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Introduction
The	motivation	for	writing	this	book	was	the	lack	of	resources	available
about	data	structures	and	algorithms	written	in	JavaScript.	This	was
strange	to	me	because	today	many	of	the	job	opportunities	for	software
development	require	knowledge	of	JavaScript;	it	is	the	only	language	that
can	be	used	to	write	the	entire	stack,	including	the	front-end,	mobile
(native	and	hybrid)	platforms,	and	back-end.	It	is	crucial	for	JavaScript
developers	to	understand	how	data	structures	work	and	how	to	design
algorithms	to	build	applications.

Therefore,	this	book	aims	to	teach	data	structure	and	algorithm
concepts	from	computer	science	for	JavaScript	rather	than	for	the	more
typical	Java	or	C++.	Because	JavaScript	follows	the	prototypal	inheritance
pattern,	unlike	Java	and	C++	(which	follow	the	inheritance	pattern),
there	are	some	changes	in	writing	data	structures	in	JavaScript.	The
classical	inheritance	pattern	allows	inheritance	by	creating	a	blueprint-
like	form	that	objects	follow	during	inheritance.	However,	the	prototypal
inheritance	pattern	means	copying	the	objects	and	changing	their
properties.

This	book	first	covers	fundamental	mathematics	for	Big-O	analysis
and	then	lays	out	the	basic	JavaScript	foundations,	such	as	primitive
objects	and	types.	Then,	this	book	covers	implementations	and
algorithms	for	fundamental	data	structures	such	as	linked	lists,	stacks,
trees,	heaps,	and	graphs.	Finally,	more	advanced	topics	such	as	efficient
string	search	algorithms,	caching	algorithms,	and	dynamic	programming
problems	are	explored	in	great	detail.
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O(1)	is	holy.
—Hamid	Tizhoosh

Before	learning	how	to	implement	algorithms,	you	should
understand	how	to	analyze	the	effectiveness	of	them.	This	chapter	will
focus	on	the	concept	of	Big-O	notation	for	time	and	algorithmic	space
complexity	analysis.	By	the	end	of	this	chapter,	you	will	understand	how
to	analyze	an	implementation	of	an	algorithm	with	respect	to	both	time
(execution	time)	and	space	(memory	consumed).

Big-O	Notation	Primer
The	Big-O	notation	measures	the	worst-case	complexity	of	an	algorithm.
In	Big-O	notation,	n	represents	the	number	of	inputs.	The	question	asked
with	Big-O	is	the	following:	“What	will	happen	as	n	approaches	infinity?”

When	you	implement	an	algorithm,	Big-O	notation	is	important
because	it	tells	you	how	efficient	the	algorithm	is.	Figure	1-1	shows	some
common	Big-O	notations.

https://doi.org/10.1007/978-1-4842-3988-9_1


Figure	1-1 Common	Big-O	complexities

The	following	sections	illustrate	these	common	time	complexities
with	some	simple	examples.

Common	Examples
O(1)	does	not	change	with	respect	to	input	space.	Hence,	O(1)	is	referred
to	as	being	constant	time.	An	example	of	an	O(1)	algorithm	is	accessing



an	item	in	the	array	by	its	index.	O(n)	is	linear	time	and	applies	to
algorithms	that	must	do	n	operations	in	the	worst-case	scenario.

An	example	of	an	O(n)	algorithm	is	printing	numbers	from	0	to	n-1,
as	shown	here:

1 function  exampleLinear(n) {
2                   for  (var  i = 0 ; i <  n;

i++ ) {
3                              console.log(i);
4                   }
5  }

Similarly,	O(n2)	is	quadratic	time,	and	O(n3)	is	cubic	time.	Examples
of	these	complexities	are	shown	here:

1 function  exampleQuadratic(n) {
2                   for  (var  i = 0 ; i <  n;

i++ ) {
3                                 console.log(i);
4                                for  (var  j

=  i; j <  n; j++ ) {
5                                             con

sole.log(j);
6                              }
7                   }
8  }

1 function  exampleCubic(n) {
2                   for  (var  i = 0 ; i <  n;

i++ ) {
3                                  console.log(i)

;
4                                for  (var  j

=  i; j <  n; j++ ) {
5                                              co

nsole.log(j);
6                                                

  for  (var  k =  j; j <  n; j++ ) {



7                                                
          console.log(k);

8                                                
  }

9                                }
10           }
11 }

Finally,	an	example	algorithm	of	logarithmic	time	complexity	is
printing	elements	that	are	a	power	of	2	between	2	and	n.	For	example,
exampleLogarithmic(10)	will	print	the	following:

2,4,8,16,32,64

The	efficiency	of	logarithmic	time	complexities	is	apparent	with	large
inputs	such	as	a	million	items.	Although	n	is	a	million,
exampleLogarithmic	will	print	only	19	items	because
log2(1,000,000)	=	19.9315686.	The	code	that	implements	this
logarithmic	behavior	is	as	follows:

1 function  exampleLogarithmic(n) {
2                   for  (var  i = 2 ; i <=  n;

i= i*2 ) {
3                          console.log(i);
4                  }
5  }

Rules	of	Big-O	Notation
Let’s	represent	an	algorithm’s	complexity	as	f(n).	n	represents	the
number	of	inputs,	f(n)time	represents	the	time	needed,	and	f(n)space
represents	the	space	(additional	memory)	needed	for	the	algorithm.	The
goal	of	algorithm	analysis	is	to	understand	the	algorithm’s	efficiency	by
calculating	f(n).	However,	it	can	be	challenging	to	calculate	f(n).	Big-O
notation	provides	some	fundamental	rules	that	help	developers	compute
for	f(n).



Coefficient	rule:	If	f(n)	is	O(g(n)),	then	kf(n)	is	O(g(n)),	for	any	constant
k	>	0.	The	first	rule	is	the	coefficient	rule,	which	eliminates	coefficients
not	related	to	the	input	size,	n.	This	is	because	as	n	approaches	infinity,
the	other	coefficient	becomes	negligible.
Sum	rule:	If	f(n)	is	O(h(n))	and	g(n)	is	O(p(n)),	then	f(n)+g(n)	is
O(h(n)+p(n)).	The	sum	rule	simply	states	that	if	a	resultant	time
complexity	is	a	sum	of	two	different	time	complexities,	the	resultant
Big-O	notation	is	also	the	sum	of	two	different	Big-O	notations.
Product	rule:	If	f(n)	is	O(h(n))	and	g(n)	is	O(p(n)),	then	f(n)g(n)	is
O(h(n)p(n)).	Similarly,	the	product	rule	states	that	Big-O	is	multiplied
when	the	time	complexities	are	multiplied.
Transitive	rule:	If	f(n)	is	O(g(n))	and	g(n)	is	O(h(n)),	then	f(n)	is
O(h(n)).	The	transitive	rule	is	a	simple	way	to	state	that	the	same	time
complexity	has	the	same	Big-O.
Polynomial	rule:	If	f(n)	is	a	polynomial	of	degree	k,	then	f(n)	is	O(nk).
Intuitively,	the	polynomial	rule	states	that	polynomial	time
complexities	have	Big-O	of	the	same	polynomial	degree.
Log	of	a	power	rule:	log(nk)	is	O(log(n))	for	any	constant	k	>	0.	With
the	log	of	a	power	rule,	constants	within	a	log	function	are	also	ignored
in	Big-O	notation.
Special	attention	should	be	paid	to	the	first	three	rules	and	the

polynomial	rule	because	they	are	the	most	commonly	used.	I’ll	discuss
each	of	those	rules	in	the	following	sections.

Coefficient	Rule:	“Get	Rid	of	Constants”
Let’s	first	review	the	coefficient	rule	.	This	rule	is	the	easiest	rule	to
understand.	It	simply	requires	you	to	ignore	any	non-input-size-related
constants.	Coefficients	in	Big-O	are	negligible	with	large	input	sizes.
Therefore,	this	is	the	most	important	rule	of	Big-O	notations.
If	f(n)	is	O(g(n)),	then	kf(n)	is	O(g(n)),	for	any	constant	k	>	0.
This	means	that	both	5f(n)	and	f(n)	have	the	same	Big-O	notation	of

O(f(n)).
Here	is	an	example	of	a	code	block	with	a	time	complexity	of	O(n):

1   function a(n){
2       var count =0;



3       for (var i=0;i<n;i++){
4           count+=1;
5       }
6       return count;
7   }

This	block	of	code	has	f(n)	=	n.	This	is	because	it	adds	to	countn
times.	Therefore,	this	function	is	O(n)	in	time	complexity:

1   function a(n){
2       var count =0;
3       for (var i=0;i<5*n;i++){
4           count+=1;
5       }
6       return count;
7   }

This	block	has	f(n)	=	5n.	This	is	because	it	runs	from	0	to	5n.
However,	the	first	two	examples	both	have	a	Big-O	notation	of	O(n).
Simply	put,	this	is	because	if	n	is	close	to	infinity	or	another	large
number,	those	four	additional	operations	are	meaningless.	It	is	going	to
perform	it	n	times.	Any	constants	are	negligible	in	Big-O	notation.

The	following	code	block	demonstrates	another	function	with	a	linear
time	complexity	but	with	an	additional	operation	on	line	6:

1   function a(n){
2       var count =0;
3       for (var i=0;i<n;i++){
4           count+=1;
5       }
6       count+=3;
7       return count;
8   }

Lastly,	this	block	of	code	has	f(n)	=	n+1.	There	is	+1	from	the	last
operation	(count+=3).	This	still	has	a	Big-O	notation	of	O(n).	This	is
because	that	1	operation	is	not	dependent	on	the	input	n.	As	n
approaches	infinity,	it	will	become	negligible.



Sum	Rule:	“Add	Big-Os	Up”
The	sum	rule	is	intuitive	to	understand;	time	complexities	can	be	added.
Imagine	a	master	algorithm	that	involves	two	other	algorithms.	The	Big-
O	notation	of	that	master	algorithm	is	simply	the	sum	of	the	other	two
Big-O	notations.
If	f(n)	is	O(h(n))	and	g(n)	is	O(p(n)),	then	f(n)+g(n)	is	O(h(n)+p(n)).
It	is	important	to	remember	to	apply	the	coefficient	rule	after

applying	this	rule.
The	following	code	block	demonstrates	a	function	with	two	main

loops	whose	time	complexities	must	be	considered	independently	and
then	summed:

 1   function a(n){
 2       var count =0;
 3       for (var i=0;i<n;i++){
 4           count+=1;
 5       }
 6       for (var i=0;i<5*n;i++){
 7           count+=1;
 8       }
 9       return count;
10   }

In	this	example,	line	4	has	f(n)	=	n,	and	line	7	has	f(n)	=	5n.	This
results	in	6n.	However,	when	applying	the	coefficient	rule,	the	final	result
is	O(n)	=	n.

Product	Rule:	“Multiply	Big-Os”
The	product	rule	simply	states	how	Big-Os	can	be	multiplied.
If	f(n)	is	O(h(n))	and	g(n)	is	O(p(n)),	then	f(n)g(n)	is	O(h(n)p(n)).
The	following	code	block	demonstrates	a	function	with	two	nested

for	loops	for	which	the	product	rule	is	applied:

 1   function (n){
 2       var count =0;



 3       for (var i=0;i<n;i++){
 4           count+=1;
 5           for (var i=0;i<5*n;i++){
 6               count+=1;
 7           }
 8       }
 9       return count;
10   }

In	this	example,	f(n)	=	5n*n	because	line	7	runs	5n	times	for	a	total	of
n	iterations.	Therefore,	this	results	in	a	total	of	5n2	operations	.	Applying
the	coefficient	rule,	the	result	is	that	O(n)=n2.

Polynomial	Rule:	“Big-O	to	the	Power	of	k”
The	polynomial	rule	states	that	polynomial	time	complexities	have	a	Big-
O	notation	of	the	same	polynomial	degree.

Mathematically,	it’s	as	follows:

If	f(n)	is	a	polynomial	of	degree	k,	then	f(n)	is	O(nk).
The	following	code	block	has	only	one	for	loop	with	quadratic	time

complexity:

1   function a(n){
2       var count =0;
3       for (var i=0;i<n*n;i++){
4           count+=1;
5       }
6       return count;
7   }

In	this	example,	f(n)	=	nˆ2	because	line	4	runs	n*n	iterations.
This	was	a	quick	overview	of	the	Big-O	notation.	There	is	more	to

come	as	you	progress	through	the	book.

Summary
Big-O	is	important	for	analyzing	and	comparing	the	efficiencies	of



algorithms.	The	analysis	of	Big-O	starts	by	looking	at	the	code	and
applying	the	rules	to	simplify	the	Big-O	notation.	The	following	are	the
most	often	used	rules:
Eliminating	coefficients/constants	(coefficient	rule)
Adding	up	Big-Os	(sum	rule)
Multiplying	Big-Os	(product	rule)
Determining	the	polynomial	of	the	Big-O	notation	by	looking	at	loops
(polynomial	rule)

Exercises
Calculate	the	time	complexities	for	each	of	the	exercise	code	snippets.

Exercise	1

1   function someFunction(n) {
2
3       for (var i=0;i<n*1000;i++) {
4           for (var j=0;j<n*20;j++) {
5               console.log(i+j);
6           }
7       }
8
9   }

Exercise	2

 1   function someFunction(n) {
 2
 3       for (var i=0;i<n;i++) {
 4           for (var j=0;j<n;j++) {
 5               for (var k=0;k<n;k++) {
 6                   for (var l=0;l<10;l++) {
 7                       console.log(i+j+k+l);
 8                   }



 9               }
10           }
11       }
12
13   }

Exercise	3

1   function someFunction(n) {
2
3       for (var i=0;i<1000;i++) {
4           console.log("hi");
5       }
6
7   }

Exercise	4

1   function someFunction(n) {
2
3       for (var i=0;i<n*10;i++) {
4           console.log(n);
5       }
6
7   }

Exercise	5

1   function someFunction(n) {
2
3       for (var i=0;i<n;i*2) {
4           console.log(n);
5       }



6
7   }

Exercise	6

1   function someFunction(n) {
2
3       while (true){
4           console.log(n);
5       }
6   }

Answers
1.

O(n2)
There	are	two	nested	loops.	Ignore	the	constants	in	front	of	n.

	
2.

O(n3)
There	are	four	nested	loops,	but	the	last	loop	runs	only	until	10.

	
3.

O(1)
Constant	complexity.	The	function	runs	from	0	to	1000.	This	does

not	depend	on	n.

	

4.
O(n)

Linear	complexity.	The	function	runs	from	0	to	10n.	Constants
are	ignored	in	Big-O.

	

5.
O(log2n)

Logarithmic	complexity.	For	a	given	n,	this	will	operate	only	log2n
times	because	i	is	incremented	by	multiplying	by	2	rather	than
adding	1	as	in	the	other	examples.

	

6.
O(∞)

Infinite	loop.	This	function	will	not	end.
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This	chapter	will	briefly	discuss	some	exceptions	and	cases	of
JavaScript’s	syntax	and	behavior.	As	a	dynamic	and	interpreted
programming	language,	its	syntax	is	different	from	that	of	traditional
object-oriented	programming	languages.	These	concepts	are
fundamental	to	JavaScript	and	will	help	you	to	develop	a	better
understanding	of	the	process	of	designing	algorithms	in	JavaScript.

JavaScript	Scope
The	scope	is	what	defines	the	access	to	JavaScript	variables.	In	JavaScript,
variables	can	belong	to	the	global	scope	or	to	the	local	scope.	Global
variables	are	variables	that	belong	in	the	global	scope	and	are	accessible
from	anywhere	in	the	program.

Global	Declaration:	Global	Scope
In	JavaScript,	variables	can	be	declared	without	using	any	operators.
Here’s	an	example:

1  test = "sss";
2  console.log(test); // prints "sss"

However,	this	creates	a	global	variable,	and	this	is	one	of	the	worst
practices	in	JavaScript.	Avoid	doing	this	at	all	costs.	Always	use	var	or
let	to	declare	variables.	Finally,	when	declaring	variables	that	won’t	be

https://doi.org/10.1007/978-1-4842-3988-9_2


modified,	use	const.

Declaration	with	var:	Functional	Scope
In	JavaScript,	var	is	one	keyword	used	to	declare	variables.	These
variable	declarations	“float”	all	the	way	to	the	top.	This	is	known	as
variable	hoisting.	Variables	declared	at	the	bottom	of	the	script	will	not
be	the	last	thing	executed	in	a	JavaScript	program	during	runtime.

Here’s	an	example:

1  function scope1(){
2          var top = "top";
3          bottom = "bottom";
4          console.log(bottom);
5
6          var bottom;
7  }
8  scope1(); // prints "bottom" - no error

How	does	this	work?	The	previous	is	the	same	as	writing	the
following:

1  function scope1(){
2          var top = "top";
3          var  bottom;
4          bottom = "bottom"
5          console.log(bottom);
6  }
7  scope1(); // prints "bottom" - no error

The	bottom	variable	declaration,	which	was	at	the	last	line	in	the
function,	is	floated	to	the	top,	and	logging	the	variable	works.

The	key	thing	to	note	about	the	var	keyword	is	that	the	scope	of	the
variable	is	the	closest	function	scope.	What	does	this	mean?

In	the	following	code,	the	scope2	function	is	the	function	scope
closest	to	the	print	variable:

1  function scope2(print){



2          if(print){
3                   var insideIf = '12';
4          }
5          console.log(insideIf);
6  }
7  scope2(true); // prints '12' - no error

To	illustrate,	the	preceding	function	is	equivalent	to	the	following:

1  function scope2(print){
2          var insideIf;
3
4          if(print){
5                   insideIf = '12';
6          }
7          console.log(insideIf);
8  }
9  scope2(true); // prints '12' - no error

In	Java,	this	syntax	would	have	thrown	an	error	because	the
insideIf	variable	is	generally	available	only	in	that	if	statement
block	and	not	outside	it.

Here’s	another	example:

1  var a = 1;
2  function four() {
3    if (true) {
4      var a = 4;
5    }
6
7    console.log(a); // prints '4'
8  }

4	was	printed,	not	the	global	value	of	1,	because	it	was	redeclared
and	available	in	that	scope.

Declaration	with	let: Block Scope



Another	keyword	that	can	be	used	to	declare	a	variable	is	let.	Any
variables	declared	this	way	are	in	the	closest	block	scope	(meaning
within	the	{}	they	were	declared	in).

1  function scope3(print){
2          if(print){
3                   let insideIf = '12';
4          }
5          console.log(insideIf);
6  }
7  scope3(true); // prints ''

In	this	example,	nothing	is	logged	to	the	console	because	the
insideIf	variable	is	available	only	inside	the	if	statement	block.

Equality	and	Types
JavaScript	has	different	data	types	than	in	traditional	languages	such	as
Java.	Let’s	explore	how	this	impacts	things	such	as	equality	comparison.

Variable	Types
In	JavaScript,	there	are	seven	primitive	data	types:	boolean,	number,
string,	undefined,	object,	function,	and	symbol	(symbol	won’t	be
discussed).	One	thing	that	stands	out	here	is	that	undefined	is	a	primitive
value	that	is	assigned	to	a	variable	that	has	just	been	declared.	typeof	is
the	primitive	operator	used	to	return	the	type	of	a	variable.

 1  var is20 = false; // boolean
 2  typeof is20; // boolean
 3
 4  var  age = 19;
 5  typeof age; // number
 6
 7  var  lastName = "Bae";
 8  typeof lastName; // string
 9
10  var fruits = ["Apple", "Banana", "Kiwi"];



11  typeof fruits; // object
12
13  var me = {firstName:"Sammie", lastName:"Bae"};
14  typeof me; // object
15
16  var nullVar = null;
17  typeof nullVar; // object
18
19  var function1 = function(){
20          console.log(1);
21  }
22  typeof function1 // function
23
24  var blank;
25  typeof blank; // undefined

Truthy/Falsey	Check
True/false	checking	is	used	in	if	statements.	In	many	languages,	the
parameter	inside	the	if()	function	must	be	a	boolean	type.	However,
JavaScript	(and	other	dynamically	typed	languages)	is	more	flexible	with
this.	Here’s	an	example:

1  if(node){
2          ...
3  }

Here,	node	is	some	variable.	If	that	variable	is	empty,	null,	or
undefined,	it	will	be	evaluated	as	false.

Here	are	commonly	used	expressions	that	evaluate	to	false:

false
0
Empty	strings	(''	and	"")
NaN
undefined
null



Here	are	commonly	used	expressions	that	evaluate	to	true:

true
Any	number	other	than	0
Non-empty	strings
Non-empty	object
Here’s	an	example:

1  var printIfTrue = ";
2
3  if (printIfTrue) {
4          console.log('truthy');
5  } else {
6          console.log('falsey'); // prints

'falsey'
7  }

===	vs	==
JavaScript	is	a	scripting	language,	and	variables	are	not	assigned	a	type
during	declaration.	Instead,	types	are	interpreted	as	the	code	runs.

Hence,	===	is	used	to	check	equality	more	strictly	than	==.	===
checks	for	both	the	type	and	the	value,	while	==	checks	only	for	the
value.

1  "5" == 5 // returns true
2  "5" === 5 // returns false

"5" == 5	returns	true	because	"5"	is	coerced	to	a	number	before
the	comparison.	On	the	other	hand,	"5" === 5	returns	false	because
the	type	of	"5"	is	a	string,	while	5	is	a	number.

Objects
Most	strongly	typed	languages	such	as	Java	use	isEquals()	to	check
whether	two	objects	are	the	same.	You	may	be	tempted	to	simply	use	the
==	operator	to	check	whether	two	objects	are	the	same	in	JavaScript.

However,	this	will	not	evaluate	to	true.



1  var o1 = {};
2  var o2 = {};
3
4  o1 == o2 // returns false
5  o1 === o2 // returns false

Although	these	objects	are	equivalent	(same	properties	and	values),
they	are	not	equal.	Namely,	the	variables	have	different	addresses	in
memory.

This	is	why	most	JavaScript	applications	use	utility	libraries	such	as
lodash1	or	underscore,2	which	have	the	isEqual(object1,
object2)	function	to	check	two	objects	or	values	strictly.	This	occurs
via	implementation	of	some	property-based	equality	checking	where
each	property	of	the	object	is	compared.

In	this	example,	each	property	is	compared	to	achieve	an	accurate
object	equality	result.

 1  function isEquivalent(a, b) {
 2      // arrays of property names
 3      var aProps =

Object.getOwnPropertyNames(a);
 4      var bProps =

Object.getOwnPropertyNames(b);
 5
 6      // If their property lengths are

different, they're different objects
 7      if (aProps.length != bProps.length) {
 8          return false;
 9      }
10
11      for (var  i = 0; i < aProps.length; i++)

{
12          var propName = aProps[i];
13
14          // If the values of the property are

different, not equal
15          if (a[propName] !== b[propName]) {



16              return false;
17          }
18      }
19
20     // If everything matched, correct
21     return  true;
22  }
23  isEquivalent({'hi':12},{'hi':12}); // returns

true

However,	this	would	still	work	for	objects	that	have	only	a	string	or	a
number	as	the	property.

1  var obj1 = {'prop1': 'test','prop2': function
(){} };

2  var obj2 = {'prop1': 'test','prop2': function
(){} };

3
4  isEquivalent(obj1,obj2); // returns false

This	is	because	functions	and	arrays	cannot	simply	use	the	==
operator	to	check	for	equality.

1  var function1 = function(){console.log(2)};
2  var function2 = function(){console.log(2)};
3  console.log(function1 == function2); // prints

'false'

Although	the	two	functions	perform	the	same	operation,	the
functions	have	different	addresses	in	memory,	and	therefore	the	equality
operator	returns	false.	The	primitive	equality	check	operators,	==	and
===,	can	be	used	only	for	strings	and	numbers.	To	implement	an
equivalence	check	for	objects,	each	property	in	the	object	needs	to	be
checked.

Summary



1

2

JavaScript	has	a	different	variable	declaration	technique	than	most
programming	languages.	var	declares	the	variable	within	the	function
scope,	let	declares	the	variable	in	the	block	scope,	and	variables	can	be
declared	without	any	operator	in	the	global	scope;	however,	global	scope
should	be	avoided	at	all	times.	For	type	checking,	typeof	should	be
used	to	validate	the	expected	type.	Finally,	for	equality	checks,	use	==	to
check	the	value,	and	use	===	to	check	for	the	type	as	well	as	the	value.
However,	use	these	only	on	non-object	types	such	as	numbers,	strings,
and	booleans.

Footnotes
https://lodash.com/

	
http://underscorejs.org/

	

https://lodash.com/
http://underscorejs.org/
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This	chapter	will	focus	on	JavaScript	number	operations,	number
representation,	Number	objects,	common	number	algorithms,	and
random	number	generation.	By	the	end	of	this	chapter,	you	will
understand	how	to	work	with	numbers	in	JavaScript	as	well	as	how	to
implement	prime	factorization,	which	is	fundamental	for	encryption.

Number	operations	of	a	programming	language	allow	you	to	compute
numerical	values.	Here	are	the	number	operators	in	JavaScript:

+ : addition
- : subtraction
/ : division
* : multiplication
% : modulus

These	operators	are	universally	used	in	other	programming
languages	and	are	not	specific	to	JavaScript.

Number	System
JavaScript	uses	a	32-bit	floating-point	representation	for	numbers,	as
shown	in	Figure	3-1.	In	this	example,	the	value	is	0.15625.	The	sign	bit
(the	31st	bit)	indicates	that	the	number	is	negative	if	the	sign	bit	is	1.	The
next	8	bits	(the	30th	to	23rd	bits)	indicate	the	exponent	value,	e.	Finally,
the	remaining	23	bits	represent	the	fraction	value.

https://doi.org/10.1007/978-1-4842-3988-9_3


Figure	3-1 The	32-bit	floating-point	number	system

With	the	32	bits,	the	value	is	computed	by	this	esoteric	formula:

Figure	3-1	shows	the	following	break	down	of	the	32	bits:
sign	=	0
e	=	(0111100)2	=	124	(in	base	10)

This	results	in	the	following:
value	=	1	x	2124-127	x	1.25	=	1	x	2-3	x	1.25	=	0.15625
With	decimal	fractions,	this	floating-point	number	system	causes

some	rounding	errors	in	JavaScript.	For	example,	0.1	and	0.2	cannot	be
represented	precisely.

Hence,	0.1	+	0.2	===	0.3	yields	false.

1  0.1 + 0.2 === 0.3; // prints 'false'

To	really	understand	why	0.1	cannot	be	represented	properly	as	a
32-bit	floating-point	number,	you	must	understand	binary.	Representing
many	decimals	in	binary	requires	an	infinite	number	of	digits.	This
because	binary	numbers	are	represented	by	2n	where	n	is	an	integer.

While	trying	to	calculate	0.1,	long	division	will	go	on	forever.	As
shown	in	Figure	3-2,	1010	represents	10	in	binary.	Trying	to	calculate
0.1	(1/10)	results	in	an	indefinite	number	of	decimal	points.



Figure	3-2 Long	division	for	0.1

JavaScript	Number	Object
Luckily,	there	are	some	built-in	properties	of	the	Number	object	in
JavaScript	that	help	work	around	this.

Integer	Rounding



Since	JavaScript	uses	floating	point	to	represent	all	numbers,	integer
division	does	not	work.

Integer	division	in	programming	languages	like	Java	simply	evaluates
division	expressions	to	their	quotient.

For	example,	5/4	is	1	in	Java	because	the	quotient	is	1	(although
there	is	a	remainder	of	1	left).	However,	in	JavaScript,	it	is	a	floating
point.

1  5/4; // 1.25

This	is	because	Java	requires	you	to	explicitly	type	the	integer	as	an
integer.	Hence,	the	result	cannot	be	a	floating	point.	However,	if
JavaScript	developers	want	to	implement	integer	division,	they	can	do
one	of	the	following:

Math.floor - rounds down to nearest integer
Math.round - rounds to nearest integer
Math.ceil  - rounds up to nearest integer

Math.floor(0.9); // 0
Math.floor(1.1); // 1

Math.round(0.49); // 0
Math.round(0.5); // 1

Math.round(2.9); // 3
Math.ceil(0.1); // 1 Math.ceil(0.9); // 1

Math.ceil(21); // 21 Math.ceil(21.01); // 22

Number.EPSILON
Number.EPSILON	returns	the	smallest	interval	between	two
representable	numbers.	This	is	useful	for	the	problem	with	floating-point
approximation.

1  function numberEquals(x, y) {
2      return Math.abs(x - y) < Number.EPSILON;
3  }
4



5  numberEquals(0.1 + 0.2, 0.3); // true

This	function	works	by	checking	whether	the	difference	between	the
two	numbers	are	smaller	than	Number.EPSILON.	Remember	that
Number.EPSILON	is	the	smallest	difference	between	two	representable
numbers.	The	difference	between	0.1+0.2	and	0.3	will	be	smaller	than
Number.EPSILON.

Maximums
Number.MAX_SAFE_INTEGER	returns	the	largest	integer.

1  Number.MAX_SAFE_INTEGER + 1 ===
Number.MAX_SAFE_INTEGER + 2; // true

This	returns	true	because	it	cannot	go	any	higher.	However,	it	does
not	work	for	floating-point	decimals.

1  Number.MAX_SAFE_INTEGER + 1.111 ===
Number.MAX_SAFE_INTEGER + 2.022; // false

Number.MAX_VALUE	returns	the	largest	floating-point	number
possible.

Number.MAX_VALUE	is	equal	to	1.7976931348623157e+308.

1  Number.MAX_VALUE + 1 === Number.MAX_VALUE + 2;
// true

Unlike	like	Number.MAX_SAFE_INTEGER,	this	uses	double-
precision	floating-point	representation	and	works	for	floating	points	as
well.

1  Number.MAX_VALUE + 1.111 === Number.MAX_VALUE
+ 2.022; // true

Minimums
Number.MIN_SAFE_INTEGER	returns	the	smallest	integer.

Number.MIN_SAFE_INTEGER	is	equal	to	-9007199254740991.



1  Number.MIN_SAFE_INTEGER - 1 ===
Number.MIN_SAFE_INTEGER - 2; // true

This	returns	true	because	it	cannot	get	any	smaller.	However,	it
does	not	work	for	floating-point	decimals.

1   Number.MIN_SAFE_INTEGER - 1.111 ===
Number.MIN_SAFE_INTEGER - 2.022; // false

Number.MIN_VALUE	returns	the	smallest	floating-point	number
possible.

Number.MIN_VALUE	is	equal	to	5e-324.	This	is	not	a	negative
number	since	it	is	the	smallest	floating-point	number	possible	and	means
that	Number.MIN_VALUE	is	actually	bigger	than	Number.MIN_-
SAFE_INTEGER.

Number.MIN_VALUE	is	also	the	closest	floating	point	to	zero.

1  Number.MIN_VALUE - 1 == -1; // true

This	is	because	this	is	similar	to	writing	0 - 1 == -1.

Infinity
The	only	thing	greater	than	Number.MAX_VALUE	is	Infinity	,	and
the	only	thing	smaller	than	Number.MAX_SAFE_INTEGER	is	-
Infinity.

1  Infinity > Number.MAX_SAFE_INTEGER; // true
2  -Infinity < Number.MAX_SAFE_INTEGER // true;
3  -Infinity -32323323 == -Infinity -1; // true

This	evaluates	to	true	because	nothing	can	go	smaller	than	-
Infinity.

Size	Summary
This	inequality	summarizes	the	size	of	JavaScript	numbers	from	smallest
(left)	to	largest	(right):



-Infinity < Number.MIN_SAFE_INTEGER <
Number.MIN_VALUE < 0 < Number.MAX_SAFE_IN- TEGER <
Number.MAX_VALUE < Infinity

Number	Algorithms
One	of	the	most	discussed	algorithms	involving	numbers	is	for	testing
whether	a	number	is	a	prime	number.	Let’s	review	this	now.

Primality	Test
A	primality	test	can	be	done	by	iterating	from	2	to	n,	checking	whether
modulus	division	(remainder)	is	equal	to	zero.

 1  function isPrime(n){
 2      if (n <= 1) {
 3              return false;
 4      }
 5
 6      // check from 2 to n-1
 7      for (var i=2; i<n; i++) {
 8              if (n%i == 0) {
 9                      return false;
10          }
11      }
12
13      return true;
14  }

Time	Complexity:	O(n)
The	time	complexity	is	O(n)	because	this	algorithm	checks	all

numbers	from	0	to	n.
This	is	an	example	of	an	algorithm	that	can	be	easily	improved.	Think

about	how	this	method	iterates	through	2	to	n.	Is	it	possible	to	find	a
pattern	and	make	the	algorithm	faster?	First,	any	multiple	of	2s	can	be
ignored,	but	there	is	more	optimization	possible.

Let’s	list	some	prime	numbers.

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61



,67,71,73,79,83,89,97

This	is	difficult	to	notice,	but	all	primes	are	of	the	form	6k	±	1,	with
the	exception	of	2	and	3	where	k	is	some	integer.	Here’s	an	example:

5 = (6-1) , 7 = ((1*6) + 1), 13 = ((2*6) + 1) etc

Also	realize	that	for	testing	the	prime	number	n,	the	loop	only	has	to
test	until	the	square	root	of	n.	This	is	because	if	the	square	root	of	n	is	not
a	prime	number,	n	is	not	a	prime	number	by	mathematical	definition.

 1  function isPrime(n){
 2      if (n <= 1) return false;
 3      if (n <= 3) return true;
 4
 5      // This is checked so that we can skip
 6      // middle five numbers in below loop
 7      if (n%2 == 0 || n%3 == 0) return false;
 8
 9      for (var i=5; i*i<=n; i=i+6){
10          if (n%i == 0 || n%(i+2) == 0)
11             return false;
12      }
13
14      return true;
15  }

Time	Complexity:	O(sqrt(n))
This	improved	solution	cuts	the	time	complexity	down	significantly.

Prime	Factorization
Another	useful	algorithm	to	understand	is	for	determining	prime
factorization	of	a	number.	Prime	numbers	are	the	basis	of	encryption
(covered	in	Chapter	4)	and	hashing	(covered	in	Chapter	11),	and	prime
factorization	is	the	process	of	determining	which	prime	numbers
multiply	to	a	given	number.	Given	10,	it	would	print	5	and	2.

 1  function primeFactors(n){



 2          // Print the number of 2s that divide n
 3          while (n%2 == 0) {
 4              console.log(2);
 5              n = n/2;
 6          }
 7
 8          // n must be odd at this point. So we
can skip one element (Note i = i +2)
 9          for (var i = 3; i*i <= n; i = i+2) {
 10             // While i divides n, print i and
divide n
11              while (n%i == 0) {
12                  console.log(i);
13                  n = n/i;
14              }
15          }
16          // This condition is to handle the case
when n is a prime number
17          // greater than 2
18          if (n > 2) {
19                  console.log(n);
20          }
21  }
22  primeFactors(10); // prints '5' and '2'

Time	Complexity:	O(sqrt(n))
This	algorithm	works	by	printing	any	number	that	is	divisible	by	i

without	a	remainder.	In	the	case	that	a	prime	number	is	passed	into	this
function,	it	would	be	handled	by	printing	whether	n	is	greater	than	2.

Random	Number	Generator
Random	number	generation	is	important	to	simulate	conditions.
JavaScript	has	a	built-in	function	for	generating	numbers:
Math.random().

Math.random()	returns	a	float	between	0	and	1.



You	may	wonder	how	you	get	random	integers	or	numbers	greater
than	1.

To	get	floating	points	higher	than	1,	simply	multiply
Math.random()	by	the	range.	Add	or	subtract	from	it	to	set	the	base.

Math.random() * 100; // floats between
0  and  100

Math.random() * 25 + 5; // floats between
5  and  30

Math.random() * 10 - 100; // floats between -100
and -90

To	get	random	integers,	simply	use	Math.floor(),
Math.round(),	or	Math.ceil()	to	round	to	an	integer.

Math.floor(Math.random() * 100); // integer
between 0 and 99

Math.round(Math.random() * 25) + 5; // integer
between 5 and 30

Math.ceil(Math.random() * 10) - 100; // integer
between -100 and -90

Exercises
1.

Given	three	numbers	x,	y,	and	p,	compute	(xˆy)	%	p.	(This	is	modular	exponentiation.)
Here,	x	is	the	base,	y	is	exponent,	and	p	is	the	modulus.
Modular	exponentiation	is	a	type	of	exponentiation	performed	over	a	modulus,

which	is	useful	in	computer	science	and	used	in	the	field	of	public-key	encryption
algorithms.

At	first,	this	problem	seems	simple.	Calculating	this	is	a	one-line	solution,	as	shown
here:

1  function modularExponentiation ( base, exponent, modulus
) {

2          return Math.pow(base,exponent) % modulus;
3  }



This	does	exactly	what	the	question	asks.	However,	it	cannot	handle	large
exponents.

Remember	that	this	is	implemented	with	encryption	algorithms.	In	strong
cryptography,	the	base	is	often	at	least	256	bit	(78	digits).

Consider	this	case,	for	example:
Base:	6x1077,	Exponent:	27,	Modulus:	497
In	this	case,	(6x1077)27	is	a	very	large	number	and	cannot	be	stored	in	a	32-bit

floating	point.
There	is	another	approach,	which	involves	some	math.	One	must	observe	the

following	mathematical	property:
For	arbitrary	a	and	b,

c % m = (a  b) % m
c % m = [(a % m)  (b % m)] % m

Using	this	mathematical	property,	you	can	iterate	1	to	the	exponent,	recalculating
each	time	by	multiplying	the	current	modulus	value	with	the	last.

Here	is	the	pseudocode:

1  Set value = 1, current exponent = 0.
2  Increment current exponent by 1.
3  Set value = (base  value) mod modulus until current

exponent is reached exponent

Example:	Base:	4,	Exponent:	3,	Modulus:	5
4ˆ3	%	5	=	64	%	5	=	4
value	=	(lastValue	x	base	)	%	modulus:
value	=	(1	x	4)	%	5	=	4	%	5	=	4
value	=	(4	x	4)	%	5	=	16	%	5	=	1
value	=	(1	x	4)	%	5	=	4	%	5	=	4
Finally,	here	is	the	code:

 1  function modularExponentiation ( base, exponent, modulus
) {

 2          if (modulus == 1) return 0;
 3
 4          var value = 1;
 5



 6          for ( var i=0; i<exponent; i++ ){
 7                  value = (value * base) % modulus;
 8          }
 9          return value;
10  }

Time	Complexity:	O(n)
The	time	complexity	is	O(n)	where	n	is	equal	to	the	exponent	value.

2.
Print	all	primes	less	than	n.

To	do	this,	use	the	isPrime	function	covered	in	this	chapter.	Simply	iterate	from	0
to	n	and	print	any	prime	numbers	where	isPrime()	evaluates	to	true

 1  function allPrimesLessThanN(n){
 2          for (var i=0; i<n; i++) {
 3                  if (isPrime(i)){
 4                          console.log(i);
 5                  }
 6          }
 7  }
 8
 9  function isPrime(n){
10      if (n <= 1) return false;
11      if (n <= 3) return true;
12
13      // This is checked so that we can skip
14      // middle five numbers in below loop
15      if (n%2 == 0 || n%3 == 0) return false;
16
17      for (var i=5; i*i<=n; i=i+6){
18          if (n%i == 0 || n%(i+2) == 0)
19             return false;
20      }
21
22      return true;
23  }
24



25  allPrimesLessThanN(15);
26
27  // prints 2, 3, 5, 7, 11, 13

Time	Complexity:	O(nsqrt(n))
This	is	because	isPrime	(covered	earlier	in	this	chapter)	with	a	time	complexity	of

O(sqrt(n))	is	run	n	times.
3.

Check	for	a	set	of	prime	factors.
Let’s	define	ugly	numbers	as	those	whose	only	prime	factors	are	2,	3,	or	5.	The

sequence	1,	2,	3,	4,	5,	6,	8,	9,	10,	12,	15,	…	shows	the	first	11	ugly	numbers.	By
convention,	1	is	included.

To	do	this,	divide	the	number	by	the	divisors	(2,	3,	5)	until	it	cannot	be	divided
without	a	remainder.	If	the	number	can	be	divided	by	all	the	divisors,	it	should	be	1
after	dividing	everything.

 1  function maxDivide (number, divisor) {
 2          while (number % divisor == 0) {
 3                  number /= divisor;
 4          }
 5          return number;
 6  }
 7
 8  function isUgly (number){
 9          number = maxDivide(number, 2);
10          number = maxDivide(number, 3);
11          number = maxDivide(number, 5);
12          return number === 1;
13  }

Iterate	this	over	n,	and	now	the	list	of	ugly	numbers	can	be	returned.

 1  function arrayNUglyNumbers (n) {
 2          var counter = 0, currentNumber = 1, uglyNumbers

= [];
 3
 4          while ( counter != n ) {
 5



 6                  if ( isUgly(currentNumber) ) {
 7                          counter++;
 8                          uglyNumbers.push(currentNumber);
 9                  }
10
11                  currentNumber++;
12          }
13
14          return uglyNumbers;
15  }

Time	Complexity	for	maxDivide(number,	divisor):
O(logdivisor(number))
The	time	complexity	of	maxDivide	is	a	logarithmic	function	which
depends	on	divisor	and	the	number.	When	testing	primes	of	2,	3,	and
5,	the	logarithmic	of	2	(log2	(n))	yields	the	highest	time	complexity.
Time	Complexity	for	isUgly:	O(log2(n))
Time	Complexity	for	arrayNUglyNumbers:	O(n(log2(n)))

The	isUgly	function	is	limited	by	the	time	complexity	of
maxDivide(number, 2).	Hence,	arrayNUglyNumbers	has	n	times
that	time	complexity.

Summary
Recall	that	all	numbers	in	JavaScript	are	in	32-bit	floating	point	format.
To	get	the	smallest	possible	floating	point	increment,	you	should	use
Number.EPILSON.	The	maximum	and	minimum	numbers	of	JavaScript
can	be	summarized	by	the	following	inequality:

-Infinity < Number.MIN_SAFE_INTEGER <
Number.MIN_VALUE < 0
< Number.MAX_SAFE_INTEGER < Number.MAX_VALUE <
Infinity

Prime	number	validation	and	prime	factorization	are	concepts	used



in	various	computer	science	applications	such	as	encryption,	as	covered
in	Chapter	4.	Finally,	random	number	generation	in	JavaScript	works	via
Math.random().
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This	chapter	will	focus	on	working	with	strings,	the	JavaScript	String
object,	and	the	String	object’s	built-in	functions.	You	will	learn	how	to
access,	compare,	decompose,	and	search	strings	for	commonly	used	real-
life	purposes.	In	addition,	the	chapter	will	explore	string	encoding,
decoding,	encryption,	and	decryption.	By	the	end	of	this	chapter,	you	will
understand	how	to	effectively	work	with	JavaScript	strings	and	have	a
fundamental	understanding	of	string	encoding	and	encryption.

JavaScript	String	Primitive
JavaScript’s	native	String	primitive	comes	with	various	common	string
functions.

String	Access
For	accessing	characters,	you	use	.chartAt().

1  'dog'.charAt(1); // returns "o"

.charAt(index)	takes	an	index	(which	starts	at	0)	and	returns	the
character	at	that	index	location	in	the	string.

For	string	(multiple-character)	access,	you	can	use
.substring(startIndex, endIndex),	which	will	return	the
characters	between	the	specified	indices.

https://doi.org/10.1007/978-1-4842-3988-9_4


1  'YouTube'.substring(1,2); // returns 'o'
2  YouTube'.substring(3,7); // returns 'tube'

If	you	do	not	pass	a	second	parameter	(endIndex),	it	will	return	all
the	character	values	from	the	specified	start	position	until	the	end.

1  return 'YouTube'.substring(1); // returns
'outube'

String	Comparison
Most	programming	languages	have	a	function	that	allows	you	to
compare	strings.	In	JavaScript,	this	can	be	done	simply	by	using	less-than
and	greater-than	operators.

1  var a = 'a';
2  var b = 'b';
3  console.log(a < b); // prints 'true'

This	can	be	really	useful	for	comparing	strings	when	sorting
algorithms,	which	is	covered	later	in	the	book.

However,	if	you	are	comparing	two	strings	of	different	lengths,	it
starts	comparing	from	the	start	of	the	string	until	the	length	of	the
smaller	string.

1  var a = 'add';
2  var b = 'b';
3
4  console.log(a < b); // prints 'true'

In	this	example,	a	and	b	are	compared.	Since	a	is	smaller	than	b,	a <
b	evaluates	to	true.

1  var a = 'add';
2  var b = 'ab';
3  console.log(a < b); // prints 'false'

In	this	example,	after	'a'	and	'b'	are	compared,	'd'	and	'b'	are
compared.	Processing	cannot	continue	because	everything	in	'ab'	has



been	looked	at.	This	is	the	same	as	comparing	'ad'	with	'ab'.

1  console.log('add'<'ab' == 'ad'<'ab'); //
prints 'true'

String	Search
To	find	a	specific	string	within	a	string,	you	can	use
.indexOf(searchValue[, fromIndex]).	This	takes	a	parameter
that	is	the	string	to	be	searched	as	well	as	an	optional	parameter	for	the
starting	index	for	the	search.	It	returns	the	position	of	the	matching
string,	but	if	nothing	is	found,	then	-1	is	returned.	Note	that	this	function
is	case	sensitive.

1  'Red Dragon'.indexOf('Red');    // returns 0
2  'Red Dragon'.indexOf('RedScale'); // returns -1
3  'Red Dragon'.indexOf('Dragon', 0); // returns 4
4  'Red Dragon'.indexOf('Dragon', 4); // returns 4
5  'Red Dragon'.indexOf(", 9);    // returns 9

To	check	for	the	occurrence	of	a	search	string	inside	a	larger	string,
simply	check	whether	-1	was	returned	from	.indexOf.

1  function existsInString (stringValue, search)
{

2          return stringValue.indexOf(search) !==
-1;

3  }
4  console.log(existsInString('red','r')); //

prints 'true';
5  console.log(existsInString('red','b')); //

prints 'false';

You	can	use	an	additional	parameter	to	search	after	a	certain	index	in
a	string.	An	example	is	counting	occurrences	of	certain	letters	.	In	the
following	example,	the	occurrences	of	the	character	'a'	will	be	counted:

1  var str         = "He's my king from this day



until his last day";
2  var count       = 0;
3  var pos         = str.indexOf('a');
4  while (pos !== -1) {
5    count++;
6    pos = str.indexOf('a', pos + 1);
7  }
8  console.log(count); // prints '3'

Finally,	startsWith	returns	true	(boolean)	if	the	string	starts	with
the	specified	input,	and	endsWith	checks	whether	the	string	ends	with
the	specified	input.

1  'Red Dragon'.startsWith('Red'); // returns
true

2  'Red Dragon'.endsWith('Dragon'); // returns
true

3  'Red Dragon'.startsWith('Dragon'); // returns
false

4  'Red Dragon'.endsWith('Red'); // returns false

String	Decomposition
For	decomposing	a	string	into	parts,	you	can	use
.split(separator),	which	is	a	great	utility	function.	It	takes	one
parameter	(the	separator)	and	creates	an	array	of	substrings.

1  var test1 = 'chicken,noodle,soup,broth';
2  test1.split(","); // ["chicken", "noodle",
"soup", "broth"]

Passing	an	empty	separator	will	create	an	array	of	all	the	characters.

1  var test1 = 'chicken';
2  test1.split(""); // ["c", "h", "i", "c", "k",

"e", "n"]

This	is	useful	for	when	there	are	items	listed	in	a	string.	The	string



can	be	turned	into	an	array	to	easily	iterate	through	them.

String	Replace
.replace(string, replaceString)	replaces	a	specified	string
within	a	string	variable	with	another	string.

1  "Wizard of Oz".replace("Wizard","Witch"); //
"Witch of Oz"

Regular	Expressions
Regular	expressions	(regexes)	are	a	set	of	characters	that	define	a	search
pattern.	Learning	how	to	use	regexes	is	a	massive	task	of	its	own,	but	as	a
JavaScript	developer,	it	is	important	you	know	the	basics	of	regexes.

JavaScript	also	comes	with	the	native	object	RegExp,	which	is	used
for	regular	expressions.

The	constructor	for	the	RegExp	object	takes	two	parameters:	the
regular	expression	and	the	optional	match	settings,	as	shown	here:

i      Perform case-insensitive matching
g      Perform a global match (find all matches

rather than stopping after first match)
m      Perform multiline matching

RegExp	has	the	following	two	functions:

search():	Tests	for	matches	in	a	string.	This	returns	the	index	of	the
match.
match():	Tests	for	matches.	This	returns	all	the	matches.

The	JavaScript	String	object	also	has	the	following	two	regex-
related	functions	that	accept	the	RegExp	object	as	an	argument:

exec():	Tests	for	matches	in	a	string.	This	returns	the	first	match.
test():	Tests	for	matches	in	a	string.	This	returns	true	or	false.

Basic	Regex
Here	are	the	basic	regex	rules:



^:	Indicates	the	start	of	a	string/line
\d:	Finds	any	digit
[abc]:	Finds	any	character	between	the	brackets
[^abc]:	Finds	any	character	not	between	the	brackets
[0-9]:	Finds	any	digit	between	the	brackets
[^0-9]:	Finds	any	digit	not	between	the	brackets
(x|y):	Finds	any	of	the	alternatives	specified
The	following	returns	index	11,	which	is	the	index	of	the	character	D,

which	is	the	first	character	of	the	matched	regex:

1  var str = "JavaScript DataStructures";
2  var n = str.search(/DataStructures/);
3  console.log(n); // prints '11'

Commonly	Used	Regexes
Regexes	are	immensely	helpful	for	checking	the	validity	of	user	input	in
JavaScript.	One	common	type	of	input	check	is	to	validate	whether	it	has
any	numeric	characters.

The	following	are	five	regexes	that	developers	often	use.

Any	Numeric	Characters

   /\d+/

1  var reg = /\d+/;
2  reg.test("123"); // true
3  reg.test("33asd"); // true
4  reg.test("5asdasd"); // true
5  reg.test("asdasd"); // false

Only	Numeric	Characters

  /^\d+$/

1  var reg = /^\d+$/;
2  reg.test("123"); // true
3  reg.test("123a"); // false



4  reg.test("a"); // false

Floating	Numeric	Characters

   /^[0-9]*.[0-9]*[1-9]+$/

1  var reg = /^[0-9]*.[0-9]*[1-9]+$/;
2  reg.test("12"); // false
3  reg.test("12.2"); // true

Only	Alphanumeric	Characters

   /[a-zA-Z0-9]/

1  var reg = /[a-zA-Z0-9]/;
2  reg.test("somethingELSE"); // true
3  reg.test("hello"); // true
4  reg.test("112a"); // true
5  reg.test("112"); // true
6  reg.test("^"); // false

Query	String

/([^?=&]+)(=([^&]*))/

In	web	applications,	web	URLs	often	pass	in	parameters	in	the	URL
for	routing	or	database	query	purposes.

For	example,	for	the	URL
http://your.domain/product.aspx?
category=4&product_id=2140&query=lcd+tv	,	the	URL	might
respond	to	a	back-end	SQL	query	like	the	following:

1  SELECT LCD, TV FROM database WHERE Category =
4 AND Product_id=2140;

To	parse	these	parameters,	regexes	can	be	useful.

1 var  uri = 'http://your.domain/product.aspx?

http://your.domain/product.aspx%253Fcategory%253D4%2526product_id%253D2140%2526query%253Dlcd%252Btv


category=4&product_id=2140&query=lcd+tv' ;
2 var  queryString =  {};
3  uri.replace(
4                  new RegExp ("([^?=&]+)(=

([^&]*))?" , "g" ),
5                  function ($0, $1, $2, $3) {

queryString[$1] =  $3; }
6  );
7  console.log('ID: ' +  queryString['product_id'

]); // ID: 2140
8  console.log('Name: '

+  queryString['product_name' ]); // Name: undefined
9  console.log('Category: '

+  queryString['category' ]); // Category: 4

Encoding
Encoding	is	a	general	concept	in	computer	science	that	represents
characters	in	a	specialized	format	for	efficient	transmission	or	storage.

All	computer	file	types	are	encoded	in	specific	structures.
For	example,	when	you	upload	a	PDF,	the	encoding	may	look	like	this:

 1  JVBERi0xLjMKMSAwIG9iago8PCAvVHlwZSAvQ2F0YWxvZ
wovT3V0bGluZXMgMiAwIFIKL1BhZ2VzIDMgMCBS\

 2  ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9PdXRsa
W5lcyAvQ291bnQgMCA+PgplbmRvYmoKMyAwIG9i\

 3  ago8PCAvVHlwZSAvUGFnZXMKL0tpZHMgWzYgMCBSCl0KL
0NvdW50IDEKL1Jlc291cmNlcyA8PAovUHJvY1Nl\

 4  dCA0IDAgUgovRm9udCA8PCAKL0YxIDggMCBSCj4+Cj4+C
i9NZWRpYUJveCBbMC4wMDAgMC4wMDAgNjEyLjAw\

 5  MCA3OTIuMDAwXQogPj4KZW5kb2JqCjQgMCBvYmoKWy9QR
EYgL1RleHQgXQplbmRvYmoKNSAwIG9iago8PAov\

 6  Q3JlYXRvciAoRE9NUERGKQovQ3JlYXRpb25EYXRlIChEO
jIwMTUwNzIwMTMzMzIzKzAyJzAwJykKL01vZERh\

 7  dGUgKEQ6MjAxNTA3MjAxMzMzMjMrMDInMDAnKQo+Pgplb
mRvYmoKNiAwIG9iago8PCAvVHlwZSAvUGFnZQov\

 8  UGFyZW50IDMgMCBSCi9Db250ZW50cyA3IDAgUgo+Pgplb



mRvYmoKNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0\
 9  ZURlY29kZQovTGVuZ3RoIDY2ID4+CnN0cmVhbQp4nOMy0

DMwMFBAJovSuZxCFIxN9AwMzRTMDS31DCxNFUJS\
10  FPTdDBWMgKIKIWkKCtEaIanFJZqxCiFeCq4hAO4PD0MKZ

W5kc3RyZWFtCmVuZG9iago4IDAgb2JqCjw8IC9U\
11  eXBlIC9Gb250Ci9TdWJ0eXBlIC9UeXBlMQovTmFtZSAvR

jEKL0Jhc2VGb250IC9UaW1lcy1Cb2xkCi9FbmNv\
12  ZGluZyAvV2luQW5zaUVuY29kaW5nCj4+CmVuZG9iagp4c

mVmCjAgOQowMDAwMDAwMDAwIDY1NTM1IGYgCjAw\
13  MDAwMDAwMDggMDAwMDAgbiAKMDAwMDAwMDA3MyAwMDAwM

CBuIAowMDAwMDAwMTE5IDAwMDAwIG4gCjAwMDAw\
14  MDAyNzMgMDAwMDAgbiAKMDAwMDAwMDMwMiAwMDAwMCBuI

AowMDAwMDAwNDE2IDAwMDAwIG4gCjAwMDAwMDA0\
15  NzkgMDAwMDAgbiAKMDAwMDAwMDYxNiAwMDAwMCBuIAp0c

mFpbGVyCjw8Ci9TaXplIDkKL1Jvb3QgMSAwIFIK\
16  L0luZm8gNSAwIFIKPj4Kc3RhcnR4cmVmCjcyNQolJUVPR

go=.....

This	is	a	Base64-encoded	PDF	string.	Data	like	this	is	often	passed	to
the	server	when	a	PDF	file	is	uploaded.

Base64	Encoding
The	btoa()	function	creates	a	Base64-encoded	ASCII	string	from	a
string.	Each	character	in	the	string	is	treated	as	a	byte	(8	bits:	eight	0	and
1s).

The	.atob()	function	decodes	a	string	of	data	that	has	been
encoded	using	Base64	encoding.	For	example,	the	string	“hello	I	love
learning	to	computer	program”	in	a	Base64-encoded	string	looks	like
this:
aGVsbG8gSSBsb3ZlIGxlYXJuaW5nIHRvIGNvbXB1dGVyIHByb2dyYW0.

1  btoa('hello I love learning to computer
program');

2  //  aGVsbG8gSSBsb3ZlIGxlYXJuaW5nIHRvIGNvbXB1dG
VyIHByb2dyYW0

1  atob('aGVsbG8gSSBsb3ZlIGxlYXJuaW5nIHRvIGNvbXB1
dGVyIHByb2dyYW0');



2  // hello I love learning to computer program

Learn	more	about	Base64	at
https://en.wikipedia.org/wiki/Base64	.

String	Shortening
Have	you	ever	wondered	how	URL-shortening	sites	such	as	Bit.ly	work?
A	simplified	URL	compression	algorithm	follows	a	certain	structure,	as
shown	here	for	www.google.com	:

1.
The	database	creates	a	unique	integer-based	ID	for	the	URL.	In
Figure	4-1,	www.google.com	has	the	entry	11231230	in	the
database.

	

Figure	4-1 Database	entries

2.
The	integer	ID	is	shortened	into	a	string.	When	shortened	with
Base62	encoding,	11231230	will	be	VhU2.

	

https://en.wikipedia.org/wiki/Base64
http://bit.ly
http://www.google.com
http://www.google.com


Figure	4-2 Database	entries	after	shortening

For	the	shortening	part,	the	following	algorithm	can	be	used.	There
are	62	possible	letters	and	numbers,	consisting	of	26	lowercase	letters,
26	uppercase	letters,	and	10	numbers	(0	to	9).

1 var  DICTIONARY =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXY
Z0123456789" .split(");

2
3 function  encodeId(num) {
4               var  base =  DICTIONARY.length;
5               var  encoded = " ;
6
7               if  (num === 0 ) {
8                    return  DICTIONARY[0 ];
9               }
10
11                     while  (num > 0 ) {
12                        encoded

+=  DICTIONARY[(num %  base)];
13                        num = Math .floor(num

/  base);
14          }
15
16              return  reverseWord(encoded);
17  }
18
19 function  reverseWord(str) {



20              var  reversed = "" ;
21              for  (var  i =  str.length - 1 ;

i >= 0 ; i-- ) {
22                                reversed

+=  str.charAt(i);
23          }
24          return  reversed;
25  }
26
27 function  decodeId(id) {
28              var  base =  DICTIONARY.length;
29              var  decoded = 0 ;
30
31              for  (var  index = 0 ; index

<  id.split("" ).length; index++ ) {
32                          decoded =  decoded

*  base + DICTIONARY.indexOf(id.charAt(index));
33              }
34
35              return  decoded;
36  }
37
38  console.log(encodeId(11231230 )); // prints

'VhU2'
39  console.log(decodeId('VhU2' )); // prints

'11231230'

Encryption
Encryption	is	extremely	important	when	protecting	people’s	information
online.	Have	you	ever	seen	the	warning	in	Figure	4-3	in	the	Google
Chrome	browser?



Figure	4-3 SSL	warning

This	likely	means	the	web	site	you	are	trying	to	access	does	not	have
the	proper	Secure	Sockets	Layer	(SSL)	certificate.

Figure	4-4 TSL	process

TSL	is	a	standard	security	technology	for	establishing	an	encrypted
link	between	the	server	and	the	client	(browser).	The	following	are	the
simplified	steps	of	the	TSL	process.	In	this	process,	asymmetric
encryption	is	used	for	different	keys	for	encryption	and	decryption	by
the	server.	The	browser	only	uses	symmetric	encryption,	which	uses	a
single	key	to	both	encrypt	and	decrypt	the	data.
1.

The	server	sends	its	asymmetric	public	key	to	the	browser. 	
2.



The	browser	creates	a	symmetric	key	for	the	current	session,	which
is	encrypted	by	the	server’s	asymmetric	public	key. 	

3.
The	server	decrypts	the	browser’s	session	via	its	private	key	and
retrieves	the	session	key.

	
4.

Both	systems	have	the	session	key	and	will	use	this	to	transmit	data
securely.

	
This	is	secure	because	only	the	browser	and	the	server	know	the

session	key.	If	the	browser	was	to	connect	to	the	same	server	the	next
day,	a	new	session	key	would	be	created.

The	SSL	warning	message	is	a	sign	that	the	browser	and	server	may
not	be	encrypting	the	data	on	that	connection.

The	most	commonly	used	public-key	encryption	algorithm	is	the	RSA
algorithm.

RSA	Encryption
RSA	is	an	encryption	algorithm	based	on	the	difficulty	of	factoring	large
integers.	In	RSA,	two	large	prime	numbers	and	a	supplementary	value
are	generated	as	the	public	key.	Anyone	can	use	the	public	key	to	encrypt
a	message,	but	only	those	with	the	prime	factors	can	decode	the
message.

There	are	three	phases	in	the	process:	key	generation,	encryption,
and	decryption.
Key	generation:	The	public	key	(shared)	and	private	key	(kept	secret)
are	generated.	The	construction	method	of	the	keys	generated	should
be	also	secret.
Encryption:	The	secret	message	can	be	encrypted	via	the	public	key.
Decryption:	Only	the	private	key	can	be	used	to	decrypt	the	message.
Here’s	an	overview	of	the	algorithm:

1.
Select	two	(usually	large)	prime	numbers,	p	and	q.
a.

The	product	of	p	and	q	is	denoted	as	n. 	
	



b. The	product	of	(p-1)	and	(q-1)	is	denoted	as	phi.	
2.

Choose	two	exponents,	e	and	d.
a.

e	is	typically	3.	Other	values	greater	than	2	can	be	used.	
b.

d	is	a	value	such	that	(e	×	d)	%	phi	=	1. 	

	

Encryption process is as shown:
        m - message:
        m^e % n = c
        c - encrypted message

Decryption process is as shown:
        c^d % n = m

This	is	the	implementation	of	calculating	d:

 1  function modInverse(e, phi) {
 2      var m0 = phi, t, q;
 3      var x0 = 0, x1 = 1;
 4
 5      if (phi == 1)
 6        return 0;
 7
 8      while (e > 1) {
 9          // q is quotient
10          q = Math.floor(e / phi);
11
12          t = phi;
13
14          // phi is remainder now, process same

as
15          // Euclid's algo
16          phi = e % phi, e = t;



17
18          t = x0;
19
20          x0 = x1 - q * x0;
21
22          x1 = t;
23      }
24
25      // Make x1 positive
26      if (x1 < 0)
27         x1 += m0;
28
29      return x1;
30  }
31  modInverse(7,40); // 23

Key	pairs	of	a	public	key	and	a	private	key	also	need	to	be	generated.

 1  function RSAKeyPair(p, q) {
 2          // Need to check that they are primes
 3          if (! (isPrime(p) && isPrime(q)))
 4                  return;
 5
 6          // Need to check that they're not the

same
 7          if (p==q)
 8                  return;
 9
10          var n = p * q,
11                  phi = (p-1)*(q-1),
12                  e = 3,
13                  d = modInverse(e,phi);
14
15          // Public key: [e,n], Private key:

[d,n]
16          return [[e,n], [d,n]]
17  }



Let’s	pick	5	and	11	as	the	primes	and	see	an	example	where
message	is	50.

1  RSAKeyPair(5,11); //Public key: [3,55],
Private key: [27,55]

   p = 5, 11
   n = p x q = 55
   phi = (5-1) x (11-1) = 4 x 10 = 40
   e = 3
   (e x d) % phi = 1 (3 x d) % 40 = 1
   (81) % 40 = 1. 81 = 3 x d = 3 x 27
   d = 27

   Encryption:
           m - message: 50
           m^e % n = c
           50^3 % 55 = 40

   Encrypted message.,c:
           40
Decryption:
c^d % n = m
40^27 % 55 = 50

This	fully	encrypts	50,	and	the	receiver	can	decrypt	that	back	to	50.
Typically	the	prime	numbers	chosen	are	very	large	for	the	RSA
algorithm.	This	is	because	the	prime	factorization	of	large	numbers	takes
a	long	time	to	compute.	Today’s	standard	is	to	use	a	4,096-bit	prime
product.	Computing	its	prime	factors	would	take	years	even	for
advanced	computers	to	compute.	Figure	4-5	shows	the	largest	possible
value	for	a	4,096-bit	number.



Figure	4-5 24096

Summary
Various	natively	implemented	string	functions	were	covered	in	this



chapter	and	are	summarized	in	Table	4-1.

Table	4-1 String	Function	Summary

Function Usage
charAt(index) Accesses	a	single	character	at	index
substring(startIndex,
endIndex)

Accesses	part	of	string	from	startIndex	to
endIndex

str1 > str2 Returns	true	if	str1	is	lexicographically	bigger	than
str2

indexOf(str, startIndex) Index	of	the	desired	str	starting	at	startIndex
str.split(delimiter) Breaks	a	string	into	an	array	with	the	specified

delimiter

str.replace(original,new) Replaces	original	with	new

In	addition,	a	JavaScript	native	Regex	object	can	be	used	for
commonly	used	string	validation.	Table	4-2	provides	a	summary.

Table	4-2 Regex	Summary

Regex	Pattern Usage

	/\d+/ Any	numeric	characters
/^\d+$/ Only	numeric	characters
/^[0-9]*.[0-9]*[1-9]+$/ Float	numeric	characters
/[a-zA-Z0-9]/ Only	alphanumeric	characters
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This	chapter	will	focus	on	working	with	JavaScript	arrays.	As	a	JavaScript
developer,	you	will	use	the	array	often;	it	is	the	most	commonly	used
data	structure.	Arrays	in	JavaScript	come	with	a	lot	of	built-in	methods.
In	fact,	there	are	various	ways	to	do	the	same	type	of	array	operations
for	each	use	case.	By	the	end	of	this	chapter,	you	will	understand	how	to
work	with	arrays	and	be	able	to	choose	the	right	method	for	the
situation.

Introducing	Arrays
Arrays	are	one	of	the	most	fundamental	data	structures.	If	you	have	ever
programmed	before,	you’ve	most	likely	used	an	array.

1   var array1 = [1,2,3,4];

For	any	data	structure,	developers	are	interested	in	time	and	space
complexity	associated	with	the	four	fundamental	operations:	access,
insertion,	deletion,	and	search.	(For	a	review	of	Big-O	notations,	please
refer	to	Chapter	1.)

Insertion
Insertion	means	adding	a	new	element	inside	a	data	structure.	JavaScript
implements	array	insertion	with	the	.push(element)	method	.	This
method	adds	a	new	element	at	the	end	of	the	array.

https://doi.org/10.1007/978-1-4842-3988-9_5


1   var array1 = [1,2,3,4];
2   array1.push(5); //array1 = [1,2,3,4,5]
3   array1.push(7); //array1 = [1,2,3,4,5,7]
4   array1.push(2); //array1 = [1,2,3,4,5,7,2]

The	time	complexity	of	this	operation	is	O(1)	in	theory.	It	should	be
noted	that,	practically,	this	depends	on	the	JavaScript	engine	that	runs
the	code.	This	applies	to	all	natively	supported	JavaScript	objects.

Deletion
JavaScript	implements	array	deletion	with	the	.pop()	method	.	This
method	removes	the	last-added	element	of	the	array.	This	also	returns
the	removed	element.

1   var array1 = [1,2,3,4];
2   array1.pop(); //returns 4, array1 = [1,2,3]
3   array1.pop(); //returns 3, array1 = [1,2]

The	time	complexity	of	.pop	is	O(1)	similarly	to	.push.
Another	way	to	remove	an	element	from	an	array	is	with	the

.shift()	method	.	This	method	will	remove	the	first	element	and
return	it.

1   array1 = [1,2,3,4];
2   array1.shift(); //returns 1, array1 = [2,3,4]
3   array1.shift(); //returns 2, array1 = [3,4]

Access
Accessing	an	array	at	a	specified	index	only	takes	O(1)	because	this
process	uses	that	index	to	get	the	value	directly	from	the	address	in
memory.	It	is	done	by	specifying	the	index	(remember	that	indexing
starts	at	0).

1   var array1 = [1,2,3,4];
2   array1[0]; //returns 1
3   array1[1]; //returns 2



Iteration
Iteration	is	the	process	of	accessing	each	of	the	items	contained	within	a
data	structure.	There	are	multiple	ways	to	iterate	through	an	array	in
JavaScript.	They	all	have	a	time	complexity	of	O(n)	since	the	iteration	is
visiting	n	number	of	elements.

for	(Variables;	Condition;	Modification)
for	is	the	most	common	method	of	iteration.	It	is	most	often	used	in	this
form:

1   for ( var i=0, len=array1.length; i<len; i++ ) {
2       console.log(array1[i]);
3   }

The	previous	code	simply	means	initialize	the	variable	i,	check
whether	the	condition	is	false	before	executing	the	body	(i<len),	and
then	modify	(i++)	until	the	condition	is	false.	Similarly,	you	can	use	a
while	loop.	However,	the	counter	will	have	to	be	set	outside.

1   var counter=0;
2   while(counter<array1.length){
3       // insert code here
4       counter++;
5   }

You	can	implement	an	infinite	loop	using	a	while	loop,	as	shown
here:

1   while(true){
2       if (breakCondition) {
3           break;
4       }
5   }

Similarly,	a	for	loop	can	implement	an	infinite	loop	by	not	setting	a
condition,	as	shown	here:



1   for ( ; ;) {
2       if (breakCondition) {
3           break
4       }
5   }

for	(	in	)
Another	way	to	iterate	a	JavaScript	array	is	to	call	the	indices	one	by	one.
The	variable	specified	before	in	is	the	index	of	the	array,	as	follows:

1   var array1 = ['all','cows','are','big'];
2
3   for (var index in array1) {
4       console.log(index);
5   }

This	prints	the	following:	0,1,2,3.
To	print	the	content,	use	this:

1   for (var index in array1) {
2       console.log(array1[index]);
3   }

This	printsall,	cows,	are,	and	big.

for	(	of	)
The	variable	specified	before	of	is	the	element	(the	value)	of	the	array,
as	follows:

1   for (var element of array1) {
2       console.log(element);
3   }

This	prints	out	all,	cows,	are,	and	big.

forEach(	)
The	big	difference	between	forEach	and	other	methods	of	iteration	is



that	forEach	cannot	break	out	of	the	iteration	or	skip	certain	elements
in	the	array.	forEach	is	more	expressive	and	explicit	by	going	through
each	element.

1   var array1 = ['all','cows','are','big'];
2
3   array1.forEach( function (element, index){
4       console.log(element);
5   });
6
7   array1.forEach( function (element, index){
8       console.log(array1[index]);
9   });

Both	print	all,	cows,	are,	and	big.

Helper	Functions
The	following	sections	discuss	other	commonly	used	helper	functions	for
processing.	In	addition,	working	with	arrays	will	be	covered.

.slice(begin,end)
This	helper	function	returns	a	portion	of	an	existing	array	without
modifying	the	array.	.slice()	takes	two	parameters:	the	beginning
index	and	the	ending	index	of	the	array.

1   var array1 = [1,2,3,4];
2   array1.slice(1,2); //returns [2], array1 =
[1,2,3,4]
3   array1.slice(2,4); //returns [3,4], array1 =
[1,2,3,4]

If	only	the	beginning	index	is	passed,	the	ending	will	be	assumed	to
be	the	maximum	index.

1   array1.slice(1); //returns [2,3,4], array1 =
[1,2,3,4]



2   array1.slice(1,4); //returns [2,3,4], array1
= [1,2,3,4]

If	nothing	is	passed,	this	function	simply	returns	a	copy	of	the	array.
It	should	be	noted	that	array1.slice() === array1	evaluates	to
false.	This	is	because	although	the	contents	of	the	arrays	are	the	same,
the	memory	addresses	at	which	those	arrays	reside	are	different.

1   array1.slice(); //returns [1,2,3,4], array1 =
[1,2,3,4]

This	is	useful	for	copying	an	array	in	JavaScript.	Remember	that
arrays	in	JavaScript	are	reference-based,	meaning	that	if	you	assign	a
new	variable	to	an	array,	changes	to	that	variable	apply	to	the	original
array.

 1   var array1 = [1,2,3,4],
 2       array2 = array1;
 3
 4   array1 // [1,2,3,4]
 5   array2 // [1,2,3,4]
 6
 7   array2[0] = 5;
 8
 9   array1 // [5,2,3,4]
10   array2 // [5,2,3,4]

The	changing	element	of	array2	changed	the	original	array	by
accident	because	it	is	a	reference	to	the	original	array.	To	create	a	new
array,	you	can	use	.from().

 1   var array1 = [1,2,3,4];
 2   var array2 = Array.from(array1);
 3
 4   array1 // [1,2,3,4]
 5   array2 // [1,2,3,4]
 6
 7   array2[0] = 5;



 8
 9   array1 // [1,2,3,4]
10   array2 // [5,2,3,4]

.from()	takes	O(n),	where	n	is	the	size	of	the	array.	This	is	intuitive
because	copying	the	array	requires	copying	all	n	elements	of	the	array.

.splice(begin,size,element1,element2…)
This	helper	function	returns	and	changes	the	contents	of	an	array	by
removing	existing	elements	and/or	adding	new	elements.

.splice()	takes	three	parameters:	the	beginning	index,	the	size	of
things	to	be	removed,	and	the	new	elements	to	add.	New	elements	are
added	at	the	position	specified	by	the	first	parameter.	It	returns	the
removed	elements.

1   var array1 = [1,2,3,4];
2   array1.splice(); //returns [], array1 =

[1,2,3,4]
3   array1.splice(1,2); //returns [2,3], array1 =

[1,4]

This	example	demonstrates	removal.	[2,3]	was	returned	because	it
selected	two	items	starting	from	an	index	of	1.

1   var array1 = [1,2,3,4];
2   array1.splice(); //returns [], array1 =

[1,2,3,4]
3   array1.splice(1,2,5,6,7); //returns

[2,3],array1 = [1,5,6,7,4]

Anything	(any	object	type)	can	be	added	to	the	array.	This	is	the
beauty	(and	odd	part)	of	JavaScript.

1   var array1 = [1,2,3,4];
2   array1.splice(1,2,[5,6,7]); //returns [2,3],

array1 = [1,[5,6,7],4]
3   array1 = [1,2,3,4];
4   array1.splice(1,2,{'ss':1}); //returns [2,3],



array1 = [1,{'ss':1},4]

.splice()	is,	worst	case,	O(n).	Similarly	to	copying,	if	the	range
specified	is	the	whole	array,	each	n	item	has	to	be	removed.

.concat()
This	adds	new	elements	to	the	array	at	the	end	of	the	array	and	returns
the	array.

1   var array1 = [1,2,3,4];
2   array1.concat(); //returns [1,2,3,4], array1 =
[1,2,3,4]
3   array1.concat([2,3,4]); //returns
[1,2,3,4,2,3,4],array1 = [1,2,3,4]

.length	Property
The	.length	property	returns	the	size	of	the	array.	Changing	this
property	to	a	lower	size	can	delete	elements	from	the	array.

1   var array1 = [1,2,3,4];
2   console.log(array1.length); //prints 4
3   array1.length = 3; // array1 = [1,2,3]

Spread	Operator
The	spread	operator,	denoted	by	three	periods	(...),	is	used	to	expand
arguments	where	zero	arguments	are	expected.

1   function addFourNums(a, b, c, d) {
2      return a + b + c + d;
3   }
4   var numbers = [1, 2, 3, 4];
5   console.log(addFourNums(...numbers)); // 10

Both	the	Math.max	and	Math.min	functions	take	an	unlimited
number	of	parameters,	so	you	can	use	the	spread	operator	for	the
following	operations.

To	find	the	maximum	in	an	array,	use	this:



1   var array1 = [1,2,3,4,5];
2   Math.max(array1); // 5

To	find	the	minimum	in	an	array,	use	this:

1   var array2 = [3,2,-123,2132,12];
2   Math.min(array2); // -123

Exercises
All	the	code	for	the	exercises	can	be	found	on	GitHub.1

Find	Two	Array	Elements	in	an	Array	That	Add	Up	to	a	Number
Problem:	Given	the	array	arr,	find	and	return	two	indices	of	the	array
that	add	up	to	weight	or	return	-1	if	there	is	no	combination	that
adds	up	to	weight.

For	example,	in	an	array	like	[1,2,3,4,5],	what	numbers	add	up	to
9?

The	answers	are	4	and	5,	of	course.
The	simple	solution	is	to	try	every	combination	by	having	two	for

loops,	as	shown	here:

 1   function findSum(arr, weight) {
 2       for (var i=0,arrLength=arr.length;

i<arrLength; i++){
 3           for (var j=i+1; j<arrLength; j++)

{
 4               if (arr[i]+arr[j]==weight){
 5                   return [i,j];
 6               }
 7           }
 8       }
 9       return -1;
10   }

This	solution	iterates	through	an	array	looking	to	see	whether	a
matching	pair	exists.



Two	for	loops	over	n	elements	of	the	array	yields	a	high	time
complexity.	However,	no	extra	memory	was	created.	Similar	to	how
time	complexity	describes	the	time	required	relative	to	input	size,	n,
to	finish	the	algorithm,	the	space	complexity	describes	the	additional
memory	needed	for	implementation.	The	space	complexity,	O(1),	is
constant.

Time	Complexity:	O(n2)
Space	Complexity:	O(1)
Let’s	think	about	how	to	do	this	in	linear	time	of	O(n).
What	if	any	previously	seen	array	elements	were	stored	and	could

be	checked	easily?
Here’s	the	input:

1   var arr = [1,2,3,4,5];
2   var weight = 9;

Here,	4	and	5	are	the	combination,	and	their	indices	are	[3,4].
How	could	it	be	determined	that	a	solution	exists	when	5	is	visited?

If	the	current	value	is	at	5	and	the	weight	is	9,	the	remaining
required	weight	is	just	4	(9-5=4).	Since	4	is	shown	before	5	in	the
array,	this	solution	can	work	in	O(n).	Finally,	to	store	the	seen
elements,	use	a	JavaScript	object	as	a	hash	table.	The	implementation
and	use	of	a	hash	table	will	be	discussed	in	later	chapters.	Storing	into
and	retrieving	a	JavaScript	object	property	is	O(1)	in	time.

 1   function findSumBetter(arr, weight) {
 2       var hashtable = {};
 3
 4       for (var i=0, arrLength=arr.length;

i<arrLength; i++) {
 5           var currentElement = arr[i],
 6               difference = weight -

currentElement;
 7
 8           // check the right one already

exists
 9           if (hashtable[currentElement] !=



undefined) {
10               return [i, hashtable[weight-

currentElement]];
11           } else {
12               // store index
13               hashtable[difference] = i;
14           }
15       }
16       return -1;
17   }

Time	Complexity:	O(n)
Space	Complexity:	O(n)
Storing	into	a	hash	table	and	looking	an	item	up	from	a	hash	table

is	only	O(1).	Space	complexity	has	increased	to	O(n)	to	store	the
visited	array	indices	inside	the	hash	table.

Implement	the	Array.Slice()	Function	from	Scratch
Let’s	review	what	the	.slice()	function	does.

.slice()	takes	two	parameters:	the	beginning	index	and	the	last
ending	index	of	the	array.	It	returns	a	portion	of	an	existing	array
without	modifying	the	array	function	arraySlice	(array,
beginIndex,	endIndex).

1 function arraySlice(array, beginIndex,
endIndex) {

2 // If no parameters passed, return the array
3     if  (! beginIndex && ! endIndex) {
4         return  array;
5    }
6
7 // If only beginning index is found, set

endIndex to size
8  endIndex =  array.length;
9
10 var  partArray =  [];



11
12 // If both begin and end index specified

return the part of the array
13 for  (var  i =  beginIndex; i <  endIndex;

i++ ) {
14    partArray.push(array[i]);
15  }
16
17         return  partArray;
18  }
19  arraySlice([1 , 2 , 3 , 4 ], 1 , 2 ); //

[2]
20  arraySlice([1 , 2 , 3 , 4 ], 2 , 4 ); //

[3,4]

Time	Complexity:	O(n)
Space	Complexity	:	O(n)
The	time	complexity	is	O(n)	because	all	n	items	in	the	array	must

be	accessed.	Space	complexity	is	also	O(n)	to	hold	all	n	items	when
copying	the	array.

Find	the	Median	of	Two	Sorted	Arrays	of	the	Same	Size
Recall	that	median	in	an	even	number	of	a	set	is	the	average	of	the	two
middle	numbers.	If	the	array	is	sorted,	this	is	simple.

Here’s	an	example:
[1,2,3,4]	has	the	median	of	(2+3)/2	=	2.5.

 1   function medianOfArray(array) {
 2       var length = array.length;
 3       // Odd
 4       if (length % 2 == 1) {
 5           return

array[Math.floor(length/2)];
 6       } else {
 7       // Even
 8           return

(array[length/2]+array[length/2 - 1])/2;



 9       }
10   }

Now,	you	can	iterate	through	both	of	the	arrays	and	compare
which	is	bigger	to	track	the	median.	If	the	two	arrays	are	the	same
size,	the	total	size	will	be	an	even	number.

This	is	because	both	two	even	numbers	and	two	odd	numbers	add
up	to	an	even	number.	Please	refer	to	Chapter	8	for	more	background.

Since	both	of	the	arrays	are	sorted,	this	function	can	be	recursively
called.	Each	time,	it	checks	which	median	is	greater.

If	the	second	array’s	median	is	greater,	the	first	array	is	cut	in	half,
and	only	the	higher	half	is	passed	recursively.

If	the	first	array’s	median	is	greater,	the	second	array	is	cut	in	half,
and	only	the	higher	half	is	passed	in	as	the	first	array	for	the	next
function	call	because	the	array2	parameter	in	the	function	must
always	be	bigger	than	the	array1	parameter.	Finally,	the	size	of	the
array	represented	as	pos	is	required	to	check	whether	the	size	of	the
array	is	even	or	odd.

Here’s	another	example:
array1	=	[1,2,3]	and	array2	=	[4,	5,	6]
Here,	the	median	of	array1	is	2,	and	the	median	of	array2	is	5.

So,	the	median	must	be	present	within	[2,3]	and	[4,5].	Since	there	are
only	four	elements	left,	the	median	can	be	computed	as	follows:

max(arr1[0],	arr2[0])	+	min(arr1[1],	arr2[1])	/	2;

 1 function  medianOfArray(array) {
 2     var  length =  array.length;
 3     // Odd
 4     if  (length % 2 == 1 ) {
 5         return  array[Math .floor(length / 2

)];
 6    } else  {
 7     // Even
 8         return  (array[length / 2 ]

+  array[length / 2 - 1 ]) / 2 ;
 9    }
10  }



11 // arr2 is the bigger array
12 function  medianOfTwoSortedArray(arr1, arr2,

pos) {
13     if  (pos <= 0 ) {
14         return -1 ;
15    }
16     if  (pos == 1 ) {
17         return  (arr1[0] +  arr2[0]) / 2 ;
18    }
19     if  (pos == 2 ) {
20         return  (Math .max(arr1[0], arr2[0])

+ Math .min(arr1[1], arr2[1])) / 2 ;
21    }
22
23     var  median1 =  medianOfArray(arr1),
24         median2 =  medianOfArray(arr2);
25
26     if  (median1 ==  median2) {
27         return  median1;
28    }
29
30     var  evenOffset =  pos % 2 == 0 ? 1 : 0

,
31        offsetMinus = Math .floor(pos / 2 )

-  evenOffset,
32        offsetPlus = Math .floor(pos / 2 )

+  evenOffset;
33
34
35     if  (median1 <  median2) {
36         return  medianOfTwoSortedArray(arr1.

slice(offsetMinus), arr2.slice(offsetMinus),
offsetPlus);

37    } else  {
38         return  medianOfTwoSortedArray(arr2.

slice(offsetMinus), arr1.slice(offsetMinus),
offsetPlus);



39    }
40  }
41
42  medianOfTwoSortedArray([1 , 2 , 3 ], [4 , 5

, 6 ], 3 ); // 3.5
43  medianOfTwoSortedArray([11 , 23 , 24 ], [32

, 33 , 450 ], 3 ); // 28
44  medianOfTwoSortedArray([1 , 2 , 3 ], [2 , 3

, 5 ], 3 ); // 2.5

Time	Complexity:	O(log2(n))
By	cutting	the	array	size	by	half	each	time,	logarithmic	time

complexity	is	achieved.

Find	Common	Elements	in	K-Sorted	Arrays

1   var arr1    = [1, 5, 5, 10];
2   var arr2    = [3, 4, 5, 5, 10];
3   var arr3    = [5, 5, 10, 20];
4   var output  = [5 ,10];

In	this	example	with	three	arrays,	k=3.
To	do	this,	simply	iterate	over	each	array	and	count	instances	of

every	element.	However,	do	not	track	repeated	ones	(5	and	5.5	should
be	counted	once	in	one	array	iteration).	To	do	this,	check	whether	the
last	element	is	the	same	before	incrementing.	This	will	work	only	if	it
is	sorted.

After	all	three	arrays	have	been	iterated,	iterate	through	the	hash
table’s	properties.	If	the	value	matches	3,	it	means	that	the	number
showed	up	in	all	three	arrays.	This	can	be	generalized	to	k	number	of
arrays	by	putting	the	k-loop	check	into	another	for	loop.

 1 function  commonElements(kArray) {
 2     var  hashmap =  {},
 3        last, answer =  [];
 4
 5     for  (var  i = 0 , kArrayLength



=  kArray.length; i <  kArrayLength; i++ ) {
 6         var  currentArray =  kArray[i];
 7            last = null ;
 8         for  (var  j = 0 , currentArrayLen

=  currentArray.length;
 9             j <  currentArrayLen;   j++ ) {
10             var  currentElement

=  currentArray[j];
11             if  (last !=  currentElement) {
12                 if  (!

hashmap[currentElement]) {
13                    hashmap[currentElement] =

1 ;
14                } else  {
15            hashmap[currentElement]++ ;
16                }
17            }
18         last =  currentElement;
19        }
20     }
21
22     // Iterate through hashmap
23     for  (var  prop in  hashmap) {
24         if  (hashmap[prop]

==  kArray.length) {
25            answer.push(parseInt (prop));
26        }
27    }
28     return  answer;
29  }
30
31  commonElements([[1 ,2 ,3 ],[1 ,2 ,3 ,4 ],[1

,2 ]]); // [ 1, 2 ]

Time	Complexity:	O(kn)
Space	Complexity:	O(n)
Here,	n	is	longest	array	length,	and	k	is	the	number	of	arrays.



JavaScript	Functional	Array	Methods
Some	parts	of	JavaScript	can	be	written	just	like	a	functional
programming	language.	Unlike	imperative	programming,	JavaScript	does
not	focus	on	the	state	of	the	program.	It	does	not	use	loops,	only	function
(method)	calls.	You	can	learn	more	about	functional	programming	in
JavaScript	from	Beginning	Functional	JavaScript	by	Anto	Aravinth
(Apress,	2017).

In	this	section,	only	three	functional	array	methods	in	JavaScript	will
be	explored:	map,	filter,	and	reduce.	These	methods	do	not	change
the	original	array	contents.

Map
The	map	function	applies	passed	function	transformation	to	every
element	in	the	array	and	returns	a	new	array	with	those	transformations
applied.

For	example,	you	can	multiply	every	element	by	10,	as	shown	here:

1   [1,2,3,4,5,6,7].map(function (value){
2       return value*10;
3   });
4   // [10, 20, 30, 40, 50, 60, 70]

Filter
The	filter	function	returns	only	those	elements	of	the	array	that	meet	a
passed	condition	parameter.	Again,	this	does	not	change	the	original
array.

For	example,	this	filters	elements	greater	than	100:

1   [100,2003,10,203,333,12].filter(function
(value){

2       return value > 100;
3   });
4   // [2003, 203, 333]

Reduce
The	reduce	function	combines	all	the	elements	in	the	array	into	one



value	using	a	passed	transformation	function	parameter.
For	example,	this	adds	all	the	elements:

1   var sum = [0,1,2,3,4].reduce( function
(prevVal, currentVal, index, array) {

2       return prevVal + currentVal;
3   });
4   console.log(sum); // prints 10

This	function	also	can	take	initialValue	as	its	second	argument,
which	initializes	the	reduce	value.	For	example,	providing	an
initialValue	of	1	in	the	previous	example	will	yield	11,	as	shown
here:

1   var sum = [0,1,2,3,4].reduce( function
(prevVal, currentVal, index, array) {

2       return prevVal + currentVal;
3   }, 1);
4   console.log(sum); // prints 11

Multidimensional	Arrays
Unlike	Java	and	C++,	JavaScript	does	not	have	multidimensional	arrays
(see	Figure	5-1).



Figure	5-1 Multidimensional	array

Instead,	there	are	“jagged”	arrays.	A	jagged	array	is	an	array	whose
elements	are	arrays.	The	elements	of	a	jagged	array	can	be	of	different
dimensions	and	sizes	(see	Figure	5-2).

Figure	5-2 Jagged	array

Here	is	a	helper	function	to	create	a	jagged	array	like	the	one	in
Figure	5-3:

1   function Matrix(rows, columns) {
2       var jaggedarray = new Array(rows);
3       for (var i=0; i < columns; i +=1) {
4           jaggedarray[i]=new Array(rows);



5       }
6       return jaggedarray;
7   }
8   console.log(Matrix(3,3));

Figure	5-3 Three-by-three	matrix

To	access	elements	in	a	jagged	array,	specify	a	row	and	a	column	(see
Figure	5-4).



Figure	5-4 Three-by-three	matrix	of	numbers

 1   var matrix3by3 = [[1,2,3],[4,5,6],[7,8,9]];
 2   matrix3by3[0]; // [1,2,3]
 3   matrix3by3[1]; // [4,5,6]
 4   matrix3by3[1]; // [7,8,9]
 5
 6   matrix3by3[0][0]; // 1
 7   matrix3by3[0][1]; // 2
 8   matrix3by3[0][2]; // 3
 9
10   matrix3by3[1][0]; // 4
11   matrix3by3[1][1]; // 5
12   matrix3by3[1][2]; // 6
13
14   matrix3by3[2][0]; // 7
15   matrix3by3[2][1]; // 8
16   matrix3by3[2][2]; // 9

Exercises
All	the	code	for	the	exercises	can	be	found	on	GitHub.2

Spiral	Print
Let’s	create	an	example	problem	with	a	matrix.	Given	a	matrix,	print
the	elements	in	a	spiral	order,	like	in	Figure	5-5.



Figure	5-5 	Spiral	print

This	looks	like	a	daunting	task	at	first.	However,	the	problem	can
be	broken	down	to	five	main	components.
Printing	from	left	to	right
Printing	from	top	to	bottom
Printing	from	right	to	left
Printing	from	bottom	to	top
Keeping	a	limit	on	these	four	operations
In	other	words,	keep	four	key	variables	that	indicate	the	following:
Top	row
Bottom	row
Left	column
Right	column
Each	time	one	of	the	four	print	functions	is	successfully

executed,	simply	increment	one	of	the	four	variables.	For	example,
after	printing	the	top	row,	increment	it	by	1.

 1   var M = [
 2       [1, 2, 3, 4, 5],
 3       [6, 7, 8, 9, 10],
 4       [11, 12, 13, 14, 15],
 5       [16, 17, 18, 19, 20]



 6   ];
 7   function spiralPrint(M) {
 8       var topRow = 0,
 9           leftCol = 0,
10           btmRow = M.length - 1,
11           rightCol = M[0].length - 1;
12
13       while (topRow < btmRow && leftCol <

rightCol) {
14           for (var col = 0; col <= rightCol;

col++) {
15               console.log(M[topRow][col]);
16           }
17           topRow++;
18           for (var row = topRow; row <=

btmRow; row++) {
19               console.log(M[row][rightCol]);
20           }
21           rightCol--;
22           if (topRow <= btmRow) {
23               for (var col = rightCol; col

>= 0; col--) {
24                   console.log(M[btmRow]

[col]);
25               }
26               btmRow--;
27           }
28           if (leftCol <= rightCol) {
29               for (var row = btmRow; row >

topRow; row--) {
30                   console.log(M[row]

[leftCol]);
31               }
32               leftCol++;
33           }
34       }
35   }



36   spiralPrint(M);

Time	Complexity:	O(mn)
Space	Complexity:	O(1)
Here,	m	is	the	number	of	rows,	and	n	is	the	number	of	columns	.

Each	item	in	the	matrix	is	visited	only	once.

Tic-Tac-Toe	Check
Given	a	matrix	representing	a	tic-tac-toe	board	,	determine	whether
someone	won,	whether	it	was	a	tie,	or	whether	the	game	has	not
ended	yet.3

Here	are	some	examples.
Here,	X	won:

         OX-
         -XO
         OX

Here	it	is	as	a	matrix:	[['O', 'X', '-'], ['-' ,'X',
'O'], ['O', 'X', '-']].

Here,	O	won:

        O-X
        -O-
        -XO

Here	it	is	as	a	matrix:	[['O','-','X'], ['-','O','-'],
['-','X','O']].

To	do	this,	check	all	three	rows	using	a	for	loop	,	check	all
columns	using	a	for	loop	,	and	check	diagonals.

 1   function checkRow ( rowArr, letter ) {
 2       for ( var i=0; i < 3; i++) {
 3           if (rowArr[i]!=letter) {
 4               return false;
 5           }
 6       }



 7       return true;
 8   }
 9
10   function checkColumn ( gameBoardMatrix,

columnIndex, letter ) {
11       for ( var i=0; i < 3; i++) {
12           if (gameBoardMatrix[i]

[columnIndex]!=letter) {
13               return false;
14           }
15       }
16       return true;
17   }
18
19   function ticTacToeWinner (

gameBoardMatrix, letter) {
20
21       // Check rows
22       var rowWin =

checkRow(gameBoardMatrix[0], letter)
23       || checkRow(gameBoardMatrix[1],

letter)
24       || checkRow(gameBoardMatrix[2],

letter);
25
26       var colWin =

checkColumn(gameBoardMatrix, 0, letter)
27       || checkColumn(gameBoardMatrix, 1,

letter)
28       || checkColumn(gameBoardMatrix, 2,

letter);
29
30       var diagonalWinLeftToRight =

(gameBoardMatrix[0][0]==letter &&
gameBoardMatrix[1][1]==letter &&
gameBoardMatrix[2][2]==letter);

31       var diagonalWinRightToLeft =



(gameBoardMatrix[0][2]==letter && gameBoardMatr
ix[1][1]==letter && gameBoardMatrix[2]
[0]==letter);

32
33       return rowWin || colWin ||

diagonalWinLeftToRight || diagonalWinRightToLeft;
34   }
35
36   var board = [['O','-','X'],['-','O','-'],

['-','X','O']];
37   ticTacToeWinner(board, 'X'); // false
38   ticTacToeWinner(board, 'O'); // true

Path	Finding
In	Figure	5-6,	given	the	location	x,	find	the	exit	e.

Figure	5-6 Finding	a	path

\n	is	the	set	of	characters	used	to	break	a	line	in	JavaScript,	like	in
many	standard	programming	languages.	Combining	it	with	backticks,
you	can	create	line	breaks	during	the	variable-to-string	assignment.

1   var board =
2   `%e%%%%%%%%%\n
3   %...%.%...%\n
4   %.%.%.%.%%%\n



5   %.%.......%\n
6   %.%%%%.%%.%\n
7   %.%.....%.%\n
8   %%%%%%%%%x%`;

var rows = board.split("\n")

Then	use	.map	over	the	array	to	divide	by	certain	characters	into
each	column.

function generateColumnArr (arr) {
    return arr.split("");
}
var mazeMatrix = rows.map(generateColumnArr);

This	will	generate	the	proper	matrix	where	each	row	is	an	array	of
the	characters	and	the	board	is	the	array	of	those	rows.

Now,	first	find	the	entrance,	e,	and	exit,	x.	This	function	will	return
the	row	position,	i,	and	the	column	position,	j,	of	the	character	to	be
searched	for:

1 function  findChar(char , mazeMatrix) {
2                 var  row

=  mazeMatrix.length,
3                        column =  mazeMatrix[0

].length;
4
5                 for  (var  i = 0 ; i <  row;

i++ ) {
6                               for  (var  j =

0 ; j <  column; j++ ) {
7                                              

      if  (mazeMatrix[i][j] == char ) {
8                                              

      return  [i, j];
9                                            }
10                             }
11         }



12  }

Of	course,	there	also	needs	to	be	a	function	to	print	the	matrix
nicely	as	a	string,	as	shown	here:

 1 function  printMatrix(matrix) {
 2                var  mazePrintStr = "" ,
 3                       row =  matrix.length,
 4                       column =  matrix[0

].length;
 5
 6                for  (var  i = 0 ; i <  row;

i++ ) {
 7
 8                               for  (var  j =

0 ; j <  column; j++ ) {
 9                                             

mazePrintStr +=  mazeMatrix[i][j];
10                            }
11
12                            mazePrintStr +=

"\n" ;
13
14         }
15         console.log(mazePrintStr);
16  }

Finally,	define	a	function	called	path	.	This	recursively	checks	up,
right,	down,	and	left.

         Up:      path(x+1,y)
         Right:   path(x,y+1)
         Down:    path(x-1,y)
         Left:    path(x,y-1)
function mazePathFinder(mazeMatrix) {
    var row = mazeMatrix.length,
        column = mazeMatrix[0].length,
        startPos = findChar('e', mazeMatrix),



        endPos = findChar('x', mazeMatrix);

    path(startPos[0], startPos[1]);

    function path(x, y) {
        if (x > row - 1 || y > column - 1 || x

< 0 || y < 0) {
            return false;
        }
        // Found
        if (x == endPos[0] && y == endPos[1]) {
            return true;
        }
        if (mazeMatrix[x][y] == '%' ||

mazeMatrix[x][y] == '+') {
            return false;
        }
        // Mark the current spot
        mazeMatrix[x][y] = '+';
        printMatrix(mazeMatrix);

        if (path(x, y - 1) || path(x + 1, y) ||
path(x, y + 1) || path(x - 1, y)) {

            return true;
        }
        mazeMatrix[x][y] = '.';
        return false;
    }
}

Figure	5-7	shows	the	console	output.





Figure	5-7 Console	output

Time	Complexity:	O(mn)
Space	Complexity:	O(1)
Here,	m	is	the	row	length	,	and	n	is	the	column	length.	Each

element	is	visited	only	once.

Matrix	Rotation
Rotate	a	matrix	to	the	left	by	90	degrees	.

For	example,	the	following:

    101
    001
    111

rotates	to	this:

    111
    001
    101

Figure	5-8	shows	the	rotation.

Figure	5-8 Matrix	counterclockwise	rotation



As	shown	in	Figure	5-8,	when	rotated	90	degrees	left,	the
following	happens:
1.

The	third	column	of	the	matrix	becomes	the	first	row	of	the	result.	
2.

The	second	column	of	the	matrix	becomes	the	second	row	of	the
result.

	
3.

The	first	column	of	the	matrix	becomes	the	third	row	of	the	result.	
The	following	rotation	turns	the	third	column	of	the	original:

 1   var matrix = [[1,0,1],[0,0,1],[1,1,1]];
 2
 3
 4   function rotateMatrix90Left (mat){
 5       var N = mat.length;
 6
 7       // Consider all squares one by one
 8       for (var x = 0; x < N / 2; x++) {
 9           // Consider elements in group of 4

in
10           // current square
11           for (var y = x; y < N-x-1; y++) {
12               // store current cell in temp

variable
13               var temp = mat[x][y];
14
15               // move values from right to

top
16               mat[x][y] = mat[y][N-1-x];
17
18               // move values from bottom to

right
19               mat[y][N-1-x] = mat[N-1-x][N-

1-y];
20



21               // move values from left to
bottom

22               mat[N-1-x][N-1-y] = mat[N-1-y]
[x];

23
24               // assign temp to left
25               mat[N-1-y][x] = temp;
26           }
27       }
28   }
29  rotateMatrix90Left(matrix);
30   console.log(matrix); // [[1,1,1],[0,0,1],

[1,0,1]]

Time	Complexity:	O(mn)
Space	Complexity:	O(1)
Here,	m	is	the	row	length,	and	n	is	the	column	length	.	Each

element	is	visited	only	once.	The	space	complexity	is	O(1)	because	the
original	array	is	modified	instead	of	creating	a	new	array.

Summary
Various	natively	implemented	array	functions	were	covered	in	this
chapter	and	are	summarized	in	Table	5-1.

Table	5-1 Array	Function	Summary

Function Usage
push(element) Adds	an	element	to	the	end	of	the	array
pop() Removes	the	last	element	of	the	array
shift() Removes	the	first	element	of	the	array
slice(beginIndex,
endIndex)

Returns	a	part	of	the	array	from	beginIndex	to	endIndex

splice(beginIndex,
endIndex)

Returns	a	part	of	the	array	from	beginIndex	to	endIndex	and
modifies	the	original	array	by	removing	those	elements

concat(arr) Adds	new	elements	(from	arr)	into	the	array	at	the	end	of	array



1

2

3

In	addition	to	the	standard	while	and	for	loop	mechanisms,	an
iteration	of	array	elements	can	use	the	alternative	loop	mechanisms
shown	in	Table	5-2.

Table	5-2 Iteration	Summary

Function Usage

for	(var	prop	in	arr) Iterates	by	the	index	of	the	array	element

for	(var	elem	of	arr) Iterates	by	the	value	of	the	array	element
arr.forEach(fnc) Applies	the	fnc	value	on	each	element

Finally,	recall	that	JavaScript	utilizes	jagged	arrays,	an	array	of	arrays,
to	get	multidimensional	array	behavior.	With	two-dimensional	arrays,
two-dimensional	surfaces	such	as	a	tic-tac-toe	board	and	maze	can	easily
be	represented.

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms

	
https://github.com/Apress/js-data-structures-and-algorithms

	
To	read	more	about	the	rules	of	tic-tac-toe,	visit

https://en.wikipedia.org/wiki/Tic-tac-toe	.

	

https://github.com/Apress/js-data-structures-and-algorithms
https://github.com/Apress/js-data-structures-and-algorithms
https://en.wikipedia.org/wiki/Tic-tac-toe
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JavaScript	objects	are	what	makes	the	JavaScript	programming	language
so	versatile.	Before	diving	into	data	structures	and	algorithms,	let’s
review	how	JavaScript	objects	work.	This	chapter	will	focus	on	what
JavaScript	objects	are,	how	they	are	declared,	and	how	their	properties
can	be	changed.	In	addition,	this	chapter	will	cover	how	JavaScript
classes	are	implemented	using	prototypal	inheritance.

JavaScript	Object	Property
JavaScript	objects	can	be	created	via	the	object	literal	{}	or	via	the
syntax	newObject();.	Additional	properties	can	be	added	or	accessed
in	one	of	two	ways:	object.propertyName	or
object['propertyName'].

1   var javaScriptObject = {};
2   var testArray = [1,2,3,4];
3
4   javaScriptObject.array = testArray;
5   console.log(javaScriptObject); // {array:
[1,2,3,4]}
6
7   javaScriptObject.title = 'Algorithms';
8   console.log(javaScriptObject); // {array:
[1,2,3,4], title:'Algorithms'}
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As	shown	in	the	previous	code,	the	title	property	was	dynamically
added	in	line	7	to	the	JavaScript	object.	Similarly,	functions	in	JavaScript
classes	are	added	this	way	by	dynamically	adding	them	to	the	object.

Prototypal	Inheritance
In	most	strongly	typed	languages	such	as	Java,	the	methods	of	a	class	are
defined	at	the	same	time	as	the	class.	However,	in	JavaScript,	the	function
has	to	be	added	as	a	JavaScript	Object	property	of	that	class.

Here	is	an	example	of	a	class	in	JavaScript	using
this.functionName = function(){}:

 1   function ExampleClass(){
 2       this.name = "JavaScript";
 3       this.sayName = function(){
 4           console.log(this.name);
 5       }
 6   }
 7
 8   //new object
 9   var example1 = new ExampleClass();
10   example1.sayName(); //"JavaScript"

This	class	dynamically	adds	the	sayName	function	in	the	constructor.
This	pattern	is	known	as	prototypal	inheritance	.

Prototypal	inheritance	is	the	only	method	of	inheritance	in	JavaScript.
To	add	functions	of	a	class,	simply	use	the	.prototype	property	and
specify	the	name	of	function.

When	you	use	the	.prototype	property,	you	are	essentially
dynamically	extending	the	JavaScript	Object	property	of	the	object.
This	is	the	standard	because	JavaScript	is	dynamic	and	classes	can	add
new	function	members	as	needed	later.	This	isn’t	possible	for	compiled
languages	such	as	Java	because	they	will	throw	an	error	on	compilation.
This	unique	property	of	JavaScript	lets	developers	take	advantage	of	the
prototypical	inheritance.

Here’s	an	example	of	using	.prototype:



 1   function ExampleClass(){
 2       this.array = [1,2,3,4,5];
 3       this.name = "JavaScript";
 4   }
 5
 6   //new object
 7   var example1 = new ExampleClass();
 8
 9   ExampleClass.prototype.sayName = function()

{
10       console.log(this.name);
11   }
12
13   example1.sayName(); //"JavaScript"

To	reiterate,	adding	functions	to	a	class	dynamically	is	how	JavaScript
implements	prototypical	inheritance.	Functions	of	a	class	are	added
either	in	the	constructor	or	via	.prototype.

Constructor	and	Variables
Because	variables	of	a	class	in	JavaScript	are	properties	of	that	class
object,	any	properties	declared	with	this.propertyName	will	be
available	publicly.	This	means	that	the	object’s	properties	can	be	directly
accessed	in	other	scopes.

 1   function ExampleClass(name, size){
 2       this.name = name;
 3       this.size = size;
 4   }
 5
 6   var example = new ExampleClass("Public",5);
 7   console.log(example); // {name:"Public", size:
5}
 8
 9   // accessing public variables
10   console.log(example.name); // "Public"



11   console.log(example.size); // 5

To	mimic	a	private	variable,	instead	of	using	this.propertyName,
you	can	declare	a	local	variable	and	have	getter/setters	that	allow	access
to	that	variable.	This	way,	the	variable	is	available	only	to	the
constructor’s	scope.	Notably,	however,	these	mimicked	private	variables
are	now	accessible	only	through	the	defined	interfacing	functions	(getter
getName	and	setter	setName).	These	getters	and	setters	cannot	be
added	outside	of	the	constructor.

 1   function ExampleClass(name, size) {
 2       var privateName = name;
 3       var privateSize = size;
 4
 5       this.getName = function() {return

privateName;}
 6       this.setName = function(name)

{privateName = name;}
 7
 8       this.getSize = function() {return

privateSize;}
 9       this.setSize = function(size)

{privateSize = size;}
10   }
11
12   var example = new ExampleClass("Sammie",3);
13   example.setSize(12);
14   console.log(example.privateName); //

undefined
15   console.log(example.getName()); // "Sammie"
16   console.log(example.size); // undefined
17   console.log(example.getSize()); // 3

Summary
In	JavaScript,	unlike	other	object-oriented	programming	languages,
prototypical	inheritance	is	the	preferred	method	of	inheritance.



Prototypical	inheritance	works	by	adding	new	functions	to	a	JavaScript
class	via	.prototype.	Private	variables	are	explicitly	declared	in	Java
and	C++.	However,	a	private	variable	is	not	supported	in	JavaScript,	and
to	mimic	the	functionality	of	a	private	variable,	you	need	to	create	a
variable	that	is	scoped	to	the	constructor	function.	Declaring	a	variable
as	part	of	that	object	in	the	constructor	via	this.variableName
automatically	makes	that	property	public.

Exercises
Adding	a	Property	to	an	Object
Add	an	exampleKey	property	to	an	empty	JavaScript	object	in	two
different	ways	and	set	it	to	exampleValue.

As	discussed	earlier	in	this	chapter,	a	property	can	be	added	to	an
object	in	two	ways.	There	is	no	performance	advantage	or
disadvantage	of	using	one	way	over	the	other;	the	choice	comes	down
to	style.

 1   var emptyJSObj = {};
 2   emptyJSObj['exampleKey'] = 'exampleValue';
 3   emptyJSObj.exampleKey = 'exampleValue';

Defining	Classes
Create	two	classes:	Animal	and	Dog.	The	Animal	class	should	take
two	parameters	in	the	constructor	(name	and	animalType).	Set
them	as	its	public	properties.

In	addition,	the	Animal	class	should	have	two	functions:
sayName	and	sayAnimalType.	sayName	prints	name,	and
sayAnimalType	prints	animalType	initialized	in	the	constructor.

Finally,	the	Dog	class	inherits	from	the	Animal	class.

1.
Let’s	first	define	the	Animal	class	and	the	specified	required
functions.

	



 1   function Animal(name, animalType) {
 2       this.name = name;
 3       this.animalType = animalType;
 4   }
 5   Animal.prototype.sayName = function () {
 6       console.log(this.name);
 7   }
 8   Animal.prototype.sayAnimalType  = function

() {
 9       console.log(this.animalType);
10   }

2.
For	the	Dog	class	to	inherit	this,	define	the	Dog	class	and	then
copy	its	prototype,	as	shown	in	the	following	code	block:

	
 1   function Dog(name) {
 2       Animal.call(this, name, "Dog");
 3   }
 4   // copy over the methods
 5   Dog.prototype =

Object.create(Animal.prototype);
 6   var myAnimal = new Animal("ditto",

"pokemon");
 7   myAnimal.sayName(); // "ditto"
 8   myAnimal.sayAnimalType(); // "pokemon"
 9   var myDog = new Dog("candy", "dog");
10   myDog.sayName(); // "candy"
11   myDog.sayAnimalType(); // "dog"
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In	any	program,	a	variable	takes	up	some	memory.	In	low-level
programming	languages	such	as	C,	the	programmer	must	allocate	and
deallocate	memory	manually.	In	contrast,	the	V8	JavaScript	engine	and
other	modern	JavaScript	engines	have	garbage	collectors	that	delete
unused	variables	for	the	programmer.	Despite	this	memory	management
done	by	the	JavaScript	engine,	however,	there	are	common	pitfalls	that
developers	can	fall	into.	This	chapter	will	show	some	basic	examples	of
these	pitfalls	and	present	techniques	to	help	the	garbage	collector
minimize	the	key	JavaScript	memory	problems.

Memory	Leaks
A	memory	leak	is	a	failure	in	a	program	to	release	discarded	memory,
causing	impaired	performance	and	sometimes	even	failure.	Memory
leaks	can	happen	when	JavaScript	engines’	garbage	collectors	do	not	free
memory	properly.

Follow	the	key	principles	outlined	in	this	chapter	to	avoid	memory
leaks	during	JavaScript	development.

Reference	to	an	Object
If	there	is	a	reference	to	an	object,	it	is	in	memory.	In	this	example,	say
that	the	memory()	function	returns	some	array	with	5KB	of	data.

1   var foo = {
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2       bar1: memory(), // 5kb
3       bar2: memory() // 5kb
4   }
5
6   function clickEvent(){
7       alert(foo.bar1[0]);
8   }

You	might	expect	the	clickEvent()	function	to	use	5KB	of
memory	since	it	is	only	referencing	bar1	from	the	foo	object.	However,
the	truth	is	that	it	is	using	10KB	of	memory	since	it	has	to	load	the	whole
foo	object	into	the	function’s	into	scope	to	access	the	bar1	property.

Leaking	DOM
If	a	variable	pointing	to	a	DOM	element	is	declared	outside	of	an	event
callback,	then	it	is	in	memory	and	leaks	DOM	if	the	element	is	deleted.

In	this	example,	there	are	two	DOM	elements	selected	by
document.getElementByID.

1   <div id="one">One</div>
2   <div id="two">Two</div>

The	following	JavaScript	code	demonstrates	the	DOM	memory	leak.
When	one	is	clicked,	it	removes	two.	When	one	is	clicked	again,	it	still
tries	to	reference	the	removed	two.

1   var one = document.getElementById("one");
2   var two = document.getElementById("two");
3   one.addEventListener('click', function(){
4       two.remove();
5       console.log(two); // will print the html

even after deletion
6   });

The	event	listener	on	the	one	element	will	cause	the	two	to
disappear	from	the	web	page	when	clicked.	However,	even	if	the	DOM	is
deleted	in	the	HTML,	reference	to	it	will	remain	if	used	in	an	event



callback.	When	the	two	element	is	no	longer	in	use,	this	is	a	memory	leak
and	should	be	avoided.

This	can	easily	be	fixed	so	that	it	won’t	cause	a	memory	leak,	as
shown	here:

1   var one = document.getElementById("one");
2
3   one.addEventListener('click', function(){
4       var two = document.getElementById("two");
5       two.remove();
6   });

Another	way	to	address	this	is	by	unregistering	the	click	handler
once	it	has	been	used,	as	shown	here:

1   var one = document.getElementById("one");
2       function callBackExample() {
3           var two =

document.getElementById("two");
4           two.remove();
5           one.removeEventListener("click",callB

ackExample);
6       }
7       one.addEventListener("click",callBackExam

ple);
8   });

Global	window	Object
If	an	object	is	on	the	global	window	object,	it	is	in	memory.	The	window
object	is	a	global	object	in	a	browser	and	comes	with	various	built-in
methods	such	as	alert()	and	setTimeout().	Any	additional	objects
declared	as	a	property	of	window	will	not	be	cleared	because	window	is
a	required	object	for	the	browser	to	run.	Remember	that	any	global
variable	declared	will	be	set	as	a	property	of	the	window	object.

In	this	example,	there	are	two	global	variables	declared.

1   var a = "apples"; //global with var



2   b = "oranges"; //global without var
3
4   console.log(window.a); // prints "apples"
5   console.log(window.b); // prints "oranges"

It	is	good	to	avoid	global	variables	whenever	possible.	This	will	help
save	memory.

Limiting	Object	References
An	object	is	cleared	when	all	references	are	cleared.	Always	remember	to
limit	the	amount	of	scope	the	function	pulls	and	pass	the	property	of	an
object	only	into	functions	instead	of	the	entire	object.	This	is	because	the
object’s	memory	footprint	can	be	very	large	(e.g.,	an	array	of	100,000
integers	for	data	visualization	project);	if	only	one	of	the	object’s
properties	is	needed,	you	should	avoid	using	the	entire	object	as	a
parameter.

For	example,	do	not	do	this:

1   var test = {
2       prop1: 'test'
3   }
4
5   function printProp1(test){
6       console.log(test.prop1);
7   }
8
9   printProp1(test); //'test'

Instead,	pass	the	property	like	this:

1   var test = {
2       prop1: 'test'
3   }
4
5   function printProp1(prop1){
6       console.log(prop1);
7   }
8



9   printProp1(test.prop1); //'test'

The	delete	Operator
Always	remember	that	the	delete	operator	can	be	used	to	delete	an
unwanted	object	property	(though	it	does	not	work	on	nonobjects).

1   var test = {
2       prop1: 'test'
3   }
4   console.log(test.prop1); // 'test'
5   delete test.prop1;
6   console.log(test.prop1); // _undefined_

Summary
Although	memory	in	JavaScript	is	not	allocated	by	the	programmer,
there	are	still	numerous	ways	to	mitigate	memory	leaks	where
applicable.	If	the	object	is	in	reference,	it	is	in	memory.	Similarly,	HTML
DOM	elements	should	not	be	referenced	once	deleted.	Finally,	only
reference	objects	in	a	function	that	are	needed.	In	many	cases,	it	is	more
applicable	to	pass	in	a	property	of	the	object	rather	than	the	object	itself.
Also,	be	extremely	mindful	when	declaring	a	global	variable.

Exercises
In	this	chapter,	exercises	are	about	identifying	memory	inefficiencies	and
optimizing	a	given	piece	of	code.

ANALYZING	AND	OPTIMIZING	A	PROPERTY	CALL
Analyze	and	optimize	the	call	for	printProperty.

 1   function someLargeArray() {
 2       return new Array(1000000);
 3   }
 4   var exampleObject = {
 5       'prop1': someLargeArray(),
 6       'prop2': someLargeArray()



 7   }
 8   function printProperty(obj){
 9       console.log(obj['prop1']);
10   }
11   printProperty(exampleObject);

Problem:	An	excessive	amount	of	memory	is	used	in
printProperty	because	the	entire	object	is	brought	into	the
printProperty	function.	To	fix	this,	only	the	property	being
printed	should	be	brought	in	as	a	parameter	of	the	function.

Answer:

 1   function someLargeArray() {
 2       return new Array(1000000);
 3   }
 4   var exampleObject = {
 5       'prop1': someLargeArray(),
 6       'prop2': someLargeArray()
 7   }
 8   function printProperty(prop){
 9       console.log(prop);
10   }
11   printProperty(exampleObject['prop1']);

ANALYZING	AND	OPTIMIZING	SCOPE
Analyze	and	optimize	the	global	scope	for	the	following	code	block:

 1   var RED     = 0,
 2       GREEN   = 1,
 3       BLUE    = 2;
 4
 5   function redGreenBlueCount(arr) {
 6       var counter = new Array(3) .fill(0);
 7       for (var i=0; i < arr.length; i++) {
 8           var curr = arr[i];
 9           if (curr == RED) {



10               counter[RED]++;
11           } else if (curr == GREEN) {
12               counter[GREEN]++;
13           } else if (curr == BLUE) {
14               counter[BLUE]++;
15           }
16       }
17       return counter;
18   }
19   redGreenBlueCount([0,1,1,1,2,2,2]); // [1, 3,
3]

Problem:	Global	variables	are	used	where	not	necessary.	Albeit
small,	the	global	variables	RED,	GREEN,	and	BLUE	bloat	the	global
scope	and	should	be	moved	inside	the	redGreenBlueCount
function.

Answer:

 1   function redGreenBlueCount(arr) {
 2       var RED     = 0,
 3           GREEN   = 1,
 4           BLUE    = 2,
 5           counter = new Array(3) .fill(0);
 6       for (var i=0; i < arr.length; i++) {
 7           var curr = arr[i];
 8           if (curr == RED) {
 9               counter[RED]++;
10           } else if (curr == GREEN) {
11               counter[GREEN]++;
12           } else if (curr == BLUE) {
13               counter[BLUE]++;
14           }
15       }
16       return counter;
17   }
18   redGreenBlueCount([0,1,1,1,2,2,2]); // [1,

3, 3]



ANALALYZING	AND	REPAIRING	MEMORY	ISSUES
Analyze	and	fix	memory	issues	for	the	following	code.

HTML:

<button id="one">Button 1</button>
<button id="two">Button 2</button>

JavaScript:

 1   var one = document.querySelector("#one");
 2   var two = document.querySelector("#two");
 3   function callBackExample () {
 4       one.removeEventListener("",callBackExa

mple);
 5   }
 6   one.addEventListener('hover', function(){
 7       two.remove();
 8       console.log(two); // will print the

html even after deletion
 9   });
10   two.addEventListener('hover', function(){
11       one.remove();
12       console.log(one); // will print the

html even after deletion
13   });

Problem:	This	is	the	“leaking	DOM”	issue	discussed	earlier	in	the
chapter.	When	elements	are	removed,	they	are	still	referenced	by	the
callback	function.	To	address	this,	put	the	one	and	two	variables	into
a	callback’s	scope	and	remove	the	event	listener	after.

Answer:
HTML:

<button id="one"> Button 1 </button>
<button id="two"> Button 2 </button>



JavaScript:

 1   var one = document.querySelector("#one");
 2   var two = document.querySelector("#two");
 3   function callbackOne() {
 4       var two =

document.querySelector("#two");
 5       if (!two)
 6           return;
 7       two.remove();
 8       one.removeEventListener("hover",

callbackOne);
 9   }
10
11   function callbackTwo() {
12       var one =

document.querySelector("#one");
13       if (!one)
14           return;
15       one.remove();
16       two.removeEventListener("hover",

callbackTwo);
17   }
18   one.addEventListener("click",

callbackOne);
19   two.addEventListener("click",

callbackTwo);
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This	chapter	introduces	the	concept	of	recursion	and	recursive
algorithms.	First,	the	definition	of	recursion	and	fundamental	rules	for
recursive	algorithms	will	be	explored.	In	addition,	methods	of	analyzing
efficiencies	of	recursive	functions	will	be	covered	in	detail	using
mathematical	notations.	Finally,	the	chapter	exercises	will	help	solidify
this	information.

Introducing	Recursion
In	math,	linguistics,	and	art,	recursion	refers	to	the	occurrence	of	a	thing
defined	in	terms	of	itself.	In	computer	science,	a	recursive	function	is	a
function	that	calls	itself.	Recursive	functions	are	often	elegant	and	solve
complex	problems	through	the	“divide-and-conquer”	method.	Recursion
is	important	because	you	will	see	it	again	and	again	in	the
implementation	of	various	data	structures.	Figure	8-1	shows	a	visual
illustration	of	recursion	where	the	picture	has	smaller	pictures	of	itself.
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Figure	8-1 Recursion	illustrated

Rules	of	Recursion
When	recursive	functions	are	implemented	incorrectly,	it	causes	fatal
issues	because	the	program	will	get	stuck	and	not	terminate.	Infinite
recursive	calls	result	in	stack	overflow.	Stack	overflow	is	when	the
maximum	number	of	call	stacks	of	the	program	exceeds	the	limited
amount	of	address	space	(memory).

For	recursive	functions	to	be	implemented	correctly,	they	must
follow	certain	rules	so	that	stack	overflow	is	avoided.	These	rules	are
covered	next.

Base	Case
In	recursion,	there	must	be	a	base	case	(also	referred	to	as	terminating
case).	Because	recursive	methods	call	themselves,	they	will	never	stop
unless	this	base	case	is	reached.	Stack	overflow	from	recursion	is	most
likely	the	result	of	not	having	a	proper	base	case.	In	the	base	case,	there
are	no	recursive	function	calls.

Let’s	examine	the	following	function,	which	prints	numbers	counting
down	from	n	to	0	as	an	example:



 1   function countDownToZero(n) {
 2       // base case. Stop at 0
 3       if (n < 0) {
 4           return; // stop the function
 5       } else {
 6           console.log(n);
 7           countDownToZero(n - 1); // count

down 1
 8       }
 9   }
10   countDownToZero(12);

The	base	case	for	this	function	is	when	n	is	smaller	or	equal	to	0.	This
is	because	the	desired	outcome	was	to	stop	counting	at	0.	If	a	negative
number	is	given	as	the	input,	it	will	not	print	that	number	because	of	the
base	case.	In	addition	to	a	base	case,	this	recursive	function	also	exhibits
the	divide-and-conquer	method.

Divide-and-Conquer	Method
In	computer	science,	the	divide-and-conquermethod	is	when	a	problem	is
solved	by	solving	all	of	its	smaller	components.	With	the	countdown
example,	counting	down	from	2	can	be	solved	by	printing	2	and	then
counting	down	from	1.	Here,	counting	down	from	1	is	the	part	solved	by
“dividing	and	conquering.”	It	is	necessary	to	make	the	problem	smaller
to	reach	the	base	case.	Otherwise,	if	the	recursive	call	does	not	converge
to	a	base	case,	a	stack	overflow	occurs.

Let’s	now	examine	a	more	complex	recursive	function	known	as	the
Fibonacci	sequence	.

Classic	Example:	Fibonacci	Sequence
The	Fibonacci	sequence	is	a	list	of	infinite	numbers,	each	of	which	is	the
sum	of	the	past	two	terms	(starting	with	1).
1,	1,	2,	3,	5,	8,	13,	21	…
How	might	you	program	something	to	print	the	Nth	term	of	the

Fibonacci	sequence?



Iterative	Solution:	Fibonacci	Sequence
An	iterative	solution	using	a	for	loop	may	look	something	like	this:

 1   function getNthFibo(n) {
 2       if ( n <= 1)  return n;
 3       var sum = 0,
 4           last = 1,
 5           lastlast = 0;
 6
 7       for (var i = 1; i < n; i++) {
 8           sum = lastlast + last;
 9           lastlast = last;
10           last = sum;
11       }
12       return sum;
13   }

A	for	loop	can	be	used	to	keep	track	of	the	last	two	elements	of	the
Fibonacci	sequence,	and	its	sum	yields	the	Fibonacci	number.

Now,	how	might	this	be	done	recursively?

Recursive	Solution:	Fibonacci
The	following	shows	the	recursive	solution:

1   function getNthFibo(n) {
2       if (n <= 1) {
3           return n;
4       } else {
5           return getNthFibo(n - 1) + getNthFibo(n
- 2);
6       }
7   }

Base	case:	The	base	case	for	the	Fibonacci	sequence	is	that	the	first
element	is	1.

Divide	and	conquer:	By	definition	of	the	Fibonacci	sequence,	the
Nth	Fibonacci	number	is	the	sum	of	the	(n-1)th	and	(n-2)th	Fibonacci



numbers.	However,	this	implementation	has	a	time	complexity	of	O(2n),
which	is	discussed	in	detail	later	in	this	chapter.	We	will	explore	a	more
efficient	recursive	algorithm	for	the	Fibonacci	sequence	using	tail
recursion	in	the	next	section.

Fibonacci	Sequence:	Tail	Recursion
A	tail	recursivefunction	is	a	recursive	function	in	which	the	recursive	call
is	the	last	executed	thing	in	the	function.	First	let’s	look	at	the	iterative
solution:

 1   function getNthFibo(n) {
 2       if ( n <= 1)  return n;
 3       var sum = 0,
 4           last = 1,
 5          lastlast = 0;
 6
 7       for (var i = 1; i < n; i++) {
 8           sum = lastlast + last;
 9           lastlast = last;
10           last = sum;
11       }
12       return sum;
13   }

At	each	iteration,	the	following	update	happens:	(lastlast,
last) = (last, lastlast+last).	With	this	structure,	the
following	recursive	function	can	be	formed:

1   function getNthFiboBetter(n, lastlast, last)
{

2       if (n == 0) {
3           return lastlast;
4       }
5       if (n == 1) {
6           return last;
7       }
8       return getNthFiboBetter(n-1, last,



lastlast + last);
9   }

Time	Complexity:	O(n)
At	most,	this	function	executes	n	times	because	it’s	decremented	by

n-1	each	time	with	only	single	recursive	call.
Space	Complexity:	O(n)
The	space	complexity	is	also	O(n)	because	of	the	stack	call	used	for

this	function	.	This	will	be	further	explained	in	the	“Recursive	Call	Stack
Memory”	section	later	in	this	chapter.

To	conclude	the	rules	of	recursion,	let’s	examine	another	example,
which	is	more	complex.

Pascal’s	Triangle
In	this	example,	a	function	for	calculating	a	term	of	Pascal’s	triangle	will
be	explored.	Pascal’s	triangle	is	a	triangle	whose	element	value	is	the
summation	of	its	top	two	(left	and	right)	values,	as	shown	in	Figure	8-2.



Figure	8-2 Pascal’s	triangle

Base	case:	The	base	case	for	Pascal’s	triangle	is	that	the	top	element
(row=1,	col=1)	is	1.	Everything	else	is	derived	from	this	fact	alone.
Hence,	when	the	column	is	1,	return	1,	and	when	the	row	is	0,	return	0.

Divide	and	conquer:	By	the	mathematical	definition	of	Pascal’s
triangle,	a	term	of	Pascal’s	triangle	is	defined	as	the	sum	of	its	upper
terms	.	Therefore,	this	can	be	expressed	as	the	following:
pascalTriangle(row - 1, col) + pascalTriangle(row -
1, col - 1).

 1   function pascalTriangle(row, col) {
 2       if (col == 0) {
 3           return 1;
 4       } else if (row == 0) {



 5           return 0;
 6       } else {
 7           return pascalTriangle(row - 1, col)

+ pascalTriangle(row - 1, col - 1);
 8       }
 9   }
10   pascalTriangle(5, 2); // 10

This	is	the	beauty	of	recursion!	Look	next	at	how	short	and	elegant
this	code	is.

Big-O	for	Recursion
In	Chapter	1,	Big-O	analysis	of	recursive	algorithms	was	not	covered.
This	was	because	recursive	algorithms	are	much	harder	to	analyze.	To
perform	Big-O	analysis	for	recursive	algorithms,	its	recurrence	relations
must	be	analyzed.

Recurrence	Relations
In	algorithms	implemented	iteratively,	Big-O	analysis	is	much	simpler
because	loops	clearly	define	when	to	stop	and	how	much	to	increment	in
each	iteration.	For	analyzing	recursive	algorithms,	recurrence	relations
are	used.	Recurrence	relations	consist	of	two-part	analysis:	Big-O	for
base	case	and	Big-O	for	recursive	case.

Let’s	revisit	the	naive	Fibonacci	sequence	example:

function getNthFibo(n) {
    if (n <= 1) {
        return n;
    } else {
        return getNthFibo(n - 1) + getNthFibo(n -

2);
    }
}
getNthFibo(3);

The	base	case	has	a	time	complexity	of	O(1).	The	recursive	case	calls



itself	twice.	Let’s	represent	this	as	T	(n)	=	T	(n	−	1)	+	T	(n	−	2)	+	O(1).
Base	case:T	(n)	=	O(1)
Recursive	case:T	(n)	=	T	(n	−	1)	+	T	(n	−	2)	+	O(1)
Now,	this	relation	means	that	since	T	(n)	=	T	(n	−	1)	+	T	(n	−	2)	+	O(1),

then	(by	replacing	n	with	n−1),	T	(n	−	1)	=	T	(n	−	2)	+	T	(n	−	3)	+	O(1).
Replacing	n−1	with	n−2	yields	T	(n	−	2)	=	T	(n	−	3)	+	T	(n	−	4)	+	O(1).
Therefore,	you	can	see	that	for	every	call,	there	are	two	more	calls	for
each	call.	In	other	words,	this	has	a	time	complexity	of	O(2n).

It	helps	to	visualize	it	as	such:

F(6)                * <-- only once
F(5)                *
F(4)                **
F(3)               ****
F(2)             ********
F(1)         ****************         <-- 16
F(0) ******************************** <-- 32

Calculating	Big-O	this	way	is	difficult	and	prone	to	error.	Thankfully,
there	is	a	concept	known	as	the	master	theorem	to	help.	The	master
theorem	helps	programmers	easily	analyze	the	time	and	space
complexities	of	recursive	algorithms.

Master	Theorem
The	master	theorem	states	the	following:

Given	a	recurrence	relation	of	the	form	T	(n)	=	aT	(n/b)	+	O(nc)	where
a	>=	1	and	b	>=1,	there	are	three	cases.
a	is	the	coefficient	that	is	multiplied	by	the	recursive	call.	b	is	the

“logarithmic”	term,	which	is	the	term	that	divides	the	n	during	the
recursive	call.	Finally,	c	is	the	polynomial	term	on	the	nonrecursive
component	of	the	equation.

The	first	case	is	when	the	polynomial	term	on	the	nonrecursive
component	O(nc)	is	smaller	than	logb(a).

Case	1:c	<	logb(a)	then	T	(n)	=	O(n(logb(a))).



For	example,	T	(n)	=	8T	(n/2)	+	1000n2
Identify	a,	b,	c:a	=	8,	b	=	2,	c	=	2
Evaluate:log2(8)	=	3.	c	<	3	is	satisfied.
Result:T	(n)	=	O(n3)
The	second	case	is	when	c	is	equal	to	logb(a).

Case	2:c	=	logb(a)	then	T	(n)	=	O(nclog(n)).
For	example,	T	(n)	=	2T	(n/2)	+	10n.
Identify	a,	b,	c:a	=	2,	b	=	2,	c	=	1
Evaluate:log2(2)	=	1.	c	=	1	is	satisfied.
Result:T	(n)	=	O(nclog(n))	=	T	(n)	=	O(n1log(n))	=	T	(n)	=	O(nlog(n))
The	third	and	final	case	is	when	c	is	greater	than	logb(a).

Case	3:c	>	logb(a)	then	T	(n)	=	O(f	(n)).
For	example,	T	(n)	=	2T	(n/2)	+	n2.
Identify	a,b,c:	a	=	2,	b	=	2,	c	=	2
Evaluate:log2(2)	=	1.	c	>	1	is	satisfied.
Result:T	(n)	=	f	(n)	=	O(n2)
This	section	covered	a	lot	about	analyzing	the	time	complexity	of

recursive	algorithms.	Space	complexity	analysis	is	just	as	important.	The
memory	used	by	recursive	function	calls	should	also	be	noted	and
analyzed	for	space	complexity	analysis.

Recursive	Call	Stack	Memory
When	a	recursive	function	calls	itself,	that	takes	up	memory,	and	this	is
really	important	in	Big-O	space	complexity	analysis.

For	example,	this	simple	function	for	printing	from	n	to	1	recursively
takes	O(n)	in	space:

1   function printNRecursive(n) {
2       console.log(n);
3       if (n > 1){
4           printNRecursive(n-1);
5       }



6   }
7   printNRecursive(10);

A	developer	can	run	this	on	a	browser	or	any	JavaScript	engine	and
will	see	the	result	shown	in	Figure	8-3	in	the	call	stack.

Figure	8-3 Call	stack	in	Developer	Tools

As	shown	in	Figures	8-3	and	8-4,	each	recursive	call	must	be	stored	in
memory	until	the	base	case	is	resolved.	Recursive	algorithms	take	extra
memory	because	of	the	call	stack.



Figure	8-4 Call	stack	memory

Recursive	functions	have	an	additional	space	complexity	cost	that
comes	from	the	recursive	calls	that	need	to	be	stored	in	the	operating
system’s	memory	stack.	The	stack	is	accumulated	until	the	base	case	is
solved.	In	fact,	this	is	often	why	an	iterative	solution	may	be	preferred
over	the	recursive	solution.	In	the	worst	case,	if	the	base	case	is
implemented	incorrectly,	the	recursive	function	will	cause	the	program
to	crash	because	of	a	stack	overflow	error	that	occurs	when	there	are
more	than	the	allowed	number	of	elements	in	the	memory	stack.

Summary
Recursion	is	a	powerful	tool	to	implement	complex	algorithms.	Recall
that	all	recursive	functions	consist	of	two	parts:	the	base	case	and	the



divide-and-conquer	method	(solving	subproblems).
Analyzing	the	Big-O	of	these	recursive	algorithms	can	be	done

empirically	(not	recommended)	or	by	using	the	master	theorem.	Recall
that	the	master	theorem	needs	the	recurrence	relation	in	the	following
form:	T	(n)	=	aT	(n/b)	+O(nc).	When	using	the	master	theorem,	identify	a,
b,	and	c	to	determine	which	of	the	three	cases	of	the	master	theorem	it
belongs	to.

Finally,	when	implementing	and	analyzing	recursive	algorithms,
consider	the	additional	memory	caused	by	the	call	stack	of	the	recursive
function	calls.	Each	recursive	call	requires	a	place	in	the	call	stack	at
runtime;	when	the	call	stack	accumulate	n	calls,	then	the	space
complexity	of	the	function	is	O(n).

Exercises
These	exercises	on	recursion	cover	varying	problems	to	help	solidify	the
knowledge	gained	from	this	chapter.	The	focus	should	be	to	identify	the
correct	base	case	first	before	solving	the	entire	problem.	You	will	find	all
the	code	for	the	exercises	on	GitHub.1

CONVERT	DECIMAL	(BASE	10)	TO	BINARY	NUMBER
To	do	this,	keep	dividing	the	number	by	2	and	each	time	calculate	the
modulus	(remainder)	and	division.

Base	case:	The	base	case	for	this	problem	is	when	the	n	is	less
than	2.	When	it	is	less	than	2,	it	can	be	only	0	or	1.

 1   function base10ToString(n) {
 2       var binaryString = "";
 3
 4       function base10ToStringHelper(n) {
 5           if (n < 2) {
 6               binaryString += n;
 7               return;
 8           } else {
 9               base10ToStringHelper(Math.floo

r(n / 2));
10               base10ToStringHelper(n % 2);



11           }
12       }
13       base10ToStringHelper(n);
14
15       return binaryString;
16   }
17
18   console.log(base10ToString(232)); //

11101000

Time	Complexity:	O(log2(n))
Time	complexity	is	logarithmic	because	the	recursive	call	divides

the	n	by	2,	which	makes	the	algorithm	fast.	For	example,	for	n	=	8,	it
executes	only	three	times.	For	n=1024,	it	executes	10	times.

Space	Complexity:	O(log2(n))

PRINT	ALL	PERMUTATIONS	OF	AN	ARRAY
This	is	a	classical	recursion	problem	and	one	that	is	pretty	hard	to
solve.	The	premise	of	the	problem	is	to	swap	elements	of	the	array	in
every	possible	position.

First,	let’s	draw	the	recursion	tree	for	this	problem	(see	Figure	8-
5).



Figure	8-5 Permutation	of	array	recursion	tree

Base	case:	beginIndex	is	equal	to	endIndex.
When	this	occurs,	the	function	should	print	the	current

permutation.
Permutations:	We	will	need	a	function	to	swap	elements:

 1   function swap(strArr, index1, index2) {
 2       var temp = strArr[index1];
 3       strArr[index1] = strArr[index2];
 4       strArr[index2] = temp;
 5   }

 1   function permute(strArr, begin, end) {
 2       if (begin == end) {



 3           console.log(strArr);
 4       } else {
 5           for (var i = begin; i < end + 1;

i++) {
 6               swap(strArr, begin, i);
 7               permute(strArr, begin + 1,

end);
 8               swap(strArr, begin, i);
 9           }
10       }
11   }
12
13   function permuteArray(strArr) {
14       permute(strArr, 0, strArr.length - 1);
15   }
16
17   permuteArray(["A", "C", "D"]);
18   // ["A", "C", "D"]
19   // ["A", "D", "C"]
20   // ["C", "A", "D"]
21   // ["C", "D", "A"]
22   // ["D", "C", "A"]
23   // ["D", "A", "C"]

Time	Complexity:	O(n!)
Space	Complexity:	O(n!)
There	are	n!	permutations	,	and	it	creates	n!	call	stacks.

FLATTEN	AN	OBJECT
Given	a	JavaScript	array	like	this:

 1   var dictionary = {
 2       'Key1': '1',
 3       'Key2': {
 4           'a' : '2',
 5           'b' : '3',
 6           'c' : {



 7               'd' : '3',
 8               'e' : '1'
 9           }
10       }
11   }

flatten	it	into	{'Key1': '1', 'Key2.a': '2','Key2.b'
: '3', 'Key2.c.d' : '3', 'Key2.c.e' : '1'},	where	the
child	is	denoted	by	.	between	the	parent	and	child	(see	Figure	8-6).

Figure	8-6 Flatten	a	dictionary	recursion	tree

To	do	this,	iterate	over	any	property	and	recursively	check	it	for
child	properties,	passing	in	the	concatenated	string	name.

Base	case:	The	base	case	for	this	problem	is	when	input	is	not	an
object.

 1   function flattenDictionary(dictionary) {



 2       var flattenedDictionary = {};
 3
 4       function

flattenDitionaryHelper(dictionary, propName) {
 5           if (typeof dictionary != 'object')

{
 6               flattenedDictionary[propName]

= dictionary;
 7               return;
 8           }
 9           for (var prop in dictionary) {
10               if (propName == "){
11                   flattenDitionaryHelper(dic

tionary[prop], propName+prop);
12               } else {
13                   flattenDitionaryHelper(dic

tionary[prop], propName+'.'+prop);
14               }
15           }
16       }
17
18       flattenDitionaryHelper(dictionary, ");
19       return flattenedDictionary;
20   }

Time	Complexity:	O(n)
Space	Complexity:	O(n)
Each	property	is	visited	only	once	and	stored	once	per

nproperties.

WRITE	A	PROGRAM	THAT	RECURSIVELY	DETERMINES	IF	A
STRING	IS	A	PALINDROME
A	palindrome	is	a	word	spelled	the	same	backward	and	forward	such
as	deified,	racecar,	testset,	and	aibohphobia	(the	fear	of	palindromes).

 1   function isPalindromeRecursive(word) {
 2       return isPalindromeHelper(word, 0,



1

word.length-1);
 3   }
 4
 5   function isPalindromeHelper(word, beginPos,
endPos) {
 6       if (beginPos >= endPos) {
 7           return true;
 8       }
 9       if (word.charAt(beginPos) !=
word.charAt(endPos)) {
10           return false;
11       } else {
12           return isPalindromeHelper(word,
beginPos + 1, endPos - 1);
13       }
14   }
15
16   isPalindromeRecursive('hi'); // false
17   isPalindromeRecursive('iii'); // true
18   isPalindromeRecursive('ii'); // true
19   isPalindromeRecursive('aibohphobia'); // true
20   isPalindromeRecursive('racecar'); // true

The	idea	behind	this	one	is	that	with	two	indexes	(one	in	front	and
one	in	back)	you	check	at	each	step	until	the	front	and	back	meet.

Time	Complexity:	O(n)
Space	Complexity:	O(n)
Space	complexity	here	is	still	O(n)	because	of	the	recursive	call

stack.	Remember	that	the	call	stack	remains	part	of	memory	even	if	it
is	not	declaring	a	variable	or	being	stored	inside	a	data	structure.

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms
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This	chapter	focuses	on	working	with	sets.	The	concepts	of	sets	from
both	a	mathematical	definition	and	on	the	implementation	level	are
described	and	explored.	Common	set	operations,	as	well	as	their
implementations,	are	covered	in	great	detail.	By	end	of	this	chapter,	you
will	understand	how	to	use	JavaScript’s	native	Set	object	to	utilize	set
operations.

Introducing	Sets
Sets	are	one	of	the	most	fundamental	data	structures.	The	idea	of	a	set	is
simple:	it	is	a	group	of	definite,	distinct	objects.	In	layman’s	terms,	in
programming,	a	set	is	a	group	of	unordered	unique	(no	duplicate)
elements.	For	example,	a	set	of	integers	may	be	{1,	2,	3,	4}.	Within	this,	its
subsets	are	{},	{1},	{2},	{3},	{4},	{1,	2},	{1,	3},	{1,	4},	{2,	3},	{2,	4},	{3,	4},	{1,
2,	3},	{1,	2,	4},	{1,	3,	4},	and	{2,	3,	4}.	Sets	are	important	for	checking	and
adding	a	unique	element	in	O(1)	constant	time.	The	reason	that	sets	have
constant	time	operations	is	that	the	implementations	are	based	on	that
of	hash	tables	(covered	in	Chapter	11).

Set	is	natively	supported	in	JavaScript	as	follows:

 1   var exampleSet = new Set();

The	native	Set	object	has	only	one	property:	size	(integer).	This
property	is	the	current	number	of	elements	within	the	set.

https://doi.org/10.1007/978-1-4842-3988-9_9


Set	Operations
The	set	is	a	powerful	data	structure	for	performing	uniqueness	checks.
This	section	will	cover	the	following	key	operations:	insertion,	deletion,
and	contains.

Insertion
Set	has	one	primary	function:	to	check	for	uniqueness.	Set	can	add
items,	but	duplicates	are	not	allowed.

 1   var exampleSet = new Set();
 2   exampleSet.add(1); // exampleSet: Set {1}
 3   exampleSet.add(1); // exampleSet: Set {1}
 4   exampleSet.add(2); // exampleSet: Set {1, 2}

Notice	that	adding	the	duplicate	element	does	not	work	for	a	set.	As
discussed	in	the	introduction,	insertion	into	a	set	occurs	in	constant	time.

Time	Complexity:	O(1)

Deletion
Set	can	also	delete	items	from	the	set.	Set.delete	returns	a	boolean
(true	if	that	element	exists	and	was	deleted,	false	otherwise).

 1   var exampleSet = new Set();
 2   exampleSet.add(1); // exampleSet: Set {1}
 3   exampleSet.delete(1); // true
 4   exampleSet.add(2); // exampleSet: Set {2}

This	is	useful	for	being	able	to	delete	items	in	constant	time	in
contrast	to	arrays	where	it	would	take	O(n)	time	to	delete	an	item.

Time	Complexity:	O(1)

Contains
Set.has	does	a	quick	O(1)	lookup	to	check	whether	the	element	exists
within	the	set.

 1   var exampleSet = new Set();



 2   exampleSet.add(1); // exampleSet: Set {1}
 3   exampleSet.has(1); // true
 4   exampleSet.has(2); // false
 5   exampleSet.add(2); // exampleSet: Set {1, 2}
 6   exampleSet.has(2); // true

Time	Complexity:	O(1)

Other	Utility	Functions
In	addition	to	the	natively	supported	set	functions,	other	essential
operations	are	available;	they	are	explored	in	this	section.

Intersection
First,	the	intersection	of	two	sets	consists	of	the	common	elements
between	those	two	sets.	This	function	returns	a	set	with	common
elements	between	two	sets:

 1   function intersectSets (setA, setB) {
 2       var intersection = new Set();
 3       for (var elem of setB) {
 4           if (setA.has(elem)) {
 5               intersection.add(elem);
 6           }
 7       }
 8       return intersection;
 9   }
10   var setA = new Set([1, 2, 3, 4]),
11       setB = new Set([2, 3]);
12  intersectSets(setA,setB); // Set {2, 3}

isSuperSet
Second,	a	set	is	a	“superset”	of	another	set	if	it	contains	all	the	elements
of	the	other	set.	This	function	checks	whether	a	set	is	a	superset	of
another.	This	is	implemented	simply	by	checking	whether	the	other	set
contains	all	the	elements	of	the	reference	set.



 1   function isSuperset(setA, subset) {
 2       for (var elem of subset) {
 3           if (!setA.has(elem)) {
 4               return false;
 5           }
 6       }
 7       return true;
 8   }
 9   var setA = new Set([1, 2, 3, 4]),
10       setB = new Set([2, 3]),
11       setC = new Set([5]);
12  isSuperset(setA, setB); // true
13   // because setA has all elements that setB does
14   isSuperset(setA, setC); // false
15   // because setA does not contain 5 which setC
contains

Union
Third,	the	union	of	two	sets	combines	the	elements	from	both	sets.	This
function	returns	a	new	set	with	both	elements	without	duplicates.

 1   function unionSet(setA, setB) {
 2       var union = new Set(setA);
 3       for (var elem of setB) {
 4           union.add(elem);
 5       }
 6       return union;
 7   }
 8   var setA = new Set([1, 2, 3, 4]),
 9       setB = new Set([2, 3]),
10      setC = new Set([5]);
11   unionSet(setA,setB); // Set {1, 2, 3, 4}
12     unionSet(setA,setC); // Set {1, 2, 3, 4, 5}

Difference
Finally,	the	difference	of	set	A	from	set	B	is	all	of	the	elements	in	set	A
that	are	not	in	set	B.	This	function	implements	the	difference	operation



by	making	use	of	the	native	delete	method.

 1   function differenceSet(setA, setB) {
 2       var difference = new Set(setA);
 3       for (var elem of setB) {
 4           difference.delete(elem);
 5       }
 6       return difference;
 7   }
 8   var setA = new Set([1, 2, 3, 4]),
 9       setB = new Set([2, 3]);
10   differenceSet(setA, setB); // Set {1, 4}

Summary
A	set	is	a	fundamental	data	structure	to	represent	unordered	unique
elements.	In	this	chapter,	JavaScript’s	native	Set	object	was	introduced.
The	Set	object	supports	insertion,	deletion,	and	contains	check,	which
all	have	a	time	complexity	of	O(1).	With	these	built-in	methods,	other
fundamental	set	operations	such	as	intersection,	difference,	union,	and
superset	check	are	implemented.	These	will	enable	you	to	implement
algorithms	with	fast	uniqueness	checks	in	future	chapters.

Table	9-1	summarizes	the	set	operations.

Table	9-1 Set	Summary

Operation Function	Name Description

Insertion Set.add Native	JavaScript.	Adds	the	element	to	the	set	if	it’s	not
already	in	the	set.

Deletion Set.delete Native	JavaScript.	Deletes	the	element	from	the	set	if	it’s	in
the	set.

Contains Set.has Native	JavaScript.	Checks	whether	an	element	exists	within
in	the	set.

Intersection
(A∩B)

intersectSets Returns	a	set	with	common	elements	of	set	A	and	set	B.

Union	(A∪B) unionSet Returns	a	set	with	all	elements	of	set	A	and	set	B.

Difference	(A-
B)

differenceSet Returns	a	set	with	all	elements.



Exercises
USING	SETS	TO	CHECK	FOR	DUPLICATES	IN	AN	ARRAY
Check	whether	there	are	any	duplicates	in	an	array	of	integers	using
sets.	By	converting	the	array	into	a	set,	the	size	of	the	set	can	be
compared	with	the	length	of	the	array	to	check	for	duplicates	easily.

 1   function checkDuplicates(arr) {
 2       var mySet = new Set(arr);
 3       return mySet.size < arr.length;
 4   }
 5   checkDuplicates([1,2,3,4,5]); // false
 6   checkDuplicates([1,1,2,3,4,5]); // true

Time	Complexity:	O(n)
Space	Complexity:	O(n)
In	an	array	of	length	n,	this	function	has	to	iterate	through	the

entire	array	in	the	worst	case	and	also	store	all	those	elements	in	the
set.

RETURNING	ALL	UNIQUE	VALUES	FROM	SEPARATE	ARRAYS
Given	two	integer	arrays	with	some	of	the	same	values,	return	one
array	that	has	all	the	unique	elements	from	both	of	the	original	arrays.

Using	sets,	unique	elements	can	be	stored	easily.	By	concatenating
two	arrays	and	converting	them	to	a	set,	only	unique	items	are	stored.
Converting	the	set	to	an	array	results	in	an	array	with	unique	items
only.

 1   function uniqueList(arr1, arr2) {
 2       var mySet = new

Set(arr1.concat(arr2));
 3       return Array.from(mySet);
 4   }
 5
 6   uniqueList([1,1,2,2],[2,3,4,5]); //

[1,2,3,4,5]



 7   uniqueList([1,2],[3,4,5]); // [1,2,3,4,5]
 8   uniqueList([],[2,2,3,4,5]); // [2,3,4,5]

Time	Complexity:	O(n	+	m	)
Space	Complexity:	O(n	+	m)
The	time	and	space	complexity	for	this	algorithm	is	O(n	+	m)

where	n	is	the	length	of	arr1	and	m	is	the	length	of	arr2.	This	is
because	all	elements	inside	both	arrays	need	to	be	iterated	through.
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Searching	data	and	sorting	through	data	are	fundamental	algorithms.
Searching	refers	to	iterating	over	the	data	structure’s	elements	to
retrieve	some	data.	Sorting	refers	to	putting	the	data	structure’s
elements	in	order.	The	searching	and	sorting	algorithms	are	different	for
every	data	structure.	This	chapter	focuses	on	searching	and	sorting	for
arrays.	By	the	end	of	this	chapter,	you	will	understand	how	to	use
common	sorting	and	searching	algorithms	for	arrays.

Searching
As	mentioned,	searching	is	the	task	of	looking	for	a	specific	element
inside	a	data	structure.	When	searching	in	an	array,	there	are	two	main
techniques	depending	on	whether	the	array	is	sorted.	In	this	section,
you’ll	learn	about	linear	and	binary	searching.	Linear	searches	are
especially	flexible	because	they	can	be	used	with	both	sorted	and
unsorted	data.	Binary	searches	are	specifically	used	with	sorted	data.
However,	a	linear	search	has	a	higher	time	complexity	than	a	binary
search.

Linear	Search
A	linear	search	works	by	going	through	each	element	of	the	array	one
index	after	another	sequentially.	The	following	code	example	is	an
implementation	of	a	linear	search	that	iterates	through	the	entire	array
of	numbers	to	find	out	whether	4	and	5	exist	within	the	array.

https://doi.org/10.1007/978-1-4842-3988-9_10


 1   //iterate through the array and find
 2   function linearSearch(array,n){
 3       for(var i=0; i<array.length; i++) {
 4           if (array[i]==n) {
 5               return true;
 6           }
 7       }
 8       return false;
 9   }
10   console.log(linearSearch([1,2,3,4,5,6,7,8,9],
6)); // true
11   console.log(linearSearch([1,2,3,4,5,6,7,8,9],
10)); // false

Time	Complexity:	O(n)
As	shown	in	Figure	10-1,	when	6	is	searched	for,	it	goes	through	six

iterations.	When	10	is	searched	for,	it	must	iterate	through	all	n	elements
before	returning	false;	therefore,	the	time	complexity	is	O(n).



Figure	10-1 Linear	search

As	another	example,	with	an	array	of	[1,2,3,4,5]	and	a	search	term	of
3,	it	would	take	three	iterations	to	complete	(1,	2,	3).	The	reason	why	this
algorithm	has	a	Big-O	of	O(n)	is	that,	in	the	worst-case	scenario,	the
entire	array	needs	to	be	iterated.	For	example,	if	the	search	term	is	5,	it
takes	five	iterations	(1,	2,	3,	4,	5).	If	6	is	the	search	term,	it	goes	through
the	entire	array	(1,	2,	3,	4,	5)	and	then	returns	false	because	it	was	not
found.

As	noted	previously,	a	linear	search	algorithm	like	this	is	great
because	it	works	whether	or	not	the	array	is	sorted.	In	a	linear	search
algorithm,	every	element	of	the	array	is	checked.	So,	you	should	use	a
linear	search	when	the	array	is	not	sorted.	If	the	array	is	sorted,	you	can
do	the	search	faster	via	a	binary	search.

Binary	Search



Binary	search	is	a	searching	algorithm	that	works	on	sorted	data.	Unlike
the	linear	search	algorithm,	in	which	every	element	of	the	array	is
checked,	binary	searches	can	check	the	middle	value	to	see	whether	the
desired	value	is	greater	or	smaller	than	it.	If	the	desired	value	is	smaller,
this	algorithm	can	search	through	the	smaller	parts,	or	it	can	search
through	the	bigger	parts	if	the	desired	value	is	bigger.

Figure	10-2	illustrates	the	process	of	a	binary	search.	First,	the	search
range	is	1	to	9.	Since	the	middle	element,	5,	is	bigger	than	3,	the	search
range	is	restricted	to	1	to	4.	Finally,	3	is	found	as	the	middle	element.
Figure	10-3	illustrates	searching	for	an	item	in	the	right	half	of	the	array.

Figure	10-2 	Binary	search	in	the	left	half	of	the	array



Figure	10-3 Binary	search	in	the	right	half	of	the	array

The	following	code	implements	the	binary	search	algorithm
described:

 1   function binarySearch(array,n){
 2       var lowIndex = 0, highIndex =

array1.length-1;
 3
 4       while(lowIndex<=highIndex){
 5           var midIndex =

Math.floor((highIndex+lowIndex) /2);
 6           if (array[midIndex]==n) {
 7               return midIndex;
 8           } else if (n>array[midIndex]) {
 9               lowIndex = midIndex;
10           } else {
11               highIndex = midIndex;
12           }
13       }
14       return -1;
15   }
16   console.log(binarySearch([1,2,3,4], 4)); //

true
17   console.log(binarySearch([1,2,3,4], 5)); //

-1

The	binary	search	algorithm	is	fast	but	can	be	done	only	if	the	array	is
sorted.	It	checks	the	middle	element	if	that	is	the	element	that	is	being
searched	for.	If	the	search	element	is	bigger	than	the	middle	element,	the
lower	bound	is	set	to	the	middle	element	plus	one.	If	the	search	element
is	less	than	the	middle	element,	the	higher	bound	is	set	to	the	middle
element	minus	one.

This	way,	the	algorithm	is	continuously	dividing	the	array	into	two
sections:	the	lower	half	and	the	upper	half.	If	the	element	is	smaller	than
the	middle	element,	it	should	look	for	it	in	the	lower	half;	if	the	element
is	bigger	than	the	middle	element,	it	should	look	for	it	in	the	upper	half.

Binary	searches	are	used	by	humans	without	them	even	knowing.	An



example	is	a	phone	directory	that	is	arranged	from	A	to	Z	by	last	name.
If	you	are	given	the	task	of	finding	someone	with	the	last	name	of

Lezer,	one	would	first	go	to	the	L	section	and	open	it	halfway	through.
Lizar	is	on	that	page;	this	means	that	the	lower	section	contains	L	+	[a	to
i]	and	the	upper	section	contains	L	+	[i	to	z]	last	names.	You	would	then
check	the	middle	of	the	lower	section.	Laar	appears,	so	you	would	now
check	the	upper	section.	This	process	repeats	until	Lezer	is	found.

Sorting
Sorting	is	one	of	the	most	important	topics	in	computer	science;	it	is
faster	and	easier	to	locate	items	in	a	sorted	array	than	in	an	unsorted
sorted	array.	You	can	use	sorting	algorithms	to	sort	an	array	in	memory
for	searching	later	in	the	program	or	to	write	to	a	file	for	later	retrieval.
In	this	section,	different	sorting	techniques	will	be	explored.	We	will
start	with	the	naive	sorting	algorithms	and	then	explore	efficient	sorting
algorithms.	Efficient	sorting	algorithms	have	various	trade-offs	that
should	be	considered	during	usage.

Bubble	Sort
Bubble	sorting	is	the	simplest	sorting	algorithm.	It	simply	iterates	over
the	entire	array	and	swaps	elements	if	one	is	bigger	than	the	other,	as
shown	in	Figure	10-4	and	Figure	10-5.



Figure	10-4 	First	run	of	the	bubble	sort



Figure	10-5 	The	rest	of	the	bubble	sort	runs

swap	is	a	common	function	used	in	sorting.	It	simply	switches	two
array	element	values	and	will	be	used	as	a	helper	function	for	most	of	the
sorting	algorithms	mentioned.

1   function swap(array, index1, index2) {
2       var temp = array[index1];
3       array[index1] = array[index2];
4       array[index2] = temp;



5   }

The	following	bubbleSort	code	block	illustrates	the	bubble	sort
algorithm	previously	described:

 1   function bubbleSort(array) {
 2       for (var i=0, arrayLength =

array.length; i<arrayLength; i++) {
 3           for (var j=0; j<=i; j++) {
 4               if (array[i] < array[j]) {
 5                   swap(array, i, j);
 6               }
 7           }
 8       }
 9       return array;
10   }
11   bubbleSort([6,1,2,3,4,5]); // [1,2,3,4,5,6]

Time	Complexity:	O(n2)
Space	Complexity:	O(1)
Bubble	sort	is	the	worst	type	of	sort	because	it	compares	every	pair

possible,	whereas	other	sorting	algorithms	take	advantage	of	the
presorted	parts	of	the	array.	Because	bubble	sort	uses	nested	loops,	it
has	a	time	complexity	of	O(n2).

Selection	Sort
Selection	sorting	works	by	scanning	the	elements	for	the	smallest
element	and	inserting	it	into	the	current	position	of	the	array.	This
algorithm	is	marginally	better	than	bubble	sort.	Figure	10-6	shows	this
minimum	selection	process.



Figure	10-6 Selection	sort

The	following	code	implements	the	selection	sort.	In	the	code,	there
is	one	for	loop	to	iterate	through	the	array	and	one	nested	for	loop	to
scan	to	get	the	minimum	element.

 1   function selectionSort(items) {
 2       var len = items.length,
 3           min;
 4
 5       for (var i=0; i < len; i++){
 6           // set minimum to this position
 7           min = i;
 8           //check the rest of the array to see

if anything is smaller
 9           for (j=i+1; j < len; j++){



10               if (items[j] < items[min]){
11                   min = j;
12               }
13           }
14           //if the minimum isn't in the

position, swap it
15           if (i != min){
16               swap(items, i, min);
17           }
18       }
19
20       return items;
21   }
22   selectionSort([6,1,23,4,2,3]); // [1, 2, 3,

4, 6, 23]

Time	Complexity:	O(n2)
Space	Complexity:	O(1)

The	time	complexity	for	selection	sort	is	still	O(n2)	because	of	the
nested	for	loop	.

Insertion	Sort
Insertion	sort	works	similarly	to	selection	sort	by	searching	the	array
sequentially	and	moving	the	unsorted	items	into	a	sorted	sublist	on	the
left	side	of	the	array.	Figure	10-7	shows	this	process	in	detail.



Figure	10-7 Insertion	sort

The	following	code	implements	the	insertion	sort	algorithm.	The
outer	for	loop	iterates	over	the	array	indices,	and	the	inner	for	loop
moves	the	unsorted	items	into	the	sorted	sublist	on	the	left	side	of	the
array.

 1   function insertionSort(items) {
 2       var len = items.length, // number of

items in the array
 3           value,              // the value

currently being compared
 4           i,                  // index into

unsorted section
 5           j;                  // index into

sorted section
 6



 7       for (i=0; i < len; i++) {
 8           // store the current value because

it may shift later
 9           value = items[i];
10
11           // Whenever the value in the sorted

section is greater than the value
12           // in the unsorted section, shift

all items in the sorted section
13           // over by one. This creates space

in which to insert the value.
14
15           for (j=i-1; j > -1 && items[j] >

value; j--) {
16               items[j+1] = items[j];
17           }
18           items[j+1] = value;
19       }
20       return items;
21   }
22   insertionSort([6,1,23,4,2,3]); // [1, 2, 3,

4, 6, 23]

Time	Complexity:	O(n2)
Space	Complexity:	O(1)
Again,	this	sorting	algorithm	has	a	quadratic	time	complexity	of	O(n2)

like	bubble	and	insertion	sort	because	of	the	nested	for	loop.

Quicksort
Quicksort	works	by	obtaining	a	pivot	and	partitioning	the	array	around	it
(bigger	elements	on	one	side	and	smaller	elements	on	the	other	side)
until	everything	is	sorted.	The	ideal	pivot	is	the	median	of	the	array	since
it	will	partition	the	array	evenly	but	getting	the	median	of	an	unsorted
array	linear	time	to	compute.	Hence,	a	pivot	is	typically	obtained	by
taking	the	median	value	of	the	first,	middle,	and	last	elements	in	the
partition.	This	sort	is	a	recursive	one	and	uses	the	divide-and-conquer
methodology	to	break	the	quadratic	complexity	barrier	and	get	the	time



complexity	down	to	O(nlog2(n)).	However,	with	a	pivot	that	partitions
everything	on	one	side,	the	time	complexity	is	worse	case:	O(n2).

Figure	10-8	shows	the	quicksort	process’s	partitioning	steps	in	great
detail.



Figure	10-8 Quicksort

The	following	code	shows	an	implementation	of	the	quicksort
algorithm:

 1   function quickSort(items) {
 2       return quickSortHelper(items, 0,

items.length-1);
 3   }
 4
 5   function quickSortHelper(items, left, right)

{
 6       var index;
 7       if (items.length > 1) {
 8           index = partition(items, left,

right);
 9
10           if (left < index - 1) {
11               quickSortHelper(items, left,

index - 1);
12           }
13
14           if (index < right) {
15               quickSortHelper(items, index,

right);
16           }
17       }
18       return items;
19   }
20
21   function partition(array, left, right) {
22       var pivot = array[Math.floor((right +

left) / 2)];
23       while (left <= right) {
24           while (pivot > array[left]) {
25               left++;
26           }
27           while (pivot < array[right]) {



28               right--;
29           }
30           if (left <= right) {
31               var temp = array[left];
32               array[left] = array[right];
33               array[right]= temp;
34               left++;
35               right--;
36           }
37       }
38       return left;
39   }
40
41   quickSort([6,1,23,4,2,3]); // [1, 2, 3, 4,

6, 23]

Time	Complexity:	O(nlog2(n))	on	average,	O(n2)	for	worst	case
Space	Complexity:	O(log2(n))
One	downside	about	a	quicksort	algorithm	is	that	it	could	potentially

be	O(n2)	if	a	bad	pivot	is	always	picked	.	A	bad	pivot	is	one	that	it	does
not	partition	the	array	evenly.	The	ideal	pivot	is	the	median	element	of
the	array.	In	addition,	a	quicksort	algorithm	takes	a	bigger	space
complexity	of	O(log2(n))	compared	to	other	sorting	algorithms	because
of	the	call	stack	in	recursion.

Use	a	quicksort	algorithm	when	the	average	performance	should	be
optimal.	This	has	to	do	with	the	fact	that	quicksort	works	better	for	the
RAM	cache.

Quickselect
Quickselect	is	a	selection	algorithm	to	find	the	kth	smallest	element	in	an
unordered	list.	Quickselect	uses	the	same	approach	as	a	quicksort
algorithm.	A	pivot	is	chosen,	and	the	array	is	partitioned.	Instead	of
recursing	both	sides	like	quicksort,	however,	it	recurses	only	the	side	for
the	element.	This	reduces	the	complexity	from	O(nlog2(n))	to	O(n).

Quickselect	is	implemented	in	the	following	code:



 1   var array = [1,3,3,-2,3,14,7,8,1,2,2];
 2   // sorted form: [-2, 1, 1, 2, 2, 3, 3, 3, 7,

8, 14]
 3
 4   function quickSelectInPlace(A, l, h, k){
 5       var p = partition(A, l, h);
 6       if(p==(k-1)) {
 7           return A[p];
 8       } else if(p>(k-1)) {
 9           return quickSelectInPlace(A, l, p -

1,k);
10       } else {
11           return quickSelectInPlace(A, p + 1,

h,k);
12       }
13   }
14
15   function medianQuickselect(array) {
16       return

quickSelectInPlace(array,0,array.length-1,
Math.floor(array.length/2));

17   }
18
19   quickSelectInPlace(array,0,array.length-

1,5); // 2
20   // 2 - because it's the fifth smallest

element
21   quickSelectInPlace(array,0,array.length-

1,10); // 7
22   // 7 - because it's the tenth smallest

element

Time	Complexity:	O(n)

Mergesort
Mergesort	works	by	dividing	the	array	into	subarrays	until	each	array
has	one	element.	Then,	each	subarray	is	concatenated	(merged)	in	a



sorted	order	(see	Figure	10-9).

Figure	10-9 Mergesort

The	merge	function	should	add	all	the	elements	from	both	arrays	in
sorted	order	in	a	“result	array.”	To	do	this,	the	index	of	each	array	can	be
created	to	keep	track	of	elements	already	compared.	Once	one	array
exhausts	all	its	elements,	the	rest	can	be	appended	to	the	result	array.

 1   function merge(leftA, rightA){
 2       var results= [], leftIndex= 0,

rightIndex= 0;
 3
 4       while (leftIndex < leftA.length &&



rightIndex < rightA.length) {
 5           if( leftA[leftIndex]

<rightA[rightIndex] ){
 6               results.push(leftA[leftIndex++])

;
 7           } else {
 8               results.push(rightA[rightIndex++

]);
 9           }
10       }
11       var leftRemains =

leftA.slice(leftIndex),
12           rightRemains =

rightA.slice(rightIndex);
13
14       // add remaining to resultant array
15       return

results.concat(leftRemains).concat(rightRemains);
16   }

The	merging	function	works	by	taking	the	two	arrays	(left	and	right)
and	merging	them	into	one	resultant	array.	The	elements	need	to	be
compared	as	they	get	merged	to	preserve	order.

Now,	the	mergeSort	function	has	to	partition	the	bigger	array	into
two	separate	arrays	and	recursively	call	merge.

 1   function mergeSort(array) {
 2
 3       if(array.length<2){
 4           return array; // Base case: array is

now sorted since it's just 1 element
 5       }
 6
 7       var midpoint =

Math.floor((array.length)/2),
 8           leftArray = array.slice(0,

midpoint),



 9           rightArray = array.slice(midpoint);
10
11       return merge(mergeSort(leftArray),

mergeSort(rightArray));
12   }
13   mergeSort([6,1,23,4,2,3]); // [1, 2, 3, 4,

6, 23]

Time	Complexity:	O(nlog2(n))
Space	Complexity:	O(n)
Mergesort	has	a	large	space	complexity	of	O(n)	because	of	the	need	to

create	n	number	of	arrays	to	be	merged	later.	Use	mergesort	when	a
stable	sort	is	needed.	A	stable	sort	is	one	that’s	guaranteed	not	to	reorder
elements	with	identical	keys.	Mergesort	is	guaranteed	to	be	O(nlog2(n)).
A	disadvantage	of	mergesort	is	that	it	uses	O(n)	in	space.

Count	Sort
Count	sort	can	be	done	in	O(k+n)	because	it	does	not	compare	values.	It
works	only	for	numbers	and	given	a	certain	range.	Instead	of	sorting	by
swapping	elements,	this	count	works	by	counting	occurrences	of	each
element	in	the	array.	Once	occurrences	of	each	element	are	counted,	the
new	array	can	be	created	using	those	occurrences.	This	sorts	the	data
without	having	to	swap	elements,	as	shown	in	Figure	10-10.



Figure	10-10 Count	sort

Here’s	an	implementation	using	a	JavaScript	object:

 1   function countSort(array) {
 2       var hash = {}, countArr= [];
 3       for(var i=0;i<array.length;i++){
 4           if(!hash[array[i]]){
 5               hash[array[i]] = 1;
 6           }else{
 7               hash[array[i]]++;
 8           }
 9       }
10
11       for(var key in hash){
12           // for any number of _ element, add

it to array
13           for(var i=0;i<hash[key];i++) {
14               countArr.push(parseInt(key));
15           }
16       }
17
18       return countArr;
19   }
20   countSort([6,1,23,2,3,2,1,2,2,3,3,1,123,123,

4,2,3]); // [1, 2, 3, 4, 6, 23]

Time	Complexity:	O(k+n)
Space	Complexity:	O(k)
Use	count	sort	when	you’re	sorting	integers	with	a	limited	range.	This

will	be	the	fastest	sort	for	this	case.

JavaScript’s	Built-in	Sort
JavaScript	has	a	built-in	sort()	method	for	an	array	object,	which	sorts
elements	by	ascending	order.	To	use	it,	there	is	an	optional	parameter
that	you	can	pass	in	a	comparator	function.

However,	the	default	comparator	function	sorts	alphabetically,	so	it
will	not	work	for	numbers.



1   var array1 = [12,3,4,2,1,34,23];
2   array1.sort(); // array1: [1, 12, 2, 23, 3,

34, 4]

In	the	previous	example,	notice	that	numbers	starting	with	1	came
first	(1,	12),	then	numbers	starting	with	2,	and	so	forth.	This	is	because
no	comparator	function	was	passed	and	JavaScript	converted	the
elements	into	a	string	and	sorted	it	according	to	the	alphabet.

To	sort	numbers	correctly,	use	this:

1   var array1 = [12,3,4,2,1,34,23];
2
3   function comparatorNumber(a,b) {
4       return a-b;
5   }
6
7   array1.sort(comparatorNumber);
8   // array1: [1, 2, 3, 4, 12, 23, 34]

a-b	indicates	that	it	should	be	from	smallest	to	biggest	(ascending).
Descending	order	can	be	done	as	follows:

1   var array1 = [12,3,4,2,1,34,23];
2
3   function comparatorNumber(a,b) {
4       return b-a;
5   }
6
7   array1.sort(comparatorNumber); // array1:

[34, 23, 12, 4, 3, 2, 1]

The	sort()	function	can	be	useful	when	you	need	a	quick	way	to
sort	something	without	implementing	it	yourself.

Summary
There	are	two	ways	to	search	inside	an	array:	linear	search	and	binary



search.	Binary	search	is	faster	with	O(log2(n))	time	complexity,	while
linear	search	has	O(n)	time	complexity.	However,	the	binary	search	can
be	performed	only	on	a	sorted	array.

Table	10-1	summarizes	time	and	space	complexities	of	different
sorting	algorithms.	The	most	efficient	sorting	algorithms	are	quicksort,
mergesort,	and	count	sort.	Count	sort,	while	the	fastest,	is	limited	to
when	the	range	of	array’s	values	are	known.

Table	10-1 Sorting	Summary

Algorithm Time	Complexity Space	Complexity

Quicksort O(nlog2(n)) O(nlog2(n))

Mergesort O(nlog2(n)) O(nlog2(n))

Bubble	sort O(n2) O(n2)

Insertion	sort O(n2) O(n2)

Selection	sort O(n2) O(n2)

Count	sort O(k	+	n) O(k)

Exercises
USE	THE	IMPLEMENT	SQUARE	ROOT	FUNCTION	FOR	AN
INTEGER	WITHOUT	USING	ANY	MATH	LIBRARIES
The	first	solution	that	may	come	to	mind	is	trying	every	possibility
from	1	to	the	number,	as	follows:

 1   function sqrtIntNaive(number){
 2       if(number == 0 || number == 1)
 3           return number;
 4
 5       var index = 1, square = 1;
 6
 7       while(square < number){
 8           if (square == number){
 9               return square;
10           }



11
12           index++;
13           square = index*index;
14       }
15       return index;
16   }
17   sqrtIntNaive(9);

Time	Complexity:	O(n)
This	is	essentially	a	linear	search	since	it	has	to	linearly	check	one

by	one	the	value	for	the	square	root.
The	binary	search	algorithm	can	be	applied	to	this	problem.

Instead	of	going	up	1	by	1,	partition	the	range	into	upper	half	and
lower	half	between	1	and	the	given	number	as	follows:

 1   function sqrtInt(number) {
 2       if(number == 0 || number == 1) return

number;
 3
 4       var start = 1, end = number, ans;
 5
 6       while(start <= end) {
 7           let mid = parseInt((start+end)/2);
 8
 9           if (mid*mid == number)
10               return mid;
11
12           if(mid*mid<number){
13               start = mid+1; // use the

upper section
14               ans = mid;
15           }else{
16               end = mid-1; // use the lower

section
17           }
18       }
19       return ans;



20   }
21   sqrtInt(9);

Time	Complexity:	O(log2(n))
Bonus: Find a Square Root of a Float
For	this	exercise,	the	only	difference	is	using	a	threshold	value	to

calculate	accuracy	to	because	the	square	root	of	a	double	will	have
decimals.	Hence,	the	time	complexity	also	stays	the	same.

 1   function sqrtDouble(number) {
 2       var threshold = 0.1;
 3       //9 try middle,
 4       var upper = number;
 5       var lower = 0;
 6       var middle;
 7       while(upper-lower>threshold){
 8           middle = (upper+lower)/2;
 9           if(middle*middle>number){
10               upper = middle;
11           }else{
12               lower = middle;
13           }
14       }
15       return middle
16   }
17   sqrtDouble(9); // 3.0234375

FIND	IF	TWO	ELEMENTS	OF	AN	ARRAY	ADD	UP	TO	A	GIVEN
NUMBER
The	simple	approach	to	this	problem	is	to	check	every	other	element
for	each	element	in	the	array.

 1   function findTwoSum(array, sum) {
 2
 3       for(var i=0, arrayLength = array.length;
i<arrayLength;i++){



 4           for(var j=i+1;j<arrayLength;j++){
 5               if(array[j]+array[i] == sum){
 6                   return true;
 7               }
 8           }
 9       }
10       return false;
11   }

Time	Complexity:	O(n2)
Space	Complexity:	O(1)
There	is	a	lot	of	checking,	and	hence	it	takes	quadratic	time.
A	better	approach	is	to	store	the	already	visited	numbers	and

check	against	them.	This	way,	it	can	be	done	in	linear	time.

 1   function findTwoSum(array, sum){
 2       var store = {};
 3
 4       for(var i=0, arrayLength =

array.length; i<arrayLength;i++){
 5           if(store[array[i]]){
 6               return true;
 7           }else{
 8               store[sum-array[i]] =

array[i];
 9           }
10       }
11       return false;
12   }

Time	Complexity:	O(n)
Space	Complexity:	O(n)
This	algorithm	cuts	the	time	complexity	to	O(n)	but	takes	O(n)

space	as	well	to	store	items	into	the	store	object.

FIND	AN	ELEMENT	WITHIN	AN	ARRAY	THAT	APPEARS	ONLY
ONCE



Given	a	sorted	array	in	which	all	elements	appear	twice	(one	after
one)	and	one	element	appears	only	once,	find	that	element	in	O(log2n)
complexity.	This	can	be	done	by	modifying	the	binary	search
algorithm	and	checking	the	addition	indices.

Input:   arr = [1, 1, 3, 3, 4, 5, 5, 7, 7, 8,
8]      Output:  4
Input:   arr = [1, 1, 3, 3, 4, 4, 5, 5, 7, 7,
8]      Output:  8

 1   function findOnlyOnce(arr, low, high) {
 2       if (low > high) {
 3           return null;
 4       }
 5       if (low == high) {
 6           return arr[low];
 7       }
 8
 9       var mid = Math.floor((high+low)/2);
10
11       if (mid%2 == 0) {
12           if (arr[mid] == arr[mid+1]) {
13               return findOnlyOnce(arr, mid+2,
high);
14           } else {
15               return findOnlyOnce(arr, low,
mid);
16           }
17       } else {
18           if (arr[mid] == arr[mid-1]) {
19               return findOnlyOnce(arr, mid+1,
high);
20           } else {
21               return findOnlyOnce(arr, low,
mid-1);
22           }
23       }



24   }
25   function findOnlyOnceHelper(arr) {
26       return findOnlyOnce(arr, 0, arr.length);
27   }
28   findOnlyOnceHelper([ 1, 1, 2, 4, 4, 5, 5, 6,
6 ]);

Time	Complexity:	O(log2n)
Space	Complexity:	O(1)

CREATE	A	JAVASCRIPT	SORT	COMPARATOR	FUNCTION	THAT
WOULD	SORT	STRING	BY	LENGTH
This	is	fairly	simple.	If	it	is	an	array	of	strings,	strings	all	have	a
property	of	length,	which	can	be	used	to	sort	the	array.

1   var mythical = ['dragon',
'slayer','magic','wizard of oz', 'ned stark'];
2
3   function sortComparator(a,b){
4       return a.length - b.length;
5   }
6   mythical.sort(sortComparator);
7   // ["magic", "dragon", "slayer", "ned stark",
"wizard of of"]

Examples
Sort	string	elements,	putting	strings	with	a	first,	as	shown	here:

1   var mythical = ['dragon',
'slayer','magic','wizard of oz', 'ned tark'];

2
3   function sortComparator(a,b){
4       return a.indexOf("a") - b.indexOf("a");
5   }
6
7   mythical.sort(sortComparator);



8   // ["magic", "dragon", "slayer", "wizard of
oz", "ned stark"]

Sort	object	elements	by	the	number	of	properties,	as	shown	here:

1   var mythical=[{prop1:", prop2:"},{prop1:",
prop2:", prop3:"},{prop1:", prop2:"}];

2
3   function sortComparator(a,b){
4       return Object.keys(a).length -

Object.keys(b).length;
5   }
6
7   mythical.sort(sortComparator);
// [{prop1:", prop2:"},{prop1:", prop2:"},

{prop1:", prop2:", prop3:"}]

As	shown,	there’s	a	lot	of	flexibility	with	these	comparators,	and
they	can	be	used	for	sorting	without	needing	to	implement	a	sort
yourself.

IMPLEMENT	A	WORD	COUNTER	LIST
Create	a	function	that	generates	an	object	of	words	(as	keys)	and	the
number	of	times	the	words	occur	in	a	string	ordered	by	highest	to
lowest	occurrences.

Here’s	some	example	input:	practice	makes	perfect.	get	perfect
by	practice.	just	practice.

Here’s	the	example	output:	{ practice: 3, perfect: 2,
makes: 1, get: 1, by: 1, just: 1 }.

 1   function wordCount(sentence) {
 2       // period with nothing so it doesn't

count as word
 3       var wordsArray =

sentence.replace(/[.]/g,"").split(" "),
 4           occurenceList = {}, answerList =

{};



 5
 6       for (var i=0,

wordsLength=wordsArray.length;
i<wordsLength;  i++) {

 7           var currentWord = wordsArray[i];
 8           // doesn't exist, set as 1st

occurrence
 9           if (!occurenceList[currentWord]) {
10               occurenceList[currentWord] =

1;
11           } else {
12               occurenceList[currentWord]++;

// add occurrences
13           }
14       }
15
16       var arrayTemp = [];
17       // push the value and key as fixed

array
18       for (var prop in occurenceList) {
19           arrayTemp.push([occurenceList[prop

], prop]);
20       }
21
22       function sortcomp(a, b) {
23           return b[0] - a[0]; // compare the

first element of the array
24       }
25
26       arrayTemp.sort(sortcomp); //sort
27
28       for (var i = 0, arrlength =

arrayTemp.length; i < arrlength; i++) {
29           var current = arrayTemp[i];
30           answerList[current[1]] =

current[0]; // key value pairs
31       }



32       return answerList;
33   }
34   wordCount("practice makes perfect. get

perfect by practice. just practice");

Time	Complexity:	O(nlog2(n))
Space	Complexity:	O(n)
Time	complexity	is	limited	by	the	sorting	algorithm	that	the

JavaScript	engine	uses.	Most	use	either	mergesort	or	quicksort,	which
are	both	O(nlog2(n)).
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A	hash	table	is	a	fixed-sized	data	structure	in	which	the	size	is	defined	at
the	start.	This	chapter	explains	how	hash	tables	work	by	focusing	on
hashing,	the	method	of	generating	a	unique	key.	By	the	end	of	this
chapter,	you	will	understand	various	hashing	techniques	and	know	how
to	implement	a	hash	table	from	scratch.

Introducing	Hash	Tables
Hash	tables	are	excellent	for	quick	storage	and	retrieval	of	data	based	on
key-value	pairs.	In	JavaScript,	JavaScript	objects	work	this	way	by
defining	a	key	(property)	and	its	associated	value.	Figure	11-1	shows
each	key	and	its	associated	item.

https://doi.org/10.1007/978-1-4842-3988-9_11


Figure	11-1 Simple	hash	table	overview

A	hash	table	contains	two	main	functions:	put()	and	get()	.	put()
is	used	for	storing	data	into	the	hash	table,	while	get()	is	used	for
retrieving	data	from	the	hash	table.	Both	of	these	functions	have	a	time
complexity	of	O(1).

In	a	nutshell,	a	hash	table	is	analogous	to	an	array	whose	index	is
calculated	with	a	hashing	function	to	identify	a	space	in	memory
uniquely.

localStorage	is	an	example	of	a	data	structure	based	on	a	hash
table.	It	is	a	native	JavaScript	object	supported	by	all	major	browsers.	It
lets	developers	persist	data	inside	the	browser,	meaning	it	can	be
accessed	after	a	session.

1   localStorage.setItem("testKey","testValue");
2   location = location; // refreshes the page
3
4   //-----------------------------------
5   localStorage.getItem("testKey"); // prints

"testValue"



Hashing	Techniques
The	most	important	part	of	a	hash	table	is	the	hash	function.	The	hash
function	converts	a	specified	key	into	an	index	for	an	array	that	stores	all
of	the	data.	The	three	primary	requirements	for	a	good	hash	function	are
as	follows:
Deterministic:	Equal	keys	produce	equal	hash	values.
Efficiency:	It	should	be	O(1)	in	time.
Uniform	distribution:	It	makes	the	most	use	of	the	array.
The	first	technique	for	hashing	is	to	use	prime	numbers.	By	using	the

modulus	operator	with	prime	numbers,	a	uniform	distribution	of	the
index	can	be	guaranteed.

Prime	Number	Hashing
Prime	numbers	in	hashing	are	important.	This	is	because	modulus
division	using	prime	numbers	yields	an	array	index	in	a	distributed
manner.

Modulus number: 11
        4 % 11     = 4
        7 % 11     = 7
        9 % 11     = 9
       15 % 11     = 4

Collisions	can	be	seen	with	15	and	4	yielding	the	same	key;	handling
this	collision	is	discussed	later	in	this	chapter.	What	is	important	here	is
that	modulus	by	prime	numbers	guarantees	the	best	distribution	for	a
fixed	size.	Modulus	by	a	small	nonprime	number	such	as	4	guarantees
only	a	range	from	0	to	3	and	leads	to	a	large	number	of	collisions.

Modulus number: 4
        6 % 4      = 2
       10 % 4      = 2

This	is	the	first	hashing	technique	that	will	be	observed.	Take	a	look
at	Figure	11-2,	which	is	a	hash	table	with	two	arrays	of	size	11,	and	each
of	the	11	elements	is	empty.	One	array	is	for	the	keys,	and	the	other	is	for



values.

Figure	11-2 Hash	table	of	size	11,	with	all	empty	elements

In	this	example,	keys	are	integers,	and	strings	are	being	stored	as
keys.	Let’s	hash	the	following	key-value	pairs:

{key:7, value: "hi"}
{key:24, value: "hello"}
{key:42, value: "sunny"}
{key:34, value: "weather"}

Prime number: 11
7 % 11  = 7
24 % 11 = 2
42 % 11 = 9
34 % 11 = 1

After	all	the	key-value	pairs	have	been	inserted,	the	resulting	hash
table	is	shown	in	Figure	11-3.

Figure	11-3 Hash	table	after	inserting	the	value	pairs

Now	let’s	hash	{key:18,	value:	“wow”}.



Prime number: 11
18 % 11  = 7

This	is	a	problem	because	7	already	exists	in	the	index	of	7	and
causes	an	index	collision.	With	a	perfect	hashing	function,	there	are	no
collisions.	However,	collision-free	hashing	is	almost	impossible	in	most
cases.	Therefore,	strategies	for	handling	collisions	are	needed	for	hash
tables.

Probing
To	work	around	occurring	collisions,	the	probing	hashing	technique
finds	the	next	available	index	in	the	array.	The	linear	probing	technique
resolves	conflicts	by	finding	the	next	available	index	via	incremental
trials,	while	quadratic	probing	uses	quadratic	functions	to	generate
incremental	trials.

Linear	Probing
Linear	probing	works	by	finding	the	next	available	index	by
incrementing	one	index	at	a	time.	For	example,	in	the	case	of	18	and	7
hashing	to	the	same	key,	18	would	be	hashed	into	key	8	because	that’s
the	next	empty	spot	(see	Figure	11-4).

Figure	11-4 Hash	table	1	after	using	linear	probing

However,	now	when	the	get(key)	function	is	used,	it	has	to	start	at
the	original	hash	result	(7)	and	then	iterate	until	18	is	found.

The	main	disadvantage	of	linear	probing	is	it	easily	creates	clusters,
which	are	bad	because	they	create	more	data	to	iterate	through.

Quadratic	Probing



Quadratic	probing	is	a	good	technique	for	addressing	the	cluster	issue.
Quadratic	probing	uses	perfect	squares	instead	of	incrementing	by	1
each	time,	and	this	helps	to	evenly	distribute	across	the	available	indices,
as	shown	in	Figure	11-5.

h + (1)^2, h + (2)^2, h + (3)^2, h + (4)^2
h + 1, h + 4, h + 9, h + 16

Figure	11-5 Linear	probing	(on	top)	and	quadratic	probing	(on	bottom)

Rehashing/Double-Hashing
Another	great	way	to	uniformly	distribute	the	keys	is	by	having	a	second
hashing	function	that	hashes	the	result	from	the	original.	These	are	the
three	primary	requirements	for	a	good	second	hash	function:
Different:	It	needs	to	be	different	to	distribute	it	better.
Efficiency:	It	should	still	be	O(1)	in	time.
Nonzero:	It	should	never	evaluate	to	zero.	Zero	gives	the	initial	hash
value.
A	commonly	used	second	hashing	function	is	as	follows:
hash2(x)	=	R	−	(x	%	R)
Here,	x	is	the	result	from	hashing	the	first	time,	and	R	is	less	than	the

size	of	the	hash	table.	Each	hash	collision	is	resolved	by	the	following,
where	i	is	the	iteration	trial	number:
i	*	hash2(x)



Hash	Table	Implementation
Now	that	hash	tables	have	been	explained,	let’s	implement	one	from
scratch.	In	this	section,	you	will	apply	three	different	techniques	to	the
same	example.	The	following	are	the	example	key-value	pairs	that	will	be
used:
7,	“hi”
20,	“hello”
33,	“sunny”
46,	“weather”
59,	“wow”
72,	“forty”
85,	“happy”
98,	“sad”

Using	Linear	Probing
Let’s	start	the	example	with	simple	linear	probing.

 1   function HashTable(size) {
 2       this.size = size;
 3       this.keys = this.initArray(size);
 4       this.values = this.initArray(size);
 5       this.limit = 0;
 6   }
 7
 8   HashTable.prototype.put = function(key, value)
{
 9       if (this.limit >= this.size) throw 'hash
table is full'
10
11       var hashedIndex = this.hash(key);
12
13       // Linear probing
14       while (this.keys[hashedIndex] != null) {
15           hashedIndex++;
16



17           hashedIndex = hashedIndex % this.size;
18
19       }
20
21       this.keys[hashedIndex] = key;
22       this.values[hashedIndex] = value;
23       this.limit++;
24   }
25
26   HashTable.prototype.get = function(key) {
27       var hashedIndex = this.hash(key);
28
29       while (this.keys[hashedIndex] != key) {
30           hashedIndex++;
31
32           hashedIndex = hashedIndex % this.size;
33
34       }
35       return this.values[hashedIndex];
36   }
37
38   HashTable.prototype.hash = function(key) {
39       // Check if int
40       if (!Number.isInteger(key)) throw 'must be
int';
41           return key % this.size;
42   }
43
44   HashTable.prototype.initArray = function(size)
{
45       var array = [];
46       for (var i = 0; i < size; i++) {
47           array.push(null);
48       }
49       return array;
50   }
51



52   var exampletable = new HashTable(13);
53   exampletable.put(7, "hi");
54   exampletable.put(20, "hello");
55   exampletable.put(33, "sunny");
56   exampletable.put(46, "weather");
57   exampletable.put(59, "wow");
58   exampletable.put(72, "forty");
59   exampletable.put(85, "happy");
60   exampletable.put(98, "sad");

Here	is	the	result:

Keys:
        [ 85, 98, null, null, null, null, null,

7, 20, 33, 46, 59, 72 ]
Values:
        [ 'happy', 'sad', null, null, null, null,

null, 'hi', 'hello', 'sunny', 'weather', 'wow',
'forty' ]

Using	Quadratic	Probing
Now,	let’s	change	the	put()	and	get()	methods	to	use	quadratic
probing.

 1   HashTable.prototype.put = function (key, value)
{
 2       if (this.limit >= this.size) throw 'hash
table is full'
 3
 4       var hashedIndex = this.hash(key),
squareIndex = 1;
 5
 6       // quadratic probing
 7       while (this.keys[hashedIndex] != null) {
 8           hashedIndex += Math.pow(squareIndex,2);
 9
10           hashedIndex



11           squareIndex++;
12       }
13
14       this.keys[hashedIndex] = key;
15       this.values[hashedIndex] = value;
16       this.limit++;
17   }
18
19   HashTable.prototype.get = function (key) {
20       var hashedIndex = this.hash(key),
squareIndex = 1;
21
22       while ( this.keys[hashedIndex] != key ) {
23           hashedIndex += Math.pow(squareIndex,
2);
24
25           hashedIndex = hashedIndex % this.size;
26           squareIndex++;
27       }
28
29       return this.values[hashedIndex];
30   }

Here	is	the	result:

Keys:
        [ null, null, null, 85, 72, null, 98, 7,

20, null, 59, 46, 33 ]
Values:
        [ null, null,  null, 'happy', 'forty',

null, 'sad', 'hi', 'hello', null, 'wow',
'weather',  'sunny' ]

This	result	is	more	uniformly	distributed	than	the	result	from	linear
probing.	It	would	be	easier	to	see	with	a	bigger	array	size	and	more
elements.

Using	Double-Hashing	with	Linear	Probing



Finally,	let’s	combine	double-hashing	and	linear	probing.	Recall	the
common	second	hash	function,	hash2(x)	=	R	−	(x	%	R),	where	x	is	the
result	from	hashing	the	first	time,	and	R	is	less	than	the	size	of	the	hash
table.

 1   HashTable.prototype.put = function(key, value)
{
 2       if (this.limit >= this.size) throw 'hash
table is full'
 3
 4       var hashedIndex = this.hash(key);
 5
 6       while (this.keys[hashedIndex] != null) {
 7           hashedIndex++;
 8
 9           hashedIndex = hashedIndex % this.size;
10
11       }
12       this.keys[hashedIndex] = key;
13       this.values[hashedIndex] = value;
14       this.limit++;
15   }
16
17   HashTable.prototype.get = function(key) {
18       var hashedIndex = this.hash(key);
19
20       while (this.keys[hashedIndex] != key) {
21           hashedIndex++;
22
23           hashedIndex = hashedIndex % this.size;
24
25       }
26       return this.values[hashedIndex];
27   }
28
29   HashTable.prototype.hash = function(key) {
30       if (!Number.isInteger(key)) throw 'must be



int'; // check if int
31       return this.secondHash(key % this.size);
32   }
33
34   HashTable.prototype.secondHash =
function(hashedKey) {
35       var R = this.size - 2;
36       return R - hashedKey % R;
37   }

Here	is	the	result:

Keys:
        [ null, 59, 20, 85, 98, 72, null, 7,

null, 46, null, 33, null ]
Values:
        [ null, 'wow', 'hello', 'happy', 'sad',

'forty', null, 'hi', null, 'weather', null, 'sunny',
null ]

Again,	double-hashing	results	in	a	more	uniformly	distributed	array
than	the	result	from	linear	probing.	Both	quadratic	probing	and	double-
hashing	are	great	techniques	to	reduce	the	number	of	collisions	in	a	hash
table.	There	are	collision	resolution	algorithms	far	more	advanced	than
these	techniques,	but	they	are	beyond	the	scope	of	this	book.

Summary
A	hash	table	is	a	fixed-sized	data	structure	in	which	the	size	is	defined	at
the	start.	Hash	tables	are	implemented	using	a	hash	function	to	generate
an	index	for	the	array.	A	good	hash	function	is	deterministic,	efficient,
and	uniformly	distributive.	Hash	collisions	should	be	minimized	with	a
good	uniformly	distributive	hash	function,	but	having	some	collisions	is
unavoidable.	Hash	collision-handling	techniques	include	but	are	not
limited	to	linear	probing	(incrementing	the	index	by	1),	quadratic
probing	(using	a	quadratic	function	to	increment	the	index),	and	double-
hashing	(using	multiple	hash	functions).



The	next	chapter	explores	stacks	and	queues,	which	are	dynamically
sized	data	structures.
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This	chapter	covers	stacks	and	queues;	both	are	versatile	data	structures
commonly	used	in	the	implementation	of	other,	more	complex	data
structures.	You	will	learn	what	stacks	and	queues	are,	how	and	when
they	are	used,	and	how	to	implement	them.	Finally,	the	exercises	will
help	you	to	understand	these	concepts	as	well	as	when	to	apply	stacks
and	queues	to	an	algorithmic	problem.

Stacks
A	stack	is	a	data	structure	in	which	only	the	last	inserted	element	can	be
removed	and	accessed	(see	Figure	12-1).	Think	about	stacking	plates	on
a	table.	To	get	to	the	bottom	one,	you	must	remove	all	the	other	ones	on
the	top.	This	is	a	principle	known	as	last	in,	first	out(LIFO).	A	stack	is
great	because	it	is	fast.	Since	it	is	known	that	the	last	element	is	to	be
removed,	the	lookup	and	insertion	happen	in	a	constant	time	of	O(1).
Stacks	should	be	used	over	arrays	when	you	need	to	work	with	data	in
the	LIFO	form	where	the	algorithm	needs	to	access	only	the	last-added
element.	The	limitation	of	stacks	is	that	they	cannot	access	the	non-last-
added	element	directly	like	arrays	can;	in	addition,	accessing	deeper
elements	requires	you	to	remove	the	elements	from	the	data	structure.

https://doi.org/10.1007/978-1-4842-3988-9_12


Figure	12-1 Stack,	LIFO

In	JavaScript,	arrays	have	methods	that	define	the	stack	class:	pop
and	push	(as	discussed	in	Chapter	5).	With	this,	a	stack	can	be	easily
implemented.

Here	is	some	skeleton	code	to	start.	You	can	find	the	code	on	GitHub.1

 1   function Stack(array){
 2       this.array = [];
 3       if(array) this.array = array;
 4   }
 5
 6   Stack.prototype.getBuffer = function(){
 7       return this.array.slice();
 8   }
 9
10   Stack.prototype.isEmpty = function(){
11       return this.array.length == 0;
12   }
13



14   //instance of the stack class
15   var stack1 = new Stack();
16
17   console.log(stack1); // {array: []}

Let’s	first	consider	“peeking”	at	the	most	recently	added	element.
This	can	be	done	simply	by	using	the	largest	index	of	the	array.

Peek
Peeking	at	the	last	added	element	of	the	stack	means	returning	the	last-
added	element	without	removing	it	from	the	data	structure.	Peeking	is
often	used	to	compare	the	last-added	element	to	some	other	variable	and
to	evaluate	whether	the	last-added	element	should	be	removed	from	the
data	structure.

1   Stack.prototype.peek = function(){
2       return this.array[this.array.length-1];
3   }
4   stack1.push(10);
5   console.log(stack1.peek()); // 10
6   stack1.push(5);
7   console.log(stack1.peek()); // 5

Time	Complexity:	O(1)

Insertion
Inserting	into	a	stack	can	be	done	via	the	push	function	natively
supported	with	JavaScript	arrays.

1   Stack.prototype.push = function(value){
2       this.array.push(value);
3   }
4
5   stack1.push(1);
6   stack1.push(2);
7   stack1.push(3);
8   console.log(stack1); // {array: [1,2,3]}



Time	Complexity:	O(1)

Deletion
Deletion	can	also	be	implemented	using	a	native	JavaScript	array
method,	called	pop.

1   Stack.prototype.pop = function() {
2       return this.array.pop();
3   };
4
5   stack1.pop(1);
6   stack1.pop(2);
7   stack1.pop(3);
8
9   console.log(stack1); // {array: []}

Time	Complexity:	O(1)

Access
Accessing	specific	elements	in	a	data	structure	is	important.	Here,	let’s
take	a	look	at	how	to	access	an	element	based	on	order.

To	access	the	nth	node	from	the	top,	you	need	to	call	popn	number	of
times.

 1   function stackAccessNthTopNode(stack, n){
 2       var bufferArray = stack.getBuffer();
 3       if(n<=0) throw 'error'
 4
 5       var bufferStack = new

Stack(bufferArray);
 6
 7       while(--n!==0){
 8           bufferStack.pop();
 9       }
10       return bufferStack.pop();
11   }
12



13   var stack2 = new Stack();
14   stack2.push(1);
15   stack2.push(2);
16   stack2.push(3);
17   stackAccessNthTopNode(stack2,2); // 2

Time	Complexity:	O(n)
Search	will	be	implemented	in	a	similar	way	.

Search
Searching	the	stack	data	structure	for	a	specific	element	is	a	critical
operation.	To	do	this,	you	must	first	create	a	buffer	stack	so	that	pop	can
be	called	on	that	buffer	stack.	This	way,	the	original	stack	is	not	mutated,
and	nothing	is	removed	from	it.

 1       function stackSearch(stack, element) {
 2       var bufferArray = stack.getBuffer();
 3
 4       var bufferStack = new Stack(bufferArray);
// copy into  buffer
 5
 6       while(!bufferStack.isEmpty()){
 7           if(bufferStack.pop()==element){
 8               return true;
 9           }
10       }
11       return false;
12   }

Time	Complexity:	O(n)

Queues
A	queue	is	also	a	data	structure,	but	you	can	remove	only	the	first	added
element	(see	Figure	12-2).	This	is	a	principle	known	as	first	in,	first
out(FIFO).	A	queue	is	also	great	because	of	the	constant	time	in	its
operations.	Similar	to	a	stack,	it	has	limitations	because	only	one	item



can	be	accessed	at	a	time.	Queues	should	be	used	over	arrays	when	you
need	to	work	with	data	in	the	FIFO	form	where	the	algorithm	only	needs
to	access	the	first	added	element.

Figure	12-2 Queue,	FIFO

In	JavaScript,	arrays	have	methods	that	define	the	queue	class:
shift()	and	push()	(as	discussed	in	Chapter	5).	Recall	that	the
shift()	method	on	an	array	in	JavaScript	removes	and	returns	the	first
element	of	the	array.	Adding	to	a	queue	is	commonly	known	as
enqueuing	,	and	removing	from	a	queue	is	known	as	dequeuing	.
shift()	can	be	used	for	the	dequeue,	and	.push()	can	be	used	for	the
enqueue.

Here	is	some	skeleton	code	to	start.	You	can	find	the	code	on	GitHub.2

 1   function Queue(array){
 2       this.array = [];
 3       if(array) this.array = array;
 4   }



 5
 6   Queue.prototype.getBuffer = function(){
 7       return this.array.slice();
 8   }
 9
10   Queue.prototype.isEmpty = function(){
11       return this.array.length == 0;
12   }
13
14   //instance of the queue class
15   var queue1 = new Queue();
16
17   console.log(queue1); // { array: [] }

Peek
The	peek	function	looks	at	the	first	item	without	popping	it	from	the
queue.	In	the	stack	implementation,	the	last	element	in	the	array	was
returned,	but	a	queue	returns	the	first	element	in	the	array	because	of
FIFO.

1   Queue.prototype.peek = function(){
2       return this.array[0];
3   }

Insertion
As	mentioned,	insertion	for	a	queue	is	known	as	enqueue.	Since	an	array
is	used	to	hold	the	stack	data,	the	push()	method	can	be	used	to
implement	enqueue.

1   Queue.prototype.enqueue = function(value){
2       return this.array.push(value);
3   }

Time	Complexity:	O(1)

Deletion
As	mentioned,	deletion	for	a	queue	also	is	known	as	dequeue.	Since	an



array	is	used	to	hold	the	stack	data,	the	shift()	method	can	be	used	to
remove	and	return	the	first	element	in	the	queue.

 1   Queue.prototype.dequeue = function() {
 2       return this.array.shift();
 3   };
 4
 5   var queue1 = new Queue();
 6
 7   queue1.enqueue(1);
 8   queue1.enqueue(2);
 9   queue1.enqueue(3);
10
11   console.log(queue1); // {array: [1,2,3]}
12
13   queue1.dequeue();
14   console.log(queue1); // {array: [2,3]}
15
16   queue1.dequeue();
17   console.log(queue1); // {array: [3]}

Time	Complexity:	O(n)
Because	the	shift()	implementation	removes	the	element	at	zero

indexes	and	then	shifts	remaining	indexes	down	consecutively,	all	other
elements	in	the	array	need	to	have	their	indexes	altered,	and	this	takes
O(n).	With	a	linked-list	implementation,	as	covered	in	Chapter	13,	this
can	be	reduced	to	O(1)	.

Access
Unlike	an	array	,	items	in	a	queue	cannot	be	accessed	via	index.	To	access
the	nth	last-added	node,	you	need	to	call	dequeuen	number	of	times.	A
buffer	is	needed	to	prevent	modification	to	the	original	queue.

 1   function queueAccessNthTopNode(queue, n){
 2       var bufferArray = queue.getBuffer();
 3       if(n<=0) throw 'error'
 4



 5       var bufferQueue = new Queue(bufferArray);
 6
 7       while(--n!==0){
 8           bufferQueue.dequeue();
 9       }
10       return bufferQueue.dequeue();
11   }

Time	Complexity:	O(n)

Search
You	might	need	to	search	a	queue	to	check	whether	an	element	exists
within	a	queue.	Again,	this	involves	creating	a	buffer	queue	first	to	avoid
modifications	to	the	original	queue.

 1   function queueSearch(queue, element){
 2       var bufferArray = queue.getBuffer();
 3
 4       var bufferQueue = new Queue(bufferArray);
 5
 6       while(!bufferQueue.isEmpty()){
 7           if(bufferQueue.dequeue()==element){
 8               return true;
 9           }
10       }
11       return false;
12   }

Time	Complexity:	O(n)

Summary
Both	stacks	and	queues	support	peek,	insertion,	and	deletion	in	O(1).
The	most	important	distinction	between	a	stack	and	a	queue	is	that	a
stack	is	LIFO	and	a	queue	is	FIFO.	Table	12-1	summarizes	the	time
complexity.

Table	12-1 Queue	and	Stack	Time	Complexity	Summary



	 Access Search Peek Insertion Deletion

Queue O(n) O(n) O(1) O(1) O(n)3

Stack O(n) O(n) O(1) O(1) O(1)

Exercises
All	the	code	for	the	exercises	can	be	found	on	GitHub.4

DESIGN	A	STACK	USING	ONLY	QUEUES	AND	THEN	DESIGN	A
QUEUE	USING	ONLY	STACKS
Stack	Using	Queues

A	queue	can	be	made	with	two	stacks.	A	queue	is	a	data	structure
that	returns	the	first-added	element	with	the	dequeue()	method.	A
stack	is	a	data	structure	that	returns	the	last-added	element	via	pop.
In	other	words,	a	queue	removes	elements	in	the	reverse	direction	of
a	stack.

For	example,	examine	a	stack	array	with	[1,2,3,4,5].
To	reverse	the	order,	all	of	the	elements	could	be	pushed	onto	a

second	stack	and	pop	that	second	stack.	So,	the	second	stack	array	will
look	like	this:	[5,4,3,2,1].

When	this	is	popped	off,	the	last	element	is	removed,	which	is	1.
So,	1	is	originally	the	first	element.	Hence,	a	queue	was	implemented
using	only	two	stacks.

 1   function TwoStackQueue(){
 2       this.inbox = new Stack();
 3       this.outbox= new Stack();
 4   }
 5
 6   TwoStackQueue.prototype.enqueue =

function(val) {
 7       this.inbox.push(val);
 8   }
 9
10   TwoStackQueue.prototype.dequeue =

function() {



11       if(this.outbox.isEmpty()){
12           while(!this.inbox.isEmpty()){
13               this.outbox.push(this.inbox.po

p());
14           }
15       }
16       return this.outbox.pop();
17   };
18   var queue = new TwoStackQueue();
19   queue.enqueue(1);
20   queue.enqueue(2);
21   queue.enqueue(3);
22   queue.dequeue(); // 1
23   queue.dequeue(); // 2
24   queue.dequeue(); // 3

Queue	Using	Stacks
A	stack	can	be	made	with	two	queues.	A	stack	is	a	data	structure

that	returns	the	last	element.	To	implement	this	using	a	queue,	simply
enqueue	all	the	elements	inside	the	main	queue	except	for	the	last
element.	Then	return	that	last	element.

 1   function QueueStack(){
 2       this.inbox = new Queue(); // first

stack
 3   }
 4
 5   QueueStack.prototype.push = function(val)

{
 6       this.inbox.enqueue(val);
 7   };
 8
 9   QueueStack.prototype.pop = function() {
10       var size = this.inbox.array.length-1;
11       var counter =0;
12       var bufferQueue = new Queue();
13



14       while(++counter<=size){
15           bufferQueue.enqueue(this.inbox.deq

ueue());
16       }
17       var popped = this.inbox.dequeue();
18       this.inbox = bufferQueue;
19       return popped
20   };
21
22   var stack = new QueueStack();
23
24   stack.push(1);
25   stack.push(2);
26   stack.push(3);
27   stack.push(4);
28   stack.push(5);
29
30   console.log(stack.pop()); // 5
31   console.log(stack.pop()); // 4
32   console.log(stack.pop()); // 3
33   console.log(stack.pop()); // 2
34   console.log(stack.pop()); // 1

DESIGN	A	CASHIER	CLASS	THAT	TAKES	IN	A	CUSTOMER	OBJECT
AND	HANDLES	FOOD	ORDERING	ON	A	FIRST-COME,	FIRST-
SERVED	BASIS
Here	are	the	requirements:
1.

The	cashier	requires	a	customer	name	and	order	item	for	the
order.

	
2.

The	customer	who	was	served	first	is	processed	first. 	
Here	are	the	required	implementations:
addOrder(customer):	Enqueues	a	customer	object	to	be
processed	by	deliverOrder()



deliverOrder():	Prints	the	name	and	order	for	the	next
customer	to	be	processed
For	this	exercise,	the	Cashier	class	should	enqueue	customer

class	objects	with	a	queue	and	dequeue	them	when	finished.

 1   function Customer(name, order){
 2       this.name = name;
 3       this.order = order;
 4   }
 5
 6   function Cashier(){
 7       this.customers = new Queue();
 8   }
 9
10   Cashier.prototype.addOrder = function

(customer){
11       this.customers.enqueue(customer);
12   }
13
14   Cashier.prototype.deliverOrder =

function(){
15       var finishedCustomer =

this.customers.dequeue();
16
17       console.log(finishedCustomer.name+",

your "+finishedCustomer.order+" is ready!");
18   }
19
20   var cashier = new Cashier();
21   var customer1 = new

Customer('Jim',"Fries");
22   var customer2 = new

Customer('Sammie',"Burger");
23   var customer3 = new

Customer('Peter',"Drink");
24
25   cashier.addOrder(customer1);



26   cashier.addOrder(customer2);
27   cashier.addOrder(customer3);
28
29   cashier.deliverOrder(); // Jim, your Fries

is ready!
30   cashier.deliverOrder(); // Sammie, your

Burger is ready!
31   cashier.deliverOrder(); // Peter, your

Drink is ready!

DESIGN	A	PARENTHESIS	VALIDATION	CHECKER	USING	A	STACK
((()))	is	a	valid	parentheses	set,	while	((()	and	)))	are	not.	A
stack	can	be	used	to	check	the	validity	of	parentheses	by	storing	the
left	parenthesis	and	using	push	and	triggering	pop	when	the	right
parenthesis	is	seen.

If	there	is	anything	left	in	the	stack	afterward,	it	is	not	a	valid
parentheses	set.	Also,	it	is	not	a	valid	parentheses	set	if	more	right
parentheses	are	seen	than	left	ones.	Using	these	rules,	use	a	stack	to
store	the	most	recent	parenthesis.

 1   function
isParenthesisValid(validationString){

 2       var stack = new Stack();
 3       for(var

pos=0;pos<validationString.length;pos++){
 4           var currentChar =

validationString.charAt(pos);
 5           if(currentChar=="("){
 6               stack.push(currentChar);
 7           }else if(currentChar==")"){
 8
 9               if(stack.isEmpty())
10                   return false;
11
12               stack.pop();



13           }
14       }
15       return stack.isEmpty();
16   }
17   isParenthesisValid("((()"); // false;
18   isParenthesisValid("(((("); // false;
19   isParenthesisValid("()()"); // true;

Time	Complexity:	O(n)
This	algorithm	processes	a	string	character	by	character.	Hence,

its	time	complexity	is	O(n),	where	n	is	the	length	of	the	string.

DESIGN	A	SORTABLE	STACK
The	idea	is	to	have	two	stacks,	one	that	is	sorted	and	one	that	is
nonsorted.	When	sorting,	pop	from	the	unsorted	stack,	and	when	any
number	smaller	(if	descending	order)	or	bigger	(if	ascending	order)
on	the	sorted	stack	is	on	top,	that	sorted	stack	element	should	move
back	to	unsorted	because	it	is	out	of	order.	Run	a	loop	until	the	stack
is	all	sorted.

 1   function sortableStack(size){
 2       this.size = size;
 3
 4       this.mainStack = new Stack();
 5       this.sortedStack = new Stack();
 6
 7       // let's initialize it with some random
ints
 8       for(var i=0;i<this.size;i++){
 9           this.mainStack.push(Math.floor(Math.r
andom()*11));
10       }
11   }
12
13   sortableStack.prototype.sortStackDescending =
function(){
14       while(!this.mainStack.isEmpty()){



1

2

3

4

15           var temp = this.mainStack.pop();
16           while(!this.sortedStack.isEmpty() &&
this.sortedStack.peek()< temp){
17               this.mainStack.push(this.sortedSt
ack.pop());
18           }
19           this.sortedStack.push(temp);
20       }
21   }
22
23   var ss = new sortableStack(10);
24   console.log(ss);     // [ 8, 3, 4, 4, 1, 2,
0, 9, 7, 8 ]
25   ss.sortStackDescending();
26   console.log(ss.sortedStack);     // [ 9, 8,
8, 7, 4, 4, 3, 2, 1, 0 ]

Time	Complexity:	O(n2)
This	algorithm	involves	a	reshuffling	of	the	elements	between	two

stacks,	which	in	the	worst	possible	case	takes	O(n2),	where	n	is	the
number	of	elements	to	be	sorted.

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms
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This	could	be	improved	to	O(1)	with	a	linked-list	implementation.
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This	chapter	will	cover	linked	lists.	A	linked	list	is	a	data	structure	in
which	each	node	points	to	another	node.	Unlike	arrays,	which	have	a
fixed	size,	a	linked	list	is	a	dynamic	data	structure	that	can	allocate	and
deallocate	memory	at	runtime.	By	the	end	of	this	chapter,	you	will
understand	how	to	implement	and	work	with	linked	lists.

There	are	two	types	of	linked	lists	discussed	in	this	chapter:	singly
and	doubly	linked	lists.	Let’s	examine	the	singly	linked	list	first.

Singly	Linked	Lists
The	linked	list	data	structure	is	one	where	each	node	(element)	has
reference	to	the	next	node	(see	Figure	13-1).

Figure	13-1 Singly	linked	list

A	node	in	a	singly	linked	list	has	the	following	properties:	data	and
next.	data	is	the	value	for	the	linked	list	node,	and	next	is	a	pointer	to
another	instance	of	SinglyLinkedListNode.

https://doi.org/10.1007/978-1-4842-3988-9_13


1   function SinglyLinkedListNode(data) {
2       this.data = data;
3       this.next = null;
4   }

The	following	code	is	the	base	for	the	singly	linked	list	example.	You
can	find	the	code	on	GitHub.1	The	code	block	has	a	helper	function	to
check	whether	the	singly	linked	list	is	empty.

1   function SinglyLinkedList(){
2           this.head = null;
3           this.size = 0;
4   }
5
6   SinglyLinkedList.prototype.isEmpty =

function(){
7           return this.size == 0;
8   }

The	start	of	the	linked	list	is	referred	to	as	the	head	.	This	property
defaults	to	null	before	inserting	any	element	into	the	linked	list.

Insertion
The	following	code	block	shows	how	to	insert	into	a	singly	linked	list.	If
the	head	of	the	linked	list	is	empty,	the	head	is	set	to	the	new	node.
Otherwise,	the	old	heap	is	saved	in	temp,	and	the	new	head	becomes	the
newly	added	node.	Finally,	the	new	head’s	next	points	to	the	temp	(the
old	head).

 1   SinglyLinkedList.prototype.insert =
function(value) {
 2       if (this.head === null) { //If first node
 3           this.head = new
SinglyLinkedListNode(value);
 4       } else {
 5           var temp = this.head;
 6           this.head = new



SinglyLinkedListNode(value);
 7           this.head.next = temp;
 8       }
 9       this.size++;
10   }
11   var sll1 = new SinglyLinkedList();
12   sll1.insert(1); // linked list is now: 1 ->
null
13   sll1.insert(12); // linked list is now: 12 -> 1
-> null
14   sll1.insert(20); // linked list is now: 20 ->
12 -> 1 -> null

Time	Complexity:	O(1)
This	is	a	constant	time	operation;	no	loops	or	traversal	is	required.

Deletion	by	Value
The	deletion	of	a	node	in	a	singly	linked	list	is	implemented	by	removing
the	reference	of	that	node.	If	the	node	is	in	the	“middle”	of	the	linked	list,
this	is	achieved	by	having	the	node	with	the	next	pointer	to	that	node
point	to	that	node’s	own	next	node	instead,	as	shown	in	Figure	13-2.

Figure	13-2 Interior	node	removal	from	a	singly	linked	list

If	the	node	is	at	the	end	of	the	linked	list,	then	the	second-to-last



element	can	dereference	the	node	by	setting	its	next	to	null.

 1   SinglyLinkedList.prototype.remove =
function(value) {

 2       var currentHead = this.head;
 3       if (currentHead.data == value) {
 4           // just shift the head over. Head is

now this new value
 5           this.head = currentHead.next;
 6           this.size--;
 7       } else {
 8           var prev = currentHead;
 9           while (currentHead.next) {
10               if (currentHead.data == value) {
11                   // remove by skipping
12                   prev.next =

currentHead.next;
13                   prev = currentHead;
14                   currentHead =

currentHead.next;
15                   break; // break out of the

loop
16               }
17               prev = currentHead;
18               currentHead = currentHead.next;
19           }
20           //if wasn't found in the middle or

head, must be tail
21           if (currentHead.data == value) {
22               prev.next = null;
23           }
24           this.size--;
25       }
26   }
27   var sll1 = new SinglyLinkedList();
28   sll1.insert(1); // linked list is now:  1 ->

null



29   sll1.insert(12); // linked list is now: 12 -
> 1 -> null

30   sll1.insert(20); // linked list is now: 20 -
> 12 -> 1 -> null

31   sll1.remove(12); // linked list is now: 20 -
> 1 -> null

32   sll1.remove(20); // linked list is now: 1 ->
null

Time	Complexity:	O(n)
In	the	worst	case,	the	entire	linked	list	must	be	traversed.

Deletion	at	the	Head
Deleting	an	element	at	the	head	of	the	linked	list	is	possible	in	O(1).
When	a	node	is	deleted	from	the	head,	no	traversal	is	required.	The
implementation	of	this	deletion	is	shown	in	the	following	code	block.
This	allows	the	linked	list	to	implement	a	stack.	The	last-added	item	(to
the	head)	can	be	removed	in	O(1).

 1   DoublyLinkedList.prototype.deleteAtHead =
function() {
 2       var toReturn = null;
 3
 4       if (this.head !== null) {
 5           toReturn = this.head.data;
 6
 7           if (this.tail === this.head) {
 8               this.head = null;
 9               this.tail = null;
10           } else {
11               this.head = this.head.next;
12               this.head.prev = null;
13           }
14       }
15       this.size--;
16       return toReturn;
17   }



18   var sll1 = new SinglyLinkedList();
19   sll1.insert(1); // linked list is now:  1 ->
null
20   sll1.insert(12); // linked list is now: 12 -> 1
-> null
21   sll1.insert(20); // linked list is now: 20 ->
12 -> 1 -> null
22   sll1.deleteAtHead(); // linked list is now:  12
-> 1 -> null

Search
To	find	out	whether	a	value	exists	in	a	singly	linked	list,	simple	iteration
through	all	its	next	pointers	is	needed.

 1   SinglyLinkedList.prototype.find =
function(value) {
 2       var currentHead = this.head;
 3       while (currentHead.next) {
 4           if (currentHead.data == value) {
 5               return true;
 6           }
 7           currentHead = currentHead.next;
 8       }
 9       return false;
10   }

Time	Complexity:	O(n)
Like	with	the	deletion	operation,	in	the	worst	case,	the	entire	linked

list	must	be	traversed.

Doubly	Linked	Lists
A	doubly	linked	list	can	be	thought	of	as	a	bidirectional	singly	linked	list.
Each	node	in	the	doubly	linked	list	has	both	a	next	pointer	and	a	prev
pointer.	The	following	code	block	implements	the	doubly	linked	list
node:



1   function DoublyLinkedListNode(data) {
2       this.data = data;
3       this.next = null;
4       this.prev = null;
5   }

In	addition,	a	doubly	linked	list	has	a	head	pointer	as	well	as	a	tail
pointer.	The	head	refers	to	the	beginning	of	the	doubly	linked	list,	and
the	tail	refers	to	the	end	of	the	doubly	linked	list.	This	is	implemented	in
the	following	code	along	with	a	helper	function	to	check	whether	the
doubly	linked	list	is	empty:

1   function DoublyLinkedList (){
2           this.head = null;
3           this.tail = null;
4           this.size = 0;
5  }
6   DoublyLinkedList.prototype.isEmpty =

function(){
7           return this.size == 0;
8   }

Each	node	in	a	doubly	linked	list	has	next	and	prev	properties.
Deletion,	insertion,	and	search	implementations	in	a	doubly	linked	list
are	similar	to	that	of	the	singly	linked	list.	However,	for	both	insertion
and	deletion,	both	next	and	prev	properties	must	be	updated.	Figure
13-3	shows	an	example	of	a	doubly	linked	list.

Figure	13-3 Doubly	linked	list	example	with	five	nodes

Insertion	at	the	Head



Inserting	into	the	head	of	the	doubly	linked	list	is	the	same	as	the
insertion	for	the	singly	linked	list	except	that	it	has	to	update	the	prev
pointer	as	well.	The	following	code	block	shows	how	to	insert	into	the
doubly	linked	list.	If	the	head	of	the	linked	list	is	empty,	the	head	and	the
tail	are	set	to	the	new	node.	This	is	because	when	there	is	only	one
element,	that	element	is	both	the	head	and	the	tail.	Otherwise,	the	temp
variable	is	used	to	store	the	new	node.	The	new	node’s	next	points	to
the	current	head,	and	then	the	current	head’s	prev	points	to	the	new
node.	Finally,	the	head	pointer	is	updated	to	the	new	node.

 1   DoublyLinkedList.prototype.addAtFront =
function(value) {
 2       if (this.head === null) { //If first node
 3           this.head = new
DoublyLinkedListNode(value);
 4           this.tail = this.head;
 5       } else {
 7           var temp = new
DoublyLinkedListNode(value);
 8           temp.next = this.head;
 9           this.head.prev = temp;
10           this.head = temp;
11       }
12       this.size++;
13   }
14   var dll1 = new DoublyLinkedList();
15   dll1.insertAtHead(10); // ddl1's structure:
tail: 10  head: 10
16   dll1.insertAtHead(12); // ddl1's structure:
tail: 10  head: 12
17   dll1.insertAtHead(20); // ddl1's structure:
tail: 10  head: 20

Time	Complexity:	O(1)

Insertion	at	the	Tail
Similarly,	a	new	node	can	be	added	to	the	tail	of	a	doubly	linked	list,	as



implemented	in	the	following	code	block:

 1   DoublyLinkedList.prototype.insertAtTail =
function(value) {
 2       if (this.tail === null) { //If first node
 3           this.tail = new
DoublyLinkedListNode(value);
 4           this.head = this.tail;
 5       } else {
 6           var temp = new
DoublyLinkedListNode(value);
 7           temp.prev = this.tail;
 8           this.tail.next = temp;
 9           this.tail = temp;
10       }
11       this.size++;
12   }
13
14   var dll1 = new DoublyLinkedList();
15   dll1.insertAtHead(10); // ddl1's structure:
tail: 10  head: 10
16   dll1.insertAtHead(12); // ddl1's structure:
tail: 10  head: 12
17   dll1.insertAtHead(20); // ddl1's structure:
tail: 10  head: 20
18   dll1.insertAtTail(30); // ddl1's structure:
tail: 30  head: 20

Time	Complexity:	O(1)

Deletion	at	the	Head
Removing	a	node	at	the	head	from	a	doubly	linked	list	can	be	done	in
O(1)	time.	If	there	is	only	one	item	in	the	case	that	the	head	and	the	tail
are	the	same,	both	the	head	and	the	tail	are	set	to	null.	Otherwise,	the
head	is	set	to	the	head’s	next	pointer.	Finally,	the	new	head’s	prev	is
set	to	null	to	remove	the	reference	of	the	old	head.	This	is	implemented
in	the	following	code	block.	This	is	great	because	it	can	be	used	like	a



dequeue	function	from	the	queue	data	structure.

 1   DoublyLinkedList.prototype.deleteAtHead =
function() {
 2       var toReturn = null;
 3
 4       if (this.head !== null) {
 5           toReturn = this.head.data;
 6
 7           if (this.tail === this.head) {
 8               this.head = null;
 9               this.tail = null;
10           } else {
11               this.head = this.head.next;
12               this.head.prev = null;
13           }
14       }
15       this.size--;
16       return toReturn;
17   }

Time	Complexity:	O(1)

Deletion	at	the	Tail
Similarly	to	removing	the	node	at	the	head,	the	tail	node	can	be	removed
and	returned	in	O(1)	time,	as	shown	in	the	following	code	block.	By
having	the	ability	to	remove	at	the	tail	as	well,	the	doubly	linked	list	can
also	be	thought	of	as	a	bidirectional	queue	data	structure.	A	queue	can
dequeue	the	first-added	item,	but	a	doubly	linked	list	can	dequeue	either
the	item	at	the	tail	or	the	item	at	the	head	in	O(1)	time.

 1   DoublyLinkedList.prototype.deleteAtTail =
function() {
 2       var toReturn = null;
 3
 4       if (this.tail !== null) {
 5           toReturn = this.tail.data;



 6
 7           if (this.tail === this.head) {
 8               this.head = null;
 9               this.tail = null;
10           } else {
11               this.tail = this.tail.prev;
12               this.tail.next = null;
13           }
14       }
15       this.size--;
16       return toReturn;
17   }
18   var dll1 = new DoublyLinkedList();
19   dll1.insertAtHead(10); // ddl1's structure:
tail: 10  head: 10
20   dll1.insertAtHead(12); // ddl1's structure:
tail: 10  head: 12
21   dll1.insertAtHead(20); // ddl1's structure:
tail: 10  head: 20
22   dll1.insertAtTail(30); // ddl1's structure:
tail: 30  head: 20
23   dll1.deleteAtTail();
24   // ddl1's structure: tail: 10  head: 20

Time	Complexity:	O(1)

Search
To	find	out	whether	a	value	exists	in	a	doubly	linked	list,	you	can	start	at
the	head	and	use	the	next	pointer	or	start	at	the	tail	and	use	the	prev
pointer.	The	following	code	block	is	the	same	implementation	as	the
singly	linked	list	search	implementation,	which	starts	at	the	head	and
looks	for	the	item:

 1   DoublyLinkedList.prototype.findStartingHead =
function(value) {
 2       var currentHead = this.head;
 3       while(currentHead.next){



 4           if(currentHead.data == value){
 5               return true;
 6           }
 7           currentHead = currentHead.next;
 8       }
 9       return false;
10   }
11   var dll1 = new DoublyLinkedList();
12   dll1.insertAtHead(10); // ddl1's structure:
tail: 10  head: 10
13   dll1.insertAtHead(12); // ddl1's structure:
tail: 10  head: 12
14   dll1.insertAtHead(20); // ddl1's structure:
tail: 10  head: 20
15   dll1.insertAtTail(30); // ddl1's structure:
tail: 30  head: 20
16   dll1.findStartingHead(10); // true
17   dll1.findStartingHead(100); // false

Time	Complexity:	O(n)
The	following	code	traverses	the	doubly	linked	list	starting	with	the

tail	using	prev	pointers:

 1   DoublyLinkedList.prototype.findStartingTail
= function(value) {

 2       var currentTail = this.tail;
 3       while (currentTail.prev){
 4           if(currentTail.data == value){
 5               return true;
 6           }
 7           currentTail = currentTail.prev;
 8       }
 9       return false;
10   }
11
12   var dll1 = new DoublyLinkedList();
13   dll1.insertAtHead(10); // ddl1's structure:



tail: 10  head: 10
14   dll1.insertAtHead(12); // ddl1's structure:

tail: 10  head: 12
15   dll1.insertAtHead(20); // ddl1's structure:

tail: 10  head: 20
16   dll1.insertAtTail(30); // ddl1's structure:

tail: 30  head: 20
17   dll1.findStartingTail(10); // true
18   dll1.findStartingTail(100); // false

Time	Complexity:	O(n)
Although	the	time	complexity	for	search	is	the	same	as	the	singly

linked	list’s	search,	only	the	doubly	linked	list	can	search	bidirectionally
(using	prev	or	next).	This	means	that	if	given	a	reference	to	a	doubly
linked	list	node,	doubly	linked	lists	can	perform	a	full	search,	but	a	singly
linked	list	is	limited	to	only	its	next	pointers	.

Summary
The	linked	list	data	structure	works	by	each	node	having	a	next	pointer
(and	previous,	or	prev,	pointer	if	doubly	linked)	to	a	different	node.
Insertion	for	both	singly	and	doubly	linked	lists	has	a	constant	time
complexity	of	O(1).	The	time	complexity	of	deleting	from	the	head	of	the
singly	and	doubly	linked	lists	is	O(1)	as	well.	However,	searching	for	an
item	in	both	singly	and	doubly	linked	list	takes	O(n)	time.	Doubly	linked
lists	should	be	used	over	singly	linked	lists	when	bidirectional
traversal/search	is	required.	Furthermore,	doubly	linked	lists	allow	you
to	pop	from	either	the	tail	or	the	head	of	the	linked	list	for	a	flexible	and
fast	O(1)	operation.

Exercises
You	can	find	all	the	code	for	the	exercises	on	GitHub.2

REVERSE	A	SINGLY	LINKED	LIST
To	reverse	a	singly	linked	list,	simply	iterate	through	each	node	and



set	the	next	property	on	the	current	node	to	the	previous	node.

 1   function reverseSingleLinkedList(sll){
 2           var node = sll.head;
 3           var prev = null;
 4           while(node){
 5                   var temp = node.next;
 6                   node.next = prev;
 7                   prev = node;
 8                   if(!temp)
 9                           break;
10                   node = temp;
11           }
12           return node;
13   }

Time	Complexity:	O(n)
Space	Complexity:	O(1)
To	fully	reverse	a	linked	list,	the	entire	N	elements	of	the	linked	list

must	be	traversed.

DELETE	DUPLICATES	IN	A	LINKED	LIST
Deleting	an	item	in	a	linked	list	is	simple.	Simply	iterate	and	store
visited	nodes	inside	an	array.	Delete	the	current	element	if	the	current
element	has	already	been	seen	previously.

 1   // delete duplicates in unsorted linkedlist
 2   function deleteDuplicateInUnsortedSll(sll1) {
 3       var track = [];
 4
 5       var temp = sll1.head;
 6       var prev = null;
 7       while (temp) {
 8           if (track.indexOf(temp.data) >= 0) {
 9               prev.next = temp.next;
10              sll1.size--;
11           } else {



12               track.push(temp.data);
13               prev = temp;
14           }
15           temp = temp.next;
16       }
17       console.log(temp);
18   }

Time	Complexity:	O(n2)
Space	Complexity:	O(n)
However,	this	algorithm	must	iterate	over	the	array	with	the

.indexOf()	method,	which	is	O(n)	as	well	as	iterating	n	times.
Hence,	it	is	O(n2)	in	time	complexity.	In	addition,	the	track	array
grows	to	size	of	N,	and	this	causes	the	space	complexity	to	be	O(n).
Let’s	cut	the	time	complexity	down	to	O(n).

 1   //delete duplicates in unsorted linkedlist
 2   function

deleteDuplicateInUnsortedSllBest(sll1) {
 3       var track = {};
 4
 5       var temp = sll1.head;
 6       var prev = null;
 7       while (temp) {
 8           if (track[temp.data]) {
 9               prev.next = temp.next;
10              sll1.size--;
11           } else {
12               track[temp.data] = true;
13               prev = temp;
14           }
15           temp = temp.next;
16       }
17       console.log(temp);
18   }

Time	Complexity:	O(n)



1

2

Space	Complexity:	O(n)
Use	of	the	JavaScript	Object	as	a	hash	table	to	store	and	check	for

seen	elements	cuts	it	down	to	O(n)	but	O(n)	in	space	as	extra	memory
is	required	for	the	hash	table.

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms
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Caching	is	the	process	of	storing	data	into	temporary	memory	so	that	it
can	be	easily	retrieved	for	later	use	if	it	is	required	again.	As	an	example,
a	database	system	keeps	data	cached	to	avoid	rereading	the	hard	drive,
and	a	web	browser	caches	web	pages	(images	and	assets)	to	avoid
redownloading	the	contents.	Put	simply,	in	caching,	the	goal	is	to
maximize	hits	(an	item	is	in	the	cache	when	requested)	and	minimize
misses	(an	item	is	not	in	the	cache	when	requested).

In	this	chapter,	two	caching	techniques	will	be	discussed:	least
frequently	used	(LFU)	and	least	recently	used	(LRU)	caching.

Note The	concept	of	caching	comes	from	the	world	of	operating
systems.	You	can	read	more	about	it	in	a	lecture	presentation1	by	Jeff
Zarnett	from	the	University	of	Waterloo.

Understanding	Caching
Cache	design	generally	considers	these	two	factors:
Temporal	locality	:	A	memory	location	that	has	been	recently	accessed
is	likely	to	be	accessed	again.
Spatial	locality	:	A	memory	location	near	one	that	has	recently	been
accessed	is	likely	to	be	accessed	again.
The	optimal	caching	algorithm	would	be	able	to	replace	the	part	of

https://doi.org/10.1007/978-1-4842-3988-9_14


the	cache	that	will	be	used	most	distantly	in	the	future	with	the	new
element	to	be	inserted.	This	will	require,	for	each	item,	calculating	how
many	time	in	the	future	that	item	will	be	accessed.	It	should	be	obvious
to	you	that	this	is	impossible	to	implement	because	it	requires	looking
into	the	future.

Least	Frequently	Used	Caching
Least	frequently	used	(LFU)	caching	is	a	caching	algorithm	used	by	the
operating	system	to	manage	memory.	The	system	tracks	the	number	of
times	a	block	is	referenced	in	memory.	By	design,	when	the	cache
exceeds	its	limit,	the	system	deletes	the	item	with	the	lowest	reference
frequency.	The	easiest	implementation	of	the	LFU	cache	is	assigning	a
counter	to	every	block	loaded	into	the	cache	and	incrementing	a	counter
every	time	a	reference	is	made	to	that	block.	When	the	cache	exceeds	its
limit,	the	system	searches	for	the	block	with	the	lowest	counter	and
removes	it	from	the	cache.

Although	LFU	caching	seems	like	an	intuitive	approach,	it	is	not	ideal
when	an	item	in	memory	is	referenced	repeatedly	for	a	short	amount	of
time	and	not	accessed	again.	The	frequency	for	that	block	is	high	because
of	its	repeated	reference,	but	this	forces	the	system	to	delete	other
blocks	that	may	be	used	more	frequently	outside	the	short	block	of	time.
In	addition,	new	items	in	the	system	are	susceptible	to	being	deleted
quickly	because	of	their	lower	frequency	of	being	accessed.	Because	of
these	issues,	LFU	is	uncommon,	but	some	hybrid	systems	utilize	the	core
LFU	concept.	Examples	of	a	such	system	are	mobile	keyboard	apps.
Suggested	words	appear	on	the	keyboard	apps,	and	it	makes	sense	to
implement	this	using	LFU	caching	since	the	user	likely	uses	the	same
words	often.	The	frequency	of	a	word	would	a	great	metric	to	see
whether	the	word	should	exist	in	the	cache.

The	LFU	cache	uses	a	doubly	linked	list	to	remove	elements	in	O(1)
time.	The	doubly	linked	node	in	LFUs	also	has	the	freqCount	property,
which	represents	how	frequently	it	has	been	accessed/set	after	being
inserted	for	the	first	time.

 1   function LFUNode(key, value) {
 2       this.prev = null;



 3       this.next = null;
 4       this.key = key;
 5       this.data = value;
 6       this.freqCount = 1;
 7   }

The	LFU	cache	has	two	hash	tables:	keys	and	freq.freq	has	keys	of
frequency	(1	to	n,	where	n	is	the	top	frequency	for	element	access),	and
each	item	is	an	instance	of	a	doubly	linked	list	class.	keys	stores	each
doubly	linked	list	node	for	O(1)	retrieval.	The	classes	for	a	doubly	linked
list	and	the	LFU	cache	are	defined	here:

 1   function LFUDoublyLinkedList(){
 2       this.head = new LFUNode('buffer

head',null);
 3       this.tail = new LFUNode('buffer

tail',null);
 4       this.head.next = this.tail;
 5       this.tail.prev = this.head;
 6       this.size = 0;
 7   }
 8
 9   function LFUCache(capacity){
10       this.keys = {}; // stores LFUNode
11       this.freq = {}; // stores

LFUDoublyLinkedList
12       this.capacity = capacity;
13       this.minFreq = 0;
14       this.size =0;
15   }

The	LFUDoublyLinkedList	class	also	requires	the	doubly	linked
list	implementation	for	insertion	and	removal.	However,	only	the
insertion	at	the	head	and	the	removal	at	the	tail	is	needed.	This
implementation	is	the	same	as	the	implementation	from	the	doubly
linked	list	class	shown	in	Chapter	13	(Linked	Lists).



 1   LFUDoublyLinkedList.prototype.insertAtHead =
function(node) {

 2       node.next = this.head.next;
 3       this.head.next.prev = node;
 4       this.head.next = node;
 5       node.prev = this.head;
 6       this.size++;
 7   }
 8
 9   LFUDoublyLinkedList.prototype.removeAtTail =

function() {
10       var oldTail = this.tail.prev;
11       var prev = this.tail.prev;
12       prev.prev.next = this.tail;
13       this.tail.prev = prev.prev;
14       this.size--;
15       return oldTail;
16   }
17
18   LFUDoublyLinkedList.prototype.removeNode =

function(node) {
19       node.prev.next = node.next
20       node.next.prev = node.prev
21       this.size--;
22   }

Implementing	set	for	the	LFU	has	a	few	steps.	There	are	two	cases:
insert	the	new	item	and	replace	an	old	item.	When	inserting	a	new	item,
a	new	node	is	created.	If	the	cache	is	not	full,	it	can	be	inserted	into	the
freq’s	doubly	linked	list	of	frequency	1.	If	the	capacity	is	full,	the	tail
item	in	the	doubly	linked	list	of	frequency	is	deleted,	and	then	the	new
node	is	inserted.

If	the	element	already	exists	and	needs	to	be	replaced,	the	node	is
brought	to	the	head	of	its	corresponding	frequency	doubly	linked	list.
Finally,	the	minimum	frequency	variable,	minFreq,	is	incremented
accordingly	to	compute	which	item	should	be	evicted	in	the	future.



 1   LFUCache.prototype.set = function(key,
value) {

 2       var node = this.keys[key];
 3
 4       if (node == undefined) {
 5           node = new LFUNode(key, value);
 6
 7           this.keys[key] = node;
 8
 9           if (this.size != this.capacity) {
10               // insert without deleting
11               if (this.freq[1] === undefined){
12                   this.freq[1] = new

LFUDoublyLinkedList();
13               }
14               this.freq[1].insertAtHead(node);
15               this.size++;
16           } else {
17               // delete and insert
18               var oldTail =

this.freq[this.minFreq].removeAtTail();
19               delete this.keys[oldTail.key];
20
21               if (this.freq[1] === undefined){
22                   this.freq[1] = new

LFUDoublyLinkedList();
23               }
24
25               this.freq[1].insertAtHead(node);
26           }
27           this.minFreq = 1;
28       } else {
29           var oldFreqCount = node.freqCount;
30           node.data = value;
31           node.freqCount++;
32
33           this.freq[oldFreqCount].removeNode(n



ode);
34
35           if (this.freq[node.freqCount] ===

undefined){
36               this.freq[node.freqCount] = new

LFUDoublyLinkedList();
37           }
38
39           this.freq[node.freqCount].insertAtHe

ad(node);
40
41           if (oldFreqCount == this.minFreq &&

Object.keys(this.freq[oldFreqCount]).size == 0) {
42               this.minFreq++;
43           }
44
45       }
46   }

To	implement	get	,	the	cache	needs	to	return	existing	nodes	in	O(1)
time	and	increment	the	counter	for	accessing.	If	the	element	does	not
exist	in	the	cache,	it	is	forced	to	return	a	null	element.	Otherwise,	the
frequency	for	the	element	is	increased,	the	item	is	brought	to	the	head	of
the	doubly	linked	list,	and	the	minimum	frequency	variable,	minFreq,	is
adjusted	accordingly.

 1   LFUCache.prototype.get = function(key) {
 2       var node = this.keys[key];
 3
 4       if (node == undefined) {
 5           return null;
 6       } else {
 7
 8           var oldFreqCount = node.freqCount;
 9           node.freqCount++;
10
11           this.freq[oldFreqCount].removeNode(n



ode);
12
13           if (this.freq[node.freqCount] ===

undefined){
14               this.freq[node.freqCount] = new

LFUDoublyLinkedList();
15           }
16
17           this.freq[node.freqCount].insertAtHe

ad(node);
18
19           if (oldFreqCount == this.minFreq &&

Object.keys(this.freq[oldFreqCount]).length == 0) {
20               this.minFreq++;
21           }
22           return node.data;
23       }
24   }

With	all	the	functions	defined,	the	following	code	shows	an	example
of	this	LFU	usage:

 1   var myLFU = new LFUCache(5);
 2   myLFU.set(1, 1); // state of myLFU.freq: {1:

1}
 3   myLFU.set(2, 2); // state of myLFU.freq: {1:

2<->1}
 4   myLFU.set(3, 3); // state of myLFU.freq: {1:

3<->2<->1}
 5   myLFU.set(4, 4); // state of myLFU.freq: {1:

4<->3<->2<->1}
 6   myLFU.set(5, 5); // state of myLFU.freq: {1:

5<->4<->3<->2<->1}
 7   myLFU.get(1); // returns 1, state of

myLFU.freq: {1: 5<->4<->3<->2, 2: 1}
 8   myLFU.get(1); // returns 1, state of

myLFU.freq: {1: 5<->4<->3<->2, 3: 1}



 9   myLFU.get(1); // returns 1, state of
myLFU.freq:{1: 5<->4<->3<->2, 4: 1}

10   myLFU.set(6, 6); // state of myLFU.freq: {1:
6<->5<->4<->3, 4: 1}

11   myLFU.get(6); // state of myLFU.freq: {1:
5<->4<->3, 4: 1, 2: 6}

Least	Recently	Used	Caching
Least	recently	used	(LRU)	caching	is	a	caching	algorithm	that	removes	the
oldest	(least	recently	used)	items	first,	so	the	item	replaced	is	the	oldest
accessed	item.	When	an	item	in	the	cache	is	accessed,	that	item	moves	to
the	back	(newest	in	the	order)	of	the	list.	When	a	page	not	found	in	the
cache	is	accessed,	the	front	item	(or	oldest	in	the	order)	is	removed,	and
the	new	item	is	put	at	the	back	(newest	in	the	order)	of	the	list.

The	implementation	of	this	algorithm	requires	keeping	track	of	which
node	was	used	when.	To	accomplish	this,	the	LRU	cache	is	implemented
using	a	doubly	linked	list	and	hash	table.

A	doubly	linked	list	is	needed	to	keep	track	of	the	head	(the	oldest
data).	A	doubly	linked	list	is	required	because	of	the	most	recently	used
requirement.	Each	time	new	data	is	inserted,	the	head	moves	up	until	the
size	is	exceeded.	Then	the	oldest	data	is	evicted.

Figure	14-1	shows	a	diagram	of	an	LRU	cache	with	a	size	of	5.



Figure	14-1 LRU	cache

To	implement	the	LRU	cache,	the	node	is	defined	similarly	to	the
doubly	linked	list	node	in	Chapter	13.	This	node	also	has	a	key	property,
and	its	implementation	is	shown	in	the	following	code	block:

 1   function DLLNode(key, data) {
 2       this.key = key;
 3       this.data = data;
 4       this.next = null;
 5       this.prev = null;
 6   }

The	LRU	cache	can	be	initialized	by	passing	the	capacity
parameter.	capacity	defines	how	many	nodes	are	allowed	to	be	in	the
cache.

 1   function LRUCache(capacity) {
 2       this.keys = {};
 3       this.capacity = capacity;
 4       this.head = new DLLNode(", null);



 5       this.tail = new DLLNode(", null);
 6       this.head.next = this.tail;
 7       this.tail.prev = this.head;
 8   }

Since	the	LRU	cache	uses	a	doubly	linked	list,	two	functions	for
removing	a	node	and	adding	a	node	to	the	tail	will	be	defined	here:

 1   LRUCache.prototype.removeNode =
function(node) {

 2       var prev = node.prev,
 3           next = node.next;
 4       prev.next = next;
 5       next.prev = prev;
 6   }
 7
 8   LRUCache.prototype.addNode = function(node)

{
 9       var realTail = this.tail.prev;
10       realTail.next = node;
11
12       this.tail.prev = node;
13       node.prev = realTail;
14       node.next = this.tail;
15   }

Two	more	functions	need	to	be	defined:	get	and	set.	Whenever	get
is	called,	the	LRU	caching	scheme	brings	that	node	to	the	head	of	the
doubly	linked	list	since	it	was	the	most	recently	used	node.	This	is	the
same	as	deleting	and	adding	the	node.	For	setting	nodes	via	set,	the
keys	property	on	the	LRU	cache	is	used	to	store	the	node	to	keep
retrieval	in	O(1)	time	in	get.	However,	if	the	cache	is	at	full	capacity,	it
evicts	the	farthest	node	from	the	tail.

 1   LRUCache.prototype.get = function(key) {
 2       var node = this.keys[key];
 3       if (node == undefined) {



 4           return null;
 5       } else {
 6           this.removeNode(node);
 7           this.addNode(node);
 8           return node.data;
 9       }
10   }
11
12   LRUCache.prototype.set = function(key,

value) {
13       var node = this.keys[key];
14       if (node) {
15           this.removeNode(node);
16       }
17
18       var newNode = new DLLNode(key, value);
19
20       this.addNode(newNode);
21       this.keys[key] = newNode;
22
23       // evict a node
24       if (Object.keys(this.keys).length >

this.capacity) {
25           var realHead = this.head.next;
26           this.removeNode(realHead);
27           delete this.keys[realHead.key];
28       }
29   }

Finally,	the	following	is	an	example	of	an	LRU	cache	of	size	5:

 1   var myLRU = new LRUCache(5);
 2
 3   myLRU.set(1, 1); // 1
 4   myLRU.set(2, 2); // 1 <-> 2
 5   myLRU.set(3, 3); // 1 <-> 2 <-> 3
 6   myLRU.set(4, 4); // 1 <-> 2 <-> 3 <-> 4



1

 7   myLRU.set(5, 5); // 1 <-> 2 <-> 3 <-> 4 <->
5

 8
 9
10   myLRU.get(1);   // 2 <-> 3 <-> 4 <-> 5 <-> 1
11   myLRU.get(2);   // 3 <-> 4 <-> 5 <-> 1 <-> 2
12
13   myLRU.set(6, 6);// 4 <-> 5 <-> 1 <-> 2 <-> 6
14   myLRU.set(7, 7);// 5 <-> 1 <-> 2 <-> 6 <-> 7
15   myLRU.set(8, 8);// 1 <-> 2 <-> 6 <-> 7 <-> 8

Summary
This	chapter	covered	two	main	caching	ideas:	least	frequently	used	and
least	recently	used.	The	chapter	talked	about	the	concept	of	an	optimal
caching	algorithm,	which	is	impossible	to	implement	but	provides	an
idea	of	what	you	would	want	to	approximate.	LFU	caching	sounds	great
because	it	uses	frequency	to	determine	what	node	should	be	evicted,	but
LFU	is	inferior	to	the	LRU	in	most	cases	because	it	does	not	account	for
temporal	locality.	There	are	other	caching	algorithms,	but	most	of	those
algorithms	are	worse	in	general	cases,	such	as	the	not	recently	used	and
first	in,	first	out	algorithms.	Finally,	it	should	be	noted	that	given	the
many	known	data	of	real-life	system	behavior	workloads,	LRU	is	the
most	effective	algorithm	in	most	cases.	Table	14-1	summarizes	the
caching	algorithms.

Table	14-1 Caching	Summary

Algorithm Comment

Optimal Impossible	to	implement

Least	frequently	used Bad	for	temporal	locality

Least	recently	used Uses	doubly-linked	+	hashmap

Footnotes
https://github.com/jzarnett/ece254/blob/master/lectures/L21-slides-
Memory_Segmentation_Paging.pdf

https://github.com/jzarnett/ece254/blob/master/lectures/L21-slides-Memory_Segmentation_Paging.pdf
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A	general	tree	data	structure	is	composed	of	nodes	with	children	nodes.
The	first/top	node	is	called	the	root	node	.	This	chapter	will	explore
many	different	types	of	trees	such	as	binary	trees,	binary	search	trees,
and	self-balancing	binary	search	trees.	First,	this	chapter	will	cover	what
trees	are	and	how	they	are	structured.	Then,	it	will	cover	methods	of
traversing	the	tree	data	structure	in	detail.	Finally,	you	will	learn	about
binary	search	trees	and	self-balancing	binary	search	trees	to	understand
how	to	store	easily	searchable	data.

General	Tree	Structure
A	general	tree	data	structure	looks	like	Figure	15-1	when	it	can	have	any
number	of	children.

https://doi.org/10.1007/978-1-4842-3988-9_15


Figure	15-1 Generalized	tree	with	any	number	of	children

The	code	block	for	the	node	in	the	Figure	15-1	tree	is	as	follows:

1   function TreeNode(value){
2       this.value = value;
3       this.children = [];
4   }

Binary	Trees
A	binary	tree	is	a	type	of	tree	that	has	only	two	children	nodes:	left	and
right.	See	the	following	code	and	Figure	15-2:

1   function BinaryTreeNode(value) {
2       this.value = value;
3       this.left = null;



4       this.right = null;
5   }

Figure	15-2 	Binary	tree

A	binary	tree	always	has	a	root	node	(the	node	at	the	top),	which	is
initialized	to	null	before	any	element	is	inserted.

1   function BinaryTree(){
2       this._root = null;
3   }

Tree	Traversal
Traversal	through	an	array	is	simple:	you	access	the	tree	using	the	index
and	increment	the	index	until	the	index	reaches	the	size	limit.	With	trees,
the	left	and	right	pointers	have	to	be	followed	in	order	to	go	through
every	element	in	the	tree.	There	are	various	ways	to	do	this,	of	course;
the	most	popular	traversal	techniques	are	pre-order	traversal,	post-
order	traversal,	in-order	traversal,	and	level-order	traversal.

All	the	code	for	tree	traversals	is	available	on	GitHub.1

Pre-order	Traversal
Pre-order	traversal	visits	nodes	in	the	following	order:	root	(the	current
node),	left,	right.	In	Figure	15-3,	you	can	see	that	42	is	the	root,	so	it’s



visited	first.	Then	it	goes	left;	at	this	point,	the	left	of	the	parent	(41)	is
now	considered	the	new	root.	This	new	root	(41)	is	printed;	then	it	goes
left	again	to	10.	So,	10	is	set	to	the	new	root	but	cannot	continue	without
a	child.	Then	40	is	visited	because	that	is	the	right	of	the	previous	parent
(41).	This	process	continues,	and	the	whole	order	is	denoted	by	the	gray
squares	in	Figure	15-3.

Figure	15-3 	Pre-order	traversal

Recursively,	this	is	implemented	easily.	The	base	case	terminates
when	the	node	is	null.	Otherwise,	it	prints	the	node	value	and	then	calls
the	recursive	function	on	its	left	child	and	then	its	right	child.

 1   BinaryTree.prototype.traversePreOrder =
function() {

 2       traversePreOrderHelper(this._root);
 3
 4       function traversePreOrderHelper(node) {
 5           if (!node)
 6               return;
 7           console.log(node.value);



 8           traversePreOrderHelper(node.left);
 9           traversePreOrderHelper(node.right);
10       }
11   }

This	can	also	be	done	iteratively,	but	it	is	harder	to	implement	.

 1   BinaryTree.prototype.traversePreOrderIterati
ve = function() {

 2       //create an empty stack and push root to
it

 3       var nodeStack = [];
 4       nodeStack.push(this._root);
 5
 6       //  Pop all items one by one. Do

following for every popped item
 7       //   a) print it
 8       //   b) push its right child
 9       //   c) push its left child
10       // Note that right child is pushed first

so that left
11       // is processed first */
12       while (nodeStack.length) {
13           //# Pop the top item from stack and

print it
14           var node = nodeStack.pop();
15           console.log(node.value);
16
17           //# Push right and left children of

the popped node to stack
18           if (node.right)
19               nodeStack.push(node.right);
20           if (node.left)
21               nodeStack.push(node.left);
22       }
23   }



Here	is	the	result:	[42,	41,	10,	40,	50,	45,	75].

In-Order	Traversal
In-order	traversal	visits	nodes	in	the	following	order:	left,	root	(current
node),	right.	For	the	tree	shown	in	Figure	15-4,	the	gray	squares	indicate
the	in-order	traversal	order.	As	you	can	see,	10	(the	leftmost	node)	is
printed	first,	and	7	(the	rightmost	node)	is	printed	last.

Figure	15-4 In-order	traversal

In-order	traversal	is	also	implemented	easily	with	recursion	.	The
base	case	is	when	a	node	is	null.	In	the	nonbase	case,	it	calls	the
recursive	function	on	the	left	child,	prints	the	current	node,	and	then
calls	the	recursive	function	on	the	right	child.

 1   BinaryTree.prototype.traverseInOrder =
function() {

 2       traverseInOrderHelper(this._root);
 3
 4       function traverseInOrderHelper(node) {
 5           if (!node)



 6               return;
 7           traverseInOrderHelper(node.left);
 8           console.log(node.value);
 9           traverseInOrderHelper(node.right);
10       }
11   }
12
13   BinaryTree.prototype.traverseInOrderIterativ

e = function() {
14       var current = this._root,
15           s = [],
16           done = false;
17
18       while (!done) {
19           // Reach the left most Node of the

current Node
20           if (current != null) {
21               // Place pointer to a tree node

on the stack
22               // before traversing the node's

left subtree
23               s.push(current);
24               current = current.left;
25           } else {
26               if (s.length) {
27                   current = s.pop();
28                   console.log(current.value);
29                   current = current.right;
30               } else {
31                   done = true;
32               }
33           }
34       }
35   }

Here	is	the	result	of	this	traversal	:	[10,	41,	40,	42,	45,	50,	75].



Post-order	Traversal
Post-order	traversal	visits	nodes	in	the	following	order	:	left,	right,	root
(the	current	node).	For	the	tree	shown	in	Figure	15-5,	the	gray	squares
indicate	the	in-order	traversal	order.	As	you	can	see,	10	(the	leftmost
node)	is	printed	first,	and	42	(the	root	node)	is	printed	last.

Figure	15-5 	Post-order	traversal

Here’s	the	code:

 1   BinaryTree.prototype.traversePostOrder =
function() {

 2       traversePostOrderHelper(this._root);
 3
 4       function traversePostOrderHelper(node) {
 5           if (node.left)
 6               traversePostOrderHelper(node.lef

t);
 7           if (node.right)
 8               traversePostOrderHelper(node.rig

ht);



 9           console.log(node.value);
10       }
11   }
12
13   BinaryTree.prototype.traversePostOrderIterat

ive = function() {
14       // Create two stacks
15       var s1 = [],
16           s2 = [];
17
18       // Push root to first stack
19           s1.push(this._root);
20
21       //# Run while first stack is not empty
22       while (s1.length) {
23           // Pop an item from s1 and append it

to s2
24           var node = s1.pop();
25           s2.push(node);
26
27           // Push left and right children of

removed item to s1
28           if (node.left)
29               s1.push(node.left);
30           if (node.right)
31               s1.push(node.right);
32       }
33       // Print all elements of second stack
34       while (s2.length) {
35           var node = s2.pop();
36           console.log(node.value);
37       }
38   }

Here	is	the	result	:	[10,	40,	41,	45,	75,	50,	42].

Level-Order	Traversal



Level-order	traversal	,	illustrated	in	Figure	15-6,	is	also	known	as	breadth
first	search	(BFS).

Figure	15-6 	Level-order	traversal

More	of	this	will	be	covered	in	Chapter	17,	but	this	method
essentially	visits	each	node	level	by	level	instead	of	going	deep	into	the
left	or	right.

 1   BinaryTree.prototype.traverseLevelOrder =
function() {

 2       // Breath first search
 3       var root = this._root,
 4           queue = [];
 5
 6       if (!root)
 7           return;
 8       queue.push(root);
 9
10       while (queue.length) {
11           var temp = queue.shift();



12           console.log(temp.value);
13           if (temp.left)
14               queue.push(temp.left);
15           if (temp.right)
16               queue.push(temp.right);
17       }
18   }

Here	is	the	result:	[42,	41,	50,	10,	40,	45,	75].

Tree	Traversal	Summary
If	you	know	you	need	to	explore	the	roots	before	inspecting	any	leaves,
choose	pre-order	traversal	because	you	will	encounter	all	the	roots
before	all	of	the	leaves.

If	you	know	you	need	to	explore	all	the	leaves	before	any	nodes,
choose	post-order	traversal	because	you	don’t	waste	any	time	inspecting
roots	when	searching	for	leaves.

If	you	know	that	the	tree	has	an	inherent	sequence	in	the	nodes	and
you	want	to	flatten	the	tree	into	its	original	sequence,	then	you	should
use	an	in-order	traversal.	The	tree	would	be	flattened	in	the	same	way	it
was	created.	A	pre-order	or	post-order	traversal	might	not	unwind	the
tree	back	into	the	sequence	that	was	used	to	create	it.

Time	Complexity:	O(n)
The	time	complexity	of	any	of	these	traversals	is	the	same	because

each	traversal	requires	that	all	nodes	are	visited.

Binary	Search	Trees
Binary	search	trees	(BSTs)	also	have	two	children,	left	and	right.
However,	in	a	binary	search	tree,	the	left	child	is	smaller	than	the	parent,
and	the	right	child	is	bigger	than	the	parent.	BSTs	have	this	structure
because	this	property	enables	for	searching,	inserting,	and	removing
specific	values	with	O(log2(n))	time	complexity.

Figure	15-7	shows	the	BST	property.	1	is	smaller	than	2,	so	it	is	the
left	child	of	2,	and	since	3	is	bigger	than	3,	it	is	the	right	child	of	2.



Figure	15-7 Binary	search	tree

Binary	search	trees	have	a	root	node	(the	topmost	node),	which	is
originally	initialized	null	(before	any	item	is	inserted).

1   function BinarySearchTree(){
2       this._root = null;
3   }

Figure	15-7	also	shows	a	balanced	binary	search	tree	where	the
height	is	minimized	by	having	children	on	both	the	left	and	right	sides.
However,	Figure	15-8	shows	an	unbalanced	tree	where	children	are	only
to	the	right	of	the	parent.	This	has	significant	impact	on	the	data
structure	and	increases	the	time	complexity	of	insertion,	deletion,	and
search	from	O(log2(n))	to	O(n).	The	height	of	a	perfect	balanced	tree	is
log2(n),	while	an	unbalanced	tree	can	be	n	in	the	worst	case.





Figure	15-8 	Unbalanced	binary	search	tree

Insertion
Inserting	into	the	BST	requires	a	couple	of	steps.	First,	if	the	root	is
empty,	the	root	becomes	the	new	node.	Otherwise,	a	while	loop	is	used
to	traverse	the	BST	until	the	right	condition	is	met.	At	each	loop	iteration,
it	is	checked	whether	the	new	node	is	greater	or	smaller	than	the
currentRoot.

 1   BinarySearchTree.prototype.insert
=  function(value) {
 2       var thisNode = {left: null, right: null,
value: value};
 3       if(!this._root){
 4           //if there is no root value yet
 5           this._root = thisNode;
 6       }else{
 7           //loop traverse until
 8           var currentRoot = this._root;
 9           while(true){
10               if(currentRoot.value>value){
11                   //let's increment if it's not a
null and insert if it is a null
12                   if(currentRoot.left!=null){
13                       currentRoot =
currentRoot.left;
14                   }else{
15                       currentRoot.left =
thisNode;
16                       break;
17                   }
18               } else if (currentRoot.value<value)
{
19                   //if bigger than current, put
it on the right
20                   //let's increment if it's not a
null and insert if it is a null



21                   if(currentRoot.right!=null){
22                       currentRoot =
currentRoot.right;
23                   }else{
24                       currentRoot.right =
thisNode;
25                       break;
26                   }
27               } else {
28                   //case that both are the same
29                   break;
30               }
31           }
32       }
33   }

Time	Complexity	(for	balanced	trees):	O(log2(n))
Time	Complexity	(for	unbalanced	trees):	O(n)
Time	complexity	is	dependent	on	the	height	of	the	binary	search	tree.

Deletion
This	algorithm	works	by	first	traversing	down	the	tree	looking
specifically	for	the	node	with	the	specified	value.	When	the	node	is
found,	there	are	three	possible	cases:
Case	1:	The	node	has	no	children.

This	is	the	simplest	case.	If	the	node	has	no	child,	return	null.
That	node	has	been	deleted	now.
Case	2:	The	node	has	one	child.

If	the	node	has	one	child,	simply	return	the	existing	child.	That
child	has	now	bubbled	up	and	replaced	the	parent.
Case	3:	The	node	has	two	children.

If	the	node	has	two	children,	either	find	the	maximum	of	the	left
subtree	or	find	the	minimum	of	the	right	subtree	to	replace	that	node.
The	following	code	implements	the	described	three	cases.	First,	it

traverses	recursively	until	one	of	those	cases	is	met,	and	then	the	node	is
removed.



 1   BinarySearchTree.prototype.remove =
function(value) {

 2
 3       return deleteRecursively(this._root,

value);
 4
 5       function deleteRecursively(root, value)

{
 6           if (!root) {
 7               return null;
 8           } else if (value < root.value) {
 9               root.left =

deleteRecursively(root.left, value);
10           } else if (value > root.value) {
11               root.right =

deleteRecursively(root.right, value);
12           } else {
13               //no child
14               if (!root.left && !root.right) {
15                   return null; // case 1
16               } else if (!root.left) { // case

2
17                   root = root.right;
18                   return root;
19               } else if (!root.right) { //

case 2
20                   root = root.left;
21                   return root;
22               } else {
23                   var temp =

findMin(root.right); // case 3
24                   root.value = temp.value;
25                   root.right =

deleteRecursively(root.right, temp.value);
26                   return root;
27               }
28           }



29           return root;
30       }
31
32       function findMin(root) {
33           while (root.left) {
34               root = root.left;
35           }
36           return root;
37       }
38   }

Time	Complexity	(for	balanced	tree):	O(log2(n))
Time	Complexity	(for	unbalanced	trees):	O(n)
Time	complexity	for	deletion	is	also	O(log2(n))	because	at	most	that’s

the	height	that	will	need	to	be	traversed	to	find	and	delete	the	desired
node.

Search
Search	can	be	performed	using	the	property	that	BST	node’s	left	child	is
always	smaller	than	its	parent	and	that	BST	node’s	right	child	is	always
greater	than	its	parent.	Traversing	the	tree	can	be	done	by	checking
whether	currentRoot	is	smaller	or	greater	than	the	value	to	be
searched.	If	currentRoot	is	smaller,	the	right	child	is	visited.	If
currentRoot	is	bigger,	the	left	child	is	visited.

 1   BinarySearchTree.prototype.findNode =
function(value) {
 2       var currentRoot = this._root,
 3           found = false;
 4       while (currentRoot) {
 5           if (currentRoot.value > value) {
 6               currentRoot = currentRoot.left;
 7           } else if (currentRoot.value < value) {
 8               currentRoot = currentRoot.right;
 9           } else {
10               //we've found the node
11               found = true;



12               break;
13           }
14       }
15       return found;
16   }
17   var bst1 = new BinarySearchTree();
18   bst1.insert(1);
19   bst1.insert(3);
20   bst1.insert(2);
21   bst1.findNode(3); // true
22   bst1.findNode(5); // false

Time	Complexity	(for	balanced	tree):	O(log2(n))
Time	Complexity	(for	unbalanced	trees):	O(n)
Note	that	all	of	the	operations’	time	complexities	are	equal	to	the

height	of	the	binary	tree	search.	With	unbalanced	binary	search	trees,
the	time	complexity	is	high.	To	address	this,	there	are	families	of	binary
search	trees	that	ensure	the	height	is	balanced.	One	example	of	such	self-
balancing	trees	is	an	AVL	tree.

AVL	Trees
AVL	is	a	binary	search	tree	that	balances	itself;	it’s	named	after	the
inventors	Georgy	Adelson-Velsky	and	Evgenii	Landis.	An	AVL	tree	keeps
the	BST	height	to	a	minimum	and	ensures	O(log2(n))	time	complexities
for	search,	insertion,	and	deletion.	In	previous	examples,	we	defined	both
TreeNode	and	a	Tree	class	and	set	the	root	of	Tree	as	a	TreeNode
class.	However,	for	the	AVL	tree	implementation,	only	the	AVLTree
class,	which	represents	the	node	of	the	AVL	tree,	will	be	used	for	the
simplification	of	the	code.

 1   function AVLTree (value) {
 2       this.left = null;
 3       this.right = null;
 4       this.value = value;
 5       this.depth = 1;
 6   }



The	height	of	the	AVL	tree	is	based	on	the	height	of	the	children	and
can	be	calculated	using	the	following	code	block:

 1   AVLTree.prototype.setDepthBasedOnChildren =
function() {

 2       if (this.node == null) {
 3           this.depth = 0;
 4       } else {
 5           this.depth = 1;
 6       }
 7
 8       if (this.left != null) {
 9           this.depth = this.left.depth + 1;
10       }
11       if (this.right != null && this.depth <=

this.right.depth) {
12           this.depth = this.right.depth + 1;
13       }
14   }

Single	Rotation
AVL	trees	rotate	their	children	to	maintain	balance	after	insertion.

Rotate	Left
Here	is	an	example	of	when	a	node	has	to	rotate	left.	Node	40’s	children,
the	45	and	47	nodes,	cause	the	height	to	be	unbalanced,	as	shown	in
Figure	15-9.	The	45	becomes	the	parent	node	in	Figure	15-10	to	balance
the	BST.



Figure	15-9 Rotate	left	before



Figure	15-10 Rotate	left	after

To	perform	a	left	rotation,	first	get	the	left	child	and	store	it.	This	is
the	“original”	left	child.	The	original	left	child	is	to	be	the	parent	of	the
node	now.	Set	the	node’s	left	child	to	be	the	original	left	child’s	left	child.
Finally,	set	the	right	child	of	the	original	left	child	to	be	the	node.

 1   AVLTree.prototype.rotateLL = function() {
 2
 3       var valueBefore = this.value;
 4       var rightBefore = this.right;
 5       this.value = this.left.value;
 6
 7       this.right = this.left;
 8       this.left = this.left.left;
 9       this.right.left = this.right.right;
10       this.right.right = rightBefore;
11       this.right.value = valueBefore;
12
13       this.right.getDepthFromChildren();



14       this.getDepthFromChildren();
15   };

Rotate	Right
Here	is	an	example	of	when	a	node	has	to	rotate	right.	60’s	children,	the
55	and	52	nodes,	cause	the	height	to	be	unbalanced,	as	shown	in	Figure
15-11.	The	55	node	becomes	the	parent	in	Figure	15-12	to	balance	the
BST.

Figure	15-11 Rotate	right	before



Figure	15-12 Rotate	right	after

To	implement	this	previously	described	algorithm,	first	get	the	left
child	and	store	it.	This	the	original	left	child.	The	original	left	child	is	to
be	the	parent	of	the	node	now.	Set	the	node’s	left	child	to	be	the	original
left	child’s	left	child.	Finally,	set	the	right	child	of	the	original	left	child	to
be	the	node.

 1   AVLTree.prototype.rotateRR = function() {
 2       // the right side is too long => rotate

from the right (_not_ rightwards)
 3       var valueBefore = this.value;
 4       var leftBefore = this.left;
 5       this.value = this.right.value;
 6
 7       this.left = this.right;
 8       this.right = this.right.right;
 9       this.left.right = this.left.left;
10       this.left.left = leftBefore;



11       this.left.value = valueBefore;
12
13       this.left.updateInNewLocation();
14       this.updateInNewLocation();
15   }

Double	Rotation
If	an	AVL	tree	is	still	unbalanced	after	one	rotation,	it	has	to	rotate	twice
for	full	balance.

Rotate	Right	Left	(Right	Then	Left)
In	this	example,	Figure	15-13	shows	a	BST	where	the	height	is	3.	By
rotating	right	and	then	left,	as	shown	in	Figure	15-14	and	Figure	15-15,
balance	is	achieved.

Figure	15-13 A	situation	where	rotating	right	and	then	rotating	left	is	appropriate



Figure	15-14 Rotate	right	first

Figure	15-15 Rotate	left	after

Rotate	Left	Right	(Left	Then	Right)
Similarly,	in	this	example,	Figure	15-16	shows	a	BST	where	the	height	is
3.	By	rotating	left	and	then	right,	as	shown	in	Figure	15-17	and	Figure
15-18,	balance	is	achieved.



Figure	15-16 A	situation	where	rotating	left	and	then	rotating	right	is	appropriate

Figure	15-17 Rotate	left	first



Figure	15-18 Rotate	right	after

Balancing	the	Tree
To	check	for	balance	of	the	AVL	tree,	it	is	a	simple	comparison	of	the	left
and	right	children’s	heights.	If	the	heights	are	not	balanced,	rotations	are
needed.	When	left	is	bigger	than	right,	left	rotation	is	done.	When	right	is
bigger	than	left,	right	rotation	is	done.

 1   AVLTree.prototype.balance = function() {
 2       var ldepth = this.left == null ? 0 :
this.left.depth;
 3       var rdepth = this.right == null ? 0 :
this.right.depth;
 4
 5       if (ldepth > rdepth + 1) {
 6       // LR or LL rotation
 7           var lldepth = this.left.left == null ?
0 : this.left.left.depth;
 8           var lrdepth = this.left.right == null ?
0 : this.left.right.depth;
 9
10           if (lldepth < lrdepth) {
11               // LR rotation consists of a RR
rotation of the left child
12               this.left.rotateRR();
13               // plus a LL rotation of this node,
which happens anyway
14           }
15           this.rotateLL();



16       } else if (ldepth + 1 < rdepth) {
17           // RR or RL rorarion
18           var rrdepth = this.right.right == null
? 0 : this.right.right.depth;
19           var rldepth = this.right.left == null ?
0 : this.right.left.depth;
20
21           if (rldepth > rrdepth) {
22               // RR rotation consists of a LL
rotation of the right child
23               this.right.rotateLL();
24               // plus a RR rotation of this node,
which happens anyway
25           }
26           this.rotateRR();
27       }
28   }

Insertion
Insertion	in	AVL	BST	is	the	same	as	the	insertion	in	normal	BST	except
that,	once	inserted,	the	parent	must	balance	its	children	and	set	the	right
depth.

 1   AVLTree.prototype.insert = function(value) {
 2       var childInserted = false;
 3       if (value == this.value) {
 4           return false; // should be all unique
 5       } else if (value < this.value) {
 6           if (this.left == null) {
 7               this.left = new AVLTree(value);
 8               childInserted = true;
 9           } else {
10               childInserted =
this.left.insert(value);
11               if (childInserted == true)
this.balance();
12           }



13       } else if (value > this.value) {
14           if (this.right == null) {
15               this.right = new AVLTree(value);
16               childInserted = true;
17           } else {
18               childInserted =
this.right.insert(value);
19
20               if (childInserted == true)
this.balance();
21           }
22       }
23       if (childInserted == true)
this.setDepthBasedOnChildren();
24       return childInserted;
25   }

Time	Complexity:	O(nlog2(n))
Space	Complexity:	O(nlog2(n))
Space	complexity	is	from	the	recursive	call	stacks	in	memory.

Deletion
AVL	BST	is	a	type	of	BST,	and	therefore	the	deletion	function	is	the	same.
Adjusting	the	depths	can	be	done	by	calling
setDepthBasedOnChildren()	during	traversal.

 1   AVLTree.prototype.remove = function(value) {
 2       return deleteRecursively(this, value);
 3
 4       function deleteRecursively(root, value) {
 5           if (!root) {
 6               return null;
 7           } else if (value < root.value) {
 8               root.left =
deleteRecursively(root.left, value);
 9           } else if (value > root.value) {
10               root.right =



deleteRecursively(root.right, value);
11           } else {
12               //no child
13               if (!root.left && !root.right) {
14                   return null; // case 1
15               } else if (!root.left) {
16                   root = root.right;
17                   return root;
18               } else if (!root.right) {
19                   root = root.left;
20                   return root;
21               } else {
22                   var temp = findMin(root.right);
23                   root.value = temp.value;
24                   root.right =
deleteRecursively(root.right, temp.value);
25                   return root;
26               }
27           }
28           root.updateInNewLocation(); // ONLY
DIFFERENCE from the BST one
29           return root;
30       }
31       function findMin(root) {
32           while (root.left) root = root.left;
33           return root;
34       }
35   }

The	time	complexity	and	space	complexity	are	both	O(nlog2(n))
because	AVL	trees	are	balanced.	The	space	complexity	is	from	the
recursive	call	stacks	in	memory.

Putting	It	All	Together:	AVL	Tree	Example
With	the	AVL	tree	class	implemented,	Figure	15-19	shows	an	example	of
an	AVL	tree	produced	by	the	following	code	block:



 1   var avlTest = new AVLTree(1,");
 2   avlTest.insert(2);
 3   avlTest.insert(3);
 4   avlTest.insert(4);
 5   avlTest.insert(5);
 6   avlTest.insert(123);
 7   avlTest.insert(203);
 8   avlTest.insert(2222);
 9   console.log(avlTest);

Figure	15-19 AVL	result

If	a	plain	binary	search	tree	were	used	instead,	Figure	15-20	shows
what	it	would	look	like	for	the	same	order	of	insertion.





Figure	15-20 BST	result

Clearly,	this	is	a	skewed	binary	search	tree	that	is	completely
unbalanced.	At	this	point,	it	looks	like	a	linked	list.	Once	the	tree	becomes
completely	unbalanced	like	this,	it	has	a	linear	time	complexity	for
deletion,	insertion,	and	search	instead	of	logarithmic	time.

Summary
Table	15-1	shows	the	time	complexity	for	each	binary	search	tree
operation.	Compared	to	other	data	structures,	the	search	operation	is
faster	than	linked	lists,	arrays,	stacks,	and	queues.	As	the	name	implies,	a
binary	search	tree	is	great	for	searching	elements.	However,	the	insertion
and	deletion	operations	are	slower,	with	a	time	complexity	of	O(log2(n))
instead	of	O(1)	like	a	stack	or	a	queue,	for	example.	Furthermore,	all
operations	become	O(n)	as	the	tree	becomes	unbalanced.	To	ensure	the
tree	stays	balanced,	self-balancing	trees	such	as	a	red-black	tree	or	an
AVL	tree	should	be	used	to	ensure	tree	operations	have	logarithmic	time
complexity.

Table	15-1 Tree	Summary

Operation Best	(If	Balanced) Worst	(If	Completely	Unbalanced)

Deletion O(log2(n)) O(n)

Insertion O(log2(n)) O(n)

Search O(log2(n)) O(n)

Exercises
You	can	find	all	the	code	for	the	exercises	on	GitHub.2

FIND	THE	LOWEST	COMMON	ANCESTOR	OF	TWO	NODES	IN	A
GIVEN	BINARY	TREE
The	logic	for	this	one	is	actually	fairly	simple	but	hard	to	notice	at
first.

If	the	maximum	of	the	two	values	is	smaller	than	the	current	root,



go	left.	If	the	minimum	of	the	two	values	is	bigger	than	the	current
root,	go	right.	Figures	15-21	and	15-22	show	the	two	different	cases	of
this.

Figure	15-21 Lowest	common	ancestor,	example	1



Figure	15-22 Lowest	common	ancestor,	example	2

 1   function findLowestCommonAncestor(root,
value1, value2) {

 2       function
findLowestCommonAncestorHelper(root, value1,
value2) {

 3           if (!root)
 4               return;
 5           if (Math.max(value1, value2) <

root.value)
 6               return

findLowestCommonAncestorHelper(root.left, value1,
value2);

 7           if (Math.min(value1, value2) >
root.value)



 8               return
findLowestCommonAncestorHelper(root.right, value1,
value2);

 9           return root.value
10       }
11       return

findLowestCommonAncestorHelper(root, value1,
value2);

12   }
13   var node1 = {
14       value: 1,
15       left: {
16           value: 0
17       },
18       right: {
19           value: 2
20       }
21   }
22
23   var node2 = {
24       value: 1,
25       left: {
26           value: 0,
27           left: {
28               value: -1
29           },
30           right: {
31               value: 0.5
32           }
33       },
34       right: {
35           value: 2
36       }
37   }
38   console.log(findLowestCommonAncestor(node1

, 0, 2)); // 1
39   console.log(findLowestCommonAncestor(node2



, 0, 2)); // 1
40   console.log(findLowestCommonAncestor(node1

, 0.5, -1)); // 0

Time	Complexity:	O(log2(n))

PRINT	NODES	NTH	DISTANCE	FROM	THE	ROOT
For	this	question,	traverse	the	BST	in	any	way	(level	order	was	used	in
this	example)	and	check	the	height	for	each	BST	node	to	see	whether
it	should	be	printed.

 1   function printKthLevels(root, k) {
 2       var arrayKth = [];
 3           queue = [];
 4
 5       if (!root) return;
 6
 7       // Breath first search for tree
 8       queue.push([root, 0]);
 9
10       while (queue.length) {
11           var tuple = queue.shift(),
12               temp = tuple[0],
13               height= tuple[1];
14
15           if (height == k) {
16               arrayKth.push(temp.value);
17           }
18           if (temp.left) {
19               queue.push([temp.left,
height+1]);
20           }
21           if (temp.right) {
22               queue.push([temp.right,height+1])
;
23           }



24       }
25       console.log(arrayKth);
26   }

 1   var node1 = {
 2       value: 1,
 3       left: {
 4           value: 0
 5       },
 6       right: {
 7           value: 2
 8       }
 9   }
10
11   var node2 = {
12       value: 1,
13       left: {
14           value: 0,
15           left: {
16               value: -1
17           },
18           right: {
19               value: 0.5
20           }
21       },
22       right: {
23           value: 2
24       }
25   }
26
27   var node3 = {
28       value: 1,
29      left: {
30           value: 0
31       },
32       right: {
33           value: 2,



34           left: {
35               value: 1.5
36           },
37           right: {
38               value: 3,
39               left: {
40                   value: 3.25
41               }
42           }
43       }
44   }
45
46   printKthLevels(node1, 1); // 1
47   printKthLevels(node1, 2); // [0,2]

CHECK	WHETHER	A	BINARY	TREE	IS	A	SUBTREE	OF	ANOTHER
TREE
To	do	this,	traverse	the	binary	tree	in	any	way	(I’m	choosing	to	do
level	order)	and	check	whether	the	one	that	it	is	currently	on	is	the
same	as	the	subtree.

 1   function isSameTree(root1, root2) {
 2       if (root1 == null && root2 == null) {
 3           return true;
 4       }
 5       if (root1 == null || root2 == null) {
 6           return false;
 7       }
 8
 9       return root1.value == root2.value &&
10           isSameTree(root1.left, root2.left) &&
11           isSameTree(root1.right, root2.right)
12   }
13
14   function checkIfSubTree(root, subtree) {
15       // Breath first search



16       var queue = [],
17           counter = 0;
18
19       // sanity check for root
20       if (!root) {
21           return;
22       }
23
24       queue.push(root);
25
26       while (queue.length) {
27           var temp = queue.shift();
28
29           if (temp.data == subtree.data ==
isSameTree(temp, subtree)) {
30               return true;
31           }
32
33           if (temp.left) {
34               queue.push(temp.left);
35           }
36           if (temp.right) {
37               queue.push(temp.right);
38           }
39       }
40       return false;
41   }
42
43   var node1 = {
44       value: 5,
45       left: {
46           value: 3,
47           left: {
48               value: 1
49           },
50           right: {
51               value: 2



52           }
53       },
54       right: {
55           value: 7
56       }
57   }
58
59   var node2 = {
60       value: 3,
61       left: {
62           value: 1
63       },
64       right: {
65           value: 2
66       }
67   }
68
69
70   var node3 = {
71       value: 3,
72       left: {
73           value: 1
74       }
75   }
76
77   console.log(checkIfSubTree(node1, node2)); //
true
78   console.log(checkIfSubTree(node1, node3)); //
false
79   console.log(checkIfSubTree(node2, node3)); //
false

CHECK	WHETHER	A	TREE	IS	A	MIRROR	OF	ANOTHER	TREE
Figure	15-23	shows	an	example.



Figure	15-23 	Mirror	trees

Here	are	three	possible	cases:
Their	root	node’s	key	must	be	the	same.
The	left	subtree	of	root	of	a	and	the	right	subtree	root	of	b	are
mirrors.
The	right	subtree	of	a	and	the	left	subtree	of	b	are	mirrors.

 1   function isMirrorTrees(tree1, tree2) {
 2       // Base case, both empty
 3       if (!tree1 && !tree2) {
 4           return true;
 5       }
 6
 7       // One of them is empty, since only

one is empty, not mirrored
 8       if (!tree1 || !tree2) {
 9           return false;
10       }
11
12       // Both non-empty, compare them

recursively.
13       // Pass left of one and right of the

other
14
15       var checkLeftwithRight =

isMirrorTrees(tree1.left, tree2.right),



16           checkRightwithLeft =
isMirrorTrees(tree2.right, tree1.left);

17
18       return tree1.value == tree2.value &&

checkLeftwithRight && checkRightwithLeft;
19   }
20
21   var node1 = {
22       value: 3,
23       left: {
24           value: 1
25       },
26       right: {
27           value: 2
28       }
29   }
30
31   var node2 = {
32       value: 3,
33       left: {
34           value: 2
35       },
36       right: {
37           value: 1
38       }
39   }
40
41   var node3 = {
42       value: 3,
43       left: {
44           value: 1
45       },
46       right: {
47           value: 2,
48           left: {
49               value: 2.5
50           }



1

2

51       }
52   }
53
54   console.log(isMirrorTrees(node1, node2));

// true
55   console.log(isMirrorTrees(node2, node3));

// false
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This	chapter	will	introduce	heaps.	A	heap	is	an	important	data	structure
that	returns	the	highest	or	lowest	element	in	O(1)	time.	This	chapter	will
focus	on	explaining	how	heaps	are	implemented	as	well	as	how	to	work
with	them.	One	example	is	heap	sort,	which	is	a	sorting	algorithm	based
on	heaps.

Understanding	Heaps
A	heap	is	a	type	of	tree-like	data	structure	in	which	the	parent	is	bigger
than	its	children	(if	max-heap)	or	smaller	than	its	children	(if	min-heap).
This	property	of	the	heap	makes	it	useful	for	sorting	data.

Heaps,	unlike	other	tree	data	structures,	use	an	array	to	store	data
instead	of	having	pointers	to	their	children.	A	heap	node’s	children’s
positions	(indices)	in	the	array	can	be	calculated	easily.	This	is	because
the	parent-child	relationship	is	easily	defined	with	a	heap.

There	are	many	types	of	heaps	that	have	different	numbers	of
children.	In	this	chapter,	only	binary	heaps	will	be	considered.	Since	a
heap	uses	an	array	to	store	the	data,	the	indices	of	the	array	define	the
order/height	of	each	element.	A	binary	heap	can	be	built	by	placing	the
first	array	element	as	the	root	and	then	filling	each	left	and	right	element
in	order.

For	example,	for	the	heap	shown	in	Figure	16-1,	the	array	would	look
like	this:	[2,	4,	23,	12,	13].

https://doi.org/10.1007/978-1-4842-3988-9_16


Figure	16-1 Heap	indices

There	are	two	types	of	binary	heaps:	max-heap	and	min-heap.	In
max-heap,	the	root	node	has	the	highest	value,	and	each	node’s	value	is
greater	than	its	children.	In	min-heap,	the	root	node	has	the	lowest	value,
and	each	node’s	value	is	smaller	than	its	children.

Heaps	can	store	any	values	of	any	type:	strings,	integer,	and	even
custom	classes.	As	covered	in	Chapters	3	and	4,	strings	and	integer	value
comparisons	are	handled	natively	by	JavaScript	(e.g.,	9	is	greater	than	1,
z	is	greater	than	a).	However,	for	custom	classes,	the	developer	needs	to
implement	a	way	to	compare	two	classes.	This	chapter	will	look	at	heaps
that	store	integer	values	only.

Max-Heap
A	max-heap	is	a	heap	where	the	parent	is	always	greater	than	any	of	its
children	(see	Figure	16-2).



Figure	16-2 	Max-heap

Here	is	the	array	for	the	max-heap	shown	in	Figure	16-2:	[100,	19,	36,
17,	3,	25,	1,	2,	7].

Min-Heap
A	min-heap	is	a	heap	where	the	parent	is	always	smaller	than	any	of	its
children	(see	Figure	16-3).



Figure	16-3 	Min-heap

Here	is	the	array	for	the	max-heap	shown	in	Figure	16-3:	[1,	2,	3,	17,
19,	36,	7,	25,	100].

Binary	Heap	Array	Index	Structure
For	a	binary	heap,	an	array	is	used	to	represent	the	heap	by	using	the
following	indices,	where	N	is	the	index	of	the	node:

Node                Index
(itself)            N
Parent              (N-1) / 2
Left Child          (N*2) + 1
Right Child         (N*2) + 2

Figure	16-4	illustrates	this	familial	relationship	using	indices.



Figure	16-4 Heap	relationship

Let’s	first	define	a	generic	Heap	class.	An	array	will	be	used	to	store
all	the	values	using	the	index	structure	described	earlier.	The	following
heap	class	implements	helper	functions	that	retrieve	the	parent	node,
the	left	child,	and	the	right	child.	The	following	code	block	has	a	peek
function	that	returns	the	maximum	value	for	a	max-heap	and	the
minimum	value	for	a	min-heap.

 1   function Heap() {
 2       this.items = [];
 3   }
 4
 5   Heap.prototype.swap = function(index1,

index2) {
 6       var temp = this.items[index1];
 7       this.items[index1] = this.items[index2];
 8       this.items[index2] = temp;



 9   }
10
11   Heap.prototype.parentIndex = function(index)

{
12       return Math.floor((index - 1) / 2);
13   }
14
15   Heap.prototype.leftChildIndex =

function(index) {
16       return index * 2 + 1;
17   }
18
19   Heap.prototype.rightChildrenIndex =

function(index) {
20       return index * 2 + 2;
21   }
22
23   Heap.prototype.parent = function(index) {
24       return

this.items[this.parentIndex(index)];
25   }
26
27   Heap.prototype.leftChild = function(index) {
28       return

this.items[this.leftChildIndex(index)];
29   }
30
31   Heap.prototype.rightChild = function(index)

{
32       return

this.items[this.rightChildrenIndex(index)];
33   }
34
35   Heap.prototype.peek = function(item) {
36       return this.items[0];
37   }
38   Heap.prototype.size = function() {



39       return this.items.length;
40   }

The	size	function	is	another	helper	that	returns	the	size	(number	of
elements)	of	the	heap.

Percolation:	Bubbling	Up	and	Down
When	elements	are	added	or	removed,	the	structure	of	the	heap	must
remain	(the	node	being	greater	than	its	children	for	a	max-heap	or
smaller	than	its	children	for	a	min-heap).

This	requires	items	to	swap	and	“bubble	up”	to	the	top	of	the	heap.
Similar	to	bubbling	up,	some	items	need	to	“bubble	down”	to	their
rightful	position	in	order	to	keep	the	structure	of	the	heap.	Percolation
takes	O(log2(n))	in	time.

Let’s	step	through	a	min-heap	example	and	insert	the	following
values	into	the	min-heap	in	this	order:	12,	2,	23,	4,	13.	Here	are	the	steps:
1.

Insert	12	as	the	first	node	(Figure	16-5).	

Figure	16-5 The	min-heap	root	node

2.
Insert	a	new	2	node	(Figure	16-6).	



Figure	16-6 The	newest	node	is	smaller	than	the	parent

3.
The	2	node	bubbles	up	because	it	is	smaller	than	12	and	hence
should	be	on	the	top	of	the	min-heap	(Figure	16-7).

	

Figure	16-7 The	smaller	node	has	bubbled	up	to	the	parent	position

4.
Insert	a	new	23	node	in	the	second	child	position	(Figure	16-8).	



Figure	16-8 The	larger	23	node	remains	in	place	in	the	min-heap	structure

5.
Insert	4	in	the	heap,	as	in	Figure	16-9.	

Figure	16-9 The	new	node	in	the	min-heap	is	smaller	than	the	one	above	it



6.
12	is	swapped	with	4	to	maintain	the	min-heap	structure	(Figure	16-
10).

	

Figure	16-10 The	smaller	4	node	has	bubbled	up	to	maintain	the	min-heap	structure

7.
Insert	13,	as	in	Figure	16-11.	



Figure	16-11 The	newest	and	larger	13	node	remains	in	place

Here	is	the	array	content	for	this	heap:	[2,	4,	23,	12,	13].

Implementing	Percolation
To	implement	the	“bubbling	up	and	down”	of	percolation,	swap	until	the
min-heap	structure	is	formed	with	the	minimum	element	on	the	top.	For
bubbling	down,	swap	the	top	element	(first	in	the	array)	with	one	of	its
children	if	that	child	is	smaller.	Likewise,	for	bubbling	up,	swap	the	new
element	with	its	parent	if	the	parent	is	greater	than	the	new	element.

 1   function MinHeap() {
 2       this.items = [];
 3   }
 4   MinHeap.prototype =
Object.create(Heap.prototype); // inherit helpers
from heap by copying prototype
 5   MinHeap.prototype.bubbleDown = function() {
 6       var index = 0;



 7       while (this.leftChild(index) &&
this.leftChild(index) < this.items[index]) {
 8           var smallerIndex =
this.leftChildIndex(index);
 9           if (this.rightChild(index)
10               && this.rightChild(index) <
this.items[smallerIndex]) {
11              // if right is smaller, right swaps
12               smallerIndex =
this.rightChildrenIndex(index);
13           }
14           this.swap(smallerIndex, index);
15           index = smallerIndex;
16       }
17   }
18
19   MinHeap.prototype.bubbleUp = function() {
20       var index = this.items.length - 1;
21       while (this.parent(index) &&
this.parent(index) > this.items[index]) {
22           this.swap(this.parentIndex(index),
index);
23           index = this.parentIndex(index);
24       }
25   }

A	max-heap	implementation	differs	only	in	the	comparators.	For
bubbling	down,	the	max-heap	node	swaps	with	one	of	its	children	if	the
child	is	greater.	Likewise,	for	bubbling	up,	the	newest	node	swaps	with
its	parent	if	its	parent	is	smaller	than	the	new	node.

Max-Heap	Example
Let’s	build	a	max-heap	now	with	the	same	values	as	the	one	used	in	the
previous	min-heap	example	by	inserting	the	following	values	in	the
order:	12,	2,	23,	4,	13.
1.

Insert	the	first	node,	which	is	12	(Figure	16-12).	



Figure	16-12 The	first	max-heap	node

2.
Insert	a	new	2	node	(Figure	16-13).	

Figure	16-13 The	new	smaller	node	remains	in	place	in	the	max-heap	structure

3.
Insert	23,	as	in	Figure	16-14.	



Figure	16-14 The	new	child	node	is	larger	than	the	parent

4.
The	23	node	“bubbles”	to	the	top	to	maintain	max-heap	structure
(Figure	16-15).

	

Figure	16-15 The	new	larger	node	is	swapped	with	the	smaller	12

5.
Insert	4,	as	in	Figure	16-16.	



Figure	16-16 The	new	node	is	larger	than	the	one	above	it

6.
To	maintain	the	max-heap	structure,	4	bubbles	up,	and	2	bubbles
down	(Figure	16-17).

	



Figure	16-17 The	4	and	2	nodes	swap	places

7.
Insert	13,	as	in	Figure	16-18.	



Figure	16-18 The	new	node	is	larger	than	the	one	above	it

8.
Because	of	the	max-heap	structure,	13	and	4	swap	positions	(Figure
16-19).

	



Figure	16-19 Percolation	restores	the	max-heap	structure

Here	is	the	array	content	for	this	heap:	[23,	13,	12,	2,	4]	.

Min-Heap	Complete	Implementation
Putting	all	the	functions	defined	together	and	inheriting	Heap’s
functions,	the	complete	implementation	and	example	of	min-heap	is
shown	next.	The	add	and	poll	functions	were	added.	add	simply	adds	a
new	element	to	the	heap,	but	bubbleUp	ensures	that	this	element	in	the
min-heap	satisfies	the	order.	poll	removes	the	minimum	element	(the
root)	from	the	heap	and	calls	bubbleDown	to	keep	the	min-heap	order.

 1   function MinHeap() {
 2       this.items = [];
 3   }
 4   MinHeap.prototype =
Object.create(Heap.prototype); // inherit helpers



from heap by copying prototype
 5   MinHeap.prototype.add = function(item) {
 6       this.items[this.items.length] = item;
 7       this.bubbleUp();
 8   }
 9
10   MinHeap.prototype.poll = function() {
11       var item = this.items[0];
12       this.items[0] =
this.items[this.items.length - 1];
13       this.items.pop();
14       this.bubbleDown();
15       return item;
16   }
17
18   MinHeap.prototype.bubbleDown = function() {
19       var index = 0;
20       while (this.leftChild(index) &&
(this.leftChild(index) < this.items[index] ||
this.rightChild(index) < this.items[index]) ) {
21           var smallerIndex =
this.leftChildIndex(index);
22           if (this.rightChild(index) &&
this.rightChild(index) < this.items[smallerIndex]) {
23               smallerIndex =
this.rightChildrenIndex(index);
24           }
25           this.swap(smallerIndex, index);
26           index = smallerIndex;
27       }
28   }
29
30   MinHeap.prototype.bubbleUp = function() {
31       var index = this.items.length - 1;
32       while (this.parent(index) &&
this.parent(index) > this.items[index]) {
33           this.swap(this.parentIndex(index),



index);
34           index = this.parentIndex(index);
35       }
36   }
37
38   var mh1 = new MinHeap();
39   mh1.add(1);
40   mh1.add(10);
41   mh1.add(5);
42   mh1.add(100);
43   mh1.add(8);
44
45   console.log(mh1.poll()); // 1
46   console.log(mh1.poll()); // 5
47   console.log(mh1.poll()); // 8
48   console.log(mh1.poll()); // 10
49   console.log(mh1.poll()); // 100

Max-Heap	Complete	Implementation
As	previously	discussed,	the	only	difference	between	the	min-heap	and
max-heap	implementations	is	the	comparator	in	bubbleDown	and
bubbleUp.	With	the	same	elements	added	as	the	previous	example,
meaning	(1,	10,	5,	100,	8),	the	max-heap	returns	the	highest	elements
when	poll	is	called.

 1   function MaxHeap() {
 2       this.items = [];
 3   }
 4   MaxHeap.prototype =
Object.create(Heap.prototype); // inherit helpers
from heap by copying prototype
 5   MaxHeap.prototype.poll = function() {
 6       var item = this.items[0];
 7       this.items[0] =
this.items[this.items.length - 1];
 8       this.items.pop();



 9       this.bubbleDown();
10       return item;
11   }
12
13   MaxHeap.prototype.bubbleDown = function() {
14       var index = 0;
15       while (this.leftChild(index) &&
(this.leftChild(index) > this.items[index]
||  this.rightChild(index) > this.items[index] ) ) {
16           var biggerIndex =
this.leftChildIndex(index);
17           if (this.rightChild(index) &&
this.rightChild(index) > this.items[bigger\Index])
18           {
19               biggerIndex =
this.rightChildrenIndex(index);
20           }
21           this.swap(biggerIndex, index);
22           index = biggerIndex;
23       }
24   }
25
26   MaxHeap.prototype.bubbleUp = function() {
27       var index = this.items.length - 1;
28       while (this.parent(index) &&
this.parent(index) < this.items[index]) {
29           this.swap(this.parentIndex(index),
index);
30           index = this.parentIndex(index);
31       }
32   }
33
34   var mh2 = new MaxHeap();
35   mh2.add(1);
36   mh2.add(10);
37   mh2.add(5);
38   mh2.add(100);



39   mh2.add(8);
40
41   console.log(mh2.poll()); // 100
42   console.log(mh2.poll()); // 10
43   console.log(mh2.poll()); // 8
44   console.log(mh2.poll()); // 5
45   console.log(mh2.poll()); // 1

Heap	Sort
Now	that	heap	classes	have	been	created,	sorting	with	a	heap	is	fairly
straightforward.	To	get	a	sorted	array,	simply	call	.pop()	on	the	heap
until	it	is	empty	and	store	the	stored	popped	objects.	This	is	as	known	as
a	heap	sort.	Since	percolation	takes	O(log2(n)),	and	sorting	must	pop	n
number	of	elements,	the	time	complexity	for	a	heap	sort	is	O(nlog2(n)),
like	quicksort	and	mergesort.

In	this	section,	we	will	first	do	an	ascending	sort	implemented	using	a
min-heap	and	then	a	descending	sort	implemented	using	a	max-heap.

Ascending-Order	Sort	(Min-Heap)
Figure	16-20	shows	the	min-heap	when	all	the	items	have	been	added	to
the	min-heap,	and	Figures	16-21	to	16-23	show	the	heap	restructuring	as
items	are	popped.	Finally,	when	it	is	empty,	the	sort	is	complete.



Figure	16-20 Min-heap	sort	after	all	items	added



Figure	16-21 Min-heap	sort:	popping	2	out



Figure	16-22 Min-heap	sort:	popping	4	out

Figure	16-23 Min-heap	sort:	popping	12	out

 1   var minHeapExample = new MinHeap();
 2   minHeapExample.add(12);
 3   minHeapExample.add(2);
 4   minHeapExample.add(23);
 5   minHeapExample.add(4);



 6   minHeapExample.add(13);
 7   minHeapExample.items; // [2, 4, 23, 12, 13]
 8
 9   console.log(minHeapExample.poll()); // 2
10   console.log(minHeapExample.poll()); // 4
11   console.log(minHeapExample.poll()); // 12
12   console.log(minHeapExample.poll()); // 13
13   console.log(minHeapExample.poll()); // 23

The	last	node	(where	13	used	to	be)	is	removed,	and	then	13	is
placed	on	the	top.	Through	the	percolation	process,	13	moves	down	to
after	the	left	child	of	12	since	it’s	bigger	than	both	4	and	13.

Descending-Order	Sort	(Max-Heap)
Figure	16-24	shows	the	max-heap	when	all	the	items	have	been	added	to
the	min-heap,	and	Figures	16-25	through	16-27	show	the	max-heap
restructuring	as	items	are	popped.	Finally,	when	it	is	empty,	the	sort	is
complete.

Figure	16-24 Max-heap	sort	after	all	items	are	added



Figure	16-25 	Max	sort:	popping	23	out



Figure	16-26 Max	sort:	popping	13	out



Figure	16-27 Max	sort:	popping	12	out

 1   var maxHeapExample = new MaxHeap();
 2   maxHeapExample.add(12);
 3   maxHeapExample.add(2);
 4   maxHeapExample.add(23);
 5   maxHeapExample.add(4);
 6   maxHeapExample.add(13);
 7   maxHeapExample.items; // [23, 13, 12, 2, 4]
 8
 9   console.log(maxHeapExample.poll()); // 23
10   console.log(maxHeapExample.poll()); // 13
11   console.log(maxHeapExample.poll()); // 12
12   console.log(maxHeapExample.poll()); // 2
13   console.log(maxHeapExample.poll()); // 4

Summary
A	heap	is	a	tree-like	data	structure	represented	using	arrays.	To	get	the
parent,	left	child,	and	right	child	of	a	tree’s	node,	you	can	use	the	index



formula	in	Table	16-1.

Table	16-1 	Heap	Node	Index	Summary

Node Index

(self) N

Parent (N-1)	/	2

Left	child (N*2)	+	1

Right	child (N*2)	+	2

Heaps	maintain	their	structure	via	percolation;	when	a	node	is
inserted,	it	“bubbles	up”	by	repeatedly	swapping	with	elements	until	the
proper	heap	structure	is	achieved.	For	a	min-heap,	this	means	the	lowest-
valued	node	at	the	root.	For	a	max-heap,	this	means	the	highest-valued
node	at	the	root.	Heaps	work	fundamentally	by	percolation,	which	allows
deletion	and	insertion	in	O(log2(n))	time,	as	summarized	in	Table	16-2.

Table	16-2 	Heap	Operations	Summary

Operation Time	Complexity

Deletion	(leads	to	“bubble	down”) O(log2(n))

Insertion	(leads	to	“bubble	up”) O(log2(n))

Heap	sort O(n	log2(n))

Exercises
You	can	find	all	the	code	for	the	exercises	on	GitHub.1

KEEP	TRACK	OF	MEDIAN	IN	STREAM	OF	NUMBERS
Since	this	question	is	in	this	chapter,	that’s	already	a	big	hint	for
approaching	it.	In	theory,	the	solution	is	fairly	simple.	Have	one	min-
heap	and	one	max-heap,	and	then	retrieving	the	median	takes	only
O(1).

For	example,	let’s	have	a	stream	of	the	following	integers:	12,	2,
23,	4,	13.

Median,	when	12	is	inserted,	is	12	since	that’s	the	only	element.
When	2	is	inserted,	there	is	an	even	number	of	items:	2	and	12.	Hence,



the	median	is	its	arithmetic	mean,	7	((12+2)/2).	When	23	is	inserted,
the	median	is	12.	Finally,	when	13	is	inserted,	the	median	is	12.5,	the
average	of	two	middle	terms	(12	and	13).

1   medianH.push(12);
2   console.log(medianH.median()); // 12
3   medianH.push(2);
4   console.log(medianH.median()); // 7 (

because 12 + 2 = 14; 14/2 = 7)
5   medianH.push(23);
6   console.log(medianH.median()); // 12
7   medianH.push(13);
8   console.log(medianH.median()); // 12.5

 1   function MedianHeap() {
 2       this.minHeap = new MinHeap();
 3       this.maxHeap = new MaxHeap();
 4   }
 5
 6   MedianHeap.prototype.push = function

(value) {
 7       if (value > this.median()) {
 8           this.minHeap.add(value);
 9       } else {
10           this.maxHeap.add(value);
11       }
12
13       // Re balancing
14       if (this.minHeap.size() -

this.maxHeap.size() > 1) {
15           this.maxHeap.push(this.minHeap.pol

l());
16       }
17
18       if (this.maxHeap.size() -

this.minHeap.size() > 1){
19           this.minHeap.push(this.maxHeap.pol



l());
20       }
21   }
22
23   MedianHeap.prototype.median = function ()

{
24       if (this.minHeap.size() == 0 &&

this.maxHeap.size() == 0){
25           return Number.NEGATIVE_INFINITY;
26       } else if (this.minHeap.size() ==

this.maxHeap.size()) {
27           return (this.minHeap.peek() +

this.maxHeap.peek()) / 2;
28       } else if (this.minHeap.size() >

this.maxHeap.size()) {
29           return this.minHeap.peek();
30       } else {
31           return this.maxHeap.peek();
32       }
33   }
34
35   var medianH = new MedianHeap();
36
37   medianH.push(12);
38   console.log(medianH.median()); // 12
39   medianH.push(2);
40   console.log(medianH.median()); // 7 (

because 12 + 2 = 14; 14/2 = 7)
41   medianH.push(23);
42   console.log(medianH.median()); // 12
43   medianH.push(13);
44   console.log(medianH.median()); // 12.5

FIND	THE	K	TH	SMALLEST	VALUE	IN	AN	ARRAY
This	problem	has	been	explored	before	in	Chapter	10	using



quicksort’s	helper	function.	Another	way	to	do	it	is	to	use	a	heap.
Simply	add	the	elements	into	a	heap	and	pop	it	kth	times.	By
definition	of	min-heaps,	this	returns	the	kth	smallest	value	in	the
array.

 1   var array1 = [12, 3, 13, 4, 2, 40, 23]
 2
 3   function getKthSmallestElement(array, k) {
 4       var minH = new MinHeap();
 5       for (var i = 0, arrayLength =
array.length; i < arrayLength; i++) {
 6           minH.add(array[i]);
 7       }
 8       for (var i = 1; i < k; i++) {
 9           minH.poll();
10       }
11       return minH.poll();
12   }
13   getKthSmallestElement(array1, 2); // 3
14   getKthSmallestElement(array1, 1); // 2
15   getKthSmallestElement(array1, 7); // 40

FIND	THE	KTH	LARGEST	VALUE	IN	AN	ARRAY
This	is	the	same	idea	from	before	just	with	max-heap.

 1   var array1 = [12,3,13,4,2,40,23];
 2
 3   function getKthBiggestElement(array, k) {
 4       var maxH = new MaxHeap();
 5       for (var i=0, arrayLength = array.length;
i<arrayLength; i++) {
 6           maxH.push(array[i]);
 7       }
 8       for (var i=1; i<k; i++) {
 9           maxH.pop();
10       }



1

11       return maxH.pop();
12   }
13   getKthBiggestElement(array1,2); // 23
14   getKthBiggestElement(array1,1); // 40
15   getKthBiggestElement(array1,7); // 2

Time	Complexity:	O(klog2(n))
Here,	n	is	the	size	of	the	array	since	each	.pop	costs	O(log2(n)),

which	has	to	be	done	k	times.
Space	Complexity:	O(n)
O(n)	in	memory	is	needed	to	store	the	heap	array.

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms
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This	chapter	covers	graphs.	Graphs	are	a	versatile	way	of	representing
connections	between	objects.	In	this	chapter,	you	will	learn	graph	basics,
including	fundamental	terminology	and	graph	types.	The	chapter	will
also	cover	working	with	these	different	graph	types	and	methods	of
representing	graphs	in	data	structures	that	have	already	been	explored.
Finally,	algorithms	for	traversing,	searching,	and	sorting	graphs	are
explored	to	solve	problems	such	as	finding	the	shortest	path	between
two	graph	nodes.

Graph	Basics
As	mentioned	in	the	introduction,	graphs	are	visual	representations	of
the	connections	between	objects.	Such	representations	can	be	of	many
things	and	have	different	applications;	Table	17-1	shows	some	examples.

Table	17-1 Examples	of	Graph	Applications

Application Item Connection

Web	site Web	page Links

Map Intersection Road

Circuit Component Wiring

Social	media Person “Friendship”/connection

Telephone Phone	number Landline

https://doi.org/10.1007/978-1-4842-3988-9_17


Figure	17-1	shows	two	examples	of	simple	graphs.

Figure	17-1 Two	examples	of	graphs

Before	we	delve	into	graphs	too	deeply,	it	is	useful	to	introduce	some
basic	terminology	and	concepts.
Vertex:	A	vertex	is	the	node	from	which	graphs	are	formed.	In	this
chapter,	a	node	will	be	noted	as	V	for	Big-O	analysis.	A	vertex	is
represented	using	a	circle,	as	shown	in	Figure	17-2.
Edge:	An	edge	is	the	connection	between	nodes	in	a	graph.	Graphically,
it	is	the	“line”	between	the	vertices.	It	will	be	noted	as	E	for	Big-O
analysis.	An	edge	is	represented	using	a	line,	as	shown	in	Figure	17-2.



Figure	17-2 Vertices	and	edges

Degree	of	vertex:	The	degree	of	a	vertex	refers	to	the	number	of	edges
on	that	vertex	(node).
Sparse	graph:	A	graph	is	considered	sparse	when	only	a	small	fraction
of	possible	connections	exist	between	vertices	(see	Figure	17-3).



Figure	17-3 Sparse	graph

Dense	graph:	A	graph	is	considered	dense	when	there	are	a	lot	of
connections	between	different	vertices	(see	Figure	17-4).



Figure	17-4 Dense	graph

Cyclical	graph:	A	directed	graph	is	considered	cyclical	if	there	is	a	path
that	travels	from	a	vertex	and	back	to	itself.	For	example,	in	Figure	17-
5,	B	can	follow	the	edge	to	C	and	then	D	and	then	E	and	then	to	B	again.

Figure	17-5 Graph	with	a	cycle	on	B



In	contrast,	Figure	17-6	is	an	example	of	a	graph	that	is	not	cyclical.

Figure	17-6 Graph	without	a	cycle

Weights:	Weights	are	values	on	the	edges.	Weights	can	signify	various
things	depending	on	the	context.	For	example,	weights	on	a	directed
graph	can	represent	the	distance	required	to	get	from	node	A	to	B,	as
shown	in	Figure	17-7.

Figure	17-7 	Directed	graph	with	weights

Undirected	Graphs
Undirected	graphs	are	graphs	that	do	not	have	a	direction	between	edges.
The	edge	implies	a	mutual	connection	between	the	two	nodes	without	a
direction.	A	real-life	example	of	an	undirected	graph	relationship	is



friendship.	Friendship	occurs	only	if	both	parties	mutually	acknowledge
the	relationship.	Values	of	the	edges	within	a	friendship	graph	may
indicate	how	close	the	friendship	is.	Figure	17-8	is	a	simple	undirected
graph	with	five	vertices	and	six	nondirectional	edges	with	weights.

Figure	17-8 Undirected	graph	with	weights

There	are	various	ways	to	represent	undirected	graphs	as	a	data
structure	class.	Two	of	the	most	common	ways	to	do	this	are	by	using	an
adjacency	matrix	or	an	adjacency	list.	The	adjacency	list	uses	a	vertex	as
the	key	for	nodes	with	its	neighbors	stored	into	a	list,	whereas	an
adjacency	matrix	is	a	V	by	V	matrix	with	each	element	of	the	matrix
indicating	a	connection	between	two	vertices.	Figure	17-9	illustrates	the
difference	between	an	adjacency	list	and	an	adjacency	matrix	(This	book
covers	only	adjacency	lists).



Figure	17-9 Graph	(left),	adjacency	list	(middle),	and	adjacency	matrix	(right)

So	far,	the	concepts	and	definitions	of	graphs	have	been	discussed.
Now,	let’s	actually	start	implementing	these	ideas	into	code	and	learn
how	to	add	and	remove	edges	and	vertices.

Adding	Edges	and	Vertices
In	this	example,	we	create	a	weighted	undirected	graph	and	add	vertices
and	edges.	First,	we’ll	create	a	new	class	for	an	undirected	graph.	The
undirected	graph	should	have	an	object	to	store	the	edges.	This	is
implemented	as	shown	in	the	following	code	block:

 1   function UndirectedGraph() {
 2       this.edges = {};
 3   }

To	add	edges,	vertices	(nodes)	must	be	added	first.	This
implementation	will	take	the	adjacency	list	approach	by	having	vertices
as	objects	inside	the	this.edges	object	in	which	edge	values	are
stored.

 1   UndirectedGraph.prototype.addVertex =
function(vertex) {

 2       this.edges[vertex] = {};
 3   }

To	add	weighted	edges	into	the	undirected	graph,	both	vertices	in	the



this.edges	objects	are	used	to	set	the	weight.

 1   UndirectedGraph.prototype.addEdge =
function(vertex1,vertex2, weight) {

 2       if (weight == undefined) {
 3           weight = 0;
 4       }
 5       this.edges[vertex1][vertex2] = weight;
 6       this.edges[vertex2][vertex1] = weight;
 7  }

With	this,	let’s	add	some	vertices	and	edges	with	the	following	code:

 1   var graph1 = new UndirectedGraph();
 2   graph1.addVertex(1);
 3   graph1.addVertex(2);
 4   graph1.addEdge(1,2, 1);
 5   graph1.edges;   // 1: {2: 0},  2: {1: 0}
 6   graph1.addVertex(3);
 7   graph1.addVertex(4);
 8   graph1.addVertex(5);
 9   graph1.addEdge(2,3, 8);
10   graph1.addEdge(3,4, 10);
11   graph1.addEdge(4,5, 100);
12  graph1.addEdge(1,5, 88);

Figure	17-10	shows	the	graphical	output	from	this	code.

Figure	17-10 The	first	undirected	graph



Removing	Edges	and	Vertices
Continuing	with	the	same	example,	let’s	implement	the	functions	for
removing	edges	and	vertices	for	the	graph	class.

To	remove	an	edge	from	a	vertex,	look	up	the	edges	object	for	that
vertex	in	this.edges	and	delete	it	using	JavaScript’s	delete	operator.

 1   UndirectedGraph.prototype.removeEdge =
function(vertex1, vertex2) {

 2       if (this.edges[vertex1] &&
this.edges[vertex1][vertex2] != undefined) {

 3           delete this.edges[vertex1][vertex2];
 4       }
 5       if (this.edges[vertex2] &&

this.edges[vertex2][vertex1] != undefined) {
 6           delete this.edges[vertex2][vertex1];
 7       }
 8   }

Next,	let’s	delete	an	entire	vertex.	One	important	point	to	remember
is	that	any	time	a	vertex	is	removed,	all	edges	connected	to	it	also	must	be
removed.	This	can	be	accomplished	using	a	loop,	as	shown	in	the
following	implementation:

 1   UndirectedGraph.prototype.removeVertex =
function(vertex) {

 2       for (var adjacentVertex in
this.edges[vertex]) {

 3           this.removeEdge(adjacentVertex,
vertex);

 4       }
 5       delete this.edges[vertex];
 6   }

With	removal	now	implemented,	let’s	create	another	undirected
graph	object	similar	to	the	first	example	but	delete	some	vertices	and
edges.	Vertex	5	is	removed	first,	and	the	result	is	shown	in	Figure	17-11.
Vertex	1	is	also	removed,	as	shown	in	Figure	17-12.	Finally,	Figure	17-13



shows	the	result	when	the	edge	between	2	and	3	is	removed.

 1   var graph2 = new UndirectedGraph();
 2   graph2.addVertex(1);
 3   graph2.addVertex(2);
 4   graph2.addEdge(1,2, 1);
 5   graph2.edges;   // 1: {2: 0},  2: {1: 0}
 6   graph2.addVertex(3);
 7   graph2.addVertex(4);
 8   graph2.addVertex(5);
 9   graph2.addEdge(2,3, 8);
10   graph2.addEdge(3,4, 10);
11   graph2.addEdge(4,5, 100);
12   graph2.addEdge(1,5, 88);
13   graph2.removeVertex(5);
14   graph2.removeVertex(1);
15   graph2.removeEdge(2,3);

Figure	17-11 Vertex	5	removed

Figure	17-12 Vertex	1	removed



Figure	17-13 Edge	between	2	and	3	removed

Directed	Graphs
Directed	graphs	are	graphs	that	do	have	a	direction	between	vertices.
Each	edge	in	a	directed	graph	goes	from	one	vertex	to	another,	as	shown
in	Figure	17-14.

Figure	17-14 Directed	graph



In	this	example,	the	E	node	can	“travel”	to	the	D	node,	and	the	D	node
can	travel	only	to	the	C	node.

Now	let’s	implement	a	weighted	directed	graph	class.	The	similar
adjacency	list	approach	used	in	the	undirected	graph	implementation
will	be	used.	First,	the	DirectedGraph	class	is	defined	with	the	edges
property	as	shown,	and	the	method	of	adding	the	vertex	is	the	same	as
the	implementation	from	the	undirected	graph	class.

 1   function DirectedGraph() {
 2       this.edges = {};
 3   }
 4   DirectedGraph.prototype.addVertex = function

(vertex) {
 5       this.edges[vertex] = {};
 6   }

Given	an	edge	that	starts	at	the	origin	vertex	and	ends	at	the
destination	vertex,	to	add	edges	into	the	directed	graph,	the	weight
should	be	set	only	on	the	origin	vertex,	as	shown	here:

 1   DirectedGraph.prototype.addEdge =
function(origVertex, destVertex, weight) {

 2       if (weight === undefined) {
 3           weight = 0;
 4       }
 5       this.edges[origVertex][destVertex] =

weight;
 6   }

With	the	functions	for	adding	vertices	and	edges	implemented,	let’s
add	some	sample	vertices	and	edges.

 1   var digraph1 = new DirectedGraph();
 2   digraph1.addVertex("A");
 3   digraph1.addVertex("B");
 4   digraph1.addVertex("C");
 5   digraph1.addEdge("A", "B", 1);
 6   digraph1.addEdge("B", "C", 2);



 7   digraph1.addEdge("C", "A", 3);

Figure	17-15	shows	the	edge	added	between	the	A	and	B	vertices
(line	5).	Figure	17-16	illustrates	the	connections	between	B	and	C	(line
6),	and	Figure	17-17	shows	the	connection	between	C	and	A	(line	7).

Figure	17-15 Adding	A	to	B

Figure	17-16 Adding	B	to	C

Figure	17-17 Adding	C	to	A

The	implementation	for	removing	a	vertex	and	removing	an	edge	for
a	directed	graph	is	the	same	as	the	implementation	seen	in	the
undirected	graph	except	that	only	the	origin	vertex	in	the	edges	object
have	to	be	deleted,	as	shown	here:



 1   DirectedGraph.prototype.removeEdge =
function(origVertex, destVertex) {

 2       if (this.edges[origVertex] &&
this.edges[origVertex][destVertex] != undefined) {

 3           delete this.edges[origVertex]
[destVertex];

 4       }
 5   }
 6
 7   DirectedGraph.prototype.removeVertex =

function(vertex) {
 8       for (var adjacentVertex in

this.edges[vertex]) {
 9           this.removeEdge(adjacentVertex,

vertex);
10       }
11       delete this.edges[vertex];
12   }

Graph	Traversal
A	graph	can	be	traversed	in	multiple	ways.	The	two	most	common
approaches	are	breadth-first	search	and	depth-first	search.	Similarly	to
how	different	tree	traversal	techniques	were	explored,	this	section	will
focus	on	these	two	traversal	techniques	and	when	to	use	each	of	them.

Breadth-First	Search
Breadth-first	search	(BFS)	refers	to	a	search	algorithm	in	a	graph	that
focuses	on	connected	nodes	and	their	connected	nodes	in	order.	This
idea	has	actually	already	been	explored	with	trees	in	Chapter	15	with
level-order	traversal.	Figure	17-18	shows	level-order	traversal	for	a
binary	search	tree.



Figure	17-18 Level-order	traversal	for	binary	search	tree

Notice	how	the	order	of	traversal	is	by	the	height	from	the	root	node.
Notice	the	similarity	with	the	graph	in	Figure	17-19.

Figure	17-19 Breadth-first	search	graph

Similar	to	the	level-order	traversal	for	the	tree	data	structure,	a
queue	is	needed	for	a	BFS.

For	each	node,	add	each	of	connected	vertices	into	a	queue	and	then
visit	each	item	in	the	queue.	Let’s	write	a	generalized	BFS	algorithm	for



the	graph	class.

 1   DirectedGraph.prototype.traverseBFS =
function(vertex, fn) {

 2       var queue = [],
 3          visited = {};
 4
 5       queue.push(vertex);
 6
 7       while (queue.length) {
 8           vertex = queue.shift();
 9           if (!visited[vertex]) {
10               visited[vertex] = true;
11               fn(vertex);
12               for (var adjacentVertex in

this.edges[vertex]) {
13                   queue.push(adjacentVertex);
14               }
15           }
16       }
17   }
18   digraph1.traverseBFS("B", (vertex)=>

{console.log(vertex)});

Time	Complexity:	O(V	+	E)
The	time	complexity	is	O(V	+	E),	where	V	is	the	number	of	vertices

and	E	is	the	number	of	edges.	This	is	because	the	algorithm	has	to	go
through	every	edge	and	node	to	traverse	the	whole	graph.

Recall	the	graph	structure	in	Figure	17-20	from	“Undirected	Graphs”
used	earlier	in	this	chapter.



Figure	17-20 The	earlier	undirected	graph	example

Applying	the	BFS	to	the	graph,	the	following	is	printed:	1,	2,	5,	3,	4.
In	Figures	17-21	and	17-22,	the	lightly	shaded	node	represents	the

node	being	currently	visited,	while	the	dark	node	represents	that	the
node	has	already	been	visited.



Figure	17-21 Breadth-first	search,	part	1

In	Figure	17-21,	the	breadth-first	search	starts	at	the	1	node.	Because
it	has	two	neighbors,	2	and	5,	those	are	added	to	the	queue.	Then,	2	is
visited,	and	its	neighbor	3	is	added	to	the	queue.	5	is	then	dequeued,	and
its	neighbor	4	is	added	to	the	queue.	Finally,	3	and	4	are	visited,	and	the
search	ends,	as	shown	in	Figure	17-22.



Figure	17-22 Breadth-first	search,	part	2

Depth-First	Search
Depth-first	search	(DFS)	refers	to	a	search	algorithm	in	a	graph	that
focuses	on	traversing	deep	into	one	connection	before	visiting	the	other



connections.
This	idea	has	been	explored	in	Chapter	15	with	in-order,	post-order,

and	pre-order	traversals	in	trees.	For	example,	a	post-order	tree
traversal	visits	the	bottom	children	node	before	visiting	the	top	root
nodes	(see	Figure	17-23).

Figure	17-23 Post-order	traversal

Something	similar	is	shown	in	Figure	17-24	for	a	graph.

Figure	17-24 Depth-first	search	graph



Notice	how	E	is	visited	last.	This	is	because	the	search	visits	all	the
nodes	connected	to	C	in	depth	before	visiting	E.

Similar	to	the	pre-post,	and	in-order	traversal	for	the	tree	data
structure,	recursion	is	used	to	go	deep	into	a	node	until	that	path	is
exhausted.

Let’s	write	a	generalized	DFS	algorithm	for	the	graph	class.

 1   DirectedGraph.prototype.traverseDFS =
function(vertex, fn) {

 2      var visited = {};
 3      this._traverseDFS(vertex, visited, fn);
 4   }
 5
 6   DirectedGraph.prototype._traverseDFS =

function(vertex, visited, fn) {
 7       visited[vertex] = true;
 8       fn(vertex);
 9       for (var adjacentVertex in

this.edges[vertex]) {
10           if (!visited[adjacentVertex]) {
11               this._traverseDFS(adjacentVertex

, visited, fn);
12           }
13       }
14   }

Time	Complexity:	O(V	+	E)
The	time	complexity	is	O(V	+	E)	where	V	is	the	number	of	vertices

and	E	is	the	number	of	edges.	This	is	because	the	algorithm	has	to	go
through	every	edge	and	node	to	traverse	the	whole	graph.	This	is	the
same	time	complexity	as	the	BFS	algorithm.

Again,	let’s	use	the	graph	structure	from	earlier	in	the	chapter	(see
Figure	17-25).



Figure	17-25 The	earlier	graph	example	from	Figure	17-20

Applying	the	DFS	to	the	graph,	the	following	is	printed:	1,	2,	3,	4,	5.
In	Figures	17-26	and	17-27,	the	lightly	shaded	node	represents	the

node	being	currently	visited,	while	the	dark	node	represents	that	the
node	has	already	been	visited.



Figure	17-26 Depth-first	search,	part	1

In	Figure	17-26,	the	depth-first	search	starts	at	the	1	node.	Its	first
neighbor,	2,	is	visited.	Then,	2’s	first	neighbor,	3,	is	visited.	After	3	is
visited,	4	will	be	visited	next	because	it	is	3’s	first	neighbor.	Finally,	4	is
visited	followed	by	5,	as	shown	in	Figure	17-27.	Depth-first	search
always	visits	the	first	neighbor	recursively.



Figure	17-27 Depth-first	search,	part	2

Weighted	Graphs	and	Shortest	Path
Now	that	we	have	covered	the	basics	of	graphs	and	how	to	traverse
them,	we	can	discuss	weighted	edges	and	Dijkstra’s	algorithm,	which
employs	shortest	path	searches.

Graphs	with	Weighted	Edges
Recall	that	edges	in	a	graph	represent	a	connection	between	the	vertices.
If	edges	establish	a	connection,	weight	can	be	assigned	to	that



connection.	For	example,	for	a	graph	that	represents	a	map,	the	weights
on	the	edges	are	distances.

It	is	important	to	note	that	the	graphical	length	of	an	edge	means
nothing	with	regard	to	the	edge’s	weight.	It	is	purely	there	for	visual
purposes.	In	the	implementation	and	the	code,	the	visual	representation
is	not	required.	In	Figure	17-28,	the	weights	tell	us	the	distances
between	the	cities	in	a	graph	representation	of	five	cities.	For	example,
graphically,	the	distance	from	City	1	and	City	2	is	shorter	than	the
distance	from	City	2	and	City	3.	However,	the	edges	indicate	that	the
distance	from	City	1	to	City	2	is	50	km,	and	the	distance	from	City	2	to
City	3	is	10	km,	which	is	five	times	larger.

Figure	17-28 Graph	representation	of	five	cities

The	most	important	question	for	weighted	edge	graphs	is,	what	is	the
shortest	path	from	one	node	to	another?	There	are	series	of	shortest
path	algorithms	for	graphs.	The	one	we	discuss	is	Dijkstra’s	algorithm.

Dijkstra’s	Algorithm:	Shortest	Path
Dijkstra’s	algorithm	works	by	taking	the	shortest	path	at	each	level	to	get
to	a	destination.	At	first,	the	distance	is	marked	as	infinity	because	some
nodes	may	not	be	reachable	(see	Figure	17-29).	Then	at	each	traversal
iteration,	the	shortest	distance	is	chosen	for	each	node	(see	Figures	17-
30	and	17-31).



Figure	17-29 Dijkstra	stage	1:	everything	marked	as	infinity

Figure	17-30 Dijkstra	stage	2:	B	and	C	processed



Figure	17-31 Dijkstra	stage	3:	all	nodes	now	processed

_extractMin	is	implemented	to	compute	the	neighboring	node
with	the	smallest	distance	for	a	given	vertex.	Using	the	breadth-first
search	outline	to	enqueue	the	neighboring	nodes	for	each	vertex	as	the
graph	is	traversed	from	the	origin	to	the	destination	node,	the	distances
are	updated	and	computed.

 1  function _isEmpty(obj) {
 2       return Object.keys(obj).length === 0;
 3  }
 4
 5   function _extractMin(Q, dist) {
 6       var minimumDistance = Infinity,
 7           nodeWithMinimumDistance = null;
 8       for (var node in Q) {
 9           if (dist[node] <= minimumDistance) {
10               minimumDistance = dist[node];
11               nodeWithMinimumDistance = node;
12           }
13       }
14       return nodeWithMinimumDistance;
15   }
16
17   DirectedGraph.prototype.Dijkstra =

function(source) {
18       // create vertex set Q
19       var Q = {}, dist = {};
20       for (var vertex in this.edges) {
21           // unknown distances set to Infinity
22           dist[vertex] = Infinity;
23           // add v to Q
24           Q[vertex] = this.edges[vertex];
25       }
26       // Distance from source to source init

to 0
27       dist[source] = 0;



28
29      while (!_isEmpty(Q)) {
30           var u = _extractMin(Q, dist); // get

the min distance
31
32           // remove u from Q
33           delete Q[u];
34
35           // for each neighbor, v, of u:
36           // where v is still in Q.
37           for (var neighbor in this.edges[u])

{
38               // current distance
39               var alt = dist[u] +

this.edges[u][neighbor];
40               // a shorter path has been found
41               if (alt < dist[neighbor]) {
42                   dist[neighbor] = alt;
43               }
44           }
45       }
46       return dist;
47   }
48
49   var digraph1 = new DirectedGraph();
50   digraph1.addVertex("A");
51   digraph1.addVertex("B");
52   digraph1.addVertex("C");
53   digraph1.addVertex("D");
54   digraph1.addEdge("A", "B", 1);
55   digraph1.addEdge("B", "C", 1);
56   digraph1.addEdge("C", "A", 1);
57   digraph1.addEdge("A", "D", 1);
58   console.log(digraph1);
59   // DirectedGraph {
60   // V: 4,
61   // E: 4,



62   // edges: { A: { B: 1, D: 1 }, B: { C: 1 },
C: { A: 1 }, D: {} }}

63   digraph1.Dijkstra("A"); // { A: 0, B: 1, C:
2, D: 1 }

Time	Complexity:	O(V2	+	E)
The	algorithm	here	is	similar	to	the	BFS	algorithm	but	requires	the

_extractMin	method	,	which	is	O(n)	in	time	complexity.	Because	of
this,	the	time	complexity	is	O(V2	+	E)	because	all	neighbor	vertices	of	the
node	currently	being	traversed	have	to	be	checked	during	the
_extractMin	method.	This	algorithm	can	be	improved	using	a	priority
queue	for	the	extract	min,	which	would	yield	O(log2(V	))	_extractMin
and	hence	yield	an	overall	time	complexity	of	O(E	+	V)	*	O(log2(V))	=	O(E
log2(V)).	This	can	be	even	more	optimized	by	using	a	Fibonacci	heap,
which	has	constant	time	to	compute	_extractMin.	However,	for
simplicity,	neither	a	Fibonacci	heap	nor	a	priority	queue	was	used	for
this	demonstration.

Topological	Sort
For	a	directed	graph,	it	can	be	important	to	know	which	node	should	be
processed	first	for	various	applications.	An	example	of	this	is	a	task
scheduler	where	one	task	depends	on	a	previous	task	being	done.
Another	example	is	a	JavaScript	library	dependency	manager	where	it
has	to	figure	out	which	libraries	to	import	before	others.	The	topological
sorting	algorithm	implements	this.	It	is	a	modified	DFS	that	uses	a	stack
to	record	the	order.

Put	simply,	it	works	by	performing	DFS	from	a	node	until	its
connected	nodes	are	recursively	exhausted	and	by	adding	it	to	the	stack
until	the	connected	nodes	are	all	visited	(see	Figure	17-32).



Figure	17-32 Topological	sort

Topological	sorting	has	a	visited	set	to	ensure	that	the	recursive	call
does	not	result	in	an	infinite	loop.	For	a	given	node,	that	node	is	added	to
the	visited	set,	and	its	neighbors	that	have	not	been	visited	are	visited	in
the	next	recursive	call.	At	the	end	of	the	recursive	call,	unshift	is	used	to
add	the	current	node’s	value	to	the	stack.	This	ensures	that	the	order	is
chronological.

 1   DirectedGraph.prototype.topologicalSortUtil
= function(v, visited, stack) {



 2      visited.add(v);
 3
 4      for (var item in this.edges[v]) {
 5           if (visited.has(item) == false) {
 6               this.topologicalSortUtil(item,

visited, stack)
 7          }
 8       }
 9       stack.unshift(v);
10   };
11
12   DirectedGraph.prototype.topologicalSort =

function() {
13       var visited = {},
14           stack = [];
15
16
17       for (var item in this.edges) {
18           if (visited.has(item) == false) {
19              this.topologicalSortUtil(item,

visited, stack);
20           }
21       }
22       return stack;
23   };
24
25   var g = new DirectedGraph() ;
26   g.addVertex('A');
27   g.addVertex('B');
28   g.addVertex('C');
29   g.addVertex('D');
30   g.addVertex('E');
31   g.addVertex('F');
32
33   g.addEdge('B', 'A');
34   g.addEdge('D', 'C');
35   g.addEdge('D', 'B');



36   g.addEdge('B', 'A');
37   g.addEdge('A', 'F');
38   g.addEdge('E', 'C');
39   var topologicalOrder = g.topologicalSort();
40   console.log(g);
41   // DirectedGraph {
42   // V: 6,
43   // E: 6,
44   // edges:
45   //  { A: { F: 0 },
46   //    B: { A: 0 },
47   //    C: {},
48   //    D: { C: 0, B: 0 },
49   //    E: { C: 0 },
50   //    F: {} } }
51   console.log(topologicalOrder); // [ 'E',

'D', 'C', 'B', 'A', 'F' ]

Time	Complexity:	O(V	+	E)
Space	Complexity:	O(V)
The	topological	sort	algorithm	is	simply	DFS	with	an	extra	stack.

Therefore,	the	time	complexity	is	the	same	as	DFS.	Topological	sorting
requires	O(V)	in	space	because	it	needs	to	store	all	the	vertices	in	the
stack.	This	algorithm	is	powerful	for	scheduling	jobs	from	given
dependencies.

Summary
This	chapter	discussed	different	types	of	graphs,	their	properties,	and
how	to	search	and	sort	them.	A	graph,	composed	of	vertices	and
connected	via	edges,	can	be	represented	as	a	data	structure	in	many
different	ways.	In	this	chapter,	an	adjacency	list	was	used	to	represent
the	graph.	If	the	graph	is	dense,	it	is	better	to	use	a	matrix-based
representation	of	a	graph	instead.	In	a	graph’s	edges,	weights	signify	the
importance	(or	the	lack	thereof)	of	the	connected	vertices.	Moreover,	by
assigning	weights	to	edges,	Dijkstra’s	shortest	path	algorithm	was
implemented.	Finally,	graphs	are	versatile	data	structures	with	various



use	cases	and	interesting	algorithms.
Table	17-2	shows	some	key	properties	of	the	graphs.

Table	17-2 Graph	Properties	Summary

Property Description

Dense There	are	a	lot	of	connections	between	different	vertices.

Sparse Only	a	small	fraction	of	possible	connections	exist	between	vertices.

Cyclical There	is	a	path	that	takes	vertices	back	to	themselves.

Uncyclical There	is	a	no	path	such	that	vertices	can	be	taken	back	to	themselves.

Directed Graphs	have	a	direction	between	edges.

Undirected Graphs	do	not	have	a	direction	between	edges.

Table	17-3	summarizes	the	graph	algorithms.

Table	17-3 Graph	Algorithm	Summary

Algorithm Description/Use	Case Time
Complexity

BFS Traverses	the	graph	by	visiting	neighbor	nodes	one	level	at	a
time

O(V	+	E	)

DFS Traverses	the	graph	by	going	deep	into	each	neighbor	node	one
at	a	time

O(V	+	E	)

Dijkstra Finds	the	shortest	path	from	one	vertex	to	the	rest	of	the	other
vertices

O(V2+	E	)

Topological
Sort

Sorts	the	directed	graph;	for	job	scheduling	algorithms O(V	+	E	)
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This	chapter	will	cover	more	advanced	string	algorithms	than	the
previous	chapters	have	discussed.	They	should	be	easier	to	understand
now	that	you	have	learned	about	some	other	data	structures.	Specifically,
this	chapter	will	focus	on	string	searching	algorithms.

Trie	(Prefix	Tree)
A	trie	is	special	type	of	tree	used	commonly	for	searching	strings	and
matching	on	stored	strings.	At	each	level,	nodes	can	branch	off	to	form
complete	words.	For	example,	Figure	18-1	shows	a	trie	of	the	words:
Sammie,	Simran,	Sia,	Sam.	Each	ending	node	has	a	boolean	flag:
isCompleted.	This	indicates	that	the	word	ends	in	this	path.	For
example,	m	in	Sam	has	endOfWord	set	to	true.	Nodes	with
endOfWord	set	to	true	are	shaded	in	Figure	18-1.

https://doi.org/10.1007/978-1-4842-3988-9_18


Figure	18-1 Trie	of	Sammie,	Simran,	Sia,	Sam

A	trie	is	implemented	using	a	nested	object	where	each	level	has	its
direct	children	as	keys.	A	trie	node	can	be	formed	by	using	an	object	to
store	the	children.	The	trie	has	a	root	node	that	is	instantiated	in	the
constructor	of	the	Trie	class,	as	shown	in	the	following	code	block:

 1   function TrieNode() {
 2       this.children = {}; // table
 3       this.endOfWord = false;
 4   }



 5
 6   function Trie() {
 7       this.root = new TrieNode();
 8    }

To	insert	into	the	trie,	the	child	trie	node	is	created	on	the	root	if	it
does	not	exist	already.	For	each	character	in	the	word	being	inserted,	it
creates	a	child	node	if	the	character	does	not	exist,	as	shown	in	the
following	code	block:

 1   Trie.prototype.insert = function(word) {
 2       var current = this.root;
 3       for (var i = 0; i < word.length; i++) {
 4           var ch = word.charAt(i);
 5           var node = current.children[ch];
 6           if (node == null) {
 7               node = new TrieNode();
 8               current.children[ch] = node;
 9           }
10           current = node;
11       }
12       current.endOfWord = true; //mark the

current nodes endOfWord as true
13   }

To	search	inside	a	trie,	each	character	of	the	word	must	be	checked.
This	is	done	by	setting	a	temporary	variable	of	current	on	the	root.	The
current	variable	is	updated	as	each	character	in	the	word	is	checked.

 1   Trie.prototype.search = function(word) {
 2       var current = this.root;
 3       for (var i = 0; i < word.length; i++) {
 4           var ch = word.charAt(i);
 5           var node = current.children[ch];
 6           if (node == null) {
 7               return false; // node doesn't

exist



 8           }
 9           current = node;
10       }
11       return current.endOfWord;
12   }
13   var trie = new Trie();
14   trie.insert("sammie");
15   trie.insert("simran");
16   trie.search("simran"); // true
17   trie.search("fake") // false
18   trie.search("sam") // false

To	delete	an	element	from	a	trie,	the	algorithm	should	traverse	the
root	node	until	it	reaches	the	last	character	of	the	word.	Then,	for	each
node	that	does	not	have	any	other	children,	the	node	should	be	deleted.
For	example,	in	a	trie	with	sam	and	sim,	when	sim	is	deleted,	the	s	node	in
the	root	stays	intact,	but	i	and	m	are	removed.	The	recursive
implementation	in	the	following	code	block	implements	this	algorithm:

 1   Trie.prototype.delete = function(word) {
 2       this.deleteRecursively(this.root, word,

0);
 3   }
 4
 5   Trie.prototype.deleteRecursively =

function(current, word, index) {
 6       if (index == word.length) {
 7           //when end of word is reached only

delete if currrent.end Of Word is true.
 8           if (!current.endOfWord) {
 9               return false;
10           }
11           current.endOfWord = false;
12           //if current has no other mapping

then return true
13           return

Object.keys(current.children).length == 0;



14       }
15       var ch = word.charAt(index),
16           node = current.children[ch];
17       if (node == null) {
18           return false;
19       }
20       var shouldDeleteCurrentNode =

this.deleteRecursively(node, word, index + 1);
21
22       // if true is returned then
23       // delete the mapping of character and

trienode reference from map.
24       if (shouldDeleteCurrentNode) {
25           delete current.children[ch];
26           //return true if no mappings are

left in the map.
27           return

Object.keys(current.children).length == 0;
28       }
29       return false;
30   }
31   var trie1 = new Trie();
32   trie1.insert("sammie");
33   trie1.insert("simran");
34   trie1.search("simran"); // true
35   trie1.delete("sammie");
36   trie1.delete("simran");
37   trie1.search("sammie"); // false
38   trie1.search("simran"); // false

Time	Complexity:	O(W	)
Space	Complexity:	O(N*M)
Time	complexity	is	O(W)	for	all	operations	(insert,	search,	delete),

where	W	is	the	length	of	the	string	being	searched	because	each
character	in	the	string	is	checked.	The	space	complexity	is	O(N*M),
where	N	is	the	number	of	words	inserted	into	the	trie	and	M	is	the	length
of	the	longest	character.	Hence,	a	trie	is	an	efficient	data	structure	when



there	are	multiple	strings	with	common	prefixes.	For	searching	one
specific	string	pattern	in	one	specific	string,	a	trie	is	not	efficient	because
of	the	additional	memory	required	to	store	the	strings	in	the	tree-like
structure.

For	a	pattern	search	in	a	single	target	string,	the	Boyer–Moore
algorithm	and	the	Knuth–Morris–Pratt	(KMP)	algorithm	are	useful	and
are	covered	later	in	this	chapter.

Boyer–Moore	String	Search
The	Boyer–Moore	string	search	algorithm	is	used	to	power	the	“find”
tool	used	in	text	editor	applications	and	web	browsers,	like	the	one	in
Figure	18-2.

Figure	18-2 Find	tool	commonly	seen	in	many	applications

The	Boyer–Moore	string	search	algorithm	allows	linear	time	in
search	by	skipping	indices	when	searching	inside	a	string	for	a	pattern.
For	example,	for	the	pattern	jam	and	the	string	jellyjam,	visualization	of
brute-force	comparison	is	shown	in	Figure	18-3.	It	should	be	noted	that
in	the	fourth	iteration	when	j	is	compared	with	m,	since	j	is	shown	in	the
pattern,	skipping	ahead	by	2	would	be	valid.	Figure	18-4	shows	an
optimized	iteration	cycle	where	the	number	of	string	comparisons	is
limited	by	skipping	ahead	when	the	string	at	the	index	exists	in	the
pattern.



Figure	18-3 Brute-force	pattern	match	iterations

Figure	18-4 Boyer–Moore	Skipping	Indices



To	implement	this	skip	rule,	you	can	build	a	“bad	match	table”
structure.	The	bad	match	table	indicates	how	much	to	skip	for	a	given
character	of	a	pattern.	Some	examples	of	various	patterns	and	its
corresponding	bad	match	table	are	shown	here:

Pattern Bad	Match	Table

jam {j: 2, a: 1, m: 3}

data {d: 3, a: 2, t: 1}

struct {s: 5, t: 4, r: 3, u: 2, c: 1}

roi {r: 2, o: 1, i: 3}

For	the	roi	example,	r:2	indicates	that	if	r	is	not	found	in	the	string,
the	index	should	skip	by	2.	This	bad	match	table	can	be	implemented
with	the	following	code	block:

function buildBadMatchTable(str) {
    var tableObj = {},
        strLength = str.length;
    for (var i = 0; i <  strLength - 1; i++) {
        tableObj[str[i]] = strLength - 1 - i;
    }
    if (tableObj[str[strLength-1]] == undefined)

{
        tableObj[str[strLength-1]] = strLength;
    }
    return tableObj;
}
buildBadMatchTable('data');     // {d: 3, a: 2,

t: 1}
buildBadMatchTable('struct');   // {s: 5, t: 4,

r: 3, u: 2, c: 1}
buildBadMatchTable('roi');      // {r: 2, o: 1,

i: 3}
buildBadMatchTable('jam');      // {j: 2, a: 1,

m: 3}

Using	this	bad	match	table,	the	Boyer–Moore	string	search	algorithm



can	be	implemented.	When	scanning	the	input	string	for	the	pattern,	if
the	current	string	being	looked	at	exists	in	the	bad	match	table,	it	skips
over	by	the	bad	match	table	value	associated	with	the	current	string.
Otherwise,	it	is	incremented	by	1.	This	continues	until	either	the	string	is
found	or	the	index	is	greater	than	the	difference	of	the	pattern	and	string
lengths.	This	is	implemented	in	the	following	code	block:

function boyerMoore(str, pattern) {
    var badMatchTable =

buildBadMatchTable(pattern),
        offset = 0,
        patternLastIndex = pattern.length - 1,
        scanIndex = patternLastIndex,
        maxOffset = str.length - pattern.length;

    // if the offset is bigger than maxOffset,
cannot be found

    while (offset <= maxOffset) {
        scanIndex = 0;
        while (pattern[scanIndex] ==

str[scanIndex + offset]) {
            if (scanIndex == patternLastIndex) {
                // found at this index
                return offset;
            }
            scanIndex++;
        }
        var badMatchString = str[offset +

patternLastIndex];
        if (badMatchTable[badMatchString]) {
            // increase the offset if it exists
            offset +=

badMatchTable[badMatchString]
        }  else {
            offset += 1;
        }
    }



    return -1;
}
boyerMoore('jellyjam','jelly');  // 5. indicates

that the pattern starts at index 5
boyerMoore('jellyjam','jelly');  // 0. indicates

that the pattern starts at index 0
boyerMoore('jellyjam','sam');    // -1. indicates

that the pattern does not exist

Best	Case:
In	the	best	case,	all	the	characters	in	the	pattern	are	the	same,	and

this	consistently	produces	shifts	by	T,	where	T	is	the	length	of	the
pattern.	Hence,	O(W/T)	is	the	best	time	complexity	where	W	is	the	string
where	the	pattern	is	being	searched.	The	space	complexity	is	O(1)	since
only	1	value	is	stored	into	the	bad	match	table.

Time	Complexity:	O(T/W)
Space	Complexity:	O(1)
Worst	Case:
In	the	worst	case,	the	string	has	the	pattern	at	the	end	of	the	string,

and	the	preceding	part	is	all	unique	characters.	An	example	of	this	is	a
string	of	abcdefgxyz	and	pattern	of	xyz.	In	this	case,	T*W	string
comparisons	are	done.

Time	Complexity:	O(T*W)
Space	Complexity:	O(T)
All	the	characters	in	the	pattern	and	the	string	are	the	same.	An

example	of	such	a	case	is	the	string	bbbbbb	and	the	pattern	bbb.	This	case
cannot	use	the	skip	mechanism	to	its	fullest	because	the	index	will
always	be	incremented	by	1.	Space	complexity	in	this	case	is	T	because
the	pattern	could	have	all	unique	characters.

Knuth–Morris–Pratt	String	Search
Chapter	4	discussed	the	native	String.prototype.indexOf
function.	A	naive	implementation	of	the
String.prototype.indexOf	function	was	included	as	an	exercise
for	that	chapter.	A	better	(faster)	implementation	uses	the	Knuth–
Morris–Pratt	(KMP)	string	search	algorithm.	The	following



implementation	of	the	KMP	algorithm	returns	all	indices	where	the
pattern	is	present.

The	KMP	string	searching	algorithm	searches	for	occurrences	of	the
“word”	W	within	an	input	“text,”	which	is	T,	by	utilizing	the	observation
that	the	occurrence	of	a	mismatch	contains	sufficient	information	about
where	the	next	match	could	begin.	This	helps	to	skip	re-examination	of
previously	matched	characters.	A	prefix	array	has	to	be	built	to	indicate
how	many	indices	it	has	to	backtrack	to	get	the	same	prefix.	For	the
string	ababaca,	the	prefix	building	looks	like	the	following:

At	current	index	0,	there	is	no	string	to	compare	to,	and	the	prefix
array	value	is	initialized	to	0.
array	index	0	1	2	3	4	5	6
character	a	b	a	b	a	c	a
prefix	array	0
At	current	index	1:
The	character	is	b.
The	previous	prefix	array	value,	prefix[0],	is	0.

Compare	index	0	to	the	current	index:	a	(at	index	=	0)	and	b	(at	index
=	1)	mismatch.

prefix[1]	is	set	to	0:

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0
At	current	index	2:
The	character	is	a.
The	previous	prefix	array	value,	prefix[1],	is	0.

Compare	the	index	and	to	the	current	index:	a	(at	index	=	0)	and	a	(at
index	=	2)	match.

prefix[2]	is	set	to	1	(incremented	from	prefix[1]):

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0	1



At	current	index	3:
The	character	is	b.
The	previous	prefix	array	value,	prefix[2],	is	1.

Compare	index	1	and	the	current	index:	b	(at	index	=	1)	and	b	(at
index	=	3)	match.

prefix[3]	is	set	to	2	(incremented	from	prefix[2]):

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0	1	2
At	current	index	4:
The	character	is	a.
The	previous	prefix	array	value,	prefix[3],	is	2.

Compare	index	2	and	the	current	index:	a	(at	index	=	2)	and	a	(at
index	=	4)	match.

prefix[4]	is	set	to	3	(incremented	from	prefix[3]):

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0	1	2	3
At	current	index	5:
The	character	is	c.
The	previous	prefix	array	value,	prefix[4],	is	3.

Compare	index	3	and	the	current	index:	b	(at	index	=	3)	and	c	(at
index	=	5)	mismatch.

prefix[5]	is	set	to	0:

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0	1	2	3	0
At	current	index	6:
The	character	is	c.
The	previous	prefix	array	value,	prefix[5],	is	0.



Compare	from	index	0	and	current	index:	a	(at	index	=	0)	and	a	(at
index	=	5)	match.

prefix[6]	is	set	to	1	(incremented	from	prefix[5]):

Array	index	0	1	2	3	4	5	6
Character	a	b	a	b	a	c	a
Prefix	array	0	0	1	2	3	0	1
The	function	in	the	following	code	block	illustrates	this	algorithm	to

build	a	prefix	table:

function longestPrefix(str) {
    // prefix array is created
    var prefix = new Array(str.length);
    var maxPrefix = 0;
    // start the prefix at 0
    prefix[0] = 0;
    for (var i = 1; i < str.length; i++) {
        // decrement the prefix value as long as

there are mismatches
        while (str.charAt(i) !==

str.charAt(maxPrefix) && maxPrefix > 0) {
            maxPrefix = prefix[maxPrefix - 1];
        }
        // strings match, can update it
        if (str.charAt(maxPrefix) ===

str.charAt(i)) {
            maxPrefix++;
        }
        // set the prefix
        prefix[i] = maxPrefix;
    }
    return prefix;
}
console.log(longestPrefix('ababaca')); // [0, 0,

1, 2, 3, 0, 1]

With	this	prefix	table	now,	KMP	can	be	implemented.	KMP	search



iterates	through	the	string	and	the	pattern	to	be	searched	for	index	by
index.	Whenever	there	is	a	mismatch,	it	can	use	the	prefix	table	to
compute	a	new	index	to	try.	When	the	pattern’s	index	reaches	the	length
of	the	pattern,	the	string	is	found.	This	is	implemented	in	detail	in	the
following	code	block:

function KMP(str, pattern) {
    // build the prefix table
    var prefixTable = longestPrefix(pattern),
        patternIndex = 0,
        strIndex = 0;

    while (strIndex < str.length) {
        if (str.charAt(strIndex) !=

pattern.charAt(patternIndex)) {
            // Case 1: the characters are

different

            if (patternIndex != 0) {
                // use the prefix table if

possible
                patternIndex =

prefixTable[patternIndex - 1];
            } else {
                // increment the str index to

next character
                strIndex++;
            }

        } else if (str.charAt(strIndex) ==
pattern.charAt(patternIndex)) {

            // Case 2: the characters are same
            strIndex++;
            patternIndex++;
        }

        // found the pattern
        if (patternIndex == pattern.length) {



            return true
        }
    }
    return false;
}
KMP('ababacaababacaababacaababaca', 'ababaca');

//  true
KMP('sammiebae', 'bae'); //  true
KMP('sammiebae', 'sammie'); //  true
KMP('sammiebae', 'sammiebaee'); // false

Time	Complexity:	O(W)
Space	Complexity:	O(W	)
Preprocessing	a	word	of	length	W	requires	both	O(W)	time	and	space

complexity.
Time	Complexity:	O(W	+	T	)
Here,	W	is	the	“word”	in	the	T	(the	main	string	being	searched).

Rabin–Karp	Search
The	Rabin–Karp	algorithm	is	based	on	hashing	to	find	the	specified
pattern	in	text.	While	KMP	is	optimized	to	skip	redundant	checks	during
the	search,	Rabin–Karp	seeks	to	speed	up	the	equality	of	the	pattern	of
the	substring	via	a	hash	function.	To	do	this	efficiently,	the	hash	function
must	be	O(1).	Specifically	for	the	Rabin-Karp	search,	the	Rabin
fingerprint	hashing	technique	is	used.

The	Rabin	Fingerprint
The	Rabin	fingerprint	is	calculated	via	the	following	equation:	f(x)	=	m0	+
m1x	+	…	+	mn-1	xn-1	where	n	is	the	number	of	characters	being	hashed
and	x	is	some	prime	number.

This	is	a	simple	implementation,	as	shown	in	the	following	code
block.	An	arbitrary	prime	number	of	101	was	set	for	this	example.	Any
high	prime	number	should	work	well	in	this	case.	However,	be	aware
that	if	the	x	is	too	high,	it	could	cause	integer	overflow	because	xn-1
grows	quickly.	The	endLength	argument	indicates	to	what	string	index



the	hash	should	be	calculated.	It	should	be	defaulted	to	the	length	of	str
if	the	argument	is	not	passed.

 1 function RabinKarpSearch() {
 2     this.prime = 101;
 3 }
 4

RabinKarpSearch.prototype.rabinkarpFingerprintHash =
function (str, endLength) {

 5     if (endLength == null) endLength =
str.length;

 6     var hashInt = 0;
 7     for (var i=0; i < endLength; i++) {
 8         hashInt += str.charCodeAt(i) *

Math.pow(this.prime, i);
 9     }
10    return hashInt;
11 }
12 var rks = new RabinKarpSearch();
13 rks.rabinkarpFingerprintHash("sammie"); //

1072559917336
14 rks.rabinkarpFingerprintHash("zammie"); //

1072559917343

As	shown	in	the	previous	code	block	result,	the	hashes	from	sammie
and	zammie	are	unique	because	they	are	two	different	strings.	The	hash
value	allows	you	to	quickly,	in	constant	time,	check	whether	two	strings
are	the	same.	As	an	example,	let’s	look	for	am	inside	same.	Since	am	is
only	two	characters	long,	when	you	scan	the	text,	sa,	am,	and	me	are
formed	from	same	and	compute	the	hash	as	shown	here:

 1   rks.rabinkarpFingerprintHash("sa"); // 9912
 2   rks.rabinkarpFingerprintHash("am"); // 11106
 3   rks.rabinkarpFingerprintHash("me"); // 10310

This	is	a	sliding	hash	calculation.	How	can	this	be	done	efficiently?
Let’s	analyze	it	mathematically.	Recall	that	for	this	example	the	x	is	101.
In	addition,	the	character	code	for	s,	a,	m,	and	e	are	115,	97,	109,	and	101,



respectively.
sa:	f(x)	=	m0	+	m1x	=	115	+	(97)*(101)	=	9912
am:	f(x)	=	m0	+	m1x	=	97	+	(109)*(101)	=	11106
me:	f(x)	=	m0	+	m1x	=	109	+	(101)*(101)	=	10310

To	get	the	hash	value	from	sa	to	am,	you	must	subtract	the	first	term,
divide	the	remaining	by	the	prime	number,	and	then	add	the	new	term.
This	recalculation	algorithm	is	implemented	in	the	following	code	block:

1 RabinKarpSearch.prototype.recalculateHash =
function (str, oldIndex, newIndex, oldHash,
patternLength) {

2     if (patternLength == null) patternLength =
str.length;

3     var newHash = oldHash -
str.charCodeAt(oldIndex);

4     newHash = Math.floor(newHash/this.prime);
5     newHash += str.charCodeAt(newIndex) *

Math.pow(this.prime, patternLength - 1);
6     return newHash;
7 }
8 var oldHash =

rks.rabinkarpFingerprintHash("sa"); // 9912
9 rks.recalculateHash("same", 0, 2, oldHash,

"sa".length); //  11106

Lastly,	two	different	strings	can	still	have	the	same	hash	value
although	it’s	unlikely.	Therefore,	there	needs	to	be	a	function	to	check
that	two	strings	are	equal	given	the	start	index	and	end	index	for	both
strings.	This	is	implemented	in	the	following	code	block:

 1 RabinKarpSearch.prototype.strEquals = function
(str1, startIndex1, endIndex1,

 2                                               
  str2, startIndex2, endIndex2) {

 3     if (endIndex1 - startIndex1 != endIndex2 -
startIndex2) {



 4         return false;
 5     }
 6     while ( startIndex1 <= endIndex1
 7           && startIndex2 <= endIndex2) {
 8         if (str1[startIndex1] !=

str2[startIndex2]) {
 9             return false;
10         }
11         startIndex1++;
12         startIndex2++;
13     }
14     return true;
15 }

Then,	the	main	Rabin–Karp	search	function	is	implemented	by
calculating	the	starting	hash	and	then	recalculating	the	hashes	in	a
sliding	manner	until	the	pattern	is	found	or	the	end	of	the	string	is
reached.

 1 RabinKarpSearch.prototype.rabinkarpSearch =
function (str, pattern) {

 2     var T = str.length,
 3         W = pattern.length,
 4         patternHash =

this.rabinkarpFingerprintHash(pattern, W),
 5         textHash =

this.rabinkarpFingerprintHash(str, W);
 6
 7     for (var i = 1; i <= T - W + 1; i++) {
 8         if (patternHash == textHash &&
 9             this.strEquals(str, i - 1, i + W -

2, pattern, 0, W - 1)) {
10             return i - 1;
11         }
12         if (i < T - W + 1) {
13             textHash =

this.recalculateHash(str, i - 1, i + W - 1,



textHash, W);
14         }
15     }
16
17     return -1;
18 }
19
20 var rks = new RabinKarpSearch();
21 rks.rabinkarpSearch("SammieBae", "as"); // -1
22 rks.rabinkarpSearch("SammieBae", "Bae"); // 6
23 rks.rabinkarpSearch("SammieBae", "Sam"); // 0

Preprocessing	Time	Complexity:	O(W	)
The	preprocessing	time	complexity	W	is	the	length	of	the	“word.”
Matching	Time	Complexity:	O(W	+	T	)
At	most,	this	algorithm	iterates	through	the	sum	of	length	T	and

length	W,	where	T	is	the	string	being	searched	for.

Applications	in	Real	Life
The	Rabin–Karp	algorithm	can	be	used	for	detecting	plagiarism.	With	a
source	material,	this	algorithm	can	search	through	a	paper	submission
for	instances	of	phrases	and	sentences	from	the	source	material	(and
ignoring	grammar	details	like	punctuation	by	omitting	punctuation
characters	during	the	preprocessing	phase).	This	problem	is	impractical
for	single-search	algorithms	because	of	the	large	set	of	sought	(input)
phrases	and	sentences.	The	Rabin–Karp	algorithm	is	also	used	in	other
string	matching	applications	such	as	looking	for	a	specific	sequence	in
large	DNA	data.

Summary
This	chapter	returned	to	the	topic	of	strings	and	looked	at	more
advanced	examples	and	searching	on	string	patterns.	The	chapter
discussed	several	different	types.
Trie	is	great	for	multiple	searches	and	prefix	pattern	matching.
Boyer–Moore,	with	assumption	that	the	absence	of	a	match	at	the	end
means	no	need	to	match	the	beginning,	tries	to	match	the	last



character	of	the	pattern	instead	of	the	first;	this	allows	large	“jumps”
(spaces	between	indexes)	and	works	better	when	the	text	is	larger.
The	KMP	algorithm	searches	for	occurrences	of	the	pattern	in	a	string
by	observing	that	when	a	mismatch	occurs,	the	pattern	itself	has
sufficient	information	to	determine	the	index	in	the	string	where	the
next	match	could	begin.	Hence,	the	KMP	algorithm	is	better	for	small
sets.
Table	18-1	summarizes	the	different	search	algorithms.

Table	18-1 Single	String	Search	Summary

Algorithm Preprocessing	Time
Complexity

Matching	Time
Complexity

Space
Complexity

Naive None O(W	∗	T		) None

Boyer–
Moore

O(W	+	T		) O(T	/W		)	best	case
O(W	∗	T)	worst	case

O(1)

KMP O(W		) O(T    ) O(W		)

Rabin–Karp O(W		) O(W	+	T		) O(1)
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Dynamic	programming	involves	breaking	down	problems	into	their
subproblems.	By	solving	for	the	optimal	subproblems	and	saving	those
results	into	memory	to	access	them	whenever	a	repeated	problem	needs
to	be	solved,	the	algorithmic	complexity	decreases	significantly.
Implementing	dynamic	programming	algorithms	requires	higher-level
thinking	about	the	problem’s	patterns.	To	explain	dynamic
programming,	let’s	re-examine	the	Fibonacci	sequence	that	was
discussed	in	Chapter	8.	Then	the	chapter	will	cover	the	rules	of	dynamic
programming	and	walk	you	through	some	examples	to	make	the
concepts	more	concrete.

Motivations	for	Dynamic	Programming
The	code	for	the	Fibonacci	sequence	has	already	been	determined	to	be
the	following:

function getNthFibo(n) {
    if (n <= 1) {
        return n;
    } else {
        return getNthFibo(n - 1) + getNthFibo(n -
2);
    }
}

https://doi.org/10.1007/978-1-4842-3988-9_19


getNthFibo(3);

Recall	that	the	recursive	implementation	of	this	algorithm	is	O(2n).
This	is	an	exponential	runtime,	which	is	impractical	for	real-world
applications.	Upon	closer	examination,	you	will	notice	that	much	of	the
same	computation	is	repeated.	As	shown	in	Figure	19-1,	when
getNthFibo	for	6	is	called,	the	calculation	for	4,	3,	2,	and	1	are
repeated	multiple	times.	Knowing	this,	how	can	you	make	this	algorithm
more	efficient?

Figure	19-1 Recursion	tree	for	Fibonacci	numbers

Using	a	hash	table,	once	the	Fibonacci	number	has	been	computed,	it
can	be	stored	like	the	following	implementation:



1   var cache={};
2   function fiboBest(n){
3       if(n<=1)return n;
4       if(cache[n])return cache[n];
5       return (cache[n]=fiboBest(n-

1)+fiboBest(n-2));
6   }
7   fiboBest(10); // 55

This	is	known	as	overlapping	subproblems.	Calculating	the	Fibonacci
sequence	for	6	requires	calculating	the	Fibonacci	sequence	for	4	and	5.
Hence,	the	Fibonacci	sequence	for	5	overlaps	with	the	fourth	Fibonacci
sequence	calculation.	This	problem	also	has	an	optimal	substructure,
which	refers	to	the	fact	that	the	optimal	solution	to	the	problem	contains
optimal	solutions	to	its	subproblems.

With	this,	let’s	now	formalize	what	dynamic	programming	is.

Rules	of	Dynamic	Programming
Dynamic	programming	(DP)	is	the	method	of	storing	values	that	were
already	calculated	and	using	those	values	to	avoid	any	recalculations
(typically	in	a	recursive	algorithm).	This	method	can	be	applied	only	to
those	problems	with	overlapping	subproblems	and	optimal	substructure.

Overlapping	Subproblems
Similar	to	divide	and	conquer	in	recursion,	DP	combines	solutions	on
subproblems.	DP	is	used	when	solutions	for	subproblems	are	needed
multiple	times.	It	stores	subproblem	solutions	typically	in	a	hash	table,
an	array,	or	a	matrix,	and	this	is	referred	to	as	memoization	.	DP	is	useful
for	solving	problems	in	which	there	are	many	repeated	subproblems.

An	example	of	this	can	be	seen	with	the	Fibonacci	sequence	recursive
method.	It	can	be	observed	that	some	numbers	such	as	3	will	be
recalculated	many	times.

A	hash	table	can	be	used	to	store	results	to	avoid	any	recalculations.
Doing	this	reduces	the	time	complexity	from	O(2n)	to	just	O(n),	which	is
an	immense	change.	Calculating	O(2n)	with	a	realistically	large	enough	n
can	take	literally	years	to	compute.



Optimal	Substructure
An	optimal	substructure	is	when	the	optimal	solution	of	a	problem	can
be	found	by	using	the	optimal	solutions	of	its	subproblems.

For	example,	the	shortest	path	finding	algorithms	have	optimal
substructures.	Consider	finding	the	shortest	path	for	traveling	between
cities	by	car.	If	the	shortest	route	from	Los	Angeles	to	Vancouver	passes
through	San	Francisco	and	then	Seattle,	then	the	shortest	route	from	San
Francisco	to	Vancouver	must	pass	through	Seattle	as	well.

Example:	Ways	to	Cover	Steps
Given	a	distance,	n,	count	the	total	number	of	ways	to	cover	n	number	of
steps	with	one,	two,	and	three	steps.	For	example,	when	n=3,	there	are
four	combinations	(ways),	shown	here:
1.

1	step,	1	step,	1	step,	1	step	
2.

1	step,	1	step,	2	steps 	
3.

1	step,	3	steps 	
4.

2	steps,	2	steps 	
Here’s	the	function	for	achieving	the	count:

1   function waysToCoverSteps(step){
2       if (step<0) return 0;
3       if (step==0) return 1;
4
5       return waysToCoverSteps(step-

1)+waysToCoverSteps(step-2)+waysToCoverSteps(step-3
);

6   }
7   waysToCoverSteps(12);

Time	Complexity:	O(3n)
This	recursive	method	has	a	large	time	complexity.	To	optimize	the

time	complexity,	simply	cache	the	result	and	use	it	instead	of



recalculating	the	values.

 1   function waysToCoverStepsDP(step) {
 2       var cache = {};
 3       if (step<0) return 0;
 4       if (step==0) return 1;
 5
 6       // check if exists in cache
 7       if (cache[step]) {
 8           return cache[step];
 9       } else {
10           cache[step] =

waysToCoverStepsDP(step-1)+waysToCoverStepsDP(step-
2)+waysToCoverStepsDP(step-3);

11           return cache[step];
12       }
13   }
14   waysToCoverStepsDP(12);

Time	Complexity:	O(n)
This	shows	the	power	of	dynamic	programing.	It	improves	time

complexity	immensely.

Classical	Dynamic	Programming	Examples
This	section	will	explore	and	solve	some	of	the	classical	dynamic
programming	problems.	The	first	one	that	will	be	explored	is	the
knapsack	problem.

The	Knapsack	Problem
The	knapsack	problem	is	as	follows:
Given	n	weights	and	the	values	of	items,	put	these	items	in	a	knapsack
of	a	given	capacity,	w,	to	get	the	maximum	total	value	in	the	knapsack.

Optimal	Substructure
For	every	item	in	the	array,	the	following	can	be	observed:



The	item	is	included	in	the	optimal	subset.
The	item	is	not	included	in	the	optimal	set.
The	maximum	value	must	be	one	of	the	following:

1.
(excluding	the	Nth	item):	max	value	obtained	with	n-1	items 	

2.
(including	the	Nth	item):	max	value	obtained	with	n-1	items	minus
the	Nth	item	(can	only	work	if	the	weight	of	the	Nth	item	is	smaller
than	W)

	

Naive	Approach
The	naive	approach	implements	the	described	optimal	substructure
recursively,	as	shown	here:

 1   function knapsackNaive(index, weights, values,
target) {
 2       var result = 0;
 3
 4       if (index <= -1 || target <= 0) {
 5           result = 0
 6       } else if (weights[index] > target) {
 7           result = knapsackNaive(index-1,
weights, values, target);
 8       } else {
 9           // Case 1:
10           var current = knapsackNaive(index-1,
weights, values, target)
11           // Case 2:
12           var currentPlusOther = values[index] +
13               knapsackNaive(index-1, weights,
values, target - weights[index]);
14
15           result = Math.max(current,
currentPlusOther);
16       }
17       return result;



18   }
19   var weights = [1,2,4,2,5],
20       values  = [5,3,5,3,2],
21       target = 10;
22   knapsackNaive(4,weights, values, target);

Time	Complexity:	O(2n)
Figure	19-2	shows	the	recursion	tree	for	a	knapsack	capacity	of	2

units	and	3	items	of	1	unit	weight.	As	the	figure	shows,	the	function
computes	the	same	subproblems	repeatedly	and	has	an	exponential	time
complexity.	To	optimize	this,	you	can	have	the	results	based	on	the	item
(reference	via	index)	and	target	(weight:	w).

Figure	19-2 Recursion	tree	for	knapsack

DP	Approach
As	discussed,	the	following	DP	implementation	stores	the	result	of	the
knapsack	using	the	current	array	index	and	target	as	a	key	to	a	JavaScript
object	for	later	retrieval.	For	recursive	calls	that	have	already	been
calculated,	it	will	use	the	stored	result,	and	this	reduces	the	time
complexity	of	the	algorithm	significantly.



 1   function knapsackDP(index, weights, values,
target, matrixDP) {
 2       var result = 0;
 3
 4       // DP part
 5       if (matrixDP[index + '-' + target]){
 6           return matrixDP[index + '-' + target];
 7       }
 8
 9       if (index <= -1 || target <= 0) {
10           result = 0
11       } else if (weights[index] > target) {
12           result = knapsackDP(index - 1, weights,
values, target, matrixDP);
13       } else {
14           var current = knapsackDP(index-1,
weights, values, target),
15               currentPlusOther = values[index] +
knapsackDP(index-1, weights, values, target -
weights[index]);
16           result = Math.max(current,
currentPlusOther);
17       }
18       matrixDP[index + '-' + target] = result
19       return result;
20   }
21   knapsackDP(4, weights, values, target, {});

Time	Complexity:	O(n*w	)
Here,	n	is	the	number	of	items,	and	w	is	the	capacity	of	the	knapsack.
Space	Complexity:	O(n*w	)
This	algorithm	requires	an	n	times	wcombination	to	store	the	cached

results	inside	matrixDP.
The	next	DP	question	that	will	be	studied	is	another	classic.

Longest	Common	Subsequence
Given	two	sequences,	find	the	length	of	the	longest	subsequence	where	a



subsequence	is	defined	as	a	sequence	that	appears	in	relative	order
without	necessarily	being	contiguous.	For	example,	sam,	sie,	aie,	and	so
forth,	are	subsequences	of	sammie.	A	string	has	2n	possible	subsequences
where	n	is	the	length	of	the	string.

As	a	real-world	example,	let’s	consider	a	generalized	computer
science	problem	that	appears	in	main	domains	such	as	bioinformatics
(DNA	sequencing).	This	algorithm	is	also	how	the	diff	functionality	(file
comparison	to	output	difference	between	files)	is	implemented	in
version	control	and	operating	systems.

Naive	Approach
Letting	str1	be	the	first	string	of	length	m,	str2	be	the	second	string	of
length	n,	and	LCS	be	the	function,	the	naive	approach	can	first	consider
the	following	pseudocode:

1.  if last characters of both sequences match (i.e.
str1[m-1] == str2[n-1]):
2.     result = 1 + LCS(X[0:m-2], Y[0:n-2])
3.  if last characters of both sequences DO NOT
match (i.e. str1[m-1] != str2[n-1]):
4.     result = Math.max(LCS(X[0:m-1], Y[0:n-
1]),LCS(X[0:m-2], Y[0:n-2]))

With	this	recursive	structure	in	mind,	the	following	can	be
implemented:

 1   function LCSNaive(str1, str2, str1Length,
str2Length) {

 2       if (str1Length == 0 || str2Length == 0)
{

 3           return 0;
 4       }
 5
 6       if (str1[str1Length-1] ==

str2[str2Length-1]) {
 7           return 1 + LCSNaive(str1, str2,
 8                               str1Length - 1,



 9                               str2Length - 1);
10       } else {
11           return Math.max(
12               LCSNaive(str1, str2, str1Length,

str2Length-1),
13               LCSNaive(str1, str2, str1Length-

1, str2Length)
14           );
15       }
16   }
17
18   function LCSNaiveWrapper(str1, str2) {
19       return LCSNaive(str1, str2, str1.length,

str2.length);
20   }
21   LCSNaiveWrapper('AGGTAB', 'GXTXAYB'); // 4

Time	Complexity:	O(2n)
Figure	19-3	shows	the	recursion	tree	for	SAM	and	BAE	(visually	cut

off	at	a	height	of	3).	As	you	can	see,	('SA', 'BAE')	is	repeated.

Figure	19-3 Recursion	tree	for	longest	common	string	length

DP	Approach



The	recursive	structure	described	can	be	translated	into	a	table/cache
where	the	rows	each	represent	a	character	in	str1	and	the	columns
each	represent	a	character	in	str2.	Each	item	in	a	matrix	at	a	row,	i,	and
a	column,	j,	represents	LCS(str1[0:i], str2[0:j]).

 1   function longestCommonSequenceLength(str1,
str2) {
 2       var matrix = Array(str1.length +
1).fill(Array(str2.length + 1).fill(0)),
 3           rowLength = str1.length + 1,
 4           colLength = str2.length + 1,
 5           max = 0;
 6
 7       for (var row = 1; row < rowLength; row++) {
 8           for (var col = 1; col < colLength;
col++) {
 9               var str1Char = str1.charAt(row -
1),
10                   str2Char = str2.charAt(col -
1);
11
12               if (str1Char == str2Char) {
13                   matrix[row][col] = matrix[row -
1][col - 1] + 1;
14                   max = Math.max(matrix[row]
[col], max);
15               }
16           }
17       }
18       return max;
19   }
20   longestCommonSequenceLength('abcd', 'bc');

Time	Complexity:	O(m	*	n)
Space	Complexity:	O(m	*	n)
Here,	m	is	the	length	of	str1,	and	n	is	the	length	of	str2.



Coin	Change
Given	a	value/money	n	and	an	unlimited	supply	of	each	coin	of	different
values,	S	=	{S1,	S2,	..	Sm},	of	size	M,	how	many	ways	can	the	change	be
made	without	considering	the	order	of	the	coins?

Given	N=4,	M=3,	and	S	=	{1,2,3},	the	answer	is	4.

1.   1,1,1,1,
2.   1,1,2
3.   2,2
4.   1,3

Optimal	Substructure
You	can	observe	the	following	about	the	number	of	coin	changes:

1)   Solutions without Mth coin
2)   Solutions with (at least) one Mth coin

Given	that	coinChange(S, M, N)	is	a	function	to	count	the
number	of	coin	changes,	mathematically	it	can	be	rewritten	as	follows	by
using	the	two	observations	from	earlier:

coinChange(S, M, N) = coinChange(S, M-1, N) +
coinChange(S, M, N-Sm)

Naive	Approach
The	naive	approach	can	implement	the	described	algorithm	using
recursion,	as	shown	here:

 1   // Returns the count of ways we can sum coinArr
which have
 2   // index like: [0,...,numCoins]
 3   function countCoinWays(coinArr, numCoins,
coinValue){
 4       if (coinValue == 0) {
 5           // if the value reached zero, then only
solution is
 6           // to not include any coin



 7           return 1;
 8       }
 9       if (coinValue < 0 || (numCoins<=0 &&
coinValue >= 1)) {
10           // value is less than 0 means no
solution
11           // no coins left but coinValue left
also means no solution
12           return 0;
13       }
14       //
15       return countCoinWays(coinArr,numCoins-1,
coinValue) +
16           countCoinWays(coinArr,numCoins,
coinValue-coinArr[numCoins-1]);
17   }
18   function countCoinWaysWrapper(coinArr,
coinValue) {
19       return countCoinWays(coinArr,
coinArr.length, coinValue);
20   }
21   countCoinWaysWrapper([1,2,3],4);

Time	Complexity:	O(nm)
Space	Complexity:	O(n)
Here,	m	is	the	number	of	available	types	of	coins,	and	n	is	the	desired

currency	to	convert	into	change.

Overlapping	Subproblems
You	can	see	from	the	recursion	tree	in	Figure	19-4	that	there	are	lots	of
overlapping	subproblems.



Figure	19-4 Recursion	tree	for	longest	coin	change

To	account	solve	for	this,	a	table	(matrix)	can	be	used	to	store	already
computed	results.

DP	Approach
The	matrix	for	the	DP	approach	has	the	coinValue	number	of	rows	and
the	numCoins	number	of	columns.	Any	matrix	at	i	and	j	represent	the
number	of	ways	given	a	coinValue	of	i	and	a	numCoins	of	j.

 1   function countCoinWaysDP(coinArr, numCoins,
coinValue) {
 2       // creating the matrix
 3       var dpMatrix = [];
 4
 5       for (var i=0; i <= coinValue; i++) {



 6           dpMatrix[i] = [];
 7           for(var j=0; j< numCoins; j++) {
 8               dpMatrix[i][j] = undefined;
 9           }
10       }
11
12       for (var i=0; i < numCoins; i++) {
13           dpMatrix[0][i] = 1;
14       }
15
16       for (var i=1; i < coinValue + 1; i++) {
17           for (var j=0; j < numCoins; j++) {
18               var temp1 = 0,
19                   temp2 = 0;
20
21               if (i - coinArr[j] >= 0) {
22                   // solutions including
coinArr[j]
23                   temp1 = dpMatrix[i -
coinArr[j]][j];
24               }
25
26               if (j >= 1) {
27                   // solutions excluding
coinArr[j]
28                   temp2 = dpMatrix[i][j-1];
29               }
30
31               dpMatrix[i][j] = temp1 + temp2;
32           }
33       }
34       return dpMatrix[coinValue][numCoins-1];
35   }
36
37   function countCoinWaysDPWrapper(coinArr,
coinValue) {
38       return countCoinWaysDP(coinArr,



coinArr.length, coinValue);
39   }
40   countCoinWaysDPWrapper([1,2,3],4);

Time	Complexity:	O(m	*	n)
Space	Complexity:	O(m	*	n)
Here,	m	is	the	number	of	available	types	of	coins,	and	n	is	the	desired

currency	to	convert	into	change.

Edit	(Levenshtein)	Distance
The	edit	distance	problem	considers	the	following	:
Given	a	string	(str1)	of	length	m	and	another	string	(str2)	of	length
n,	what	is	the	minimum	number	of	edits	to	convert	str1	into	str2?

The	valid	operations	are	the	following:
1.

Insert 	
2.

Remove	
3.

Replace 	
Optimal	Substructure
If	each	character	is	processed	one	by	one	from	each	str1	and	str2,	the
following	is	possible:

1.   the characters are the same:
      do nothing
2.   the characters are different:
      consider the cases recursively:
          Insert:     for m   and n-1
          Remove:     for m-1 and n
          Replace:    for m-1 and n-1

Naive	Approach
The	naive	approach	can	implement	the	described	substructure



recursively,	as	shown	here:

 1   function editDistanceRecursive(str1, str2,
length1, length2) {
 2       // str1 is empty. only option is insert all
of str2
 3       if (length1 == 0) {
 4           return length2;
 5       }
 6       // str2 is empty. only option is insert all
of str1
 7       if (length2 == 0) {
 8           return length1;
 9       }
10
11       // last chars are same,
12       // ignore last chars and count remaining
13       if (str1[length1-1] == str2[length2-1]) {
14           return editDistanceRecursive(str1,
str2,
15                                        length1-1,
length2-1);
16       }
17
18       // last char is not the same
19       // there are three operations: insert,
remove, replace
20       return 1 + Math.min (
21           // insert
22           editDistanceRecursive(str1, str2,
length1, length2-1),
23           // remove
24           editDistanceRecursive(str1, str2,
length1-1, length2),
25           // replace
26           editDistanceRecursive(str1, str2,
length1-1, length2-1)



27       );
28   }
29
30   function editDistanceRecursiveWrapper(str1,
str2) {
31       return editDistanceRecursive(str1, str2,
str1.length, str2.length);
32   }
33
34   editDistanceRecursiveWrapper('sammie','bae');

Time	Complexity:	O(3m)
The	time	complexity	of	the	naive	solution	is	exponential,	and	the

worst	case	is	when	no	characters	in	the	two	strings	match.	This	makes
sense	because	each	call	has	three	calls	(insert,	remove,	replace).

Again,	you	can	see	that	the	same	problems	are	solved	over	and	over
again	(see	Figure	19-5).	This	can	be	optimized	by	constructing	a	matrix
that	stores	the	already-computed	results	of	subproblems.

Figure	19-5 Recursion	tree	for	edit	distance

DP	Approach



The	dynamic	programming	approach	will	construct	a	matrix	with	the
dimensions	str1	and	str2.	The	base	case	is	when	i	or	j	is	equal	to	0.	In
other	cases,	it	is	1 + min(insert, remove, replace)	just	like
the	recursive	approach.

 1   function editDistanceDP(str1, str2, length1,
length2) {
 2       // creating the matrix
 3       var dpMatrix = [];
 4       for(var i=0; i<length1+1; i++) {
 5           dpMatrix[i] = [];
 6           for(var j=0; j<length2+1; j++) {
 7               dpMatrix[i][j] = undefined;
 8           }
 9       }
10
11       for (var i=0; i < length1 + 1; i++) {
12           for (var j=0; j < length2 + 1; j++) {
13               // if first str1 is empty,
14               // have to insert all the chars of
str2
15               if (i == 0) {
16                   dpMatrix[i][j] = j;
17               } else if (j == 0) {
18                   dpMatrix[i][j] = i;
19               } else if (str1[i-1] == str2[j-1])
{
20                   // if the same, no additional
cost
21                   dpMatrix[i][j] = dpMatrix[i-1]
[j-1];
22               } else {
23                   var insertCost = dpMatrix[i][j-
1],
24                       removeCost = dpMatrix[i-1]
[j],
25                       replaceCost= dpMatrix[i-1]



[j-1];
26
27                   dpMatrix[i][j] = 1 +
Math.min(insertCost,removeCost,replaceCost);
28               }
29           }
30       }
31       return dpMatrix[length1][length2];
32   }
33
34   function editDistanceDPWrapper(str1, str2) {
35       return editDistanceDP(str1, str2,
str1.length, str2.length);
36   }
37
38   editDistanceDPWrapper('sammie','bae');

Time	Complexity:	O(m	*	n)
Space	Complexity:	O(m	*	n)
Here,	m	is	the	length	of	str1,	and	n	is	the	length	of	str2.

Summary
Dynamic	programming	can	be	utilized	to	optimize	an	algorithm	if	the
following	conditions	are	satisfied:
Optimal	substructure:	The	optimal	solution	to	the	problem	contains
optimal	solutions	to	its	subproblems.
Overlapping	subproblems:	The	solutions	for	subproblems	are	needed
multiple	times.
To	store	the	already	computed	solutions	to	a	subproblem,	a	matrix	or

a	hash	table	is	typically	used;	this	is	because	both	provide	O(1)	lookup
time.	Doing	this,	the	time	complexity	can	be	improved	from	exponential
(e.g.,	O(2n	))	to	polynomial	time	(e.g.,	O(n2)).



(1)

©	Sammie	Bae	2019
Sammie	Bae,	JavaScript	Data	Structures	and	Algorithms
https://doi.org/10.1007/978-1-4842-3988-9_20

20.	Bit	Manipulation
Sammie	Bae1	

Hamilton,	ON,	Canada

	

Bit	manipulation	is	an	advanced	topic	that	JavaScript	developers
typically	do	not	need	to	know.	Low-level	programming	languages	such	as
C	take	advantage	of	these	operators.	However,	you	should	learn	a	bit
about	bit	manipulation	if	you	want	to	implement	high-performance
server-side	code.

Understanding	bit	manipulation	requires	some	knowledge	of	digital
logic.	Any	introductory	course	in	discrete	math	or	circuits	would	be
helpful	to	understand	these	concepts.

Bitwise	Operators
Here	are	the	bitwise	operators	in	JavaScript:
&	:			AND
|	:			OR
~	:			NOT
^	:			XOR
<<:			Left	shift
>>:			Right	shift
>>>:		Zero-fill	right	shift

Note Recall	from	Chapter	3	that	all	numbers	are	represented	with	32
bits	(meaning	there	are	32	1s	and	0s).	When	converting	from	decimal
numbers	(base	10)	to	binary	(base	2),	it	is	important	to	keep	this	in

https://doi.org/10.1007/978-1-4842-3988-9_20


mind.

AND
The	AND	operator	is	true	when	both	bits	are	1.	The	&	(ampersand)	is
used	for	the	AND	operator.

a        b        a AND b
0        0        0
0        1        0
1        0        0
1        1        1

In	bitwise	operations,	the	numbers	are	in	binary	representation.	For
example,	9	in	binary	is	1001,	and	5	in	binary	is	101.

For	each	bit,	the	AND	operation	has	to	be	performed:

9:          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1

5:          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1

9 & 5:      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 = 1

1   console.log(9 & 5); //  prints 1

Here’s	another	example:

40 in base 10 = 100010 in base 2
41 in base 10 = 100011 in base 2

40:       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0

41:       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1

40 & 41:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 =  40



OR
The	OR	operator	is	when	either	bit	is	1.	The	|	(pipe)	is	used	for	the	OR
operator.

a        b        a OR b
0        0        0
0        1        1
1        0        1
1        1        1

Let’s	use	9 | 5	and	40 | 41	as	examples	.

9:     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1

5:     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1

9 | 5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 = 13

Here’s	another	example:

40:         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0

41:         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1

40 & 41:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 = 41

XOR
XOR	means	“exclusive	or.”	It	evaluates	to	true	only	when	one	of	the	bits	is
1.	The	^	(caret)	is	used	for	the	XOR	operator.

a        b        a XOR b
0        0        0
0        1        1
1        0        1
1        1        0



9:          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
5:          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
9 ^ 5:      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 = 12

40:         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0
41:         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1
40 ^ 41:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 =  1

NOT
The	NOT	operator	inverses	all	bits.	The	~	(tilde)	is	used	for	the	NOT
operator.	Please	do	not	confuse	the	NOT	operator	with	the	negative
operator.	Once	the	bits	are	inverted,	the	numbers	in	32-bit	follow.

a        NOT a
0        1
1        0

Let’s	take	9	and	5	as	an	example:

9:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1

~9:   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 0 = -10

5:    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1

~5:   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 0 = -6

Left	Shift
In	left	shift,	all	the	bits	are	shifted	to	the	left,	and	any	excess	bits	shifted



off	to	the	left	are	discarded.	The	<<	(double	left-angle	brackets)	is	the
operator	of	left	shift.

9:      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
9 << 1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 = 18
9 << 2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 = 36

Left	shift	often	multiplies	elements	by	2	for	each	shift.	This	is	because
binary	is	a	base	2	system,	implying	a	left	shift	is	equal	to	multiplying	all
the	digits	by	2.	However,	the	shift	can	cause	the	bit	to	overflow	and
reduce	the	value.

1073741833:       0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

1073741833 << 2:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 = 36

Right	Shift
In	right	shift,	all	the	bits	are	shifted	to	the	right,	and	any	excess	bits
shifted	off	to	the	right	are	discarded.	The	>>	(double	right	angle
brackets)	is	the	operator	for	right	shift.

9:          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
9 >> 1:     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 = 4

-9:         1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1
-9 >> 2:    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 1 = -3

In	this	example,	shifting	divided	the	9	by	2	(integer	division).	This	is
because,	again,	binary	is	a	base	2	system.



Zero-Fill	Right	Shift
In	zero-fill	right	shift,	all	the	bits	are	shifted	to	the	right,	and	any	excess
bits	shifted	off	to	the	right	are	discarded.	However,	the	sign	bit	(the
leftmost	bit)	becomes	a	0	before	the	shift,	and	this	results	in	a	non-
negative	number.	The	>>>	(triple	right	brackets)	is	the	operator	for	the
zero-fill	right	shift.

-9:        1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1
-9 >>> 1:  0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 = 2147483643

In	this	example,	shifting	divided	the	9	by	2	(integer	division).	This	is
because,	again,	binary	is	a	base	2	system.

To	have	a	better	understanding	of	why	these	operations	work,	it	is
recommended	to	take	an	introductory	digital	logic	course	in	school	or
online.	In	the	end,	everything	consists	of	1s	and	0s	because	a	transistor
in	a	computer	can	have	only	two	states:	on	and	off.

Number	Operations
This	section	will	cover	how	to	perform	addition,	subtraction,
multiplication,	division,	and	modulus	using	bitwise	operators.

Addition
Adding	binary	numbers	is	no	different	from	adding	decimal	numbers.
The	rule	that	children	learn	in	the	second	grade	is	the	same:	add	up	two
numbers	and	carry	1	to	next	digit	if	it	exceeds	10.

The	function	that	implements	this	is	as	follows.	You	can	find	all	the
code	on	GitHub.1

 1   function BitwiseAdd(a, b){
 2       while (b != 0) {
 3           var carry = (a & b);
 4           a = a ^ b;
 5           b = carry << 1;
 6       }



 7       return a;
 8   }
 9
10   console.log(BitwiseAdd(4,5)); // 9

Here	are	two	examples	in	detail:

bitwiseAdd(4, 5);
4:             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5:             0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
sum = 4 ^ 5 =  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 = 1 (base 10)
carry = (a & b) << 1
a & b =        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
(a & b) << 1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 = 8 (base 10)

bitwiseAdd(1, 8);
1:            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
8:            0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

sum = 1 ^ 8 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 = 9 (base 10)

carry =   (a & b) << 1
a & b =   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
-> return 9 (a)

Subtraction
Subtraction	is	the	difference	of	two	numbers.	However,	you	can	also
think	of	it	as	adding	a	negative	number.	Here’s	an	example:	5 - 4 = 5



+ (-4).
Therefore,	first	create	a	negate	function	using	the	NOT	operator.	In

binary,	subtracting	a	negative	binary	number	from	a	positive	one	is
obtained	by	inverting	all	the	bits	and	adding	1.	This	is	implemented	in
the	following	code	block:

 1   function BitwiseNegate(a) {
 2       return BitwiseAdd(~a,1);
 3   }
 4
 5   console.log(BitwiseNegate(9)); // -9
 6   // negation with itself gives back original
 7   console.log(BitwiseNegate(BitwiseNegate(9)))

; // 9
 8
 9   function BitwiseSubtract(a, b) {
10       return BitwiseAdd(a, BitwiseNegate(b));
11   }
12
13   console.log(BitwiseSubtract(5, 4)); // 1

Multiplication
Multiplying	numbers	in	base	2	follows	the	same	logic	as	multiplying
numbers	in	base	2;	multiply	the	numbers,	carry	anything	over	10	to	the
next	digit,	and	then	multiply	the	next	digit	with	the	shifted	base	(in	the
case	of	decimals,	multiply	by	10	each	time	you	shift	the	digit).	For
example,	12	times	24	is	done	by	first	multiplying	2	and	4,	then	10	and	4,
then	shifting	the	digit	to	2	(20	now),	multiplying	20	and	2,	and	then
multiplying	20	times	10.	Finally,	add	those	values	up	to	obtain	288.

    12
    24
------
    48
    24
------
   288



In	binary:

         0 1 1 0 0
         1 1 0 0 0
   -----------------
               0 0 0 0 0
            0 0 0 0 0
         0 0 0 0 0
     0 1 1 0 0
  0 1 1 0 0
-------------
  1 0 0 1 0 0 0 0 0

The	following	code	block	illustrates	this	implementation,	and	it	also
handles	negative	numbers:

 1   function BitwiseMultiply(a, b) {
 2       var m = 1,
 3           c = 0;
 4
 5       if (a < 0) {
 6           a = BitwiseNegate(a);
 7           b = BitwiseNegate(b);
 8       }
 9       while (a >= m && b) {
10           if (a & m) {
11               c = BitwiseAdd(b, c);
12           }
13           b = b << 1;
14           m = m << 1;
15       }
16       return c;
17   }
18   console.log(BitwiseMultiply(4, 5)); // 20

Division
Division	can	be	thought	of	as	the	number	of	times	you	can	subtract	b



from	a,	given	a/b.	For	example,	4/2	=	2	because	4-2-2	=	0.	Using	this
property,	bitwise	division	can	be	implemented	as	follows:

 1   function BitwiseDividePositive(a, b) {
 2       var c = 0;
 3
 4       if (b != 0) {
 5           while (a >= b) {
 6               a = BitwiseSubtract(a, b);
 7               c++;
 8           }
 9       }
10       return c;
11   }
12   console.log(BitwiseDividePositive(10, 2)); // 5

This	is	relatively	simple	for	positive	numbers.	The	while	loop	can
keep	subtracting,	and	a	counter	variable	can	store	how	many	times	b
subtracted	a.	However,	what	about	for	negative	numbers?	-10	/2	=	-5,
but	we	cannot	subtract	2	from	-10	because	the	while	loop	would	go	on
forever.	To	avoid	this,	convert	both	the	numbers	into	positive	numbers.
Doing	this,	we	have	to	keep	track	of	the	sign.

a        b        a * b
+        +        +
+        -        -
-        +        -
-        -        +

If	negative	is	represented	as	1	and	positive	as	0,	this	is	the	same	table
as	an	XOR	table:

a        b        a * b
0        0        0
0        1        1
1        0        1
1        1        0



The	division	algorithm	is	shown	next.	This	function	subtracts	b	from
a	until	it	is	zero.	Again,	negative	numbers	have	to	be	handled
appropriately	at	the	end	with	a	negation	helper	function.

 1   function BitwiseDivide(a, b) {
 2       var c = 0,
 3           isNegative = 0;
 4
 5       if (a < 0) {
 6           a = BitwiseNegate(a); // convert to

positive
 7           isNegative = !isNegative;
 8       }
 9
10       if (b < 0) {
11           b = BitwiseNegate(b); // convert to

positive
12           isNegative = !isNegative;
13       }
14
15       if (b != 0) {
16           while (a >= b) {
17               a = BitwiseSubtract(a, b);
18               c++;
19           }
20       }
21
22       if (isNegative) {
23           c = BitwiseNegate(c);
24       }
25
26       return c;
27   }
28
29   console.log(BitwiseDivide(10, 2)); // 5
30   console.log(BitwiseDivide(-10, 2)); // -5
31   console.log(BitwiseDivide(-200, 4)); // -50
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Summary
This	chapter	covered	the	basics	of	bit	manipulation	in	JavaScript.	Bit
manipulation	is	used	for	high-performance	numerical	operations.	Using
bitwise	operators	is	much	faster	than	using	the	native	methods	in	the
Math	class.	With	JavaScript	advancing	into	server-side	programming
with	Node.js,	more	efficient	code	is	needed.	To	consolidate	the	concepts
from	this	chapter,	Table	20-1	summarizes	bitwise	operators	and	their
usage.

Table	20-1 Bit	Manipulation	Summary

Operator Operation Use	Case
& AND 1	when	both	bits	are	1
| OR 1	when	either	bit	is	1

∼ NOT Inverts	all	the	bits
^ XOR 1	when	only	one	of	the	bits	is	1
<< Left	shift Shifts	to	the	left,	and	any	excess	bits	are	shifted	off
>> Right	shift Shifts	to	the	right,	and	any	excess	bits	are	shifted	off
>>> Zero-fill	right

shift
Shifts	to	the	right,	and	any	excess	bits	are	shifted	off	and	the	sign	bit
comes	0

Footnotes
https://github.com/Apress/js-data-structures-and-algorithms
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