0;

8 }

Each node in a doubly linked list has next and prev properties.

Deletion, insertion, and search implementations in a doubly linked list
are similar to that of the singly linked list. However, for both insertion

and deletion, both next and prev properties must be updated. Figure
13-3 shows an example of a doubly linked list.

Node 1

P
—>

Node 2

i

Head

—>
pa—

Node 3

—>
P

Node 4

—>
-

NOGGS\

Figure 13-3 Doubly linked list example with five nodes

Insertion at the Head

T

Tail

Inserting into the head of the doubly linked list is the same as the
insertion for the singly linked list except that it has to update the prev
pointer as well. The following code block shows how to insert into the
doubly linked list. If the head of the linked list is empty, the head and the
tail are set to the new node. This is because when there is only one
element, that element is both the head and the tail. Otherwise, the temp

variable is used to store the new node. The new node’s next points to
the current head, and then the current head’s prev points to the new
node. Finally, the head pointer is updated to the new node.

1 DoublyLinkedList.prototype.addAtFront =
function (value) {

2 if (this.head === null) { //If first node
3 this.head = new
DoublyLinkedListNode (value) ;
4 this.tail = this.head;
5 } else {
7 var temp = new
DoublyLinkedListNode (value) ;
8 temp.next = this.head;
9 this.head.prev = temp;
10 this.head = temp;
11 }
12 this.size++;
13 }

14 var dll11l = new DoublyLinkedList ()

15 dlll.insertAtHead (10); // ddll's structure:
tail: 10 head: 10

16 dlll.insertAtHead (12); // ddll's structure:
tail: 10 head: 12

17 dlll.insertAtHead (20); // ddll's structure:
tail: 10 head: 20

Time Complexity: O(1)

Insertion at the Tail
Similarly, a new node can be added to the tail of a doubly linked list, as

implemented in the following code block:

1 DoublyLinkedList.prototype.insertAtTail =
function (value) {

2 if (this.tail === null) { //If first node
3 this.tail = new
DoublyLinkedListNode (value) ;
4 this.head = this.tail;
5 } else {
6 var temp = new
DoublyLinkedListNode (value) ;
7 temp.prev = this.tail;
8 this.tail.next = temp;
9 this.tail = temp;
10 }
11 this.size++;
12 }
13

14 var dll11 = new DoublyLinkedList();

15 dlll.insertAtHead (10); // ddll's structure:
tail: 10 head: 10

16 dlll.insertAtHead (12); // ddll's structure:
tail: 10 head: 12

17 dlll.insertAtHead (20); // ddll's structure:
tail: 10 head: 20

18 dlll.insertAtTail (30); // ddll's structure:
tail: 30 head: 20

Time Complexity: O(1)

Deletion at the Head

Removing a node at the head from a doubly linked list can be done in
O(1) time. If there is only one item in the case that the head and the tail
are the same, both the head and the tail are set to null. Otherwise, the

head is set to the head’s next pointer. Finally, the new head’s prev is
set to null to remove the reference of the old head. This is implemented
in the following code block. This is great because it can be used like a

dequeue function from the queue data structure.

1 DoublyLinkedList.prototype.deleteAtHead =

function () {
2 var toReturn = null;
3
4 if (this.head !== null) {
5 toReturn = this.head.data;
6
7 if (this.tail === this.head) {
8 this.head = null;
9 this.tail = null;
10 } else {
11 this.head = this.head.next;
12 this.head.prev = null;
13 }
14 }
15 this.size--;
16 return toReturn;
17 }

Time Complexity: O(1)

Deletion at the Tail

Similarly to removing the node at the head, the tail node can be removed
and returned in O(1) time, as shown in the following code block. By
having the ability to remove at the tail as well, the doubly linked list can
also be thought of as a bidirectional queue data structure. A queue can
dequeue the first-added item, but a doubly linked list can dequeue either
the item at the tail or the item at the head in O(1) time.

1 DoublyLinkedList.prototype.deleteAtTail =
function () {

2 var toReturn = null;

3

4 if (this.tail !== null) {

5 toReturn = this.tail.data;

6

7 if (this.tail === this.head) {
8 this.head = null;

9 this.tail = null;
10 } else {
11 this.tail = this.tail.prev;
12 this.tail.next = null;
13 }
14 }
15 this.size--;
16 return toReturn;
17 }

18 var dll1l = new DoublyLinkedList ()

19 dlll.insertAtHead (10); // ddll's structure:
tail: 10 head: 10

20 dlll.insertAtHead (12); // ddll's structure:
tail: 10 head: 12

21 dlll.insertAtHead (20); // ddll's structure:
tail: 10 head: 20

22 dlll.insertAtTail (30); // ddll's structure:
tail: 30 head: 20

23 dlll.deleteAtTail () ;

24 // ddll's structure: tail: 10 head: 20

Time Complexity: O(1)

Search

To find out whether a value exists in a doubly linked list, you can start at
the head and use the next pointer or start at the tail and use the prev
pointer. The following code block is the same implementation as the
singly linked list search implementation, which starts at the head and
looks for the item:

1 DoublyLinkedList.prototype.findStartingHead =
function (value) {

2 var currentHead = this.head;

3 while (currentHead.next) {

4 if (currentHead.data == wvalue) {
5 return true;

6 }

7 currentHead = currentHead.next;
8 }

9 return false;
10 }

11 var dl11 = new DoublylLinkedList ()

12 dlll.insertAtHead (10); // ddll's structure:
tail: 10 head: 10

13 dlll.insertAtHead (12); // ddll's structure:
tail: 10 head: 12

14 dlll.insertAtHead (20); // ddll's structure:
tail: 10 head: 20

15 dlll.insertAtTail (30); // ddll's structure:
tail: 30 head: 20

16 dll1l.findStartingHead (10); // true

17 dlll.findStartingHead (100); // false

Time Complexity: O(n)
The following code traverses the doubly linked list starting with the
tail using prev pointers:

1 DoublyLinkedList.prototype.findStartingTail
= function (value) {

2 var currentTail = this.tail;

3 while (currentTail.prev) {

4 if (currentTail.data == value) {
5 return true;

S }

7 currentTail = currentTail.prev;
8 }

9 return false;
10 }
11

12 var dl11l = new DoublylLinkedList ()
13 dlll.insertAtHead (10); // ddll's structure:

tail: 10 head: 10

14 dlll.insertAtHead (12); // ddll's structure:
tail: 10 head: 12

15 dlll.insertAtHead (20); // ddll's structure:
tail: 10 head: 20

16 dlll.insertAtTail (30); // ddll's structure:
tail: 30 head: 20

17 dl11.findStartingTail (10); // true

18 dll1l.findStartingTail (100); // false

Time Complexity: O(n)

Although the time complexity for search is the same as the singly
linked list’s search, only the doubly linked list can search bidirectionally
(using prev or next). This means that if given a reference to a doubly
linked list node, doubly linked lists can perform a full search, but a singly
linked list is limited to only its next pointers.

Summary

The linked list data structure works by each node having a next pointer
(and previous, or prev, pointer if doubly linked) to a different node.
Insertion for both singly and doubly linked lists has a constant time
complexity of O(1). The time complexity of deleting from the head of the
singly and doubly linked lists is O(1) as well. However, searching for an
item in both singly and doubly linked list takes O(n) time. Doubly linked
lists should be used over singly linked lists when bidirectional
traversal/search is required. Furthermore, doubly linked lists allow you
to pop from either the tail or the head of the linked list for a flexible and
fast O(1) operation.

Exercises

You can find all the code for the exercises on GitHub.?

REVERSE A SINGLY LINKED LIST
To reverse a singly linked list, simply iterate through each node and

set the next property on the current node to the previous node.

1 function reverseSinglelLinkedList (s1ll) {
2 var node = sll.head;

3 var prev = null;

4 while (node) {

5 var temp = node.next;
6 node.next = prev;

7 prev = node;

8 if (!temp)

9 break;
10 node = temp;
11 }
12 return node;
13 }

Time Complexity: O(n)

Space Complexity: O(1)

To fully reverse a linked list, the entire N elements of the linked list
must be traversed.

DELETE DUPLICATES IN A LINKED LIST

Deleting an item in a linked list is simple. Simply iterate and store
visited nodes inside an array. Delete the current element if the current
element has already been seen previously.

// delete duplicates in unsorted linkedlist
function deleteDuplicateInUnsortedS11(slll) {
var track = [];

var temp = slll.head;
var prev = null;
while (temp) {
if (track.indexOf (temp.data) >= 0) {
prev.next = temp.next;
slll.size--—;
} else {

P O W oo Joy Ul WDN K

=

12 track.push (temp.data) ;

13 prev = temp;
14 }

15 temp = temp.next;
16 }

17 console.log(temp) ;

18 }

Time Complexity: 0(n?)
Space Complexity: O(n)

However, this algorithm must iterate over the array with the
.indexOf () method, which is O(n) as well as iterating n times.
Hence, it is O(n?) in time complexity. In addition, the t rack array
grows to size of N, and this causes the space complexity to be O(n).

Let’s cut the time complexity down to O(n).

1 //delete duplicates in unsorted linkedlist

2 function
deleteDuplicateInUnsortedS11Best (sl11l1l) {

3 var track = {};

4

5 var temp = slll.head;

6 var prev = null;

7 while (temp) {

8 if (track[temp.data]) {

9 prev.next = temp.next;
10 slll.size——;
11 } else {
12 track[temp.data] = true;
13 prev = temp;
14 }
15 temp = temp.next;
16 }
17 console.log(temp) ;
18 }

Time Complexity: O(n)

Space Complexity: O(n)

Use of the JavaScript Object as a hash table to store and check for
seen elements cuts it down to O(n) but O(n) in space as extra memory
is required for the hash table.

Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

2 https://github.com/Apress/js-data-structures-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_14

14. Caching

Sammie Bae!

(1) Hamilton, ON, Canada

Caching is the process of storing data into temporary memory so that it
can be easily retrieved for later use if it is required again. As an example,
a database system keeps data cached to avoid rereading the hard drive,
and a web browser caches web pages (images and assets) to avoid
redownloading the contents. Put simply, in caching, the goal is to
maximize hits (an item is in the cache when requested) and minimize
misses (an item is not in the cache when requested).

In this chapter, two caching techniques will be discussed: least
frequently used (LFU) and least recently used (LRU) caching.

Note The concept of caching comes from the world of operating

systems. You can read more about it in a lecture presentation’ by Jeff
Zarnett from the University of Waterloo.

Understanding Caching

Cache design generally considers these two factors:
e Temporal locality : A memory location that has been recently accessed
is likely to be accessed again.

e Spatial locality : A memory location near one that has recently been
accessed is likely to be accessed again.

The optimal caching algorithm would be able to replace the part of

https://doi.org/10.1007/978-1-4842-3988-9_14

the cache that will be used most distantly in the future with the new
element to be inserted. This will require, for each item, calculating how
many time in the future that item will be accessed. It should be obvious
to you that this is impossible to implement because it requires looking
into the future.

Least Frequently Used Caching

Least frequently used (LFU) caching is a caching algorithm used by the
operating system to manage memory. The system tracks the number of
times a block is referenced in memory. By design, when the cache
exceeds its limit, the system deletes the item with the lowest reference
frequency. The easiest implementation of the LFU cache is assigning a
counter to every block loaded into the cache and incrementing a counter
every time a reference is made to that block. When the cache exceeds its
limit, the system searches for the block with the lowest counter and
removes it from the cache.

Although LFU caching seems like an intuitive approach, it is not ideal
when an item in memory is referenced repeatedly for a short amount of
time and not accessed again. The frequency for that block is high because
of its repeated reference, but this forces the system to delete other
blocks that may be used more frequently outside the short block of time.
In addition, new items in the system are susceptible to being deleted
quickly because of their lower frequency of being accessed. Because of
these issues, LFU is uncommon, but some hybrid systems utilize the core
LFU concept. Examples of a such system are mobile keyboard apps.
Suggested words appear on the keyboard apps, and it makes sense to
implement this using LFU caching since the user likely uses the same
words often. The frequency of a word would a great metric to see
whether the word should exist in the cache.

The LFU cache uses a doubly linked list to remove elements in O(1)
time. The doubly linked node in LFUs also has the freqCount property,
which represents how frequently it has been accessed/set after being
inserted for the first time.

1 function LFUNode (key, value) {
2 this.prev = null;

this.next = null;
this.key = key;
this.data = value;
this.fregCount = 1;

~ o U1 b W

}

The LFU cache has two hash tables: keys and freq.freq has keys of

frequency (1 to n, where n is the top frequency for element access), and
each item is an instance of a doubly linked list class. keys stores each

doubly linked list node for O(1) retrieval. The classes for a doubly linked
list and the LFU cache are defined here:

1 function LFUDoublyLinkedList () {

2 this.head = new LFUNode ('buffer
head',null) ;
3 this.tail = new LFUNode ('buffer

tail',null);

4 this.head.next = this.tail;
5 this.tail.prev = this.head;
6 this.size = 0;
7 }
8
9 function LFUCache (capacity) {
10 this.keys = {}; // stores LFUNode
11 this.freq = {}; // stores
LFUDoublyLinkedList
12 this.capacity = capacity;
13 this.minFreq = 0;
14 this.size =0;
15 }

The LFUDoublyLinkedList class also requires the doubly linked
list implementation for insertion and removal. However, only the
insertion at the head and the removal at the tail is needed. This
implementation is the same as the implementation from the doubly
linked list class shown in Chapter 13 (Linked Lists).

1 LFUDoublyLinkedList.prototype.insertAtHead =
function (node) {

2 node.next = this.head.next;

3 this.head.next.prev = node;

4 this.head.next = node;

5 node.prev = this.head;

6 this.size+t+;

7 }

8

9 LFUDoublyLinkedList.prototype.removeAtTail =

function () {

10 var o0ldTail = this.tail.prev;
11 var prev = this.tail.prev;
12 prev.prev.next = this.tail;
13 this.tail.prev = prev.prev;
14 this.size—-;
15 return oldTail;
16 }
17

18 LFUDoublyLinkedList.prototype.removeNode =
function (node) {

19 node.prev.next = node.next
20 node.next.prev = node.prev
21 this.size--;

22 }

Implementing set for the LFU has a few steps. There are two cases:
insert the new item and replace an old item. When inserting a new item,
a new node is created. If the cache is not full, it can be inserted into the
fred’s doubly linked list of frequency 1. If the capacity is full, the tail
item in the doubly linked list of frequency is deleted, and then the new
node is inserted.

If the element already exists and needs to be replaced, the node is
brought to the head of its corresponding frequency doubly linked list.
Finally, the minimum frequency variable, minFreq, is incremented
accordingly to compute which item should be evicted in the future.

1 LFUCache.prototype.set = function (key,
value) {

2 var node = this.keyslkey];
3
4 if (node == undefined) {
5 node = new LFUNode (key, value);
6
7 this.keys[key] = node;
8
9 if (this.size != this.capacity) {
10 // insert without deleting
11 if (this.freqg[l] === undefined) {
12 this.freq[l] = new
LFUDoublyLinkedList () ;
13 }
14 this.freqg[l].insertAtHead (node) ;
15 this.size++;
16 } else {
17 // delete and insert
18 var oldTail =
this.freg[this.minFreq] .removeAtTail () ;
19 delete this.keys[oldTail.key];
20
21 if (this.freg[l] === undefined) {
22 this.freq[l] = new
LFUDoublyLinkedList () ;
23 }
24
25 this.freqg[l].insertAtHead (node) ;
26 }
277 this.minFreq = 1;
28 } else {
29 var oldFregCount = node.fregCount;
30 node.data = value;
31 node. fregCount++;
32

33 this.freg[oldFregCount] .removeNode (n

ode) ;

34

35 if (this.freg[node.fregCount] ===
undefined) {

36 this.freg[node.fregCount] = new
LFUDoublyLinkedList () ;

37 }

38

39 this.freg[node.fregCount].insertAtHe
ad (node) ;

40

41 if (oldFregCount == this.minFreqg &&
Object.keys (this.freg[oldFregCount]) .size == 0) {

42 this.minFreqg++;

43 }

44

45 }

46 }

To implement get , the cache needs to return existing nodes in O(1)
time and increment the counter for accessing. If the element does not
exist in the cache, it is forced to return a null element. Otherwise, the
frequency for the element is increased, the item is brought to the head of
the doubly linked list, and the minimum frequency variable, minFreq, is
adjusted accordingly.

1 LFUCache.prototype.get = function (key) {

2 var node = this.keysl[key];

3

4 if (node == undefined) {

5 return null;

6 } else {

-

8 var oldFregCount = node.fregCount;
9 node. fregCount++;
10
11 this.freg[oldFregCount] .removeNode (n

ode) ;

12

13 if (this.freg[node.fregCount] ===
undefined) {

14 this.freg[node.fregCount] = new
LFUDoublyLinkedList () ;

15 }

16

17 this.freg[node.fregCount].insertAtHe
ad (node) ;

18

19 if (oldFregCount == this.minFreqg &é&
Object.keys (this.freqg[oldFreqgCount]) .length == 0) {

20 this.minFreg++;

21 }

22 return node.data;

23 }

24 }

With all the functions defined, the following code shows an example
of this LFU usage:

1 var myLFU = new LFUCache (5);

2 myLFU.set (1, 1); // state of myLFU.freq: {1:
1}

3 myLFU.set (2, 2); // state of myLFU.freqg: {1:
2<->1}

4 myLFU.set (3, 3); // state of myLFU.freq: {1:
3<->0<->1}

5 myLFU.set (4, 4); // state of myLFU.freqg: {1:
4<=>3<=->2<=->1}

6 myLFU.set (5, 5); // state of myLFU.freq: {1:
5<->4<->3<->2<->1}

7 myLFU.get (1); // returns 1, state of
myLFU. freq: {1: 5<->4<->3<->2, 2: 1}

8 myLFU.get (1); // returns 1, state of
myLFU. freqg: {1: 5<->4<->3<->2, 3: 1}

9 myLFU.get (1); // returns 1, state of
myLFU. freqg:{1: 5<->4<->3<->2, 4: 1}

10 myLFU.set (6, 6); // state of myLFU.freqg: {1:
6<—>5<->4<->3, 4: 1}

11 myLFU.get (6); // state of myLFU.freq: {1:
5<—>4<->3, 4: 1, 2: 6}

Least Recently Used Caching

Least recently used (LRU) caching is a caching algorithm that removes the
oldest (least recently used) items first, so the item replaced is the oldest
accessed item. When an item in the cache is accessed, that item moves to
the back (newest in the order) of the list. When a page not found in the
cache is accessed, the front item (or oldest in the order) is removed, and
the new item is put at the back (newest in the order) of the list.

The implementation of this algorithm requires keeping track of which
node was used when. To accomplish this, the LRU cache is implemented
using a doubly linked list and hash table.

A doubly linked list is needed to keep track of the head (the oldest
data). A doubly linked list is required because of the most recently used
requirement. Each time new data is inserted, the head moves up until the
size is exceeded. Then the oldest data is evicted.

Figure 14-1 shows a diagram of an LRU cache with a size of 5.

Head Tall

Figure 14-1 LRU cache

To implement the LRU cache, the node is defined similarly to the
doubly linked list node in Chapter 13. This node also has a key property,
and its implementation is shown in the following code block:

function DLLNode (key, data) {
this.key = key;
this.data = data;
this.next = null;
this.prev = null;

oY U W W DN

}

The LRU cache can be initialized by passing the capacity
parameter. capacity defines how many nodes are allowed to be in the
cache.

1 function LRUCache (capacity) {

2 this.keys = {};

3 this.capacity = capacity;

4 this.head = new DLLNode (", null);

this.tail = new DLLNode (", null);
this.head.next = this.tail;
this.tail.prev = this.head;

o 1 oY U1

}

Since the LRU cache uses a doubly linked list, two functions for
removing a node and adding a node to the tail will be defined here:

1 LRUCache.prototype.removeNode =
function (node) {

2 var prev = node.prev,

3 next = node.next;

4 prev.next = next;

5 next.prev = prev;

6 }

.

8 LRUCache.prototype.addNode = function (node)

{

9 var realTail = this.tail.prev;
10 realTail.next = node;
11
12 this.tail.prev = node;
13 node.prev = realTail;
14 node.next = this.tail;
15 }

Two more functions need to be defined: get and set. Whenever get

is called, the LRU caching scheme brings that node to the head of the
doubly linked list since it was the most recently used node. This is the
same as deleting and adding the node. For setting nodes via set, the

keys property on the LRU cache is used to store the node to keep
retrieval in O(1) time in get. However, if the cache is at full capacity, it
evicts the farthest node from the tail.

1 LRUCache.prototype.get = function (key) {
2 var node = this.keyslkey];
3 if (node == undefined) {

4 return null;

5 } else {

6 this.removeNode (node) ;
7 this.addNode (node) ;

8 return node.data;

9 }
10 }
11

12 LRUCache.prototype.set = function (key,
value) {

13 var node = this.keyslkey];

14 if (node) {

15 this.removeNode (node) ;

16 }

17

18 var newNode = new DLLNode (key, value);

19

20 this.addNode (newNode) ;

21 this.keys[key] = newNode;

22

23 // evict a node

24 if (Object.keys(this.keys) .length >
this.capacity) {

25 var realHead = this.head.next;

26 this.removeNode (realHead) ;

277 delete this.keys|[realHead.key];

28 }

29 }

Finally, the following is an example of an LRU cache of size 5:

1 var myLRU = new LRUCache (5);

2

3 myLRU.set (1, 1); // 1

4 myLRU.set (2, 2); // 1 <-> 2

5 myLRU.set (3, 3); // 1 <> 2 <-> 3

6 myLRU.set (4, 4); // 1 <-> 2 <-> 3 <-> 4

7 myLRU.set (5, 5); // 1 <=> 2 <=> 3 <-=> 4 <->

5
8
9
10 myLRU.get (1) ; /] 2 <=> 3 <=> 4 <-> 5 <-> 1
11 myLRU.get (2) ; /] 3 <=> 4 <-> 5 <-> 1 <-> 2
12
13 myLRU.set (6, 6);// 4 <-> 5 <-> 1 <-> 2 <-> 6
14 myLRU.set (7, 7);// 5 <-> 1 <> 2 <-> 6 <-> 17
15 myLRU.set (8, 8);// 1 <-> 2 <-> 6 <-> 7 <-> 8
Summary

This chapter covered two main caching ideas: least frequently used and
least recently used. The chapter talked about the concept of an optimal
caching algorithm, which is impossible to implement but provides an
idea of what you would want to approximate. LFU caching sounds great
because it uses frequency to determine what node should be evicted, but
LFU is inferior to the LRU in most cases because it does not account for
temporal locality. There are other caching algorithms, but most of those
algorithms are worse in general cases, such as the not recently used and
firstin, first out algorithms. Finally, it should be noted that given the
many known data of real-life system behavior workloads, LRU is the
most effective algorithm in most cases. Table 14-1 summarizes the
caching algorithms.

Table 14-1 Caching Summary

Algorithm Comment
Optimal Impossible to implement
Least frequently used Bad for temporal locality

Leastrecently used Uses doubly-linked + hashmap

Footnotes

1 https://github.com/jzarnett/ece254/blob/master/lectures/L21-slides-
Memory Segmentation Paging.pdf

https://github.com/jzarnett/ece254/blob/master/lectures/L21-slides-Memory_Segmentation_Paging.pdf

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_15

15. Trees

Sammie Bae!

(1) Hamilton, ON, Canada

A general tree data structure is composed of nodes with children nodes.
The first/top node is called the root node . This chapter will explore
many different types of trees such as binary trees, binary search trees,
and self-balancing binary search trees. First, this chapter will cover what
trees are and how they are structured. Then, it will cover methods of
traversing the tree data structure in detail. Finally, you will learn about
binary search trees and self-balancing binary search trees to understand
how to store easily searchable data.

General Tree Structure

A general tree data structure looks like Figure 15-1 when it can have any
number of children.

https://doi.org/10.1007/978-1-4842-3988-9_15

Figure 15-1 Generalized tree with any number of children

The code block for the node in the Figure 15-1 tree is as follows:

1 function TreeNode (value) {
2 this.value = value;
3 this.children = [];
4 }
Binary Trees

A binary tree is a type of tree that has only two children nodes: left and
right. See the following code and Figure 15-2:

1 function BinaryTreeNode (value) {
2 this.value = value;
3 this.left = null;

4 this.right = null;

Figure 15-2 Binary tree

A binary tree always has a root node (the node at the top), which is
initialized to nul1l before any element is inserted.

1 function BinaryTree () {
2 this. root = null;
3 }

Tree Traversal

Traversal through an array is simple: you access the tree using the index
and increment the index until the index reaches the size limit. With trees,
the left and right pointers have to be followed in order to go through
every element in the tree. There are various ways to do this, of course;
the most popular traversal techniques are pre-order traversal, post-
order traversal, in-order traversal, and level-order traversal.

All the code for tree traversals is available on GitHub.!

Pre-order Traversal

Pre-order traversal visits nodes in the following order: root (the current
node), left, right. In Figure 15-3, you can see that 42 is the root, so it's

visited first. Then it goes left; at this point, the left of the parent (41) is
now considered the new root. This new root (41) is printed; then it goes
left again to 10. So, 10 is set to the new root but cannot continue without
a child. Then 40 is visited because that is the right of the previous parent
(41). This process continues, and the whole order is denoted by the gray
squares in Figure 15-3.

42

41 50

10 40 45 75

Figure 15-3 Pre-order traversal

Recursively, this is implemented easily. The base case terminates
when the node is null. Otherwise, it prints the node value and then calls
the recursive function on its left child and then its right child.

1 BinaryTree.prototype.traversePreOrder =
function () {

2 traversePreOrderHelper (this. root);

3

4 function traversePreOrderHelper (node) {
5 if (!'node)

6 return;

.

console.log(node.value) ;

8 traversePreOrderHelper (node.left) ;
9 traversePreOrderHelper (node.right) ;
10 }
11 }

This can also be done iteratively, but it is harder to implement .

1 BinaryTree.prototype.traversePreOrderIterati
ve = function () {

2 //create an empty stack and push root to
it

3 var nodeStack = [];

4 nodeStack.push (this. root);

5

6 // Pop all items one by one. Do

following for every popped item

7 // a) print it
8 // b) push its right child
9 // c) push its left child
10 // Note that right child is pushed first
so that left
11 // 1s processed first */
12 while (nodeStack.length) {
13 //# Pop the top item from stack and
print it
14 var node = nodeStack.popl()
15 console.log(node.value) ;
16
17 //# Push right and left children of
the popped node to stack
18 if (node.right)
19 nodeStack.push (node.right) ;
20 if (node.left)
21 nodeStack.push (node.left);
22 }

23 }

Here is the result: [42, 41, 10, 40, 50, 45, 75].

In-Order Traversal

In-order traversal visits nodes in the following order: left, root (current
node), right. For the tree shown in Figure 15-4, the gray squares indicate
the in-order traversal order. As you can see, 10 (the leftmost node) is
printed first, and 7 (the rightmost node) is printed last.

4

42

1 3 5 7
[10 40 45 | 75

Figure 15-4 In-order traversal

In-order traversal is also implemented easily with recursion . The
base case is when a node is null. In the nonbase case, it calls the

recursive function on the left child, prints the current node, and then
calls the recursive function on the right child.

1 BinaryTree.prototype.traverseInOrder =
function () {

traverseInOrderHelper (this. root);

function traverselInOrderHelper (node) {
if (!'node)

g W N

return;
traverseInOrderHelper (node.left);
console.log(node.value) ;

0 I O

9 traverseInOrderHelper (node.right) ;

10 }

11 }

12

13 BinaryTree.prototype.traverseInOrderIterativ
e = function () {

14 var current = this. root,

15 s =[],

16 done = false;

17

18 while (!done) {

19 // Reach the left most Node of the
current Node

20 if (current != null) {

21 // Place pointer to a tree node
on the stack

22 // before traversing the node's
left subtree

23 s.push (current) ;

24 current = current.left;

25 } else {

26 if (s.length) {

277 current = s.pop()

28 console.log(current.value);

29 current = current.right;

30 } else {

31 done = true;

32 }

33 }

34 }

35 }

Here is the result of this traversal : [10, 41, 40, 42, 45, 50, 75].

Post-order Traversal

Post-order traversal visits nodes in the following order : left, right, root
(the current node). For the tree shown in Figure 15-5, the gray squares
indicate the in-order traversal order. As you can see, 10 (the leftmost
node) is printed first, and 42 (the root node) is printed last.

Z
42
3 6
41 50
1 2 4 5
10 40 45 o
Figure 15-5 Post-order traversal
Here’s the code:
1 BinaryTree.prototype.traversePostOrder =
function () {
2 traversePostOrderHelper (this. root);
3
4 function traversePostOrderHelper (node) {
5 if (node.left)
0 traversePostOrderHelper (node.lef

~J

if (node.right)
8 traversePostOrderHelper (node.rig
ht) ;

9 console.log(node.value) ;

10 }

11 }

12

13 BinaryTree.prototype.traversePostOrderIterat
ive = function () {

14 // Create two stacks

15 var sl = [],

16 s2 = [1;

17

18 // Push root to first stack

19 sl.push (this. root);

20

21 //# Run while first stack is not empty

22 while (sl.length) {

23 // Pop an item from sl and append it
to sZ2

24 var node = sl.pop():

25 s2 .push (node) ;

26

27 // Push left and right children of
removed item to sl

28 if (node.left)

29 sl.push (node.left);

30 if (node.right)

31 sl.push (node.right) ;

32 }

33 // Print all elements of second stack

34 while (s2.length) {

35 var node = s2.pop();

36 console.log(node.value) ;

37 }

38 }

Here is the result: [10, 40, 41, 45, 75, 50, 42].

Level-Order Traversal

Level-order traversal , illustrated in Figure 15-6, is also known as breadth
first search (BFS).

42

41 50

4 5 6 Z
10 40 45 75

Figure 15-6 Level-order traversal

More of this will be covered in Chapter 17, but this method
essentially visits each node level by level instead of going deep into the
left or right.

1 BinaryTree.prototype.traverselLevelOrder =
function () {

2 // Breath first search

3 var root = this. root,

4 queue = [];

5

0 if (!'root)

7 return;

8 queue.push (root) ;

9
10 while (queue.length) {
11 var temp = queue.shift();

12 console.log(temp.value) ;

13 if (temp.left)

14 queue.push (temp.left) ;
15 if (temp.right)

16 queue.push (temp.right) ;
17 }

18 }

Here is the result: [42, 41, 50, 10, 40, 45, 75].

Tree Traversal Summary

If you know you need to explore the roots before inspecting any leaves,
choose pre-order traversal because you will encounter all the roots
before all of the leaves.

If you know you need to explore all the leaves before any nodes,
choose post-order traversal because you don’t waste any time inspecting
roots when searching for leaves.

If you know that the tree has an inherent sequence in the nodes and
you want to flatten the tree into its original sequence, then you should
use an in-order traversal. The tree would be flattened in the same way it
was created. A pre-order or post-order traversal might not unwind the
tree back into the sequence that was used to create it.

Time Complexity: O(n)

The time complexity of any of these traversals is the same because
each traversal requires that all nodes are visited.

Binary Search Trees

Binary search trees (BSTs) also have two children, left and right.
However, in a binary search tree, the left child is smaller than the parent,
and the right child is bigger than the parent. BSTs have this structure
because this property enables for searching, inserting, and removing
specific values with O(log,(n)) time complexity.

Figure 15-7 shows the BST property. 1 is smaller than 2, so it is the
left child of 2, and since 3 is bigger than 3, it is the right child of 2.

Figure 15-7 Binary search tree

Binary search trees have a root node (the topmost node), which is
originally initialized null (before any item is inserted).

1 function BinarySearchTree () {
2 this. root = null;
3 }

Figure 15-7 also shows a balanced binary search tree where the
height is minimized by having children on both the left and right sides.
However, Figure 15-8 shows an unbalanced tree where children are only
to the right of the parent. This has significant impact on the data
structure and increases the time complexity of insertion, deletion, and
search from O(log,(n)) to O(n). The height of a perfect balanced tree is

log,(n), while an unbalanced tree can be n in the worst case.

Figure 15-8 Unbalanced binary search tree

Insertion

Inserting into the BST requires a couple of steps. First, if the root is
empty, the root becomes the new node. Otherwise, a while loop is used
to traverse the BST until the right condition is met. At each loop iteration,
it is checked whether the new node is greater or smaller than the
currentRoot.

1 BinarySearchTree.prototype.insert
= function (value) {

2 var thisNode = {left: null, right: null,
value: value};

3 if(!this. root) {

4 //1f there is no root value yet

5 this. root = thisNode;

6 lelse(

7 //loop traverse until

8 var currentRoot = this. root;

9 while (true) {
10 if (currentRoot.value>value) {
11 //let's increment 1f it's not a
null and insert 1if it is a null
12 if (currentRoot.left!=null) {
13 currentRoot =
currentRoot.left;
14 lelse(
15 currentRoot.left =
thisNode;
16 break;
17 }
18 } else if (currentRoot.value<value)
{
19 //1f bigger than current, put
it on the right
20 //let's increment 1f it's not a

null and insert 1f 1t 1s a null

21 if (currentRoot.right!=null) {
22 currentRoot =
currentRoot.right;

23 }else(

24 currentRoot.right =
thisNode;

25 break;

26 }

27 } else {

28 //case that both are the same
29 break;

30 }

31 }

32 }

33 }

Time Complexity (for balanced trees): O(log,(n))

Time Complexity (for unbalanced trees): O(n)
Time complexity is dependent on the height of the binary search tree.

Deletion

This algorithm works by first traversing down the tree looking
specifically for the node with the specified value. When the node is
found, there are three possible cases:

e Case 1: The node has no children.
This is the simplest case. If the node has no child, return nul1.
That node has been deleted now.
e Case 2: The node has one child.
If the node has one child, simply return the existing child. That
child has now bubbled up and replaced the parent.
e Case 3: The node has two children.
If the node has two children, either find the maximum of the left
subtree or find the minimum of the right subtree to replace that node.

The following code implements the described three cases. First, it
traverses recursively until one of those cases is met, and then the node is
removed.

1 BinarySearchTree.prototype.remove =
function (value) {

2
3 return deleteRecursively(this. root,
value) ;
4
5 function deleteRecursively(root, wvalue)
{
o if ('root) {
7 return null;
8 } else if (value < root.value) {
9 root.left =
deleteRecursively (root.left, value);
10 } else if (value > root.value) {
11 root.right =
deleteRecursively (root.right, wvalue);
12 } else {
13 //no child
14 if (!root.left && !root.right) {
15 return null; // case 1
16 } else if (!'root.left) { // case
2
17 root = root.right;
18 return root;
19 } else if (!root.right) { //
case 2
20 root = root.left;
21 return root;
22 } else {
23 var temp =
findMin (root.right); // case 3
24 root.value = temp.value;
25 root.right =
deleteRecursively (root.right, temp.value);
26 return root;
27 }

28 }

29 return root;

30 }

31

32 function findMin (root) {
33 while (root.left) {
34 root = root.left;
35 }

36 return root;

37 }

38 }

Time Complexity (for balanced tree): O(log,(n))

Time Complexity (for unbalanced trees): O(n)
Time complexity for deletion is also O(log,(n)) because at most that’s

the height that will need to be traversed to find and delete the desired
node.

Search

Search can be performed using the property that BST node’s left child is
always smaller than its parent and that BST node’s right child is always
greater than its parent. Traversing the tree can be done by checking
whether currentRoot is smaller or greater than the value to be
searched. If currentRoot is smaller, the right child is visited. If
currentRoot is bigger, the left child is visited.

1 BinarySearchTree.prototype.findNode =
function (value) {
2 var currentRoot = this. root,

3 found = false;

4 while (currentRoot) {

5 if (currentRoot.value > value) {

6 currentRoot = currentRoot.left;

7 } else if (currentRoot.value < value) {
8 currentRoot = currentRoot.right;

9 } else {
10 //we've found the node
11 found = true;

12 break;

13 }

14 }

15 return found;

16 }

17 var bstl = new BinarySearchTree();

18 bstl.insert (1) ;

19 bstl.insert (3);

20 bstl.insert (2);

21 bstl.findNode (3); // true
22 bstl.findNode (5); // false

Time Complexity (for balanced tree): O(log,(n))

Time Complexity (for unbalanced trees): O(n)

Note that all of the operations’ time complexities are equal to the
height of the binary tree search. With unbalanced binary search trees,
the time complexity is high. To address this, there are families of binary
search trees that ensure the height is balanced. One example of such self-
balancing trees is an AVL tree.

AVL Trees

AVL is a binary search tree that balances itself; it's named after the
inventors Georgy Adelson-Velsky and Evgenii Landis. An AVL tree keeps
the BST height to a minimum and ensures O(log,(n)) time complexities

for search, insertion, and deletion. In previous examples, we defined both
TreeNode and a Tree class and set the root of Tree as a TreeNode
class. However, for the AVL tree implementation, only the AVLTree
class, which represents the node of the AVL tree, will be used for the
simplification of the code.

1 function AVLTree (value) {
2 this.left = null;

3 this.right = null;

4 this.value = value;

5 this.depth = 1;

6

The height of the AVL tree is based on the height of the children and
can be calculated using the following code block:

1 AVLTree.prototype.setDepthBasedOnChildren =
function () {

2 if (this.node == null) {

3 this.depth = 0;

4 } else {

5 this.depth = 1;

9 }

.

8 if (this.left != null) {

9 this.depth = this.left.depth + 1;
10 }
11 if (this.right != null && this.depth <=

this.right.depth) {

12 this.depth = this.right.depth + 1;
13 }
14 }

Single Rotation
AVL trees rotate their children to maintain balance after insertion.

Rotate Left

Here is an example of when a node has to rotate left. Node 40’s children,
the 45 and 47 nodes, cause the height to be unbalanced, as shown in
Figure 15-9. The 45 becomes the parent node in Figure 15-10 to balance
the BST.

Figure 15-9 Rotate left before

Figure 15-10 Rotate left after

To perform a left rotation, first get the left child and store it. This is
the “original” left child. The original left child is to be the parent of the
node now. Set the node’s left child to be the original left child’s left child.
Finally, set the right child of the original left child to be the node.

1

2

3

4

5

6

7 this.
8 this.
9 this.
10 this.
11 this.
12
13 this.

AVLTree.prototype.rotatelLlL = function () {

var valueBefore = this.value;
var rightBefore = this.right;
this.value = this.left.value;

right = this.left;

left = this.left.left;
right.left = this.right.right;
right.right = rightBefore;
right.value = valueBefore;

right.getDepthFromChildren () ;

14 this.getDepthFromChildren() ;
15 I

Rotate Right

Here is an example of when a node has to rotate right. 60’s children, the
55 and 52 nodes, cause the height to be unbalanced, as shown in Figure

15-11. The 55 node becomes the parent in Figure 15-12 to balance the
BST.

Figure 15-11 Rotate right before

Figure 15-12 Rotate right after

To implement this previously described algorithm, first get the left
child and store it. This the original left child. The original left child is to
be the parent of the node now. Set the node’s left child to be the original
left child’s left child. Finally, set the right child of the original left child to
be the node.

1 AVLTree.prototype.rotateRR = function () {

2 // the right side is too long => rotate
from the right (not rightwards)

3 var valueBefore = this.value;

4 var leftBefore = this.left;

5 this.value = this.right.value;

6

7 this.left = this.right;

8 this.right = this.right.right;

9 this.left.right = this.left.left;
10 this.left.left = leftBefore;

11 this.left.value = valueBefore;
12

13 this.left.updateInNewLocation () ;
14 this.updateInNewLocation () ;
15 }

Double Rotation

If an AVL tree is still unbalanced after one rotation, it has to rotate twice
for full balance.

Rotate Right Left (Right Then Left)

In this example, Figure 15-13 shows a BST where the height is 3. By
rotating right and then left, as shown in Figure 15-14 and Figure 15-15,
balance is achieved.

Figure 15-13 A situation where rotating right and then rotating left is appropriate

Figure 15-14 Rotate right first

Figure 15-15 Rotate left after

Rotate Left Right (Left Then Right)

Similarly, in this example, Figure 15-16 shows a BST where the height is
3. By rotating left and then right, as shown in Figure 15-17 and Figure
15-18, balance is achieved.

Figure 15-16 A situation where rotating left and then rotating right is appropriate

Figure 15-17 Rotate left first

Figure 15-18 Rotate right after

Balancing the Tree

To check for balance of the AVL tree, it is a simple comparison of the left
and right children’s heights. If the heights are not balanced, rotations are
needed. When left is bigger than right, left rotation is done. When right is
bigger than left, right rotation is done.

1 AVILTree.prototype.balance = function() {

2 var ldepth = this.left == null ? 0
this.left.depth;

3 var rdepth = this.right == null ? O
this.right.depth;

4

5 if (ldepth > rdepth + 1) {

6 // LR or LL rotation

7 var lldepth = this.left.left == null ?
0O : this.left.left.depth;

8 var lrdepth = this.left.right == null ?
0O : this.left.right.depth;

9
10 if (lldepth < lrdepth) {
11 // LR rotation consists of a RR
rotation of the left child
12 this.left.rotateRR();
13 // plus a LL rotation of this node,
which happens anyway
14 }

15 this.rotatelL () ;

16 } else if (ldepth + 1 < rdepth) {

17 // RR or RL rorarion

18 var rrdepth = this.right.right == null
? 0 : this.right.right.depth;

19 var rldepth = this.right.left == null ?
0O : this.right.left.depth;

20

21 if (rldepth > rrdepth) {

22 // RR rotation consists of a LL
rotation of the right child

23 this.right.rotatelLL() ;

24 // plus a RR rotation of this node,
which happens anyway

25 }

20 this.rotateRR () ;

27 }

28 }

Insertion

Insertion in AVL BST is the same as the insertion in normal BST except
that, once inserted, the parent must balance its children and set the right
depth.

1 AVLTree.prototype.insert = function(value) {
2 var childInserted = false;

3 if (value == this.value) {

4 return false; // should be all unique
5 } else if (value < this.value) {
6 if (this.left == null) {
7 this.left = new AVLTree (value);
8 childInserted = true;
9 } else {

10 childInserted =

this.left.insert (value);

11 if (childInserted == true)

this.balance () ;
12 }

13 } else if (value > this.value) {

14 if (this.right == null) {

15 this.right = new AVLTree (value) ;
16 childInserted = true;

17 } else {

18 childInserted =
this.right.insert (value);

19

20 if (childInserted == true)
this.balance () ;

21 }

22 }

23 if (childInserted == true)
this.setDepthBasedOnChildren () ;

24 return childInserted;

25 }

Time Complexity: O(nlog,(n))
Space Complexity: O(nlog,(n))
Space complexity is from the recursive call stacks in memory.

Deletion

AVL BST is a type of BST, and therefore the deletion function is the same.
Adjusting the depths can be done by calling
setDepthBasedOnChildren () during traversal.

1 AVLTree.prototype.remove = function (value) {
2 return deleteRecursively(this, value);
3
4 function deleteRecursively(root, wvalue) {
5 if (!'root) {
o return null;
7 } else if (value < root.value) {
8 root.left =
deleteRecursively (root.left, value);
9 } else if (value > root.value) {

10 root.right =

deleteRecursively (root.right, wvalue);

11 } else {

12 //no child

13 if (!root.left && !root.right) {
14 return null; // case 1

15 } else 1if (!root.left) {

16 root = root.right;

17 return root;

18 } else if (!root.right) {

19 root = root.left;

20 return root;

21 } else {

22 var temp = findMin (root.right);
23 root.value = temp.value;

24 root.right =
deleteRecursively (root.right, temp.value);

25 return root;

26 }

27 }

28 root.updateInNewLocation(); // ONLY
DIFFERENCE from the BST one

29 return root;

30 }

31 function findMin (root) {

32 while (root.left) root = root.left;
33 return root;

34 }

35 }

The time complexity and space complexity are both O(nlog,(n))

because AVL trees are balanced. The space complexity is from the
recursive call stacks in memory.

Putting It All Together: AVL Tree Example

With the AVL tree class implemented, Figure 15-19 shows an example of
an AVL tree produced by the following code block:

O 0 J o U W DN

var avlTest =
avlTest.
avlTest.
avlTest.
avlTest.
avlTest.
avlTest.
avlTest.
console.

) ;

3)7
4) ;
5

insert
insert
insert
insert (5);
insert (123);
insert (203) ;
insert (2222);
log(avlTest) ;

(2
(
(
(
(
(

Figure 15-19 AVL result

If a plain binary search tree were used instead, Figure 15-20 shows
what it would look like for the same order of insertion.

new AVLTree(1,'

Figure 15-20 BST result

Clearly, this is a skewed binary search tree that is completely
unbalanced. At this point, it looks like a linked list. Once the tree becomes
completely unbalanced like this, it has a linear time complexity for
deletion, insertion, and search instead of logarithmic time.

Summary

Table 15-1 shows the time complexity for each binary search tree
operation. Compared to other data structures, the search operation is
faster than linked lists, arrays, stacks, and queues. As the name implies, a
binary search tree is great for searching elements. However, the insertion
and deletion operations are slower, with a time complexity of O(log,(n))

instead of O(1) like a stack or a queue, for example. Furthermore, all
operations become O(n) as the tree becomes unbalanced. To ensure the
tree stays balanced, self-balancing trees such as a red-black tree or an
AVL tree should be used to ensure tree operations have logarithmic time
complexity.

Table 15-1 Tree Summary

Operation Best (If Balanced) Worst (If Completely Unbalanced)

Deletion O(logp(n)) 0(n)
Insertion O(logp(n)) 0(n)
Search O(logp(n)) 0(n)
Exercises

You can find all the code for the exercises on GitHub.?

FIND THE LOWEST COMMON ANCESTOR OF TWO NODESIN A
GIVEN BINARY TREE
The logic for this one is actually fairly simple but hard to notice at
first.

If the maximum of the two values is smaller than the current root,

go left. If the minimum of the two values is bigger than the current
root, go right. Figures 15-21 and 15-22 show the two different cases of
this.

4 <5 . Go right

2222

Figure 15-21 Lowest common ancestor, example 1

4 <5 . Go right

2
123
123> 100, Go Left
()
5
4 100
Figure 15-22 Lowest common ancestor, example 2
1 function findLowestCommonAncestor (root,
valuel, wvalue2) {
2 function

findLowestCommonAncestorHelper (root, wvaluel,
value?2) {

3 if ('root)

4 return;

5 if (Math.max (valuel, value2) <
root.value)

6 return

findLowestCommonAncestorHelper (root.left, wvaluel,
value?) ;

7 if (Math.min (valuel, wvalue2) >
root.value)

8 return
findLowestCommonAncestorHelper (root.right,
value?2);

valuel,

9 return root.value

10 }

11 return
findLowestCommonAncestorHelper (root, wvaluel,
value?2) ;

12 }

13 var nodel = {

14 value: 1,

15 left: {

16 value: 0O

17 I

18 right: {

19 value: 2

20 }

21 }

22

23 var node2 = {

24 value: 1,

25 left: {

26 value: O,

277 left: {

28 value: -1

29 },

30 right: {

31 value: 0.5

32 }

33 I

34 right: {

35 value: 2

36 }

37 }

38 console.log(findLowestCommonAncestor (nodel

, 0, 2)); // 1

39 console.log(findLowestCommonAncestor (node?2

’

4

0, 2)); // 1

40 console.log(findLowestCommonAncestor (nodel

0.5, -1)); // 0

Time Complexity: O(log,(n))

PRINT NODES NTH DISTANCE FROM THE ROOT
For this question, traverse the BST in any way (level order was used in
this example) and check the height for each BST node to see whether

it should be printed.

O Jo Ul W DN

Ne;

10
11
12
13
14
15
1o
17
18
19
he
20
21
22

23

{

function printKthLevels (root, k)
var arrayKth = [];
queue = [];
if (!root) return;
// Breath first search for tree
queue.push ([root, 0]);
while (queue.length) {
var tuple = queue.shift (),
temp = tuple[0],
height= tuple[l];
if (height == k) {
arrayKth.push (temp.value) ;
}
if (temp.left) {
queue.push ([temp.left,
ight+1]);
}
if (temp.right) {

queue.push ([temp.right, height+1])

24 }

25 console.log(arrayKth) ;
26 }
1 var nodel = {
2 value: 1,
3 left: {
4 value: 0O
5 Yo
6 right: {
7 value: 2
8 }
9 }
10
11 var node?2 = {
12 value: 1,
13 left: {
14 value: O,
15 left: {
16 value: -1
17 Yo
18 right: {
19 value: 0.5
20 }
21 },
22 right: {
23 value: 2
24 }
25 }
26
277 var node3 = {
28 value: 1,
29 left: {
30 value: 0O
31 },
32 right: {
33 value: 2,

34
35
36
37
38
39
40
41
42
43
44
45
46
47

left: {

value: 1.5
}I
right: {
value: 3,
left: {

value: 3.25

}

printKthlLevels (nodel, 1); // 1
printKthLevels (nodel, 2); // [0,2]

CHECK WHETHER A BINARY TREE IS A SUBTREE OF ANOTHER

TREE

To do this, traverse the binary tree in any way (I'm choosing to do
level order) and check whether the one that it is currently on is the
same as the subtree.

O Jo Ul W DN

e e e e
GO WM EFE O W

function isSameTree (rootl, root2) {
if (rootl == null && root2 == null) {
return true;
}
if (rootl == null || root2 == null) {
return false;

}

return rootl.value == root2.value &&
isSameTree (rootl.left, root2.left) &&
isSameTree (rootl.right, root2.right)

}

function checkIfSubTree (root, subtree) {
// Breath first search

16 var queue = []

17 counter = 0;

18

19 // sanity check for root

20 if ('root) {

21 return;

22 }

23

24 queue.push (root) ;

25

26 while (queue.length) {

277 var temp = queue.shift();
28

29 if (temp.data == subtree.data ==
isSameTree (temp, subtree)) {

30 return true;

31 }

32

33 if (temp.left) {

34 queue.push (temp.left);
35 }

36 if (temp.right) {

37 queue.push (temp.right) ;
38 }

39 }

40 return false;

41 }

42

43 var nodel = {

44 value: 5,

45 left: {

46 value: 3,

477 left: {

48 value: 1

49 Yo

50 right: {

51 value: 2

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
677
68
69
70
71
72
73
74
75
76
77
true
78

false

79

false

var

var

}

console.log(checkIfSubTree (nodel,
console.log(checkIfSubTree (nodel,

console.log(checkIfSubTree (node?2,

by
right: {

value:

node?2 = {
value: 3,
left: {

value:

Yy
right: {

value:

node3 = {
value: 3,
left: {

value:

node?2)) ;
node3)) ;
node3l3)) ;

//
//
//

CHECK WHETHER A TREE IS A MIRROR OF ANOTHER TREE

Figure 15-23 shows an example.

Figure 15-23 Mirror trees

Here are three possible cases:

e Their root node’s key must be the same.

e The left subtree of root of a and the right subtree root of b are
mirrors.

e The right subtree of a and the left subtree of b are mirrors.

1 function isMirrorTrees (treel, tree?2) {
2 // Base case, both empty
3 if (!treel && !tree2) {
4 return true;
5 }
6
7 // One of them is empty, since only
one 1s empty, not mirrored
8 if (!treel || !tree2) {
9 return false;
10 }
11
12 // Both non-empty, compare them
recursively.
13 // Pass left of one and right of the
other
14
15 var checkLeftwithRight =

isMirrorTrees (treel.left, tree2.right),

NS

17
18

checkRightwithLeft
isMirrorTrees (tree2.right,

return treel.value

treel.left);

tree?2.value &&

checkLeftwithRight && checkRightwithLeft;

19
20
21
22
23
24
25
26
277
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
477
48
49
50

}

var

var

var

nodel = {

value: 3,

left: {
value:

I

right: {
value:

}

node2 = {

value: 3,

left: {
value:

I

right: {
value:

{
3,

node3

value:

left: {
value:

Yo

right: {
value:
left:

2y
{

value:

2.5

51 }

52 }
53
54 console.log(isMirrorTrees (nodel, nodeZ2));
// true
55 console.log(isMirrorTrees (node2, node3));
// false
Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

2 https://github.com/Apress/js-data-structures-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_16

16. Heaps

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will introduce heaps. A heap is an important data structure
that returns the highest or lowest element in O(1) time. This chapter will
focus on explaining how heaps are implemented as well as how to work
with them. One example is heap sort, which is a sorting algorithm based
on heaps.

Understanding Heaps

A heap is a type of tree-like data structure in which the parent is bigger
than its children (if max-heap) or smaller than its children (if min-heap).
This property of the heap makes it useful for sorting data.

Heaps, unlike other tree data structures, use an array to store data
instead of having pointers to their children. A heap node’s children’s
positions (indices) in the array can be calculated easily. This is because
the parent-child relationship is easily defined with a heap.

There are many types of heaps that have different numbers of
children. In this chapter, only binary heaps will be considered. Since a
heap uses an array to store the data, the indices of the array define the
order/height of each element. A binary heap can be built by placing the
first array element as the root and then filling each left and right element
in order.

For example, for the heap shown in Figure 16-1, the array would look
like this: [2, 4, 23, 12, 13].

https://doi.org/10.1007/978-1-4842-3988-9_16

12 13

Figure 16-1 Heap indices

There are two types of binary heaps: max-heap and min-heap. In
max-heap, the root node has the highest value, and each node’s value is
greater than its children. In min-heap, the root node has the lowest value,
and each node’s value is smaller than its children.

Heaps can store any values of any type: strings, integer, and even
custom classes. As covered in Chapters 3 and 4, strings and integer value
comparisons are handled natively by JavaScript (e.g., 9 is greater than 1,
z is greater than a). However, for custom classes, the developer needs to
implement a way to compare two classes. This chapter will look at heaps
that store integer values only.

Max-Heap

A max-heap is a heap where the parent is always greater than any of its
children (see Figure 16-2).

ONOROMO

Figure 16-2 Max-heap

Here is the array for the max-heap shown in Figure 16-2: [100, 19, 36,
17,3,25,1,2,7].

Min-Heap
A min-heap is a heap where the parent is always smaller than any of its
children (see Figure 16-3).

Figure 16-3 Min-heap

Here is the array for the max-heap shown in Figure 16-3:[1, 2, 3, 17,
19, 36, 7, 25, 100].

Binary Heap Array Index Structure

For a binary heap, an array is used to represent the heap by using the
following indices, where N is the index of the node:

Node Index
(itself) N

Parent (N-1) / 2
Left Child (N*2) + 1
Right Child (N*2) + 2

Figure 16-4 illustrates this familial relationship using indices.

Parent
(Index -1)/2

Node
Index

Left Child Right Child
(Index*2) + 1 (Index*2) + 2

Figure 16-4 Heap relationship

Let’s first define a generic Heap class. An array will be used to store
all the values using the index structure described earlier. The following
heap class implements helper functions that retrieve the parent node,
the left child, and the right child. The following code block has a peek
function that returns the maximum value for a max-heap and the
minimum value for a min-heap.

1 function Heap () {

2 this.items = [];

3 }

4

5 Heap.prototype.swap = function (indexl,
index2) {

6 var temp = this.items[indexl];

7 this.items[indexl] = this.items[index2];

8 this.items[index2] = temp;

9 }
10
11 Heap.prototype.parentIndex = function (index)

12 return Math.floor ((index - 1) / 2);

13 }

14

15 Heap.prototype.leftChildIndex =
function (index) {

16 return index * 2 + 1;

17 }

18

19 Heap.prototype.rightChildrenIndex =
function (index) {

20 return index * 2 + 2;

21 }

22

23 Heap.prototype.parent = function (index) {

24 return
this.items[this.parentIndex (index)];

25 }

26

277 Heap.prototype.leftChild = function (index) {

28 return
this.items[this.leftChildIndex (index)];

29 }

30

31 Heap.prototype.rightChild = function (index)
{

32 return
this.items[this.rightChildrenIndex (index)];

33 }

34

35 Heap.prototype.peek = function(item) {

36 return this.items|[0];

37 }

38 Heap.prototype.size = function() {

39 return this.items.length;
40 }

The s1ize function is another helper that returns the size (number of
elements) of the heap.

Percolation: Bubbling Up and Down

When elements are added or removed, the structure of the heap must
remain (the node being greater than its children for a max-heap or
smaller than its children for a min-heap).

This requires items to swap and “bubble up” to the top of the heap.
Similar to bubbling up, some items need to “bubble down” to their
rightful position in order to keep the structure of the heap. Percolation
takes O(log,(n)) in time.

Let’s step through a min-heap example and insert the following
values into the min-heap in this order: 12, 2, 23, 4, 13. Here are the steps:

1.
Insert 12 as the first node (Figure 16-5).

Figure 16-5 The min-heap root node

2.
Insert a new 2 node (Figure 16-6).

Figure 16-6 The newest node is smaller than the parent

3.
The 2 node bubbles up because it is smaller than 12 and hence

should be on the top of the min-heap (Figure 16-7).

Figure 16-7 The smaller node has bubbled up to the parent position

4.
Insert a new 23 node in the second child position (Figure 16-8).

Figure 16-8 The larger 23 node remains in place in the min-heap structure

5.
Insert 4 in the heap, as in Figure 16-9.

Figure 16-9 The new node in the min-heap is smaller than the one above it

6.
12 is swapped with 4 to maintain the min-heap structure (Figure 16-

10).

Figure 16-10 The smaller 4 node has bubbled up to maintain the min-heap structure

7.
Insert 13, as in Figure 16-11.

Figure 16-11 The newest and larger 13 node remains in place
Here is the array content for this heap: [2, 4, 23, 12, 13].

Implementing Percolation

To implement the “bubbling up and down” of percolation, swap until the
min-heap structure is formed with the minimum element on the top. For
bubbling down, swap the top element (first in the array) with one of its
children if that child is smaller. Likewise, for bubbling up, swap the new
element with its parent if the parent is greater than the new element.

1 function MinHeap () {
2 this.items = [];
3 }
4 MinHeap.prototype =
Object.create (Heap.prototype); // inherit helpers
from heap by copying prototype
5 MinHeap.prototype.bubbleDown = function () {
6 var index = 0;

7 while (this.leftChild(index) &&
this.leftChild(index) < this.items[index]) {

8 var smallerIndex =
this.leftChildIndex (index) ;

9 if (this.rightChild(index)
10 && this.rightChild (index) <
this.items[smallerIndex]) {
11 // 1f right is smaller, right swaps
12 smallerIndex =
this.rightChildrenIndex (index) ;
13 }
14 this.swap(smallerIndex, index);
15 index = smallerIndex;
16 }
17 }
18
19 MinHeap.prototype.bubbleUp = function() {
20 var index = this.items.length - 1;
21 while (this.parent (index) &&
this.parent (index) > this.items[index]) {
22 this.swap (this.parentIndex (index),
index) ;
23 index = this.parentlIndex (index) ;
24 }
25 }

A max-heap implementation differs only in the comparators. For
bubbling down, the max-heap node swaps with one of its children if the
child is greater. Likewise, for bubbling up, the newest node swaps with
its parent if its parent is smaller than the new node.

Max-Heap Example

Let’s build a max-heap now with the same values as the one used in the
previous min-heap example by inserting the following values in the
order: 12, 2,23, 4, 13.

1.
Insert the first node, which is 12 (Figure 16-12).

Figure 16-12 The first max-heap node

2.
Insert a new 2 node (Figure 16-13).

Figure 16-13 The new smaller node remains in place in the max-heap structure

3.
Insert 23, as in Figure 16-14.

Figure 16-14 The new child node is larger than the parent

4,
The 23 node “bubbles” to the top to maintain max-heap structure

(Figure 16-15).

Figure 16-15 The new larger node is swapped with the smaller 12

5.
Insert 4, as in Figure 16-16.

Figure 16-16 The new node is larger than the one above it

6.
To maintain the max-heap structure, 4 bubbles up, and 2 bubbles

down (Figure 16-17).

Figure 16-17 The 4 and 2 nodes swap places

7.
Insert 13, as in Figure 16-18.

Figure 16-18 The new node is larger than the one above it

8.
Because of the max-heap structure, 13 and 4 swap positions (Figure

16-19).

Figure 16-19 Percolation restores the max-heap structure

Here is the array content for this heap: [23, 13, 12, 2, 4] .

Min-Heap Complete Implementation

Putting all the functions defined together and inheriting Heap's

functions, the complete implementation and example of min-heap is
shown next. The add and po11 functions were added. add simply adds a

new element to the heap, but bubb1eUp ensures that this element in the
min-heap satisfies the order. pol1 removes the minimum element (the
root) from the heap and calls bubbleDown to keep the min-heap order.

1 function MinHeap () {
2 this.items = [];
3 }
4 MinHeap.prototype =
Object.create (Heap.prototype); // inherit helpers

from heap by copying prototype
5 MinHeap.prototype.add = function(item) {

o this.items[this.items.length] = item;
7 this.bubbleUp () ;
8 }
9
10 MinHeap.prototype.poll = function () {
11 var item = this.items[0];
12 this.items[0] =
this.items[this.items.length - 1];
13 this.items.pop()
14 this.bubbleDown () ;
15 return item;
16 }
17

18 MinHeap.prototype.bubbleDown = function() {
19 var index = 0;

20 while (this.leftChild(index) &&
(this.leftChild(index) < this.items[index] ||
this.rightChild(index) < this.items[index])) {
21 var smallerIndex =
this.leftChildIndex (index) ;

22 if (this.rightChild(index) &&
this.rightChild(index) < this.items[smallerIndex]) {
23 smallerIndex =
this.rightChildrenIndex (index) ;

24 }

25 this.swap(smallerIndex, index);

26 index = smallerIndex;

27 }

28 }

29

30 MinHeap.prototype.bubbleUp = function() {
31 var index = this.items.length - 1;

32 while (this.parent (index) &&
this.parent (index) > this.items[index]) {

33 this.swap (this.parentIndex (index),

index) ;

34 index = this.parentIndex (index) ;
35 }

36 }

37

38 var mhl = new MinHeap() ;

39 mhl.add (1) ;

40 mhl.add (10) ;

41 mhl.add (5) ;

42 mhl.add (100);

43 mhl.add(8) ;

44

45 console.log(mhl.poll ()); // 1
46 console.log(mhl.poll()); // 5
47 console.log(mhl.poll()); // 8
48 console.log (mhl.poll()); // 10
49 console.log(mhl.poll()); // 100

Max-Heap Complete Implementation

As previously discussed, the only difference between the min-heap and
max-heap implementations is the comparator in bubbleDown and
bubbleUp. With the same elements added as the previous example,
meaning (1, 10, 5, 100, 8), the max-heap returns the highest elements
when pol1 is called.

1 function MaxHeap () {
2 this.items = [];
3 }

4 MaxHeap.prototype =
Object.create (Heap.prototype) ;
from heap by copying prototype

5 MaxHeap.prototype.poll = function() {

6 var item = this.items[0];

7 this.items[0] =
this.items[this.items.length - 1];

8 this.items.pop()

// inherit helpers

9 this.bubbleDown () ;
10 return item;
11 }
12
13 MaxHeap.prototype.bubbleDown = function() {
14 var index = 0;

15 while (this.leftChild(index) &&
(this.leftChild(index) > this.items|[index]

| | this.rightChild(index) > this.items[index])) {
16 var biggerIndex =
this.leftChildIndex (index) ;

17 if (this.rightChild(index) &&
this.rightChild (index) > this.items[bigger\Index])
18 {

19 biggerIndex =
this.rightChildrenIndex (index) ;

20 }

21 this.swap (biggerIndex, index);

22 index = biggerIndex;

23 }

24 }

25

26 MaxHeap.prototype.bubbleUp = function () {
277 var index = this.items.length - 1;

28 while (this.parent (index) &&
this.parent (index) < this.items[index]) {

29 this.swap (this.parentIndex (index),
index) ;

30 index = this.parentlIndex (index) ;
31 }

32 }

33

34 var mh2 = new MaxHeap() ;

35 mh2.add (1) ;

36 mh2.add (10) ;

37 mh2.add (5) ;

38 mh2.add (100) ;

39 mh?2.add (8) ;

40

41 console.log (mh2.poll()); // 100
42 console.log(mh2.poll()); // 10
43 console.log(mh2.poll()); // 8
44 console.log(mh2.poll()); // 5
45 console.log (mh2.poll()); // 1
Heap Sort

Now that heap classes have been created, sorting with a heap is fairly
straightforward. To get a sorted array, simply call . pop () on the heap
until it is empty and store the stored popped objects. This is as known as
a heap sort. Since percolation takes O(log,(n)), and sorting must pop n

number of elements, the time complexity for a heap sort is O(nlog,(n)),

like quicksort and mergesort.
In this section, we will first do an ascending sort implemented using a
min-heap and then a descending sort implemented using a max-heap.

Ascending-Order Sort (Min-Heap)

Figure 16-20 shows the min-heap when all the items have been added to
the min-heap, and Figures 16-21 to 16-23 show the heap restructuring as
items are popped. Finally, when it is empty, the sort is complete.

OO

Figure 16-20 Min-heap sort after all items added

Figure 16-21 Min-heap sort: popping 2 out

Figure 16-22 Min-heap sort: popping 4 out

Figure 16-23 Min-heap sort: popping 12 out

g b w N

var minHeapExample
minHeapExample.add (
minHeapExample.add (
minHeapExample.add (
minHeapExample.add (

minHeapExample.add (13) ;
minHeapExample.items; // [2, 4, 23, 12, 13]

0 I O

9 console.log (minHeapExample.poll()); // 2
10 console.log (minHeapExample.poll ()); // 4
11 console.log (minHeapExample.poll()); // 12
12 console.log (minHeapExample.poll()); // 13
13 console.log (minHeapExample.poll()); // 23

The last node (where 13 used to be) is removed, and then 13 is
placed on the top. Through the percolation process, 13 moves down to
after the left child of 12 since it’s bigger than both 4 and 13.

Descending-Order Sort (Max-Heap)

Figure 16-24 shows the max-heap when all the items have been added to
the min-heap, and Figures 16-25 through 16-27 show the max-heap
restructuring as items are popped. Finally, when it is empty, the sort is
complete.

Figure 16-24 Max-heap sort after all items are added

Figure 16-25 Max sort: popping 23 out

Figure 16-26 Max sort: popping 13 out

Figure 16-27 Max sort: popping 12 out

1 var maxHeapExample = new MaxHeap() ;
2 maxHeapExample.add (12) ;

3 maxHeapExample.add (2) ;

4 maxHeapExample.add (23);

5 maxHeapExample.add (4) ;

0 maxHeapExample.add (13) ;

7 maxHeapExample.items; // [23, 13,
8

9 console.log(maxHeapExample.poll())
10 console.log (maxHeapExample.poll ())
11 console.log(maxHeapExample.poll ())
12 console.log(maxHeapExample.poll ())
13 console.log (maxHeapExample.poll ())

Summary

12, 2, 4]

// 23
// 13
// 12
// 2
// 4

A heap is a tree-like data structure represented using arrays. To get the
parent, left child, and right child of a tree’s node, you can use the index

formula in Table 16-1.

Table 16-1 Heap Node Index Summary

Node Index
(self) N

Parent (N-1)/2
Leftchild (N*2)+1
Right child (N*2) + 2

Heaps maintain their structure via percolation; when a node is
inserted, it “bubbles up” by repeatedly swapping with elements until the
proper heap structure is achieved. For a min-heap, this means the lowest-
valued node at the root. For a max-heap, this means the highest-valued
node at the root. Heaps work fundamentally by percolation, which allows
deletion and insertion in O(log,(n)) time, as summarized in Table 16-2.

Table 16-2 Heap Operations Summary

Operation Time Complexity
Deletion (leads to “bubble down”) O(logy(n))

Insertion (leads to “bubble up”) O(logp(n))

Heap sort 0(n logp(n))

Exercises

You can find all the code for the exercises on GitHub.!

KEEP TRACK OF MEDIAN IN STREAM OF NUMBERS
Since this question is in this chapter, that’s already a big hint for
approaching it. In theory, the solution is fairly simple. Have one min-
heap and one max-heap, and then retrieving the median takes only
0o(1).

For example, let’s have a stream of the following integers: 12, 2,
23,4, 13.

Median, when 12 is inserted, is 12 since that’s the only element.
When 2 is inserted, there is an even number of items: 2 and 12. Hence,

the median is its arithmetic mean, 7 ((12+2)/2). When 23 is inserted,
the median is 12. Finally, when 13 is inserted, the median is 12.5, the
average of two middle terms (12 and 13).

1 medianH.push (12) ;
2 console.log (medianH.median()); // 12
3 medianH.push (2) ;
4 console.log(medianH.median()); // 7 (
because 12 + 2 = 14; 14/2 = 17)
5 medianH.push (23) ;
6 console.log (medianH.median()); // 12
7 medianH.push (13);
8 console.log (medianH.median()); // 12.5
1 function MedianHeap () {
2 this.minHeap = new MinHeap() ;
3 this.maxHeap = new MaxHeap() ;
4 }
5
6 MedianHeap.prototype.push = function
(value) {
7 if (value > this.median()) {
8 this.minHeap.add (value) ;
9 } else {
10 this.maxHeap.add (value) ;
11 }
12
13 // Re balancing
14 if (this.minHeap.size () -
this.maxHeap.size () > 1) {
15 this.maxHeap.push (this.minHeap.pol
1());
16 }
17
18 if (this.maxHeap.size () -

this.minHeap.size () > 1) {
this.minHeap.push (this.maxHeap.pol

19

23 MedianHeap.prototype.median = function ()

24 if (this.minHeap.size() == 0 &&
this.maxHeap.size () == 0) {

25 return Number.NEGATIVE_INFINITY;

26 } else if (this.minHeap.size() ==
this.maxHeap.size ()) {

277 return (this.minHeap.peek() +
this.maxHeap.peek()) / 2;

28 } else if (this.minHeap.size() >
this.maxHeap.size()) {

29 return this.minHeap.peek()

30 } else {

31 return this.maxHeap.peek();

32 }

33 }

34

35 var medianH = new MedianHeap();

36

37 medianH.push (12) ;

38 console.log(medianH.median()); // 12

39 medianH.push (2) ;

40 console.log(medianH.median()); // 7 (
because 12 + 2 = 14; 14/2 = 7)

41 medianH.push (23);

42 console.log (medianH.median()); // 12

43 medianH.push (13);

44 console.log(medianH.median()); // 12.5

FIND THE K TH SMALLEST VALUE IN AN ARRAY
This problem has been explored before in Chapter 10 using

quicksort’s helper function. Another way to do it is to use a heap.
Simply add the elements into a heap and pop it kth times. By
definition of min-heaps, this returns the kth smallest value in the
array.

1 var arrayl = [12, 3, 13, 4, 2, 40, 23]
2

3 function getKthSmallestElement (array, k) {
4 var minH = new MinHeap ()

5 for (var i = 0, arrayLength =
array.length; i < arrayLength; i++) {

o minH.add (array[i]) ;

7 }

8 for (var i = 1; 1 < k; 1i++) |

9 minH.poll () ;

10 }

11 return minH.poll () ;

12 }

13 getKthSmallestElement (arrayl, 2); // 3
14 getKthSmallestElement (arrayl, 1); // 2
15 getKthSmallestElement (arravyl, 7); // 40

FIND THE KTH LARGEST VALUE IN AN ARRAY
This is the same idea from before just with max-heap.

var arrayl = [12,3,13,4,2,40,23];

1
2
3 function getKthBiggestElement (array, k) {
4 var maxH = new MaxHeap () ;

5 for (var i=0, arraylLength = array.length;
i<arrayLength; 1i++) {

o maxH.push (array[i]) ;

7 }

8 for (var i=1; i<k; 1i++) |

9 maxH.pop () ;

10 }

11
12
13
14
15

return maxH.pop () ;
}
getKthBiggestElement (arrayl,2); // 23
getKthBiggestElement (arrayl,1l); // 40
getKthBiggestElement (arrayl, 7); // 2

Time Complexity: O(klog,(n))
Here, n is the size of the array since each . pop costs O(log,(n)),

which has to be done k times.
Space Complexity: O(n)
O(n) in memory is needed to store the heap array.

Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_17

17. Graphs

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter covers graphs. Graphs are a versatile way of representing
connections between objects. In this chapter, you will learn graph basics,
including fundamental terminology and graph types. The chapter will
also cover working with these different graph types and methods of
representing graphs in data structures that have already been explored.
Finally, algorithms for traversing, searching, and sorting graphs are
explored to solve problems such as finding the shortest path between
two graph nodes.

Graph Basics

As mentioned in the introduction, graphs are visual representations of
the connections between objects. Such representations can be of many
things and have different applications; Table 17-1 shows some examples.

Table 17-1 Examples of Graph Applications

Application Item Connection

Web site Web page Links

Map Intersection Road

Circuit Component Wiring

Social media Person “Friendship”/connection

Telephone Phone number Landline

https://doi.org/10.1007/978-1-4842-3988-9_17

Figure 17-1 shows two examples of simple graph:s.

Figure 17-1 Two examples of graphs

Before we delve into graphs too deeply, it is useful to introduce some
basic terminology and concepts.

e Vertex: A vertex is the node from which graphs are formed. In this
chapter, a node will be noted as V for Big-O analysis. A vertex is
represented using a circle, as shown in Figure 17-2.

e Edge: An edge is the connection between nodes in a graph. Graphically,
it is the “line” between the vertices. It will be noted as E for Big-O
analysis. An edge is represented using a line, as shown in Figure 17-2.

Figure 17-2 Vertices and edges

e Degree of vertex: The degree of a vertex refers to the number of edges
on that vertex (node).

e Sparse graph: A graph is considered sparse when only a small fraction
of possible connections exist between vertices (see Figure 17-3).

Figure 17-3 Sparse graph

e Dense graph: A graph is considered dense when there are a lot of
connections between different vertices (see Figure 17-4).

Figure 17-4 Dense graph

e (Cyclical graph: A directed graph is considered cyclical if there is a path
that travels from a vertex and back to itself. For example, in Figure 17-
5, B can follow the edge to C and then D and then E and then to B again.

Figure 17-5 Graph with a cycle on B

In contrast, Figure 17-6 is an example of a graph that is not cyclical.

Figure 17-6 Graph without a cycle

o Weights: Weights are values on the edges. Weights can signify various
things depending on the context. For example, weights on a directed
graph can represent the distance required to get from node A to B, as
shown in Figure 17-7.

O OWNO

Figure 17-7 Directed graph with weights

Undirected Graphs

Undirected graphs are graphs that do not have a direction between edges.
The edge implies a mutual connection between the two nodes without a
direction. A real-life example of an undirected graph relationship is

friendship. Friendship occurs only if both parties mutually acknowledge
the relationship. Values of the edges within a friendship graph may
indicate how close the friendship is. Figure 17-8 is a simple undirected
graph with five vertices and six nondirectional edges with weights.

B
/2
] 1
E——
9
2

Figure 17-8 Undirected graph with weights

There are various ways to represent undirected graphs as a data
structure class. Two of the most common ways to do this are by using an
adjacency matrix or an adjacency list. The adjacency list uses a vertex as
the key for nodes with its neighbors stored into a list, whereas an
adjacency matrix is a V by V matrix with each element of the matrix
indicating a connection between two vertices. Figure 17-9 illustrates the
difference between an adjacency list and an adjacency matrix (This book
covers only adjacency lists).

12345
1 1 [={2,5 1ToT1Tolo 4
o [1 o111
e 2 11,534 3lol1]0]1]0
3 24 4lof1]1]0]1
1253 511[1]0[1]0

5 5 41,2

Figure 17-9 Graph (left), adjacency list (middle), and adjacency matrix (right)

So far, the concepts and definitions of graphs have been discussed.
Now, let’s actually start implementing these ideas into code and learn
how to add and remove edges and vertices.

Adding Edges and Vertices

In this example, we create a weighted undirected graph and add vertices
and edges. First, we'll create a new class for an undirected graph. The
undirected graph should have an object to store the edges. This is
implemented as shown in the following code block:

1 function UndirectedGraph () {
2 this.edges = {};
3 }

To add edges, vertices (nodes) must be added first. This
implementation will take the adjacency list approach by having vertices
as objects inside the this.edges object in which edge values are

stored.

1 UndirectedGraph.prototype.addVertex =
function (vertex) {

2 this.edges[vertex] = {};

3 }

To add weighted edges into the undirected graph, both vertices in the

this.edges objects are used to set the weight.

1 UndirectedGraph.prototype.addEdge =
function (vertexl,vertex2, weight) {

2 if (weight == undefined) {

3 weight = 0;

4 }

5 this.edges[vertexl] [vertex2] = weight;
0 this.edges[vertex2] [vertexl] = weight;
-

}

With this, let’s add some vertices and edges with the following code:

1 var graphl = new UndirectedGraph();

2 graphl.addVertex (1) ;

3 graphl.addVertex (2) ;

4 graphl.addEdge (1,2, 1);

5 graphl.edges; // 1: {2: 0}, 2: {1: 0}
0 graphl.addVertex (3) ;

'/ graphl.addVertex (4) ;

8 graphl.addVertex (5) ;

9 graphl.addEdge (2,3, 8);

10 graphl.addEdge (3,4, 10);
11 graphl.addEdge (4,5, 100);
12 graphl.addEdge (1,5, 88);

Figure 17-10 shows the graphical output from this code.

Figure 17-10 The first undirected graph

Removing Edges and Vertices

Continuing with the same example, let’s implement the functions for
removing edges and vertices for the graph class.

To remove an edge from a vertex, look up the edges object for that
vertex in this.edges and delete it using JavaScript's delete operator.

1 UndirectedGraph.prototype.removeEdge =
function (vertexl, vertex2) {

2 if (this.edges[vertexl] &&
this.edges[vertexl] [vertex2] != undefined) {

3 delete this.edges[vertexl] [vertex2];

4 }

5 if (this.edges[vertex?2] &&
this.edges[vertex2] [vertexl] != undefined) {

6 delete this.edges[vertex?2] [vertexl];

7 }

8 }

Next, let’s delete an entire vertex. One important point to remember
is that any time a vertex is removed, all edges connected to it also must be
removed. This can be accomplished using a loop, as shown in the
following implementation:

1 UndirectedGraph.prototype.removeVertex =
function (vertex) {

2 for (var adjacentVertex in
this.edges[vertex]) {

3 this.removekdge (adjacentVertex,
vertex) ;

4 }

5 delete this.edges[vertex];

S }

With removal now implemented, let’s create another undirected
graph object similar to the first example but delete some vertices and
edges. Vertex 5 is removed first, and the result is shown in Figure 17-11.
Vertex 1 is also removed, as shown in Figure 17-12. Finally, Figure 17-13

shows the result when the edge between 2 and 3 is removed.

1 var graph?2 = new UndirectedGraph() ;
2 graph2.addVertex (1) ;

3 graphZ?.addVertex (2) ;

4 graph?2.addkEdge (1,2, 1);

5 graph2.edges; // 1: {2: 0}, 2: {1: 0}
0 graph?.addVertex (3) ;

7 graph2.addVertex (4) ;

8 graph2.addVertex (5) ;

9 graph2.addEdge (2,3, 8);
10 graph?2.addEdge (3,4, 10);
11 graph?2.addEdge (4,5, 100);
12 graph?2.addkEdge (1,5, 88);
13 graph?2.removeVertex (5) ;
14 graph2.removeVertex(l);
15 graph?2.removeEdge (2, 3)

02050

Figure 17-11 Vertex 5 removed
8 :
10

Figure 17-12 Vertex 1 removed

10

Figure 17-13 Edge between 2 and 3 removed

Directed Graphs

Directed graphs are graphs that do have a direction between vertices.

Each edge in a directed graph goes from one vertex to another, as shown
in Figure 17-14.

Figure 17-14 Directed graph

In this example, the E node can “travel” to the D node, and the D node
can travel only to the C node.

Now let’s implement a weighted directed graph class. The similar
adjacency list approach used in the undirected graph implementation
will be used. First, the DirectedGraph class is defined with the edges
property as shown, and the method of adding the vertex is the same as
the implementation from the undirected graph class.

1 function DirectedGraph () {
2 this.edges = {};
3 }
4 DirectedGraph.prototype.addVertex = function
(vertex) {
5 this.edges[vertex] = {};
9 }

Given an edge that starts at the origin vertex and ends at the
destination vertex, to add edges into the directed graph, the weight
should be set only on the origin vertex, as shown here:

1 DirectedGraph.prototype.addEdge =
function (origVertex, destVertex, weight) {

2 if (weight === undefined) {

3 weight = 0;

4 }

5 this.edges[origVertex] [destVertex] =
weight;

6 }

With the functions for adding vertices and edges implemented, let’s
add some sample vertices and edges.

var digraphl = new DirectedGraph();
digraphl.addVertex ("A") ;
digraphl.addVertex ("B") ;

digraphl.addVertex ("C") ;
digraphl.addEdge ("A", "B", 1);
digraphl.addEdge ("B", "C", 2);

o U i W DN

7 digraphl.addEdge ("C", "A", 3);

Figure 17-15 shows the edge added between the A and B vertices
(line 5). Figure 17-16 illustrates the connections between B and C (line
6), and Figure 17-17 shows the connection between C and A (line 7).

®v1
Figure 17-15 Adding Ato B
2

Figure 17-16 Adding B to C

O™

Figure 17-17 AddingCto A

The implementation for removing a vertex and removing an edge for
a directed graph is the same as the implementation seen in the
undirected graph except that only the origin vertex in the edges object
have to be deleted, as shown here:

1 DirectedGraph.prototype.removekdge =
function (origVertex, destVertex) {

2 if (this.edges[origVertex] &&
this.edges[origVertex] [destVertex] != undefined) {
3 delete this.edges[origVertex]
[destVertex];
4 }
5 }
6
I DirectedGraph.prototype.removeVertex =
function (vertex) {
8 for (var adjacentVertex in
this.edges[vertex]) {
9 this.removekdge (adjacentVertex,
vertex) ;
10 }
11 delete this.edges[vertex];
12 }

Graph Traversal

A graph can be traversed in multiple ways. The two most common
approaches are breadth-first search and depth-first search. Similarly to
how different tree traversal techniques were explored, this section will
focus on these two traversal techniques and when to use each of them.

Breadth-First Search

Breadth-first search (BFS) refers to a search algorithm in a graph that
focuses on connected nodes and their connected nodes in order. This
idea has actually already been explored with trees in Chapter 15 with
level-order traversal. Figure 17-18 shows level-order traversal for a
binary search tree.

41

4 5

10

Figure 17-18 Level-order traversal for binary search tree

40

42

45

50

al ™

@

Notice how the order of traversal is by the height from the root node.
Notice the similarity with the graph in Figure 17-19.

Figure 17-19 Breadth-first search graph

5

G

Similar to the level-order traversal for the tree data structure, a
queue is needed for a BFS.
For each node, add each of connected vertices into a queue and then
visit each item in the queue. Let’s write a generalized BFS algorithm for

the graph class.

1 DirectedGraph.prototype.traverseBFS =
function (vertex, fn) {

2 var queue = [],

3 visited = {};

4

5 queue.push (vertex) ;

6

7 while (queue.length) {

8 vertex = queue.shift();

9 if (!visited|[vertex]) {
10 visited[vertex] = true;
11 fn(vertex);
12 for (var adjacentVertex in

this.edges[vertex]) {

13 queue.push (adjacentVertex) ;
14 }
15 }
16 }
17 }

18 digraphl.traverseBFS ("B", (vertex)=>
{console.log (vertex) });

Time Complexity: O(V + E)

The time complexity is O(V + E), where V is the number of vertices
and E is the number of edges. This is because the algorithm has to go
through every edge and node to traverse the whole graph.

Recall the graph structure in Figure 17-20 from “Undirected Graphs”
used earlier in this chapter.

02050
=0

Figure 17-20 The earlier undirected graph example

Applying the BFS to the graph, the following is printed: 1, 2, 5, 3, 4.

In Figures 17-21 and 17-22, the lightly shaded node represents the
node being currently visited, while the dark node represents that the
node has already been visited.

Queue @ O
5

Queue @ @

Queue @ @

Figure 17-21 Breadth-first search, part 1

In Figure 17-21, the breadth-first search starts at the 1 node. Because
it has two neighbors, 2 and 5, those are added to the queue. Then, 2 is
visited, and its neighbor 3 is added to the queue. 5 is then dequeued, and
its neighbor 4 is added to the queue. Finally, 3 and 4 are visited, and the
search ends, as shown in Figure 17-22.

Queue

Queue

Queue

Figure 17-22 Breadth-first search, part 2

Depth-First Search

Depth-first search (DFS) refers to a search algorithm in a graph that
focuses on traversing deep into one connection before visiting the other

connections.

This idea has been explored in Chapter 15 with in-order, post-order,

and pre-order traversals in trees. For example, a post-order tree

traversal visits the bottom children node before visiting the top root

nodes (see Figure 17-23).

41

1 2

10

40

Figure 17-23 Post-order traversal

Something similar is shown in Figure 17-24 for a graph.

Figure 17-24 Depth-first search graph

42

45

4

G

50

Notice how E is visited last. This is because the search visits all the
nodes connected to C in depth before visiting E.

Similar to the pre-post, and in-order traversal for the tree data
structure, recursion is used to go deep into a node until that path is
exhausted.

Let’s write a generalized DFS algorithm for the graph class.

1 DirectedGraph.prototype.traverseDFS =
function (vertex, fn) {

2 var visited = {};
3 this. traverseDFS (vertex, visited, fn);
4 }
5
6 DirectedGraph.prototype. traverseDFS =
function (vertex, visited, fn) {
7 visited[vertex] = true;
8 fn(vertex);
9 for (var adjacentVertex in
this.edges[vertex]) {
10 if (!visited[adjacentVertex]) {
11 this. traverseDFS (adjacentVertex
, visited, fn);
12 }
13 }
14 }

Time Complexity: O(V + E)

The time complexity is O(V + E) where V is the number of vertices
and E is the number of edges. This is because the algorithm has to go
through every edge and node to traverse the whole graph. This is the
same time complexity as the BFS algorithm.

Again, let’s use the graph structure from earlier in the chapter (see
Figure 17-25).

oS00
=0

Figure 17-25 The earlier graph example from Figure 17-20

Applying the DFS to the graph, the following is printed: 1, 2, 3, 4, 5.

In Figures 17-26 and 17-27, the lightly shaded node represents the
node being currently visited, while the dark node represents that the
node has already been visited.

Go deep into 2

i

Go deep into 3

!

Go deep into 4

Figure 17-26 Depth-first search, part 1

In Figure 17-26, the depth-first search starts at the 1 node. Its first
neighbor, 2, is visited. Then, 2’s first neighbor, 3, is visited. After 3 is
visited, 4 will be visited next because it is 3’s first neighbor. Finally, 4 is
visited followed by 5, as shown in Figure 17-27. Depth-first search
always visits the first neighbor recursively.

Go deep into 5

v
220

Last node visted

Everything visited

Figure 17-27 Depth-first search, part 2

Weighted Graphs and Shortest Path

Now that we have covered the basics of graphs and how to traverse
them, we can discuss weighted edges and Dijkstra’s algorithm, which
employs shortest path searches.

Graphs with Weighted Edges

Recall that edges in a graph represent a connection between the vertices.
If edges establish a connection, weight can be assigned to that

connection. For example, for a graph that represents a map, the weights
on the edges are distances.

It is important to note that the graphical length of an edge means
nothing with regard to the edge’s weight. It is purely there for visual
purposes. In the implementation and the code, the visual representation
is not required. In Figure 17-28, the weights tell us the distances
between the cities in a graph representation of five cities. For example,
graphically, the distance from City 1 and City 2 is shorter than the
distance from City 2 and City 3. However, the edges indicate that the
distance from City 1 to City 2 is 50 km, and the distance from City 2 to
City 3 is 10 km, which is five times larger.

10km
@

65/(/77

@
100km

Figure 17-28 Graph representation of five cities

50km

The most important question for weighted edge graphs is, what is the
shortest path from one node to another? There are series of shortest
path algorithms for graphs. The one we discuss is Dijkstra’s algorithm.

Dijkstra’s Algorithm: Shortest Path

Dijkstra’s algorithm works by taking the shortest path at each level to get
to a destination. At first, the distance is marked as infinity because some
nodes may not be reachable (see Figure 17-29). Then at each traversal

iteration, the shortest distance is chosen for each node (see Figures 17-
30 and 17-31).

Figure 17-31 Dijkstra stage 3: all nodes now processed

_extractMin is implemented to compute the neighboring node
with the smallest distance for a given vertex. Using the breadth-first
search outline to enqueue the neighboring nodes for each vertex as the
graph is traversed from the origin to the destination node, the distances
are updated and computed.

1 function isEmpty(obj)

2 return Object.keys (obj).length === 0;

3}

4

5 function extractMin(Q, dist) {

6 var minimumDistance = Infinity,

7 nodeWithMinimumDistance = null;

8 for (wvar node in Q) {

9 if (dist[node] <= minimumDistance) {
10 minimumDistance = dist[node];
11 nodeWithMinimumDistance = node;
12 }

13 }

14 return nodeWithMinimumDistance;
15 }

16

17 DirectedGraph.prototype.Dijkstra =
function (source) {

18 // create vertex set Q

19 var Q = {}, dist = {};

20 for (var vertex in this.edges) {

21 // unknown distances set to Infinity

22 dist[vertex] = Infinity;

23 // add v to Q

24 Q[vertex] = this.edges[vertex];

25 }

26 // Distance from source to source init
to 0

277 dist[source] = 0;

28
29
30

while (! isEmpty(Q)) {

var u = extractMin(Q, dist);

the min distance

31
32
33
34
35
36
37

38
39
this
40
41
42
43
44
45
46
477
48
49
50
51
52
53
54
55
56
57
58
59
60
61

// remove u from Q
delete Q[u];

// for each neighbor, v, of u:

// where v is still in Q.

// get

for (var neighbor in this.edges[u])

// current distance
var alt = dist[u] +

.edges[u] [neighbor];

// a shorter path has been found

if (alt < dist[neighbor])

dist[neighbor] = alt;
}
}

}

return dist;
}
var digraphl = new DirectedGraph();
digraphl.addVertex ("A") ;
digraphl.addVertex ("B") ;
digraphl.addVertex ("C") ;

digraphl.addVertex ("D") ;
digraphl.addEdge ("A", "B",
digraphl.addEdge ("B", "C",
digraphl.addEdge ("C", "A",
digraphl.addEdge ("A", "D",
console.log(digraphl) ;

// DirectedGraph {

// Ve 4,

// E: 4,

. e

N~

e e
N SN SN SN
~

N~

{

62 // edges: { A: { B: 1, D: 1 }, B: { C: 1 },
C: { A: 1}, D: {} }}

63 digraphl.Dijkstra("a"); // { A: 0, B: 1, C:
2, D: 1 }

Time Complexity: O(V? + E)
The algorithm here is similar to the BFS algorithm but requires the
_extractMin method, which is O(n) in time complexity. Because of

this, the time complexity is O(V? + E) because all neighbor vertices of the
node currently being traversed have to be checked during the
_extractMin method. This algorithm can be improved using a priority

queue for the extract min, which would yield O(log,(V)) extractMin

and hence yield an overall time complexity of O(E + V) *O(log2(V)) = O(E
log,(V)). This can be even more optimized by using a Fibonacci heap,

which has constant time to compute extractMin. However, for
simplicity, neither a Fibonacci heap nor a priority queue was used for
this demonstration.

Topological Sort

For a directed graph, it can be important to know which node should be
processed first for various applications. An example of this is a task
scheduler where one task depends on a previous task being done.
Another example is a JavaScript library dependency manager where it
has to figure out which libraries to import before others. The topological
sorting algorithm implements this. It is a modified DFS that uses a stack
to record the order.

Put simply, it works by performing DFS from a node until its
connected nodes are recursively exhausted and by adding it to the stack
until the connected nodes are all visited (see Figure 17-32).

Figure 17-32 Topological sort

Topological sorting has a visited set to ensure that the recursive call
does not result in an infinite loop. For a given node, that node is added to
the visited set, and its neighbors that have not been visited are visited in
the next recursive call. At the end of the recursive call, unshift is used to

add the current node’s value to the stack. This ensures that the order is
chronological.

1 DirectedGraph.prototype.topologicalSortUtil
= function (v, visited, stack) {

visited.add (v) ;

for (var item in this.edges|[v]) {
if (visited.has(item) == false) {
this.topologicalSortUtil (item,

o U1 W DN

visited, stack)

7 }

8 }

9 stack.unshift (v);
10 Y
11

12 DirectedGraph.prototype.topologicalSort =
function () {

13 var visited = {},

14 stack = [];

15

16

17 for (var item in this.edges) {

18 if (visited.has(item) == false) {

19 this.topologicalSortUtil (item,
visited, stack);

20 }

21 }

22 return stack;

23 |

24

25 var g = new DirectedGraph() ;

26 g.addVertex ('A") ;

277 g.addVertex ('B'") ;

28 g.addVertex ('C'");

29 g.addVertex ('D'") ;

30 g.addVertex ('E'") ;

31 g.addVertex ('F'");

32

33 g.addEdge ('B', 'A');

34 g.addEdge ('D', 'C'");

35 g.addEdge ('D', 'B');

36 g.addEdge ('B"', -

37 g.addEdge ('A"', ")
38 g.addEdge ('E' ")
39 var topologlcalOrde = g.topologicalSort();

40 console.log(qg);

41 // DirectedGraph {
42 J/ V: 6,

43 // E: 6,

44 // edges:

45 // { A: { F: 0},

46 // B: { A: 0 },

477 // C: {},

48 // D: { C: 0, B: 0 },
49 // E: { C: 0 },

50 // F: {} } }

51 console.log (topologicalOrder),; // ['E',
'D', 'C', 'B', 'A', 'F']

Time Complexity: O(V + E)

Space Complexity: O(V)

The topological sort algorithm is simply DFS with an extra stack.
Therefore, the time complexity is the same as DFS. Topological sorting
requires O(V) in space because it needs to store all the vertices in the
stack. This algorithm is powerful for scheduling jobs from given
dependencies.

Summary

This chapter discussed different types of graphs, their properties, and
how to search and sort them. A graph, composed of vertices and
connected via edges, can be represented as a data structure in many
different ways. In this chapter, an adjacency list was used to represent
the graph. If the graph is dense, it is better to use a matrix-based
representation of a graph instead. In a graph’s edges, weights signify the
importance (or the lack thereof) of the connected vertices. Moreover, by
assigning weights to edges, Dijkstra’s shortest path algorithm was
implemented. Finally, graphs are versatile data structures with various

use cases and interesting algorithms.
Table 17-2 shows some key properties of the graphs.

Table 17-2 Graph Properties Summary

Property Description

Dense There are a lot of connections between different vertices.
Sparse Only a small fraction of possible connections exist between vertices.
Cyclical There is a path that takes vertices back to themselves.

Uncyclical There is a no path such that vertices can be taken back to themselves.
Directed Graphs have a direction between edges.

Undirected Graphs do not have a direction between edges.

Table 17-3 summarizes the graph algorithms.

Table 17-3 Graph Algorithm Summary

Algorithm Description/Use Case Time
Complexity

BFS Traverses the graph by visiting neighbor nodes one level at a O(V+E)
time

DFS Traverses the graph by going deep into each neighbor node one O(V + E)
atatime

Dijkstra Finds the shortest path from one vertex to the rest of the other O[V2+ E)
vertices

Topological Sorts the directed graph; for job scheduling algorithms O(V+E)

Sort

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_18

18. Advanced Strings

Sammie Bae!

(1) Hamilton, ON, Canada

This chapter will cover more advanced string algorithms than the
previous chapters have discussed. They should be easier to understand
now that you have learned about some other data structures. Specifically,
this chapter will focus on string searching algorithms.

Trie (Prefix Tree)

A trie is special type of tree used commonly for searching strings and
matching on stored strings. At each level, nodes can branch off to form
complete words. For example, Figure 18-1 shows a trie of the words:
Sammie, Simran, Sia, Sam. Each ending node has a boolean flag:
isCompleted. This indicates that the word ends in this path. For
example, m in Sam has endOfWord set to t rue. Nodes with
endOfWord setto true are shaded in Figure 18-1.

https://doi.org/10.1007/978-1-4842-3988-9_18

Figure 18-1 Trie of Sammie, Simran, Sia, Sam

A trie is implemented using a nested object where each level has its
direct children as keys. A trie node can be formed by using an object to
store the children. The trie has a root node that is instantiated in the
constructor of the Trie class, as shown in the following code block:

1 function TrieNode () {

2 this.children = {}; // table
3 this.endOfWord = false;
4

function Trie () {
this.root = new TrieNode () ;

o 1 oY U1

}

To insert into the trie, the child trie node is created on the root if it
does not exist already. For each character in the word being inserted, it
creates a child node if the character does not exist, as shown in the
following code block:

1 Trie.prototype.insert = function (word) {
2 var current = this.root;

3 for (var i = 0; 1 < word.length; i++) {
4 var ch = word.charAt (i) ;

5 var node = current.children[ch];
6 if (node == null) {

7 node = new TrieNode () ;

8 current.children[ch] = node;
9 }
10 current = node;
11 }
12 current.endOfWord = true; //mark the

current nodes endOfWord as true

13 }

To search inside a trie, each character of the word must be checked.
This is done by setting a temporary variable of current on the root. The

current variable is updated as each character in the word is checked.

1 Trie.prototype.search = function (word) ({

2 var current = this.root;

3 for (var 1 = 0; 1 < word.length; i++) {
4 var ch = word.charAt (i) ;

5 var node = current.children[ch];

6 if (node == null) {

7 return false; // node doesn't

exist

8 }

9 current = node;
10 }
11 return current.endOfWord;
12 }
13 var trie = new Trie();
14 trie.insert ("sammie") ;
15 trie.insert ("simran");
16 trie.search("simran"); // true
17 trie.search ("fake") // false

(

18 trie.search("sam") // false

To delete an element from a trie, the algorithm should traverse the
root node until it reaches the last character of the word. Then, for each
node that does not have any other children, the node should be deleted.
For example, in a trie with sam and sim, when sim is deleted, the s node in
the root stays intact, but i and m are removed. The recursive
implementation in the following code block implements this algorithm:

1 Trie.prototype.delete = function (word) ({

2 this.deleteRecursively (this.root, word,
0);

3 }

4

5 Trie.prototype.deleteRecursively =
function (current, word, index) {

0 if (index == word.length) {
7 //when end of word is reached only
delete 1f currrent.end Of Word is true.
8 if (!current.endOfWord) {
9 return false;
10 }
11 current.endOfWord = false;
12 //1if current has no other mapping
then return true
13 return

Object.keys (current.children) .length == 0;

14 }

15 var ch = word.charAt (index),

16 node = current.children[ch];

17 if (node == null) {

18 return false;

19 }

20 var shouldDeleteCurrentNode =
this.deleteRecursively (node, word, index + 1);

21

22 // 1f true 1is returned then

23 // delete the mapping of character and
trienode reference from map.

24 if (shouldDeleteCurrentNode) {

25 delete current.children[ch];

26 //return true if no mapplings are
left in the map.

277 return
Object.keys (current.children) .length == 0;

28 }

29 return false;

30 }

31 var triel = new Trie();

32 triel.insert ("sammie") ;

33 triel.insert ("simran");

34 triel.search ("simran"); // true

35 triel.delete ("sammie") ;

36 triel.delete ("simran") ;

37 triel.search ("sammie"); // false

38 triel.search("simran"); // false

Time Complexity: O(W)

Space Complexity: O(N*M)

Time complexity is O(W) for all operations (insert, search, delete),
where W is the length of the string being searched because each
character in the string is checked. The space complexity is O(N*M),
where N is the number of words inserted into the trie and M is the length
of the longest character. Hence, a trie is an efficient data structure when

there are multiple strings with common prefixes. For searching one
specific string pattern in one specific string, a trie is not efficient because
of the additional memory required to store the strings in the tree-like
structure.

For a pattern search in a single target string, the Boyer-Moore
algorithm and the Knuth-Morris-Pratt (KMP) algorithm are useful and
are covered later in this chapter.

Boyer-Moore String Search

The Boyer-Moore string search algorithm is used to power the “find”
tool used in text editor applications and web browsers, like the one in
Figure 18-2.

javascript| A v X

Figure 18-2 Find tool commonly seen in many applications

The Boyer-Moore string search algorithm allows linear time in
search by skipping indices when searching inside a string for a pattern.
For example, for the pattern jam and the string jellyjam, visualization of
brute-force comparison is shown in Figure 18-3. It should be noted that
in the fourth iteration when j is compared with m, since j is shown in the
pattern, skipping ahead by 2 would be valid. Figure 18-4 shows an
optimized iteration cycle where the number of string comparisons is
limited by skipping ahead when the string at the index exists in the
pattern.

Iteration #

string j E I I y j a
1\ A A
1 pattern J B m oomraro
compare
2 J a m compare
compare

3 j a m
< J a m
5 J a m
6 J a

Figure 18-3 Brute-force pattern match iterations

Iteration #
string j e | | y J a

+ A

1 pattern j a m compare
I compare

compare

2 j a m |

3 j a m

4 j a m

5 \ j a

jump 2

Figure 18-4 Boyer-Moore Skipping Indices

To implement this skip rule, you can build a “bad match table”
structure. The bad match table indicates how much to skip for a given
character of a pattern. Some examples of various patterns and its
corresponding bad match table are shown here:

Pattern Bad Match Table

jam {3: 2, a: 1, m: 3}
data {d: 3, a: 2, t: 1}
struct {s: 5, t: 4, r: 3, u: 2, c: 1}
roi {r: 2, o: 1, i: 3}

For the roi example, r : 2 indicates that if r is not found in the string,

the index should skip by 2. This bad match table can be implemented
with the following code block:

function buildBadMatchTable (str) {
var tableObj = {},
strLength = str.length;
for (var 1 = 0; 1 < strlLength - 1; i++) {

tableObj[str[i]] = strLength - 1 - 1i;
}
if (tableObj[str[strlLength-1]] == undefined)
{
tableObj[str([strlLength-1]] = strlLength;

}
return tableObj;

}

buildBadMatchTable ('data') ; // {d: 3, a: 2,
t: 1}

buildBadMatchTable ('struct'); // {s: 5, t: 4,
r: 3, u: 2, c: 1}

buildBadMatchTable ('roi') ; // {r: 2, o: 1,
i: 3}

buildBadMatchTable ('jam') ; // {3j: 2, a: 1,
m: 3}

Using this bad match table, the Boyer-Moore string search algorithm

can be implemented. When scanning the input string for the pattern, if
the current string being looked at exists in the bad match table, it skips
over by the bad match table value associated with the current string.
Otherwise, it is incremented by 1. This continues until either the string is
found or the index is greater than the difference of the pattern and string
lengths. This is implemented in the following code block:

function boyerMoore (str, pattern) {
var badMatchTable =
buildBadMatchTable (pattern),

offset = 0,
patternlastIndex = pattern.length - 1,
scanlndex = patternlastlIndex,

maxOffset = str.length - pattern.length;

// 1f the offset is bigger than maxOffset,
cannot be found
while (offset <= maxOffset) {

scanIndex = 0;
while (pattern[scanIndex] ==
str[scanlIndex + offset]) {
if (scanIndex == patternlLastIndex) {

// found at this index
return offset;

}

scanIndex++;
}
var badMatchString = str[offset +
patternlastIndex];
if (badMatchTable[badMatchString]) {
// increase the offset 1f it exists
offset +=
badMatchTable [badMatchString]
} else {
offset += 1;

return -1;

}

boyerMoore ('jellyjam', 'jelly'); // 5. indicates
that the pattern starts at index 5

boyerMoore ('jellyjam', 'jelly'); // 0. indicates
that the pattern starts at index 0

boyerMoore ('jellyjam', "'sam') ; // =1. indicates
that the pattern does not exist

Best Case:

In the best case, all the characters in the pattern are the same, and
this consistently produces shifts by T, where T is the length of the
pattern. Hence, O(W/T) is the best time complexity where W is the string
where the pattern is being searched. The space complexity is O(1) since
only 1 value is stored into the bad match table.

Time Complexity: O(T/W)

Space Complexity: O(1)

Worst Case:

In the worst case, the string has the pattern at the end of the string,
and the preceding part is all unique characters. An example of this is a
string of abcdefgxyz and pattern of xyz. In this case, T*W string
comparisons are done.

Time Complexity: O(T*WW)

Space Complexity: O(T)

All the characters in the pattern and the string are the same. An
example of such a case is the string bbbbbb and the pattern bbb. This case
cannot use the skip mechanism to its fullest because the index will
always be incremented by 1. Space complexity in this case is T because
the pattern could have all unique characters.

Knuth-Morris-Pratt String Search

Chapter 4 discussed the native String.prototype.indexOf
function. A naive implementation of the
String.prototype.indexOf function was included as an exercise
for that chapter. A better (faster) implementation uses the Knuth-
Morris-Pratt (KMP) string search algorithm. The following

implementation of the KMP algorithm returns all indices where the
pattern is present.

The KMP string searching algorithm searches for occurrences of the
“word” W within an input “text,” which is T, by utilizing the observation
that the occurrence of a mismatch contains sufficient information about
where the next match could begin. This helps to skip re-examination of
previously matched characters. A prefix array has to be built to indicate
how many indices it has to backtrack to get the same prefix. For the
string ababaca, the prefix building looks like the following:

At current index 0, there is no string to compare to, and the prefix
array value is initialized to 0.

array index0123456
characterababaca
prefix array 0

At current index 1:

e The character is b.
e The previous prefix array value, prefix [0],is 0.

Compare index 0 to the current index: a (at index = 0) and b (at index
= 1) mismatch.
prefix[1] issettoO:

Arrayindex0123456
Characterababaca
Prefix array 0 0

At current index 2:

e The character is a.
e The previous prefix array value, prefix[11],is 0.

Compare the index and to the current index: a (at index = 0) and a (at
index = 2) match.
prefix[2] issetto 1 (incremented from prefix[1]):

Arrayindex0123456
Characterababaca
Prefix array 0 0 1

At current index 3:

e The character is b.
e The previous prefix array value, prefix[2],is 1.

Compare index 1 and the current index: b (at index = 1) and b (at
index = 3) match.
prefix[3] issetto 2 (incremented from prefix[2]):

Arrayindex0123456
Characterababaca
Prefix array 0 0 1 2

At current index 4:

e The character is a.
e The previous prefix array value, prefix [3],is 2.

Compare index 2 and the current index: a (at index = 2) and a (at
index = 4) match.
prefix[4] issetto 3 (incremented from prefix[3]):

Arrayindex0123456
Characterababaca
Prefixarray001 2 3

At current index 5:

e The characteris c.
e The previous prefix array value, prefix [4],is 3.

Compare index 3 and the current index: b (at index = 3) and c (at
index = 5) mismatch.
prefix[5] issettoO:

Arrayindex0123456
Characterababaca
Prefixarray001230

At current index 6:

e The character is c.
e The previous prefix array value, prefix [5],is 0.

Compare from index 0 and current index: a (at index = 0) and a (at
index = 5) match.
prefix[6] issetto 1 (incremented from prefix[5]):

Arrayindex0123456
Characterababaca
Prefixarray0 012301

The function in the following code block illustrates this algorithm to
build a prefix table:

function longestPrefix(str) {
// prefix array 1s created
var prefix = new Array(str.length);
var maxPrefix = 0;
// start the prefix at 0
prefix[0] = 0;
for (var 1 = 1; 1 < str.length; i++) {
// decrement the prefix value as long as
there are mismatches
while (str.charAt (i) !==
str.charAt (maxPrefix) && maxPrefix > 0) {
maxPrefix = prefix[maxPrefix - 1];
}
// strings match, can update it
if (str.charAt (maxPrefix) ===
str.charAt (1)) {
maxPrefix++;
}
// set the prefix
prefix[i] = maxPrefix;
}
return prefix;
}
console.log(longestPrefix ('ababaca')); // [0, O,
1, 2, 3, 0, 1]

With this prefix table now, KMP can be implemented. KMP search

iterates through the string and the pattern to be searched for index by
index. Whenever there is a mismatch, it can use the prefix table to
compute a new index to try. When the pattern’s index reaches the length
of the pattern, the string is found. This is implemented in detail in the
following code block:

function KMP (str, pattern) {
// build the prefix table
var prefixTable = longestPrefix(pattern),
patternIndex = 0,
strIndex = 0;

while (strIndex < str.length) {
if (str.charAt (strIndex) !=
pattern.charAt (patternIndex)) {
// Case 1: the characters are

different
if (patternIndex != 0) {
// use the prefix table if
possible
patternlndex =
prefixTable[patternIndex - 1];
} else {

// 1lncrement the str index to
next character
strindex++;

}

} else if (str.charAt (strIndex) ==
pattern.charAt (patternIndex)) {
// Case 2: the characters are same
strindex++;
patternIndex++;

}

// found the pattern
if (patternIndex == pattern.length) {

return true

}

}

return false;
}
KMP ('ababacaababacaababacaababaca', 'ababaca');

// true

KMP ('sammiebae', 'bae'); // true
KMP ('sammiebae', 'sammie'); // true
KMP ('sammiebae', 'sammiebaee'); // false

Time Complexity: O(IW)

Space Complexity: O(W)

Preprocessing a word of length W requires both O(WW) time and space
complexity.

Time Complexity: O(W + T)

Here, Wis the “word” in the T (the main string being searched).

Rabin-Karp Search

The Rabin-Karp algorithm is based on hashing to find the specified
pattern in text. While KMP is optimized to skip redundant checks during
the search, Rabin-Karp seeks to speed up the equality of the pattern of
the substring via a hash function. To do this efficiently, the hash function
must be O(1). Specifically for the Rabin-Karp search, the Rabin
fingerprint hashing technique is used.

The Rabin Fingerprint

The Rabin fingerprint is calculated via the following equation: f(x) = m, +
m;X + ... + m,_; X*"! where n is the number of characters being hashed

and x is some prime number.

This is a simple implementation, as shown in the following code
block. An arbitrary prime number of 101 was set for this example. Any
high prime number should work well in this case. However, be aware
that if the x is too high, it could cause integer overflow because x"!
grows quickly. The endLength argument indicates to what string index

the hash should be calculated. It should be defaulted to the length of str
if the argument is not passed.

1 function RabinKarpSearch () {
2 this.prime = 101;

3}

4

RabinKarpSearch.prototype.rabinkarpFingerprintHash =
function (str, endLength) {

5 if (endLength == null) endLength =
str.length;
6 var hashInt = 0;
7 for (var 1i=0; i < endLength; i++) {
8 hashInt += str.charCodeAt (1) *
Math.pow (this.prime, 1);
9 }
10 return hashlInt;
11 }
12 var rks = new RabinKarpSearch();

13 rks.rabinkarpFingerprintHash ("sammie"); //
1072559917336

14 rks.rabinkarpFingerprintHash ("zammie"); //
1072559917343

As shown in the previous code block result, the hashes from sammie
and zammie are unique because they are two different strings. The hash
value allows you to quickly, in constant time, check whether two strings
are the same. As an example, let’s look for am inside same. Since am is
only two characters long, when you scan the text, sa, am, and me are
formed from same and compute the hash as shown here:

1 rks.rabinkarpFingerprintHash ("sa"); // 9912
2 rks.rabinkarpFingerprintHash ("am"); // 11106
3 rks.rabinkarpFingerprintHash ("me"); // 10310

This is a sliding hash calculation. How can this be done efficiently?
Let’s analyze it mathematically. Recall that for this example the x is 101.
In addition, the character code for s, a, m, and e are 115, 97, 109, and 101,

respectively.
sa: f(x) =mg+myx =115+ (97)*(101) = 9912
am: f(x) =mgy + myx =97 + (109)*(101) = 11106
me: f(x) = mg + my;x =109 + (101)*(101) = 10310
To get the hash value from sa to am, you must subtract the first term,

divide the remaining by the prime number, and then add the new term.
This recalculation algorithm is implemented in the following code block:

1 RabinKarpSearch.prototype.recalculateHash =
function (str, oldIndex, newIndex, oldHash,
patternLength) {

2 if (patternlLength == null) patternLength =
str.length;

3 var newHash = oldHash -
str.charCodeAt (oldIndex) ;

4 newHash = Math.floor (newHash/this.prime);

5 newHash += str.charCodeAt (newIndex) *
Math.pow (this.prime, patternLength - 1);

6 return newHash;

7}

8 var oldHash =
rks.rabinkarpFingerprintHash ("sa"); // 9912

9 rks.recalculateHash("same", 0, 2, oldHash,
"sa".length); // 11106

Lastly, two different strings can still have the same hash value
although it’s unlikely. Therefore, there needs to be a function to check
that two strings are equal given the start index and end index for both
strings. This is implemented in the following code block:

1 RabinKarpSearch.prototype.strEquals = function
(strl, startIndexl, endIndexl,

2
str2, startIndex?2, endIndex2?2) {
3 if (endIndexl - startIndexl !'= endIndex?2 -

startIndex?2) {

4 return false;
5 }
0 while (startIndexl <= endIndexl
7 && startIndex?2 <= endIndex?2) {
8 if (strl[startIndexl] !=
str2[startIndex2]) {

9 return false;

10 }

11 startIndexl++;

12 startIndex2++;

13 }

14 return true;

15 }

Then, the main Rabin-Karp search function is implemented by
calculating the starting hash and then recalculating the hashes in a
sliding manner until the pattern is found or the end of the string is
reached.

1 RabinKarpSearch.prototype.rabinkarpSearch =
function (str, pattern) {

2 var T = str.length,
3 W = pattern.length,
4 patternHash =
this.rabinkarpFingerprintHash (pattern, W),
5 textHash =
this.rabinkarpFingerprintHash (str, W);
6
7 for (var 1 =1; i <=T - W + 1; i++) {
8 if (patternHash == textHash &&
9 this.strEquals(str, 1 - 1, 1 + W -
2, pattern, 0, W - 1)) {
10 return 1 - 1;
11 }
12 if (1 < T -W + 1) {
13 textHash =

this.recalculateHash(str, 1 - 1, 1 + W - 1,

textHash, W),

14 }

15 }

16

17 return -1;

18 }

19

20 wvar rks = new RabinKarpSearch();

21 rks.rabinkarpSearch ("SammieBae", "as"); // -1
22 rks.rabinkarpSearch ("SammieBae", "Bae"); // 6
23 rks.rabinkarpSearch ("SammieBae", "Sam"); // 0

Preprocessing Time Complexity: O(W)

The preprocessing time complexity W is the length of the “word.”

Matching Time Complexity: O(W + T)

At most, this algorithm iterates through the sum of length T and
length W, where T is the string being searched for.

Applications in Real Life

The Rabin-Karp algorithm can be used for detecting plagiarism. With a
source material, this algorithm can search through a paper submission
for instances of phrases and sentences from the source material (and
ignoring grammar details like punctuation by omitting punctuation
characters during the preprocessing phase). This problem is impractical
for single-search algorithms because of the large set of sought (input)
phrases and sentences. The Rabin-Karp algorithm is also used in other
string matching applications such as looking for a specific sequence in
large DNA data.

Summary

This chapter returned to the topic of strings and looked at more
advanced examples and searching on string patterns. The chapter
discussed several different types.

e Trie is great for multiple searches and prefix pattern matching.
e Boyer-Moore, with assumption that the absence of a match at the end
means no need to match the beginning, tries to match the last

character of the pattern instead of the first; this allows large “jumps”
(spaces between indexes) and works better when the text is larger.

e The KMP algorithm searches for occurrences of the pattern in a string
by observing that when a mismatch occurs, the pattern itself has
sufficient information to determine the index in the string where the

next match could begin. Hence, the KMP algorithm is better for small
sets.

Table 18-1 summarizes the different search algorithms.

Table 18-1 Single String Search Summary

Algorithm Preprocessing Time Matching Time Space
Complexity Complexity Complexity

Naive None OW=T) None

Boyer- OW+T) O(T /W) best case 0(1)

Moore O(W * T) worst case

KMP ow) 0o(T) ow)

Rabin-Karp O(W) oOW+T) 0(1)

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_19

19. Dynamic Programming

Sammie Bae!

(1) Hamilton, ON, Canada

Dynamic programming involves breaking down problems into their
subproblems. By solving for the optimal subproblems and saving those
results into memory to access them whenever a repeated problem needs
to be solved, the algorithmic complexity decreases significantly.
Implementing dynamic programming algorithms requires higher-level
thinking about the problem’s patterns. To explain dynamic
programming, let's re-examine the Fibonacci sequence that was
discussed in Chapter 8. Then the chapter will cover the rules of dynamic
programming and walk you through some examples to make the
concepts more concrete.

Motivations for Dynamic Programming

The code for the Fibonacci sequence has already been determined to be
the following:

function getNthFibo (n) {
if (n <= 1) {
return n;
} else {
return getNthFibo(n - 1) + getNthFibo(n -

https://doi.org/10.1007/978-1-4842-3988-9_19

getNthFibo (3) ;

Recall that the recursive implementation of this algorithm is O(2").
This is an exponential runtime, which is impractical for real-world
applications. Upon closer examination, you will notice that much of the
same computation is repeated. As shown in Figure 19-1, when
getNthFibo for 6 is called, the calculation for 4, 3, 2, and 1 are
repeated multiple times. Knowing this, how can you make this algorithm
more efficient?

Figure 19-1 Recursion tree for Fibonacci numbers

Using a hash table, once the Fibonacci number has been computed, it
can be stored like the following implementation:

var cache={};
function fiboBest (n) {
if (n<=1)return n;
if (cache[n])return cacheln];
return (cache[n]=fiboBest (n-
1) +fiboBest (n-2)) ;
6 }
7 fiboBest (10); // 55

o b w N

This is known as overlapping subproblems. Calculating the Fibonacci
sequence for 6 requires calculating the Fibonacci sequence for 4 and 5.
Hence, the Fibonacci sequence for 5 overlaps with the fourth Fibonacci
sequence calculation. This problem also has an optimal substructure,
which refers to the fact that the optimal solution to the problem contains
optimal solutions to its subproblems.

With this, let’s now formalize what dynamic programming is.

Rules of Dynamic Programming

Dynamic programming (DP) is the method of storing values that were
already calculated and using those values to avoid any recalculations
(typically in a recursive algorithm). This method can be applied only to
those problems with overlapping subproblems and optimal substructure.

Overlapping Subproblems

Similar to divide and conquer in recursion, DP combines solutions on
subproblems. DP is used when solutions for subproblems are needed
multiple times. It stores subproblem solutions typically in a hash table,
an array, or a matrix, and this is referred to as memoization . DP is useful
for solving problems in which there are many repeated subproblems.

An example of this can be seen with the Fibonacci sequence recursive
method. It can be observed that some numbers such as 3 will be
recalculated many times.

A hash table can be used to store results to avoid any recalculations.
Doing this reduces the time complexity from O(2") to just O(n), which is
an immense change. Calculating O(2") with a realistically large enough n
can take literally years to compute.

Optimal Substructure
An optimal substructure is when the optimal solution of a problem can
be found by using the optimal solutions of its subproblems.

For example, the shortest path finding algorithms have optimal
substructures. Consider finding the shortest path for traveling between
cities by car. If the shortest route from Los Angeles to Vancouver passes
through San Francisco and then Seattle, then the shortest route from San
Francisco to Vancouver must pass through Seattle as well.

Example: Ways to Cover Steps

Given a distance, n, count the total number of ways to cover n number of
steps with one, two, and three steps. For example, when n=3, there are
four combinations (ways), shown here:

1.
1 step, 1 step, 1 step, 1 step

2.
1 step, 1 step, 2 steps

3.
1 step, 3 steps

4,
2 steps, 2 steps

Here’s the function for achieving the count:

1 function waysToCoverSteps (step) {
2 if (step<0) return O;

3 if (step==0) return 1;
4
5

return waysToCoverSteps (step-
1) +twaysToCoverSteps (step-2) twaysToCoverSteps (step-3
) ;
6 }
7 waysToCoverSteps (12) ;

Time Complexity: O(3")
This recursive method has a large time complexity. To optimize the
time complexity, simply cache the result and use it instead of

recalculating the values.

1 function waysToCoverStepsDP (step) {
2 var cache = {};

3 if (step<0) return O;

4 if (step==0) return 1;

5

6 // check 1f exists 1n cache

7 if (cache[step]) {

8 return cache[step];

9 } else {
10 cache[step] =

waysToCoverStepsDP (step-1) twaysToCoverStepsDP (step-
2)twaysToCoverStepsDP (step-3) ;

11 return cachel[step];

12 }

13 }

14 waysToCoverStepsDP (12) ;

Time Complexity: O(n)
This shows the power of dynamic programing. It improves time
complexity immensely.

Classical Dynamic Programming Examples

This section will explore and solve some of the classical dynamic
programming problems. The first one that will be explored is the
knapsack problem.

The Knapsack Problem

The knapsack problem is as follows:
Given n weights and the values of items, put these items in a knapsack
of a given capacity, w, to get the maximum total value in the knapsack.

Optimal Substructure
For every item in the array, the following can be observed:

e The item is included in the optimal subset.
e The item is not included in the optimal set.

The maximum value must be one of the following:

1.
(excluding the Nth item): max value obtained with n-1 items

2.
(including the Nth item): max value obtained with n-1 items minus
the Nth item (can only work if the weight of the Nth item is smaller
than W)

Naive Approach

The naive approach implements the described optimal substructure
recursively, as shown here:

1 function knapsackNaive (index, weights, wvalues,
target) {

2 var result = 0O;

3

4 if (index <= -1 || target <= 0) {

5 result = 0

6 } else if (weights[index] > target) {

7 result = knapsackNaive (index-1,
weights, wvalues, target);

8 } else {

9 // Case 1:
10 var current = knapsackNaive (index-1,
weights, wvalues, target)
11 // Case 2:
12 var currentPlusOther = values[index] +
13 knapsackNaive (index-1, weights,
values, target - weights[index]);
14
15 result = Math.max (current,
currentPlusOther) ;
16 }

17 return result;

18 }

19 var weights = [1,2,4,2,5],

20 values = [5,3,5,3,2]1,

21 target = 10;

22 knapsackNaive (4,weights, values, target);

Time Complexity: 0(2")

Figure 19-2 shows the recursion tree for a knapsack capacity of 2
units and 3 items of 1 unit weight. As the figure shows, the function
computes the same subproblems repeatedly and has an exponential time
complexity. To optimize this, you can have the results based on the item
(reference via index) and target (weight: w).

wt[] = {1, 1, 1}, W =2, val[] = {10, 20, 30}

K(3, 2) —=-mem--- > K(n, W)
/ \
/ \
K(2,2) K(2,1)
/ \ / \
/ \ ¢ N
K(1,2) K(1,1) K(1,1) K(1,0)
/\ / 0\ / 0\
/ \ / \ / \

K(0,2) K(0,1) K(0,1) K(0,0) K(0,1) K(,0)

Figure 19-2 Recursion tree for knapsack

DP Approach

As discussed, the following DP implementation stores the result of the
knapsack using the current array index and target as a key to a JavaScript
object for later retrieval. For recursive calls that have already been
calculated, it will use the stored result, and this reduces the time
complexity of the algorithm significantly.

1 function knapsackDP (index, weights, wvalues,
target, matrixDP) {

2 var result = 0O;
3
4 // DP part
5 if (matrixDP[index + '-' + target]) {
6 return matrixDP[index + '-' + target];
7 }
8
9 if (index <= -1 || target <= 0) {
10 result = 0
11 } else if (weights[index] > target) {
12 result = knapsackDP(index - 1, weights,
values, target, matrixDP) ;
13 } else {
14 var current = knapsackDP (index-1,
weights, wvalues, target),
15 currentPlusOther = values[index] +

knapsackDP (index-1, weights, values, target -
weights[index]) ;

16 result = Math.max (current,
currentPlusOther) ;

17 }

18 matrixDP[index + '-' + target] = result
19 return result;

20 }

21 knapsackDP (4, weights, wvalues, target, {}):

Time Complexity: O(n*w)

Here, n is the number of items, and w is the capacity of the knapsack.

Space Complexity: O(n*w)

This algorithm requires an n times wcombination to store the cached
results inside matrixDP.

The next DP question that will be studied is another classic.

Longest Common Subsequence
Given two sequences, find the length of the longest subsequence where a

subsequence is defined as a sequence that appears in relative order
without necessarily being contiguous. For example, sam, sie, aie, and so
forth, are subsequences of sammie. A string has 2" possible subsequences
where n is the length of the string.

As areal-world example, let’s consider a generalized computer
science problem that appears in main domains such as bioinformatics
(DNA sequencing). This algorithm is also how the diff functionality (file
comparison to output difference between files) is implemented in
version control and operating systems.

Naive Approach

Letting str1 be the first string of length m, st r2 be the second string of
length n, and L.CS be the function, the naive approach can first consider
the following pseudocode:

1. if last characters of both sequences match (i.e.
strl[m-1] == str2[n-17):

2. result = 1 + LCS(X[0:m-2], Y[0:n-2])

3. 1f last characters of both sequences DO NOT
match (i.e. strl[m-1] != str2[n-1]):

4, result = Math.max (LCS(X[0:m-1], Y[O:n-

1]1),LCS(X[0m-2], Y[0:n-2]))

With this recursive structure in mind, the following can be
implemented:

1 function LCSNaive (strl, str2, strlLength,
str2Length) {

2 if (strllLength == | | str2Length == 0)
{

3 return 0;

4 }

5

S if (strl[strllLength-1] ==

str2[str2Length-1]1) {
return 1 + LCSNaive(strl, str2,
8 strlLength - 1,

~J

9 str2Length - 1);

10 } else {

11 return Math.max (

12 LCSNaive (strl, str2, strllength,
str2Length-1),

13 LCSNaive (strl, str2, strllLength-
1, strZ2Length)

14) 7

15 }

16 }

17

18 function LCSNaiveWrapper (strl, str2) {

19 return LCSNaive (strl, str2, strl.length,
str2.length);

20 }

21 LCSNaiveWrapper ('AGGTAB', 'GXTXAYB'); // 4

Time Complexity: O(2")
Figure 19-3 shows the recursion tree for SAM and BAE (visually cut
off at a height of 3). Asyoucansee, ('SA', 'BAE') isrepeated.

Figure 19-3 Recursion tree for longest common string length

DP Approach

The recursive structure described can be translated into a table/cache
where the rows each represent a character in str1 and the columns

each represent a character in str2. Each item in a matrix at a row, i, and
a column, j, represents LCS (str1[0:1], str2[0:73]).

1 function longestCommonSequencelength(strl,
str2) |
2 var matrix = Array(strl.length +
1) .fill (Array(str2.length + 1).£f111(0)),
3 rowLength = strl.length + 1,
4 collLength = str2.length + 1,
5 max = 0;
6
7 for (var row = 1; row < rowLength; row++) {
8 for (var col = 1; col < colLength;
col++) {
9 var strlChar = strl.charAt(row -
1),
10 str2Char = str2.charAt (col -
1);
11
12 if (strlChar == str2Char) {
13 matrix[row] [col] = matrix[row -
1] [col = 1] + 1;
14 max = Math.max (matrix[row]
[col], max);
15 }
16 }
17 }
18 return max;
19 }
20 longestCommonSequencelLength ('abcd', 'bc');

Time Complexity: O(m *n)
Space Complexity: O(m *n)
Here, m is the length of str1, and n is the length of st r2.

Coin Change

Given a value/money n and an unlimited supply of each coin of different
values, S ={S1, S2, .. Sm}, of size M, how many ways can the change be
made without considering the order of the coins?

Given N=4, M=3, and S = {1,2,3}, the answer is 4.

1 1,1,1,1,
2 1,1,2
3 2,2
4 1,3
Optimal Substructure

You can observe the following about the number of coin changes:

1) Solutions without Mth coin
2) Solutions with (at least) one Mth coin

Given that coinChange (S, M, N) isa function to count the

number of coin changes, mathematically it can be rewritten as follows by
using the two observations from earlier:

coinChange (S, M, N) = coinChange (S, M-1, N) +
coinChange (S, M, N-Sm)

Naive Approach

The naive approach can implement the described algorithm using
recursion, as shown here:

1 // Returns the count of ways we can sum COIlnArr
which have
2 // index 1like: [0,...,numCoins]

3 function countCoinWays (coinArr, numCoins,
coinValue) {

4 if (coinValue == 0) {

5 // 1f the value reached zero, then only

solution 1s
6 // to not include any coin

7 return 1;

8 }

9 if (coinValue < 0 || (numCoins<=0 &&
coinValue >= 1)) {
10 // value 1s less than 0 means no
solution

11 // no coins left but coinValue left
also means no solution

12 return 0O;

13 }

14 //

15 return countCoinWays (coinArr,numCoins-1,
coinValue) +

16 countCoinWays (coinArr, numCoins,
coinValue-coinArr [numCoins-1]) ;

17 }

18 function countCoinWaysWrapper (coinArr,
coinValue) {

19 return countCoinWays (coinArr,
coinArr.length, coinValue);

20 }

21 countCoinWaysWrapper ([1,2,3]1,4);

Time Complexity: O(n™)

Space Complexity: O(n)

Here, m is the number of available types of coins, and n is the desired
currency to convert into change.

Overlapping Subproblems

You can see from the recursion tree in Figure 19-4 that there are lots of
overlapping subproblems.

/ \
/ \
e({1,2,8}, 2) C({1,2}, 5)
/ \ / \
/ \ / \
c({1,2,3}, -1) C({1,2}, 2) c({1,2}, 8) C({1}, 5)
/0 / \ / \
/ \ / \ / \
C({1,2},0) cC({1},2) c({1,2},1) c({1},38) C({1}, 4) C({}, 5
/\ /\ /\ / ¥
/N [\ / \
({1}, 8) c({}, 4)
/\
[\

Figure 19-4 Recursion tree for longest coin change

To account solve for this, a table (matrix) can be used to store already
computed results.

DP Approach

The matrix for the DP approach has the coinvalue number of rows and
the numCoins number of columns. Any matrix at i and j represent the
number of ways given a coinValue of i and a numCoins ofjj.

1 function countCoinWaysDP (coinArr, numCoins,
coinValue) {

2 // creating the matrix

3 var dpMatrix = [];

4

5 for (var i=0; 1 <= coinValue; i++) {

6 dpMatrix[i] = [];
7 for (var j=0; j< numCoins; J++) {
8 dpMatrix[i] [J] = undefined;
9 }
10 }
11
12 for (var i=0; i1 < numCoins; i++) {
13 dpMatrix[0] [1] = 1;
14 }
15
106 for (var i=1; 1 < coinValue + 1; 1i++) {
17 for (var j=0; J < numCoins; Jt++) {
18 var templ = O,
19 temp2 = 0;
20
21 if (i - coinArr[j] >= 0) {
22 // solutions including
coinArr[j]
23 templ = dpMatrix[i -
coinArr([J]1]1I[J1;
24 }
25
26 if (§J >= 1) {
27 // solutions excluding
coinArr[j]
28 temp2 = dpMatrix[i] [J-11;
29 }
30
31 dpMatrix[1i][]J] = templ + temp2;
32 }
33 }
34 return dpMatrix[coinValue] [numCoins-1];
35 }
36
37 function countCoinWaysDPWrapper (coinArr,

coinValue) {
38 return countCoinWaysDP (coinArr,

coinArr.length, coinValue);
39 }
40 countCoinWaysDPWrapper ([1,2,3]1,4);

Time Complexity: O(m *n)

Space Complexity: O(m *n)

Here, m is the number of available types of coins, and n is the desired
currency to convert into change.

Edit (Levenshtein) Distance
The edit distance problem considers the following :

Given a string (str1) of length m and another string (st r2) of length
n, what is the minimum number of edits to convert str1 into str2?

The valid operations are the following:

1.
Insert

2.
Remove

3.
Replace

Optimal Substructure

If each character is processed one by one from each strl and str2, the
following is possible:

1. the characters are the same:
do nothing
2. the characters are different:
consider the cases recursively:
Insert: for m and n-1
Remove: for m-1 and n
Replace: for m-1 and n-1
Naive Approach

The naive approach can implement the described substructure

recursively, as shown here:

1 function editDistanceRecursive (strl, str2,
lengthl, length2) {

2 // strl is empty. only option is insert all
of str2

3 if (lengthl == 0) {

4 return length?2;

5 }

6 // str2 is empty. only option 1s insert all
of strl

7 if (length2 == 0) {

8 return lengthl;

9 }
10
11 // last chars are same,
12 // ignore last chars and count remaining
13 if (strl[lengthl-1] == str2[length2-17) {
14 return editDistanceRecursive(strl,
str2,

15 lengthl-1,
length2-1);

16 }

17

18 // last char 1s not the same

19 // there are three operations: insert,
remove, replace
20 return 1 + Math.min (
21 // insert
22 editDistanceRecursive (strl, str2,
lengthl, length2-1),
23 // remove
24 editDistanceRecursive (strl, str2,
lengthl-1, length?2?),
25 // replace
26 editDistanceRecursive (strl, str2,

lengthl-

1, length2-1)

277) ;

28 }

29

30 function editDistanceRecursiveWrapper (strl,
str2) |

31 return editDistanceRecursive(strl, str2,
strl.length, str2.length);

32 }

33

34 editDistanceRecursiveWrapper ('sammie', 'bae') ;

Time Complexity: 0(3™)

The time complexity of the naive solution is exponential, and the
worst case is when no characters in the two strings match. This makes
sense because each call has three calls (insert, remove, replace).

Again, you can see that the same problems are solved over and over
again (see Figure 19-5). This can be optimized by constructing a matrix
that stores the already-computed results of subproblems.

(11)

Figure 19-5 Recursion tree for edit distance

DP Approach

The dynamic programming approach will construct a matrix with the
dimensions strl and str2. The base case is when i orj is equal to 0. In
other cases,itis1 + min(insert, remove, replace) justlike
the recursive approach.

1 function editDistanceDP(strl, str2, lengthl,

length2) {

2 // creating the matrix

3 var dpMatrix = [];

4 for (var i=0; i<lengthl+1l; i++) {

5 dpMatrix[i] = [];

6 for (var j=0; j<length2+1l; J++) {

7 dpMatrix[i] [J] = undefined;

8 }

9 }
10
11 for (var i=0; i < lengthl + 1; i++) {
12 for (var j=0; j < length2 + 1; Jj++) {
13 // 1if first strl is empty,
14 // have to insert all the chars of
str2

15 if (1 == 0) {

16 dpMatrix[1][3] = 7

17 } else if (7 == 0) {

18 dpMatrix[1][3J] = 1,

19 } else if (strl[i-1] == str2[j-11)
{
20 // 1f the same, no additional
cost
21 dpMatrix[1i][]J] = dpMatrix[i-1]
[3-117
22 } else {
23 var insertCost = dpMatrix[i] []-
1]/
24 removeCost = dpMatrix[i-1]
(31,

25 replaceCost= dpMatrix[i-1]

[J-11;

26

277 dpMatrix[i][]J] = 1 +
Math.min (insertCost, removeCost, replaceCost) ;
28 }

29 }

30 }

31 return dpMatrix[lengthl] [length2];
32 }

33

34 function editDistanceDPWrapper (strl, str2) {
35 return editDistanceDP(strl, str2,
strl.length, str2.length);

36 }

37

38 editDistanceDPWrapper ('sammie', 'bae');

Time Complexity: O(m *n)
Space Complexity: O(m *n)
Here, m is the length of str1, and n is the length of str2.

Summary

Dynamic programming can be utilized to optimize an algorithm if the
following conditions are satisfied:

e Optimal substructure: The optimal solution to the problem contains
optimal solutions to its subproblems.

e QOverlapping subproblems: The solutions for subproblems are needed
multiple times.

To store the already computed solutions to a subproblem, a matrix or
a hash table is typically used; this is because both provide O(1) lookup
time. Doing this, the time complexity can be improved from exponential

(e.g., 0(2")) to polynomial time (e.g., 0(n?)).

© Sammie Bae 2019
Sammie Bae, JavaScript Data Structures and Algorithms
https://doi.org/10.1007 /978-1-4842-3988-9_20

20. Bit Manipulation

Sammie Bae!

(1) Hamilton, ON, Canada

Bit manipulation is an advanced topic that JavaScript developers
typically do not need to know. Low-level programming languages such as
C take advantage of these operators. However, you should learn a bit
about bit manipulation if you want to implement high-performance
server-side code.

Understanding bit manipulation requires some knowledge of digital
logic. Any introductory course in discrete math or circuits would be
helpful to understand these concepts.

Bitwise Operators
Here are the bitwise operators in JavaScript:

e &: AND

e |: OR

e ~: NOT

e : XOR

o <<: Leftshift

e >>: Right shift

e >>>: Zero-fill right shift

Note Recall from Chapter 3 that all numbers are represented with 32
bits (meaning there are 32 1s and 0s). When converting from decimal
numbers (base 10) to binary (base 2), it is important to keep this in

https://doi.org/10.1007/978-1-4842-3988-9_20

mind.

AND

The AND operator is true when both bits are 1. The & (ampersand) is
used for the AND operator.

AND Db

R PO O W
R o~ OO0
R O O oW

In bitwise operations, the numbers are in binary representation. For
example, 9 in binary is 1001, and 5 in binary is 101.

For each bit, the AND operation has to be performed:

9: O 00000O0O0OO0O0O0OO0OOO0OOO0OO® 0O
0O 0000O0O0O0O0O1TO0O 01

5: o 00000O0O0OO0O0O0OO0O0OO0OOO0OO®O0DO0
0 0000O0O0O0O0OO0CTI1ITOTI1

9 & 5: o 00000O0O0O0O0O0OO0O0OO0OOO0OOO0DO0
0O o00000O0O0O0OO0O01L1I-=1

1 console.log(9 & 5); // prints 1

Here’s another example:

40 in base 10 = 100010 in base 2
41 in base 10 = 100011 in base 2

40: O 00000O0O0OO0CO0OO0COO0O0OO0OO0OO0OO0O0O
0 0000O01O0O0O0T1IO0
41: o 00000O0O0O0CO0OO0COO0OO0OO0OO0OO0O0OO0O

0 000001O0O0O0CT1TTI1

40 & 41: 0 00O O0OO0OO0OO0OOO0OO0OO0OOO0OOO0OOO0OO
0 000001O0O0O010-= 40

OR

The OR operator is when either bit is 1. The | (pipe) is used for the OR
operator.

a b a OR b
0 0 0
0 1 1
1 0 1
1 1 1
Let'suse 9 | 5and 40 | 41 asexamples.
9: 0o0000O0O0O0OO0OO0O0OOO0OOOOOOD©O0
00000O0O0C11TO0O01
5: 00000O0O0OO0OO0OO0OOOO0OOOOO0OO0OO0OD®O

0O 0000O0O0O0OT1O0T1
9 | 5: 00 00000O0O0O0O0O0OO0OOO0OOOOOO®O
0O 00000O01101-=13

Here’s another example:

40: o 00000O0O0O0O0O0OO0O0OO0OOO0OOO0DO0
0 0000O0O010O0O01O0

41: 00000O0O0O0O0OO0O0OOOO0O®OOOQO
0O 0000O0O0O1O0O0O0T1T1

40 & 41: 0O 00000O0O0OO0O0O0OO0OOO0OOO0OO® 0O
0 0000O0O0O1O0O0O01T1-=41

XOR

XOR means “exclusive or.” It evaluates to true only when one of the bits is
1. The ~ (caret) is used for the XOR operator.

XOR Db

R R O O W
_ O OO
O R P OWw

9 o o0o00000O0OO0OO0O0OO0O0OO0O0OO0OO®O0O0®O
0 0000O0O0O01O0©O01

5 coo0o00000O0OO0OO0O0OO0O0OO0O0OO0OO®O0O0O®O
0 0000O0O0O0CO01OCO0T1

9 ~ 5: Ooo00000O0O0O0O0OO0O0OO0OO0OOO0O0®O
0O 0000O0O0OO0O1IT1O0®O 12

40: coo0o00000O0OO0OO0O0OO0O0OO0O0OO0OO®O0O0O®O
00000O0O1O0O0O0O1TPO0

41: Ooo00000O0O0O0O0OO0O0OOO0O0OOO0O0®O
0 0000O01O0O0O0T1I1

40 ~ 41: coo0o00000O0OO0OO0O0OO0O0OO0OOO0OO®O0O®O
0O 00000O0O0O0O0CO01-= 1

NOT

The NOT operator inverses all bits. The ~ (tilde) is used for the NOT
operator. Please do not confuse the NOT operator with the negative
operator. Once the bits are inverted, the numbers in 32-bit follow.

a NOT a
0 1
1 0

Let's take 9 and 5 as an example:

9: O 00000O0O0O0O0O0OO0OO0OO0OO0OOO0O® 0O
0 000O0O01O00O01

~9: 1 1111111111111 1111111
11 11110110-=-10

5: O 00000O0O0O0O0O0OO0OOO0OOO0OOO0OO® 0O
0O 000O0O0O01TQ01

~5: 1 1111111111111 1111111
1111111010 -=-6

Left Shift
In left shift, all the bits are shifted to the left, and any excess bits shifted

off to the left are discarded. The << (double left-angle brackets) is the
operator of left shift.

9: coo000000O0O0O0OO0O0O0OO0OO0O0OOO0OO0O® OO
0 000O0O01O0O01

9 << 1: 0000OO00OO0C0O0OO00O0O0O0OO0OO0OO0OO0OO0OOO0O®O
0 00001O0O010-=18

9 << 2: 0000O0C0OO0C0O0OO0O0O0O0O0O0O0OO0OO0OO0OOO0O®O
0000100100 =36

Left shift often multiplies elements by 2 for each shift. This is because
binary is a base 2 system, implying a left shift is equal to multiplying all
the digits by 2. However, the shift can cause the bit to overflow and
reduce the value.

1073741833: 01 0000O0O0O0COO0OOO0OO0OO0O
0 0000O0O0O0O0O0O0OO0OTI1ITO0O0I1

1073741833 << 2: 0 00 O0O0O0O0O0OO0O0OO0OOO0OOO0OO
0 00000O0O0O0O01IO0O01O0QO0-= 36

Right Shift

In right shift, all the bits are shifted to the right, and any excess bits
shifted off to the right are discarded. The >> (double right angle

brackets) is the operator for right shift.

0 0O 0000O0O0OO0O0OO0OOO0OOOQO

O
O
O
O
O

0O 00O0O0O0O0O0OO0O

O W O W
oV h

vV
o

I
[@>REX)
o
o
cNoNe
ocNoNoNe)
O O O
e NeoNe)
ocNoNoNe)
O O O
| ©

o

o

o

-9:
111111
-9 >> 2:
111111

1 1111111111111

1111111111111
= -3

O S S

O S S

el

O S S

o B

O S S
=

In this example, shifting divided the 9 by 2 (integer division). This is
because, again, binary is a base 2 system.

Zero-Fill Right Shift

In zero-fill right shift, all the bits are shifted to the right, and any excess
bits shifted off to the right are discarded. However, the sign bit (the
leftmost bit) becomes a 0 before the shift, and this results in a non-
negative number. The >>> (triple right brackets) is the operator for the

zero-fill right shift.

-9: 11111111111 1111111111
11111110111

-9 >»>>1: 011111111111 111111111
11111111011 = 2147483643

In this example, shifting divided the 9 by 2 (integer division). This is
because, again, binary is a base 2 system.

To have a better understanding of why these operations work, it is
recommended to take an introductory digital logic course in school or
online. In the end, everything consists of 1s and 0s because a transistor
in a computer can have only two states: on and off.

Number Operations

This section will cover how to perform addition, subtraction,
multiplication, division, and modulus using bitwise operators.

Addition

Adding binary numbers is no different from adding decimal numbers.
The rule that children learn in the second grade is the same: add up two
numbers and carry 1 to next digit if it exceeds 10.

The function that implements this is as follows. You can find all the
code on GitHub.!

1 function BitwiseAdd(a, b) {

2 while (b != 0) {

3 var carry = (a & b);
4 a =a ~ b;

5 carry << 1;

6

O
Il

i return a;
8 }

9
10 console.log (BitwiseAdd (4,5)); // 9

Here are two examples in detail:

bitwiseAdd (4, 5);

4. O 000O0OO0OOOOOOOOOOT OO
O 000O0OO0OOO0OOOOOTI1ITO0OSF®

5: O000O0OO0OOOOOOOOOOTG OO
O 00O0O0OO0OOO0OOOOOTI1IOQO071

sum = 4 ~ 5= 0000O0O0O0O0O0O0O0O0OO0DO0ODO0OO0OO
O 00O0O0OO0OO0OO0OOO0OOO0OOO0OI =1 (base 10)

carry = (a & b) << 1

a & b = O00O0OO0OO0OO0OODOOOOOOOODO
O 000O0OO0OOO0OOOOOTI1ITQO0OSP®

(a & b) <« 1 =000000O0O0O0CO0ODO0OCOOCOOOOQO
O 00O0O0OO0OOO0OOO0OOT1O0O0GO0=28 (base 10)

bitwiseAdd (1, 8);

1: 0O 00000O0O0OO0COO0OO0OO0OO0OO0OO0O©O
0 0000O0O0O0O0OO0OO0OO0OO01
8: 0O 00000O0O0OO0CO0OO0COO0OO0OO0OO0OO0O©O

0 0000O0O0O0O0OO01IO0O0®O

sum =1 ~8 =00000000O0O0O0O0O0CO0O0O0O0O
0 000000O0O0O01IO0O01=29 (base 10)

(a & b) << 1

a & b = O00O0O0OO0OO0OOOOOOOOOODOOO OO
O 00O0O0OO0OOOOO0OO OO0

-> return 9 (a)

Subtraction

Subtraction is the difference of two numbers. However, you can also
think of it as adding a negative number. Here’s an example: 5 - 4 = 5

+ (-4).
Therefore, first create a negate function using the NOT operator. In

binary, subtracting a negative binary number from a positive one is
obtained by inverting all the bits and adding 1. This is implemented in
the following code block:

1 function BitwiseNegate (a) {

2 return BitwiseAdd(~a,1l);

3 }

4

5 console.log (BitwiseNegate(9)); // -9

6 // negation with itself gives back original
7 console.log(BitwiseNegate (BitwiseNegate (9)))

;o /)9

8

9 function BitwiseSubtract (a, b) {
10 return BitwiseAdd(a, BitwiseNegate (b))
11 }

12

13 console.log (BitwiseSubtract (5, 4)); // 1

Multiplication

Multiplying numbers in base 2 follows the same logic as multiplying
numbers in base 2; multiply the numbers, carry anything over 10 to the
next digit, and then multiply the next digit with the shifted base (in the
case of decimals, multiply by 10 each time you shift the digit). For
example, 12 times 24 is done by first multiplying 2 and 4, then 10 and 4,
then shifting the digit to 2 (20 now), multiplying 20 and 2, and then
multiplying 20 times 10. Finally, add those values up to obtain 288.

12

In binary:

1 001000O0QO0

The following code block illustrates this implementation, and it also
handles negative numbers:

1 function BitwiseMultiply(a, b) {
2 var m = 1,

3 c = 0y

4

5 if (a < 0) {

6 a = BitwiseNegate (a);

7 b = BitwiseNegate (b) ;

8 }

9 while (a >= m && b) {
10 if (a & m) {
11 c = BitwiseAdd (b, c);
12 }
13 b =Db << 1;
14 m=m << 1;
15 }
16 return c;
17 }

18 console.log (BitwiseMultiply (4, 5)); // 20

Division
Division can be thought of as the number of times you can subtract b

from a, given a/b. For example, 4/2 = 2 because 4-2-2 = 0. Using this
property, bitwise division can be implemented as follows:

1 function BitwiseDividePositive (a, b) {
2 var ¢ = 0;

3

4 if (b !'= 0) {

5 while (a >= b) {

6 a = BitwiseSubtract(a, b);
7 ct++;

8 }

9 }
10 return c;
11 }

12 console.log (BitwiseDividePositive (10, 2)); // 5

This is relatively simple for positive numbers. The while loop can
keep subtracting, and a counter variable can store how many times b
subtracted a. However, what about for negative numbers? -10 /2 = -5,
but we cannot subtract 2 from -10 because the while loop would go on

forever. To avoid this, convert both the numbers into positive numbers.
Doing this, we have to keep track of the sign.

a b a * b
+ + +
| — —
— + —
- - +

If negative is represented as 1 and positive as 0, this is the same table
as an XOR table:

e e)
R O~ OO0
O P OW

The division algorithm is shown next. This function subtracts b from
a until it is zero. Again, negative numbers have to be handled
appropriately at the end with a negation helper function.

1 function BitwiseDivide (a, b) {

2 var ¢ = O,

3 isNegative = 0;

4

5 if (a < 0) {

6 a = BitwiseNegate(a); // convert to
positive

7 isNegative = !isNegative;

8 }

9

10 if (b < 0) {

11 b = BitwiseNegate (b); // convert to
positive

12 isNegative = !isNegative;

13 }

14

15 if (b !'= 0) {

16 while (a >= Db) {

17 a = BitwiseSubtract(a, b);

18 c++;

19 }

20 }

21

22 if (isNegative) {

23 c = BitwiseNegate(c);

24 }

25

26 return c;

277 }

28

29 console.log (BitwiseDivide (10, 2)); // 5

30 console.log (BitwiseDivide (=10, 2)); // -5

31 console.log (BitwiseDivide (=200, 4)); // =50

Summary

This chapter covered the basics of bit manipulation in JavaScript. Bit
manipulation is used for high-performance numerical operations. Using
bitwise operators is much faster than using the native methods in the
Math class. With JavaScript advancing into server-side programming
with Node.js, more efficient code is needed. To consolidate the concepts
from this chapter, Table 20-1 summarizes bitwise operators and their
usage.

Table 20-1 Bit Manipulation Summary

Operator Operation Use Case
& AND 1 when both bits are 1
| OR 1 when either bitis 1
~ NOT Inverts all the bits
A XOR 1 when only one of the bits is 1
<< Left shift Shifts to the left, and any excess bits are shifted off
>> Right shift Shifts to the right, and any excess bits are shifted off
>>> Zero-fill right Shifts to the right, and any excess bits are shifted off and the sign bit
shift comes 0
Footnotes

1 https://github.com/Apress/js-data-structures-and-algorithms

https://github.com/Apress/js-data-structures-and-algorithms

Index
A

Access queue
Access stacks
Algorithm
Boyer-Moore string search
KMP string search
Rabin-Karp search
AND operator
Arrays
access
deletion
exercises
matrix rotation
path finding
spiral print
tic-tac-toe check
functional array methods
helper functions
insertion
iteration
K-sorted arrays
largest value
median of two sorted arrays
multidimensional arrays
slice() function
smallest value
Ascending-Order sort
.atob() function
AVL trees
deletion
double rotation
rotate left right
rotate right left
insertion
result

single rotation
rotate left
rotate right

tree balancing

B

Base64 encoding
Big-O notation
coefficient rule
complexities
fundamental rules
master theorem
O(n) algorithm
polynomial rule
product rule
recurrence relations
sum rule
Binary heap
max-heap
percolation
bubble up/down
implementation
max-heap structure
min-heap structure
Binary search algorithm
Binary search trees (BSTs)
deletion
insertion
nth distance, root
result
search
Binary tree
Bioinformatics
Bit manipulation
Bitwise operators
AND
left shift

NOT

OR

right shift

XOR

zero-fill right shift
Bottom variable declaration
Boyer-Moore string search
Breadth-first search (BFS)

end node

graph

level-order traversal

search algorithm

start node

undirected graph
btoa() function
Bubble sorting

C

Caching
LFU (see Least frequently used (LFU) caching)
LRU (see Least recently used (LRU) caching)
spatial locality
temporal locality

Coefficient rule

Coin change

Constructor

Count sort

Cyclical graph

D

Deletion, queue

Deletion stacks

Dense graph

Depth-first search (DFS)
graph
post-order tree traversal
time complexity

dequeuing

Descending-Order sort
Dijkstra’s algorithm
_extractMin method
fibonacci heap
shortest path
stage 1
stage 2
Directed graphs
adding vertex
edges property
origin vertex
removing vertex
Divide-and-conquer method
Doubly linked list
deletion, head
deletion, tail
insertion, head
insertion, tail
nodes
search
Dynamic programming (DP)
coin change
edit (Levenshtein) distance
Knapsack problem
longest common subsequence
motivations
rules

E

Edit (Levenshtein) distance
Encoding

Encryption

enqueuing

F

Fibonacci sequence
Firstin, first out (FIFO)
Functional array methods

filter
map
reduce

G

Graphs
applications
cyclical
definition
degree of vertex
dense
edge
sparse
vertex
weighted edges

Graph traversal
BFS
DFS
techniques

H

Hashtables
get() function
implementation
double-hashing
linear probing
quadratic probing
localStorage
put() function
technique
prime numbers
probing
rehashing/double-hashing
Heaps
binary heap (see Binary heap)
indices
max-heap
complete implementation

sorting
min-heap
complete implementation
sorting
node index summary
operations summary
relationship
sorting
ascending-order
descending-order
Heap sort
Helper functions
.concat()
Jlength property
slice(begin,end)
.splice(begin,size,elementl,element?2...)
spread operator

I

In-order traversal
Insertion

queue

sort

stacks
insidelf variable
isSuperSet function
Iteration

forEach()

for (in)

for (of)

for (variables, condition, modification)

J
Jagged array

JavaScript
block scope
functional scope
global scope

infinity

integer division
maximums
minimums
Number.EPSILON
object property
objects

primality test
true/false checking
===vVs == type

K

Knapsack problem
Knuth-Morris-Pratt string search

L

Last in, first out (LIFO)
Least frequently used (LFU) caching
doubly linked list
get implementation
hash tables
hybrid systems
set implementation
usage
Least recently used (LRU) caching
doubly linked list
get implementation
set implementation
Jength property
Level-order traversal
Linear probing
Linear search
Linked list
Longest common subsequence

M

Matrix rotation
Max-Heap

Memoization
Memory leaks

delete operator

DOM elements

global window object
Mergesort
Min-Heap

root node

structure
Mirror trees
Multidimensional arrays

N

NOT operator
Number operations
addition
division
multiplication
subtraction
Number system

o

Optimal substructure
OR operator

P

Pascal’s triangle

Path finding

Peek queue

Peek stacks
Polynomial rule

.pop() method
Post-order traversal
Pre-order traversal
Primality test

Prime factorization
Prime number hashing
Probing hashing technique

Product rule
Prototypal inheritance
Public-key encryption
.push(element) method

Q

Quadratic probing
Queue

access

deletion

FIFO

insertion

peek

search
Quickselect
Quicksort

R

Rabin-Karp search
application
fingerprint

Random number generation

Recursion
base case

divide-and-conquer method

exercises

decimal to binary conversion

flatten an object
palindrome
permutations, array
fibonacci sequence
iterative solution
recursive solution
tail recursion
Pascal’s triangle

Recursive call stack memory

Recursive functions
Regular expressions

regexes
any numeric characters
floating numeric characters
only alphanumeric characters
only numeric characters
query string

replace(string, replaceString)

Root node

RSA encryption

S

Searching
binary
linear
stacks
Search queue
Secure sockets layer (SSL)
Selection sorting
Set
definition
operation
utility functions
.shift() method
Singly linked list
deletion, head
deletion, value
head
insertion
node removal
reverse
search
slice() function
Sortable stack
Sorting
bubble
count
insertion

mergesort
quickselect
quicksort
selection
built-in sort() method
Sparse graph
Spatial locality
Spiral print
Stack overflow
Stacks
access
deletion
insertion
LIFO
peek
search
String primitive
access
comparison
decomposition
replace
search
String shortening
Sum rule

T

Tail recursive function
Temporal locality
Tic-tac-toe check
Topological sort
Tree traversal
in-order
level-order
post-order
pre-order
Trie (prefix Tree)

U

Unbalanced binary search tree
Undirected graphs
adjacency list
adjacency matrix
edges and vertices
adding
removing
nondirectional edges

V, W
Variable
types
Variable hoisting
XY, Z
XOR operator

	Front Matter
	1. Big-O Notation
	2. JavaScript: Unique Parts
	3. JavaScript Numbers
	4. JavaScript Strings
	5. JavaScript Arrays
	6. JavaScript Objects
	7. JavaScript Memory Management
	8. Recursion
	9. Sets
	10. Searching and Sorting
	11. Hash Tables
	12. Stacks and Queues
	13. Linked Lists
	14. Caching
	15. Trees
	16. Heaps
	17. Graphs
	18. Advanced Strings
	19. Dynamic Programming
	20. Bit Manipulation
	Back Matter

