Cocos2d-x Game
Development Essentials

Create iOS and Android games from scratch using Cocos2d-x

http://www.allitebooks.org

Cocos2d-x Game Development
Essentials

Create iOS and Android games from scratch
using Cocos2d-x

Frahaan Hussain
Arutosh Gurung

Gareth Jones

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Cocos2d-x Game Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014
Production reference: 1120814

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-786-3
www . packtpub.com

Cover image by Arutosh Gurung (admin@sonarsystems.co.uk)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Frahaan Hussain

Arutosh Gurung

Gareth Jones

Reviewers
Luma

Emanuele Feronato
Akihiro Matsuura

Taso Perdikoulias

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Prachi Bisht

Technical Editor
Pankaj Kadam

Copy Editors
Dipti Kapadia
Sayanee Mukherjee
Karuna Narayanan
Adithi Shetty

Stuti Srivastava

Project Coordinator
Sageer Parkar

Proofreaders
Maria Gould

Ameesha Green

Indexers
Mariammal Chettiyar

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Frahaan Hussain is a young programmer who contributes towards the
community in many ways, this book being the latest. He runs his own company
(Sonar Systems). He has a degree in Computer Games Programming, making him
fully aware of the ins and outs of game development.

Frahaan has worked for Accenture, which is the world's biggest consultancy firm,
and he also runs a small personal company on the side (ThunderKeyBolt).

I would like to thank Arutosh Gurung for the artwork that went into
this book, Gareth Jones for code assistance, and my father, Siddique
Hussain, for his help in planning the book.

Company details:

* Company name: Sonar Systems

¢ Company logo:

& Sona

Syst m s

e Official website: http://www.sonarsystems.co.uk/

e Facebook: https://www.facebook.com/pages/Sonar-
Systems/581403125243822

e Twitter: https://twitter.com/SonarSystems
. Google+: https://plus.google.com/+SonarsystemsCoUk/posts

* YouTube: https://www.youtube.com/user/sonarsystemslimited

[vww allitebooks.cond

http://www.allitebooks.org

Arutosh Gurung is the cofounder of Sonar Systems. He is the main proofreader
in the company and is an amazing artist with business acumen that backs up his
creative abilities.

Gareth Jones is an amazing developer who works with Sonar Systems. He is the
point of contact within the team for tips on coding.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Luma is 35 years old with 4 years of experience in Cocos2d. He is the author of two
GitHub repositories, WiEngine and cocos2dx-better.

Emanuele Feronato has been studying programming languages since the

early 1980s, with a particular interest in game development. He taught online
programming for European Social Fund (ESF) and founded a web development
company in Italy. As a game developer, he has developed flash games sponsored

by the biggest game portals, and his games have been played more than 80 million
times. He now ports most of them on mobile platforms as native apps or HTML5
web apps. As a writer, he has authored the books Flash Game Development by Example
and Box2D for Flash Games, both by Packt Publishing. He has also worked as a
technical reviewer for Packt Publishing.

His blog http://www.emanueleferonato.com is one of the most visited blogs about
indie programming.

I would like to thank Packt Publishing for giving me the opportunity
to review this book and my little daughter, Kimora, for deleting most
of my games (saved games included!) from my iPad while I was
reviewing the last chapter. I love you anyway.

[vww allitebooks.cond

http://www.allitebooks.org

Akihiro Matsuura has worked as a Cocos2d-x developer for two years.

He founded his own company, named Syubhari, Inc., four years ago. He has more
than 20 years of experience in programming. He has written two technical books

in Japanese. The first book is iPhone SDK Recipe Book, Syuwa system (http://www.
amazon.co.jp/dp/4798025798/). The second book is Cocos2d-x Recipe Book, Syuwa
system, which is also the first Cocos2d-x book in Japan (http://www.amazon.co.jp/
dp/4798038245/).

I wish to thank the author and the publisher who gave me the
opportunity to review this book.

Taso Perdikoulias has over 10 years of professional experience managing the
architecture, design, and development of software solutions for major companies
such as Disney/ ABC Television Group, Gannett Company, Inc, The New York
Times, Dow Jones, and Ganz.

Taso's mobile expertise is based on a solid foundation of gaming development.
In the past four years, Taso has become a leading expert in the delivery of mobile
applications for Fortune 50 corporations, delivering applications on platforms
such as iOS, Android, Windows Phone, BlackBerry, and HTML5. Taso has a B.Sc.
degree in Mathematical Science from McMaster University and teaches iOS game
development at Humber College.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more

You might want to visit www . Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub . com for more details.

Atwww.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[ﬂ]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Setting Up 5
What is Cocos2d-x? 5
Setting up the project 6
Housekeeping 13
Refactoring HelloWorldScene.h 13
Refactoring HelloWorldScene.cpp 14
Refactoring AppDelegate.cpp 16
Implementing multiresolution support 18
Summary 21
Chapter 2: Adding Scenes 23
Creating new scenes 24
Refactoring GameScene.h 25
Refactoring GameScene.cpp 25
Manipulating scenes 27
Code for the Main Menu scene 29
Code for the Game scene 30
Code for the Game Over scene 33
Code for the Pause scene 35
Summary 37
Chapter 3: Adding Game Menus 39
Setting up the menu 39
Coding the menus in the Main Menu scene 40
Coding the menus in the Game scene 43
Coding the menus in the Pause scene 45
Coding the menus in the Game Over scene 47
Summary 49

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 4: Scene Transitions 51
The fade transition 51
Additional transitions 52
Summary 53

Chapter 5: The Game Sprites 55
Adding the Main Menu sprites 56
Adding the Game Over sprites 58
Adding the Pause sprites 58
Adding the Game sprites 59
Summary 66

Chapter 6: Implementing Actions 67
Actions 68

Moving 68
Jumping 69
Bezier actions 70
Placing 72
Scaling 72
Rotation 74
Tinting 75
Fading 76
Skewing 78
Repeating 79
Sequencing 80
Animation 81
Summary 82

Chapter 7: Moving the Space Pod Using Touch 83
The general process for setting up touches 84
Single-touch events 84
Multi-touch events 89
Summary 92

Chapter 8: Collision Detection 93
Collision detection 93
Player collision detection 93

Setting up collision detection 94
Implementing collision detection 95
Summary 97

Lii]

Table of Contents

Chapter 9: Adding Audio to the Game 99
Loading and playing sound effects 100
Adding sound effects 100

Adding the menu-button-click sound effect 100
Adding the crash sound effect 101
Additional sound effect features 102
Loading and playing background music 103
Adding background music 103
Additional background music features 104
Summary 106

Chapter 10: Implementing Accelerometer Support 107
Setting up the accelerometer 108
Summary 109

Chapter 11: Problem Solving and What's Next 111
Problem solving 111

Removing debug information 111
Positioning on different devices 112
Moving an object on different devices 112
Trouble generating new projects 113
Reusing actions 113
Sequencing actions 113
Running your application on simulators 113
Application size 114
Breakpoints 114
What's next? 114
Index 117

[iii]

Preface

Cocos2d-x Game Development Essentials is your quick and easy guide to learning
snippets of Cocos2d-x functionality for game development or how to make a

game from scratch. This book uses the concept of creating a game to teach you the
essentials of game development with Cocos2d-x while covering generic game design
practices. This book will teach you the essentials using C++, making it ideal for the
millions of existing developers out there looking to learn Cocos2d-x for a job or to
start their own software house, to develop quality mobile games. Unfortunately,
the number of Cocos2d-x books is extremely low with a scarcity of online resources.
However, this book aims to help in the solution of providing great quality learning
materials that are easy to understand and follow for beginners or experts who are
looking for a refresh.

We have launched the application that we have made during the course of this book.
You can refer to the following links for this application:
* YouTube: https://www.youtube.com/user/sonarsystemslimited

. App Store: https://itunes.apple.com/us/artist/sonar-systems/
1d672545941

* Google Play: https://play.google.com/store/apps/
developer?id=Sonar+Systems

What this book covers

Chapter 1, Setting Up, shows you how to set up a new project using Cocos2d-x and
preparation for the game.

Chapter 2, Adding Scenes, covers how to add additional scenes to create the core
foundations of a game.

Preface

Chapter 3, Adding Game Menus, introduces the process of creating a game menu using
menu items.

Chapter 4, Scene Transitions, covers how to implement screen transitions to move from
one scene to the next.

Chapter 5, The Game Sprites, covers how to implement sprites to set the foundations of
a playable game.

Chapter 6, Implementing Actions, covers how to make your sprites move and act with a
sense of motion within the game.

Chapter 7, Moving the Space Pod Using Touch, covers how to interact with the
spaceship sprite using touch.

Chapter 8, Collision Detection, shows how to implement collision detection between
the player and obstacles to add the final piece of gameplay.

Chapter 9, Adding Audio to the Game, introduces the concept of sound files and how to
implement them into the game using Cocos2d-x.

Chapter 10, Implementing Accelerometer Support, shows how accelerometer support can
be incorporated within a game.

Chapter 11, Problem Solving and What's Next, discusses the unfortunate situations
that are most likely to be faced while developing a game and how to overcome
these issues.

What you need for this book

XCode and Eclipse will be required for development on a Mac. Eclipse will be
required for development on a Windows machine.

Who this book is for

If you are a developer who is experienced in C++ and aware of the basic concepts of
game development, you should feel right at home with this book. Though experience
in XCode or terminal/command prompt isn't necessary, it is desirable.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

[2]

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Run setup.py using the python ./setup.py command."

A block of code is set as follows:

#include "GameScene.h"

void MainMenu: :GoToGameScene (Ref *pSender)

{

auto scene = GameScreen::createScene () ;

Director::getInstance () ->replaceScene (scene) ;

}
Any command-line input or output is written as follows:

cocos new Game -p learning.sonarsystems.game -1 cpp -d
/Users/sonarsystems/Desktop

New terms and important words are shown in bold. Words that you see
on the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on Finish."

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[31]

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

Setting Up

This chapter will show you how to set up Cocos2d-x and generate a new project.
The topics covered in this chapter are as follows:

* What is Cocos2d-x?
* Setting up the project
* Housekeeping

* Implementing multiresolution support

What is Cocos2d-x?

Cocos2d-x is the most popular open source game engine in the world. Cocos2d-x
incorporates two main programming languages, C++ and Lua. This book will focus
on the C++ implementation. There is also a JavaScript version called Cocos2d-JS,
which supports web development as well. To put it into perspective, anyone who
has played a mobile game will have played one that was most likely built using
Cocos2d-x. The game engine's capabilities extend beyond game development, with
features for general application development. However, the biggest aspect that
makes Cocos2d-x phenomenal is its cross-platform nature, allowing development
for all the major mobile and desktop platforms.

Companies such as Zynga and Disney use Cocos2d-x, which shows the immense
reach of the game engine; moreover, it's free. Some of the biggest and most famous
games that are developed using Cocos2d-x are Badland, Star Wars: Tiny Death Star,
and Diamond Dash.

Setting Up

Setting up the project
This book focuses on iOS development, and the information from this book will

serve as a good foundation and reference point for all the other major platforms
for game development.

Instructions to set up projects on the Android platform will be
= provided in this book.

Before setting up a project, there are some files that need to be downloaded in order
to proceed with the project. If you want to develop a game for an iPhone, you will
require a Mac and XCode with an iOS developer account to test on a physical device.
However, Android development can be done on a Mac or a Windows machine, and
there is no need for any special account to run the application on an Android device.
The following list provides the prerequisites that need to be downloaded to set up
Cocos2d-x:

* Cocos2d-x: Download this from http://www.cocos2d-x.org/download
(at the time of writing this book, v3.0 is the latest stable version that will
be used throughout the book). This is the game engine used to develop the
game in this book.

* Android Developer Tools (ADT): This is only needed for Android
development. You can download it from http://developer.android.com/
sdk/index.html. These tools are used to develop Android applications.

The tools comprise Android SDK and Eclipse IDE.

* Native Development Kit (NDK): This is only needed for Android
development and can be downloaded from https://developer.android.
com/tools/sdk/ndk/index.html. NDK enables Android application
development using programming languages such as C and C++.

* Apache ANT: This is only needed for Android development and can be
downloaded from http://ant.apache.org/bindownload.cgi. Thisis a
Java library that aids in building software.

It is recommended to save all the files in a location that is designated for development
instead of leaving them in the default download directory. A development directory
doesn't have to be somewhere in particular, it can be in any location you are aware of.

[6]

Chapter 1

These steps will guide you through the process of setting up Cocos2d-x:

1. Extract/unpack all the downloaded files.
2. Open the terminal.

3. Change the directory in terminal to the Cocos2d-x root directory, for example,
cd /directory/location. Have alook at the following screenshot:

e 0o [[] cocos2d-x-3.0 — bash — 86x24 e

pc-193-1:~ sonarsystems$ cd SApplications/Development/Cocos2d-x/V3.0/cocos2d-x-3.8
pc-193-1:cocos2d-x-3.8 sonarsystems$!

4. Run setup.py using the python ./setup.py command, as shown in the
following screenshot:

|pc—193—1:cncc:52d—:r:—3.ﬂ sonarsystems: python .J/setup.py

5. Terminal will ask you for NDK_ROOT, which is the Native Development Kit;
drag-and-drop the NDK root folder onto terminal, and then press Enter
(make sure there are no spaces at the end):

@& 00 | | cocos2d-x-3.0 — Python — 86x24 e

pc-193-1:~ sonarsystems$ cd fApplications/Development/Cocos2d-x/V3.0/cocos2d-x-3.0
pc-193-1:cocos2d-x-3.8 sonarsystems$ python ./setup.py

Setting up cocos2d-x...
-»Check environment variable COCOS_CONSOLE_ROOT
-=Find environment wvariable COCOS_CONSOLE_ROOT...
-=COCOS_CONSOLE_ROOT is found : fApplications/Development/CocosZ2d-x/V3.B/cocos2d-x
-3.8/tools/cocos2d-console/bin

-=Configuration for Android platform only, vou can also skip and manually edit "/fUsers
fsonarsystems/.bash_profile"”

-»=Check environment variable NDK_ROOT
-=Find environment wvariable NDK_ROOT...
-=NDK_ROOT not found

-=Please enter the path of MDK_ROOT (or press Enter to skip):/Applications/Developme
ntf[ocns2d—xiv3.Bfandrnid—ndk—rgdl

[71

vww allitebooks.conl

http://www.allitebooks.org

Setting Up

6. Now, terminal will ask you for ANDROID SDK_ROOT, which is part of the ADT
bundle. Drag-and-drop the SDK folder that is located in the ADT root folder
onto terminal, and then press Enter (make sure there are no spaces at the end):

® 00 || cocos2d-x-3.0 — Python — 86x24 e

Setting up cocos2d-x...
-=Check environment variable COCOS_COMSOLE_ROOT
—=Find environment wariable COCOS_COMSOLE_ROOT...
—=COCOS_COMNSOLE_ROOT is found : fApplications/Development/Cocos2d-x/V3.08/cocos2d-x
-3.8/tools/cocos2d-console/bin

-=Configuration for Android platform only, you can also skip and manually edit "fUsers
/sonarsystems/.bash_profile"

-=Check environment variable NDK_ROOT
-=Find environment variable WDK_ROOT...
->MDK_ROOT not found

-»Please enter the path of NDK_ROOT {or press Enter to skip):/Applications/Developme
nt/Cocos2d-x/V3.0/android-ndk-r9d
-= Add NDK_ROOT environment wvariable...
-=Added NDE_ROOT=/Applications/Development/Cocos2d-x/V3.08/android-ndk-rod

->Check environment variable ANDROID_SDEK_ROOT
—=Find environment wariable AWNDROID_SDK_ROOT...
—=ANDROID_SDK_ROOT not found

-=Please enter the path of ANDROID_SDK_ROOT (or press Enter to skip):/Applications/sD
evelopment;[ocoszd—x;VB.Bfadt—bund1e—mac—x86_54—29143321f5dkl

7. Next, terminal will ask you for ANT ROOT. Drag-and-drop the bin folder
that is located in the Apache root folder onto terminal, and then press Enter
(make sure there are no spaces at the end).

® 00 .| cocos2d-x-3.0 — Python — 86x24 e

-=Please enter the path of NDK_ROOT (or press Enter to skip):/fApplications/Developme
nt/Cocos2d-x/V3.8/android-ndk-r8d
—» Add NDK_ROOT environment variable...
->Added MWDK_ROOT=/Applications/Development/Cocos2d-x/V3.8/android-ndk-rSd

->Check environment wvariable ANDROID_SDK_ROOT
-=Find environment variable ANDROID_SDK_ROOT...
-=ANDROID_SDK_ROOT not found

-=Please enter the path of ANDROID_SDK_ROOT (or press Enter to skip):/sApplications/D
evelopment/Cocos2d-x/V3.0/adt-bundle-mac-xB6_E4-20140321/sdk
-=> Add AMDROID_SDK_ROOT environment variable...
->Added ANDROID_SDEK_ROOT=/Applications/Development/Cocos2d-x/V3.0/adt-bundle-mac-x
BE_E4-201408321/sdk

-=Check environment variable ANT_ROOT
-=Find environment variable ANT_ROOT...
—=ANT_ROOT not found

-=Find command ant in system...
-=Command ant not found

-=»Please enter the path of ANT_ROOT (eor press Enter to skip):/Applications/Developme
ntf[ocode—x{V3.Bfapache—ant—l.Q.BI

[8]

Chapter 1

8. Finally, .bash_profile needs to be run to add the system variables.
The specific command is shown in the following terminal screenshot:

Please execute command: "source fUsers/sonarsystems/.bash_profile" to make added syste
m variables take effect

The source /Users/sonarsystems/.bash profile command

shown in the preceding screenshot will need to be changed
g depending on your system directory.

You should now have successfully completed the Cocos2d-x setup process.
The next steps will generate a new Cocos2d-x project to be used as a basis to create
games. The following steps will guide you through the process of generating a new
Cocos2d-x project:

1. Open the terminal.

2. Run the cocos command with the following parameters:

new project name

° -p package name (the name of the application within the
company/organization, which should be unique)

-1 programming language (cpp O lua)

-d location to generate project

For example, the command will look like the following;:

cocos new Game -p learning.sonarsystems.game -1 cpp -d /Users/
sonarsystems/Desktop

Congratulations, a new project has been generated. The next step is to run the project
for iOS and Android.

Once the project is generated, a few folders will be included. Let's go over what each
folder does:

* Classes: This stores all the custom headers (.h) and implementation files
(-cpp)

* cocos2d: This stores the Cocos2d library files (doesn't need modification for
the purpose of this book)

* proj.android: This contains Android project files
* proj.ios_mac: This contains iOS and Mac project files
* proj.linux: This stores Linux project files

* proj.win32: This stores Windows 32 project files

[o]

Setting Up
proj .wps-xaml: This contains Windows Phone 8 project files
Resources: This is where all the applications' external files, such as images

and audio files, are stored

Go to the project directory and open the XCode project located in proj . ios_mac.
Run the project, and the following screen should appear:

Now, to run the project in Eclipse for Android, use these steps:

1. Open the terminal.
Change the directory to the proj.android folder in the projects root,

as shown in the following screenshot:

e 00 /4 sonarsystems — bash — 80x24

Last login: Fri May O 18:12:86 on console
pc—-193-1:~ sonarsystemss cd stersfsnnarsystemsfﬂesktnpﬁﬂameﬁprnj.andrnida

3. Runthe python ./build native.py command:

8 00 (] proj.android — bash — B0x24

Last loginm: Fri May 9 1B:12:86 on console
pc—-193-1:~ sonarsystems$ cd fUsers/sonarsystems/Desktop/Game/proj.android

pc—193-l:proj.android sonarsystems$ python ./build_native.py

[10]

Chapter 1

4. Open Eclipse from the eclipse folder located in ADT:

(] adi-bundle-mac-x86_64-20140321 ™ [eclipse =5 artifacts.xmi
5 adt-bundle-mac-x86_64-20140321.zip & sdk =[] cenfiguration
(1] android-ndk-r9d [(3 dropins
j‘ android-ndk-r9d-darwin-x86_64.tar.bz2
(1] apache-ant-1.9.3 » & epl-v10.html
5 apache-ant-1.9.3-bin.zip (] features
[cocos2d-x-3.0 L & notice.html
F cocos2d-x-3.0.zip @l p2

(] plugins

(] readme

® Edipse

>

[

5. Go to File | Import.

6. Under Android, select Existing Android Code Into Workspace, as shown in
the following screenshot:

8.0.0 Import

Select

=

Select an import source:

type filter text

¥ = General
[E, Archive File
[4'% Existing Projects into Workspace
[File System
=L preferences

¥ = Android

k(= C/Cr+

b (=Gt

P (= Install

P (= Run/Debug

P =Team

P = XML

@ < Back k MNext >] | cancel | Finish

7. Browse to the project's root directory.

[11]

Setting Up

8. Only select 1ibcocos2dx and the project created earlier:

806

Import Projects

Select a directory to search for existing Android projects

Root Directory: .f Users/sonarsystems/Desktop/Game

Projects:

Project to Import

M cocos2d/cocos/2d/ platform/android /java

() cocos2d/plugin/plugins/admob/proj.android
cocos2d/plugin/plugins/alipay/proj.android

cocos2d/plugin/plugins/flurry/prej.android

|| cocos2d/ plugin/plugins/googleplay/proj.android

_| cocos2d/plugin/plugins/nd81/proj.android

cocos2d/ plugin/plugins/nd 91 /prej.andreid | DependProject

cocos2d/ plugin/plugins/gh360/prej.android

cocos2d/ plugin/plugins jtwitter/ proj.android

|_| cocos2d/plugin/plugins/uc/proj.android

cocos2d/ plugin/plugins/umeng/ proj.android

cocos2d/plugin/plugins /weibo/proj.android

|| cocos2d/plugin/protocols/proj.android

™ proj.android

|| Copy projects into workspace

Working sets

|| Add project to working sets

Working sets:

) <Back

New Project Name
libcocos2dx
lipPluginAdmob
liPluginAlipay
libPluginFlurry
liplAPCooglePlay
libPluginNd9l
915DK_LibProject_complete
libPluginQH360
libPluginTwitter
lipPluginUC
libPluginUmeng
libPluginWeibo
liePluginProtocol
Came

[Refresh |

Select...

Next > | Cancel

[Finish |

9. C(lick on Finish.

10. Now, run the application on an Android device.

11. Every time a change is made to the project, perform steps 1 to 3 again.

Unfortunately, Eclipse doesn't work very well with Cocos2d-x. Use
+ anexternal text editor and deploy using Eclipse. Text editors such as
% Sublime Text 2 are good for programming. We recommend developing
e in XCode and then running on iOS and Android, using XCode and

Eclipse respectively.

[12]

Chapter 1

Housekeeping

A new project has been generated, but the default files are called HelloWorldScene;
these files will be refactored to represent a real game. This chapter will cover
refactoring the default files that are generated.

Refactoring HelloWorldScene.h

The following steps will guide you on how to refactor HelloWorldScene.h:

1. Rename HelloWorldScene.h to MainMenuScene.h:

@ MainMenuScene.h

Open MainMenuScene. h.
Rename the # commands at the top of the document, as follows:

° From #ifndef HELLOWORLD SCENE H to #ifndef MAINMENU
SCENE H

° From #define HELLOWORLD SCENE H to #define MAINMENU
SCENE H

You will see the following screen:

5. Remove the void menuCloseCallback (cocos2d: :Ref* pSender) ; function.

[13]

Setting Up

6. Replace HelloWorld in CREATE_FUNC with MainMenu (or whatever the
class name is):

Refactoring HelloWorldScene.cpp

The following steps will guide you on how to refactor HelloWorldScene. cpp:

1. Rename HelloWorldScene.cpp to MainMenuScene. cpp:

|_£.| MainMenuScene.cpp

2. Open MainMenuScene.cpp.

3. Include MainMenuScene.h instead of HelloWorldScene.h:

[14]

Chapter 1

4. Before fixing the errors, remove the menu, label, and sprite from the init ()
function so that it looks like the following:

i_:.! ayer..lnltt:-l l

{
1

Size wvisibleSize = Director::getInstance()->getVisibleSize();
Point origin = Director::getInstance()->getVisibleOrigin()};

r

5. Remove the entire void HelloWorld: :menuCloseCallback (Ref*
pSender) function.

6. The last step is to rename any instance of HelloWorld to MainMenu; there
should be three instances:

° Scene* HelloWorld: :createScene () tO Scene*

MainMenu: :createScene ():

Scenesx MainMenu::createScene()

auto layer = HelloWorld::create(); toauto layer =
MainMenu: :create () ;:

layer = MainMenu::create(}i

° bool HelloWorld::init () tobool MainMenu::init ():

MainMenu::init()

[15]

Setting Up

The MainMenuScene. cpp file should look like the following:

tInstance()=
tance()—=get

Refactoring AppDelegate.cpp

The following steps will guide you through refactoring AppDelegate. cpp:

1. Open AppDelegate.cpp.

2. Include MainMenuScene.h instead of HelloWorldScene.h:

#include

[16]

Chapter 1

3. Change auto scene =HelloWorld::createScene () ; to auto scene =
MainMenu: : createScene () ; in the bool AppDelegate::applicationDidF
inishLaunching () function:

gscene = MainMenu: :cre

The project will not run for Android at the moment as the Android.mk file needs to
be updated to include the correct files and the project needs to be rebuilt. The process
of doing this will be shown in the following steps:

1. Open Android.mk in a text editor located in the jni directory at
ProjectRoot/proj.android/:

¢ Classes " e AndroidManifest.xml
| CMakelists.txt <8 ant.properties «, Application.mk
#5 | cocos2d " o] assets] hellocpp "
#. | proj.android * gl bin "
é‘,] proj.ios_mac " ey build_native.py
é,j proj.linux " e@ build-cfg.json
] proj.win32 ey build.xmi
&5 proj.wp8-xaml ~ 3l gen '
&5 Resources *~ eag] Jni p
<1l obj "

| proguard-project.ixt

@ project.properties

<3 README.md

] res p
wha src '

2. Update LocAL_SRC_FILES to look like the one shown in the
following screenshot:

LOCAL_SRC_FILES := hellocpp/main.cpp \
««/../Classes/AppDelegate.cpp \

.« /.. fClasses/MainMenuScene. cpp

[17]

vww allitebooks.conl

http://www.allitebooks.org

Setting Up

3. This file needs to be updated every time a new . cpp file is added to the
project. The backslash at the end of the line indicates that another file is
on the line below.

Throughout the book, new classes will be added and an assumption
= will be made that the Android.mk file has been updated.

Build the project using . /build_project.py again, and run the project to make sure
it is still working. The screen should be blank with some debug information in the
bottom-left corner. If there are any errors, go back through the steps and make sure
everything has been followed.

Implementing multiresolution support

This section will cover implementing multiresolution support for all iOS and
Android devices.

Firstly, remove all the images from the Resources folder (clean your project using
XCode and Eclipse):

e Classes i 8 CloseNormal.png

#5 cocos2d > g fonts »
& projandroi ,
&5 proj.ios_mac P

i proj.linux P

5 proj.win32 P

#5 proj.wp8-xaml P

#- | Resources L

Open AppDelegate. cpp and modify the bool AppDelegate::applicatio
nDidFinishLaunching () function by adding the code after the director-
>setAnimationInterval (1.0 / 60); line, as shown in the following screenshot:

[18]

Chapter 1

director
glview = director-=
(tglview) {

director—=
fileUtils = Fi i
screenSize glview-=getFr
1 < 1 = resDirOrders;
screenSize. b : screenSize
resDirOrders.
resDirOrders.
resDirOrders.
resDir0rders.pus
resDirOrders.
glview—>se g ution 1 848,
{ 1824 = | = screenSize.height)
resDirOrders.
resDirOrders. pus
resDirOrders.
resDirOrders.
glview—: g ut 1 lutionPolicy)_BORDER]) ;
(i 1 = screenSize.height)
resDirOrders. pus
resDirOrders.
resDirOrders.

)_BORDER) ;

resDirOrders. pus
resDirOrders.

glview-»=

38 = screenSize.widtl

resDirOrders.
resDirOrders.

glview—=setDesign

resDirOrders.

glview->setDesignRe @, 480 ionPol

director-=runWithScene(scene);

[19]

Setting Up

Let's run through the code added to AppDelegate. cpp:

Line 29 is used to help handle file operations.
Line 30 gets the device's screen size.

Line 31 creates a vector of strings to store the image directories. There are
multiple directories because the game will fall back if it cannot find the image
in a higher-resolution directory.

Lines 34 to 83 check what type of device is being used and use the
appropriate directories. To support Android, the else statement is used to
check whether the device has a screen size bigger than or equal to 1080. If it
doesn't, the game uses lower-resolution assets, even for non-retina iPhones.

Line 85 assigns the image directories to the file utility search paths so that the
game searches each directory for the image.

The following is a bit of extra information:

The frame size is the physical screen size of the device in pixels.
Setting the design resolution size sets the application's size.

Pushing back the resolution directories allows the application to fall back to
lower-resolution assets if a higher-resolution asset is missing.

The resolution policy underlines how the application handles differences

in the application's design size and the screen's physical size. We chose no
border, which prevents black borders by zooming in. This might crop some
of the background, but it provides the best effect. Games such as Candy Crush
Saga use this technique.

Finally, create the following folders in the Resources folder:

iphone
iphonehd
iphonehd5
ipad
ipadhd

[20]

Chapter 1

This is what the Resources folder will look like:

#.] Classes gy fonts P
#° CMakeLists.txt & ipad '
#. | cocos2d g5 ipadhd >
.| proj.android "~ ¢anl iphone »
%] proj.ios_mac * ¢a.] iphonehd P
& proj.linux ~ ¢5] iphonehds '
] proj.win32 P
w2 proj.wp8-xaml P
Pom Resources

Though the folders are named using iOS naming conventions, they support Android
as well, using the multiresolution code that was implemented.

Downloading the example code
Download all the images required for the game from the Packt
Publishing website and put them in the Resources folder.

% You can download the example code files for all Packt books you
~ have purchased from your account at http: //www.packtpub. com.
If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Summary

In this chapter, we covered how to set up Cocos2d-x and generate a new project.
The next chapter will cover adding scenes to the different states the game will be in.

[21]

Adding Scenes

This chapter will guide you through the process of creating new scenes. Scenes are
the different states that a game can be in, for example:

The Splash scene
The Menu scene
The Game scene
The Pause scene

The Game Over scene

Almost everything that is used in Cocos2d-x is a subclass of Node (part of
Cocos2d-x), and scenes are no exception. Nodes provide a lot of basic features such
as positioning and are used in scenes as well as in other essentials such as sprites.

All the different screens are represented as scenes within Cocos2d-x. Cocos2d-x
provides the functionality to switch between scenes with built-in transitions,
making the game more dynamic and vibrant.

The topics that will be covered in this chapter are as follows:

Creating new scenes

Manipulating scenes

Adding Scenes

Creating new scenes

The easiest way to create new scenes is to duplicate the existing scenes provided by
Cocos2d-x and modify them accordingly. They will require the same modification
that was done in the Housekeeping section in Chapter 1, Setting Up. The following steps
will guide you through the process:

1. Duplicate the MainMenuScene.h and MainMenuScene . cpp files and rename
them as GameScene . h and GameScene . cpp respectively:

. | Classes " @ AppDelegate.cpp
@ CMakeLists.txt 4| AppDelegate.h
] cocos2d s

GameScene.cpp
.| proj.ios_mac " @ MainMenuScene.cpp
& proj.linux " @h| MainMenuScene.h
5] proj.win32 g
5] proj.wpB-xaml r
.| Resources P

2. Then, right-click on the classes folder in XCode and select Add Files to
[project name]. Select the files to be added and click on Add:

[« >][22 [= [l i |[= ~ | [&5 Classes i) (@

r/;\q Applications

Desktop
lpen| LAESKEOR

B

FAVORITES [] Classes P | AppDelegate.cpp
'.%. All My Files | CMakeLists.txt h| AppDelegate.h
[cocos2d

[proj.android
(] prej.ios_mac

@ Documents [proj.linux
(] prej.win32
0 Downloads (] proj.wp8-xam
] Google Drive] Resources
E Movies
DEVICES
@ Remote Disc
/D) Buffalo 2TB a

I B GameScene.cpp
R
P |@ MainMenuScene.cpp

™ |h| MainMenuScene.h
»
p
»

Destination |_| Copy items into destination group's folder (if needed)

Folders (_Create groups for any added folders
() Create folder references for any added folders

Add to targets (¥ /A Game i0S
["] /A Game Mac

| New Folder |

| cancel |

[24]

Chapter 2

Refactoring GameScene.h

The following steps will guide you through the refactoring of GameScene . h:

1. Open the GameScene.hfile.
2. Rename the following # commands at the beginning of the document:

° Change #ifndef _ MAINMENU SCENE_H to #ifndef _ GAME_
SCENE H

° Change #define _ MAINMENU SCENE _H__ to #define _ GAME
SCENE H

3. Rename the class to GameScreen.

4. Change CREATE_FUNC (MainMenu) to CREATE_FUNC (GameScreen).

The Gamescene . h file should look like the following screenshot:

#include

GameScreen :

i

Refactoring GameScene.cpp

The following steps will guide you through the refactoring of GameScene . cpp:

1. Open the GameScene. cpp file.
2. Include GameScene.h instead of MainMenuScene.h.

3. Change every instance of MainMenu to GameScreen.

[25]

Adding Scenes

The Gamescene. cpp file should look like the following screenshot:

reen: :createScene()

Create two new scenes using the same steps that were followed for GameScene with
the following naming conventions:

e For the Game Over scene, use GameOverScene . h and GameOverScene . cpp
as filenames and GameOver as the class name

e For the Pause Menu scene, use PauseScene.h and PauseScene. cpp as
filenames and PauseMenu as the class name

[26]

Chapter 2

All the scenes required for the game are now set up, and the XCode project's
Classes folder should look like this:

¥ || Classes
E.J CameOverScene.cpp
m| CameOverScene.h
[9«' PauseScene.cpp
[|-1| PauseScene.h
E.J CameScene.cpp
m| CameScene.h
E,_ﬁ: AppDelegate.cpp
[B_I AppDelegate.h
E.J MainMenuScene.cpp
m| MainMenuScene.h

Manipulating scenes

Without functionality, moving between scenes is not possible and they would be
useless. Cocos2d-x provides great methods to move from one scene to another.
Before you take a look at these methods, you need to understand how Cocos2d-x
manages scenes.

Cocos2d-x uses a stack to manage scenes, which is a Last-In First-Out (LIFO) system
that runs the latest scene in the stack. The following are the main methods that are
used to move between scenes:

* Pushing a scene: This method pushes a particular scene onto the stack while
keeping the current scene but pauses its execution. A real-world example for
this is when you click on a pause button, the Pause scene will be pushed onto
the stack, while the Game scene still exists.

* Popping a scene: This method removes the top/current scene off the stack.
A real-world example for this is when resuming a paused scene, the current
scene (the paused scene) is removed and goes back to the Game scene.

* Replacing a scene: This method replaces the current scene with a new scene,
essentially popping the current scene and then pushing the new scene onto
the stack. A real-world example for this is when the player dies and goes to
the Game Over scene.

[27]

[vww allitebooks.cond

http://www.allitebooks.org

Adding Scenes

Now that we know how Cocos2d-x manages scenes using a stack and the
main methods provided, it's time to implement this functionality in the game.
The following list shows the use cases for these methods:

Replacing a scene when the player clicks on the play button from the Main
Menu scene to go to the Game scene

Pushing a scene when the player clicks on the pause button from the Game
scene to go to the Pause scene

Replacing a scene when the player dies to take them to the Game Over scene

Popping a scene when the player clicks on the resume button from the
Pause scene

Replacing a scene when the player clicks on the retry button from the Game
Over scene to go to the Game scene

Replacing a scene when the player clicks on the main menu button from the
Game Over scene to go to the Main Menu scene

There are two use cases that are not mentioned in the preceding list as they are a little
more complex. These are when the player clicks on either the retry button or the main
menu button from the Pause scene; in these cases, the stack will look like this:

Pause scene

The Game scene

The game is on the Pause scene, but using the replace scene method would remove
the Pause scene, leaving an instance of the Game scene constantly dormant. The best
technique is to pop the current scene and then immediately use the replace scene
method to switch from the Game scene.

[28]

Chapter 2

Code for the Main Menu scene

Add the following code to the MainMenuScene . h file:

void GoToGameScene (Ref *pSender) ;

This is the declaration for the function that will be called when the player clicks
on the play button from the Main Menu scene to replace it with the Game scene.
The MainMenusScene . h file should look like the following screenshot:

Add the following code to the MainMenuScene. cpp file:

#include "GameScene.h"
void MainMenu: : GoToGameScene (Ref *pSender)

auto scene = GameScreen: :createScene () ;

Director::getInstance () ->replaceScene (scene) ;

[29]

Adding Scenes

In the preceding code, the first line is used to include the Game scene so that the
scene can be accessed. The GoToGameScene function first creates a local scene
instance of GameScene and then replaces the current scene using the Cocos2d-x
director. The MainMenuScene. cpp file should look like the following screenshot:

rgetInstance()—>getVisibleSize();
cel)->getVisibleOrigin();

MainMenu: :GoTeGameScene(co

scene = GameSc eate

Director::getInstance()-=replaceScene(scene);

Code for the Game scene

Add the following code to the GameScene . h file:

void GoToPauseScene (Ref *pSender) ;
void GoToGameOverScene (Ref *pSender) ;

[30]

Chapter 2

In the preceding code, the first function declaration will be called when the player
clicks on the pause button in the Game scene to push the Pause scene onto the stack.
The second function declaration will be called when the player dies to replace the
Game scene with the Game Over scene. The GameScene . h file should look like the
following screenshot:

GameScreen :

nex createScene()

GoToPauseScene(*pSender) ;
GoToGameOverScene(Ret *pSender);

Add the following code to the GameScene. cpp file:

#include "PauseScene.h"
#include "GameOverScene.h"

void GameScreen: :GoToPauseScene (cocos2d: :Ref *pSender)

auto scene = PauseMenu: :createScene () ;

Director: :getInstance () ->pushScene (scene) ;

void GameScreen: :GoToGameOverScene (cocos2d: :Ref *pSender)

{

auto scene = GameOver::createScene () ;

Director::getInstance () ->replaceScene (scene) ;

[31]

Adding Scenes

The first two lines in the preceding code snippet are used to include the Pause and
Game Over scenes so that the scenes can be accessed. The GoToPauseScene function
first creates a local scene instance of the Pause scene and then pushes it onto the
stack. The GoToGameOversScene function first creates a local scene instance of the
Game Over scene and then replaces the Game scene with it. The GameScene. cpp file
should look like the following screenshot:

visibleSize = Di
int origin = D

1 GoToPauseScene(. f *pSender)

= Pause createScene();

getInstance()->pus e{scene);

[32]

Chapter 2

Code for the Game Over scene

Add the following code to the GameOverScene. h file:

void GoToGameScene (Ref *pSender) ;
void GoToMainMenuScene (Ref *pSender) ;

In the preceding code snippet, the first function declaration will be called when the
player clicks on the retry button from the Game Over scene to replace the current
scene with the Game scene. The second function declaration will be called when

the player clicks on the main menu button from the Game Over scene to replace the
current scene with the Main Menu scene. The GameOverScene . h file should look like
the following screenshot:

GoToGameScene(Ref #pSender);
GoToMainMenuScene(Ref *pSender);

Add the following code to the GameOverScene. cpp file:

#include "GameScene.h"
#include "MainMenuScene.h"

void GameOver: :GoToGameScene (cocos2d: :Ref *pSender)
{

auto scene = GameScreen::createScene () ;

Director::getInstance () ->replaceScene (scene) ;

void GameOver::GoToMainMenuScene (cocos2d: :Ref *pSender)

{

auto scene = MainMenu::createScene () ;

Director::getInstance () ->replaceScene (scene) ;

[33]

Adding Scenes

The first two lines in the preceding code snippet are used to include the Game and
Main Menu scenes so that the scenes can be accessed. The GoToGameScene function
first creates a local scene instance of the Game scene and then replaces the Game
Over scene with it. The GoToMainMenuScene function first creates a local scene
instance of the Main Menu scene and then replaces the Game Over scene with it.
The GameOverscene. cpp file should look like the following screenshot:

Size visibleSize ector ncel)
Point origin = Di rzige)—=geth

GameOver: :GoToGameScene(cocos2d: :Ref *pSender)
scene = GameScreen::creat

Director::

1:Ref *pSender)
cenel);

}—=replaceScene{scenel;

[34]

Chapter 2

Code for the Pause scene

Add the following code to the PauseScene.h file:

void Resume (Ref *pSender) ;
void GoToMainMenuScene (Ref *pSender) ;
void Retry(Ref *pSender) ;

In the preceding code snippet, the first function declaration will be called when

the player clicks on the resume button from the Pause scene to pop the Pause

scene off the stack. The second function declaration will be called when the player
clicks on the main menu button from the Pause scene to replace the current scene
with the Main Menu scene while popping all the scenes off the stack. The third
function declaration will be called when the player clicks on the retry button from the
Pause scene to replace the current scene with the Game scene while popping all the
scenes off the stack. The pausescene . h file should look like the following screenshot:

Resume(Ref *pSender);
GoToMainMenuScene(Ref #pSender);

Retry(Ref #pSender);

Add the following code to the PauseScene. cpp file:

#include "GameScene.h"
#include "MainMenuScene.h"

void PauseMenu: :Resume (cocos2d: :Ref *pSender)

{
}

void PauseMenu: :GoToMainMenuScene (cocos2d: :Ref *pSender)

{

Director: :getInstance () ->popScene () ;

auto scene = MainMenu: :createScene() ;

Director: :getInstance () ->popScene () ;
Director::getInstance () ->replaceScene (scene) ;

[35]

Adding Scenes

}

void PauseMenu: :Retry(cocos2d::Ref *pSender)

{

auto scene = GameScreen: :createScene () ;

Director: :getInstance () ->popScene () ;
Director::getInstance () ->replaceScene (scene) ;

}

The first two lines in the preceding code snippet are used to include the Game and
Main Menu scenes so that the scenes can be accessed. The GoToMainMenuScene
function first creates a local scene instance of the Main Menu scene, then it pops

the current scene off the stack and the Game scene is replaced with the Main Menu
scene. The Retry function first creates a local scene instance of the Game scene, then
it pops the current scene off the stack and the current Game scene is replaced with
the new Game scene (restarts the game). The PauseScene. cpp file should look like
the following screenshot:

PauseMenu: :Resume Ref #pSender)

Director::getIns {)}~-=popScene() ;

Pausel u::GoToMainMenuScene(cocos2d: :Ref *pSender)

scene = MainMenu:z:

Chapter 2

Summary

This chapter covered how to create new scenes using the default scenes provided
by Cocos2d-x as templates and the techniques to switch between them. We

haven't actually implemented any code to trigger the scene functions, but it will be
implemented in the upcoming chapters. The next chapter will cover menu systems,
which will help you to move between scenes.

[37]

vww allitebooks.conl

http://www.allitebooks.org

Adding Game Menus

This chapter will guide you through the process of creating menus using the menu
items provided by Cocos2d-x and implementing them within the previously created
scenes to allow navigation, which was implemented in the previous chapter.

The topics that will be covered in this chapter are as follows:

* Setting up menus
* Adding menu items

* Menu alignment

Setting up the menu

So, what are menus? A menu is a technique to display buttons/navigational
functionality. Menus consist of menu items, for example, a menu item image that
will be used for this game. There are several items that are provided by Cocos2d-x
to construct menus. Some of the commonly used items are as follows:

e The Menu Font item
* The Menu Sprite item
e The Menu Label item

For more information on any of the Cocos2d-x APIs, visit
L http://www.cocos2d-x.org/wiki/Reference.

Adding Game Menus

Menus are a collection of items that are organized to form the structured buttons and
can be used for a game's functionality, such as navigation. Our game will use menus
for the following use cases:

* In the Main Menu scene:
° The play button, which starts the game
* In the Game scene:
° The pause button, which pauses the game
* In the Pause scene:

[e]

The resume button, which resumes the game

o

The retry button, which restarts the game
° The main menu button, which takes you to the main menu
¢ In the Game Over scene:

[e]

The retry button, which restarts the game
° The main menu button, which takes you to the main menu

Each scene will require its own menus along with its own menu items. All the menus
will be declared and constructed within the init () method, but if the requirement
for manipulating the menu or menu items arises, it would be best to declare them
within the header so that they can be accessed outside the init () method.

. The project has been changed from landscape mode to portrait
% mode. This is done using XCode project details (select the required
i orientation) or using AndroidManifest.xml (android:screen
Orientation=portrait).

Coding the menus in the Main Menu
scene

The main menu requires a simple menu system for navigation between itself and the
game screen. Menu item images will be used to display a game title and to display
the button that the user can interact with to maneuver between scenes.

[40]

Chapter 3

Add the following code to the init () method:

auto menuTitle =
MenuItemImage: :create ("MainMenuScreen/Game Title.png",
"MainMenuScreen/Game Title.png") ;

auto playlItem =

MenuItemImage: :create ("MainMenuScreen/Play Button.png",
"MainMenuScreen/Play Button(Click).png",
CC_CALLBACK 1 (MainMenu: :GoToGameScene, this));

auto menu = Menu::create (menuTitle, playItem, NULL) ;
menu->alignltemsVerticallyWithPadding(visibleSize.height / 4);
this->addChild (menu) ;

Menu item images have three states: normal (not being pressed), pressed (user is
tapping it), and disabled (item has been disabled).

The first statement in the preceding code snippet creates a menu title using the menu
item image with the following parameters:

* The default image that has to be displayed in the title

* The image that has to be displayed when the title is tapped on (as the title
cannot be tapped on, it is the same as the default image to give the illusion of
a static item)

The second statement creates an image item with the following parameters:

* The default image that has to be displayed on the button
* The image that has to be displayed when the button is being tapped on

* The function that has to be called when the button is tapped on, which
will take the player to the Game scene. The number 1 at the end of
CC_CALLBACK_1 specifies how many parameters the function that is
being called takes

The third statement creates a menu with the Menu items. To add multiple items,
simply separate them with a comma.

The fourth statement aligns the items of the menu vertically. There are several
built-in alignment methods, including the ability to manually position the menu
items, which will be covered in the next section.

The fifth statement adds the menu as a child to the scene. To add children to the
scene, the addchild () method requires a node, which is essentially menus, sprites,
labels, and so on.

[41]

Adding Game Menus

The code in the init () method should look like the following screenshot:

Instancel)—=>getVisibl
tance()—>getVisibleOrigin();

menuTitle = MenultemImage::create(

playItem = MenultemIm

memnu

[42]

Chapter 3

Coding the menus in the Game scene

The Game scene requires a simple menu system to pause the game. A menu item
image will be used to display the button that the user can interact with in order to
pause the game and load the Pause scene.

Add the following code to the init () method:

auto pauseltem =
MenuItemImage: :create ("GameScreen/Pause Button.png",
"GameScreen/Pause Button (Click) .png",
CC_CALLBACK 1 (GameScreen: :GoToPauseScene, this));

pauseltem->setPosition (Point (pauseltem->getContentSize () .width -
(pauseltem->getContentSize () .width / 4) + origin.x,
visibleSize.height - pauseltem->getContentSize () .height +
(pauseltem->getContentSize () .width / 4) + origin.y));

auto menu = Menu: :create (pauseltem, NULL) ;
menu->setPosition (Point: :ZERO) ;
this->addChild (menu) ;

The first statement creates an image item with the parameters explained in the
previous section.

The second statement sets the position of the menu item to the top-left corner of
the screen.

Cocos2d-x starts at the bottom-left corner, so the height of the screen
=" needs to be added to position it at the top.

The visibleSize variable that was included with the generated project gives

the screen's visible size. The origin is where the coordinates start, which is usually
(0, 0), but factoring this in will prevent any position problems on other devices, such
as certain Android devices.

The third statement creates a menu with the Menu item. To add multiple items,
simply separate them with a comma.

[43]

Adding Game Menus

The fourth statement sets the menu's position to 0, as the menu item was
positioned separately.

The fifth statement adds the menu as a child to the scene. To add children to the
scene, the addchild () method requires a node.

The code in the init () method should look like the following screenshot:

Point origin = Director

pauseltem = Menultem

pauseltem—>setPosition(Point (pauseltem—= Y " ent Yawidth / 4)
visibleSize.height tent! eltem-»getCont] th / 4) + origin.y));

[44]

Chapter 3

Coding the menus in the Pause scene

The Pause scene requires a menu system to resume the game, restart the game, and
go back to the main menu. Menu item images will be used to display the buttons that
the user can interact with in order to perform the actions mentioned.

Add the following code to the init () method:

auto resumeltem =
MenuItemImage: :create ("PauseScreen/Resume Button.png",
"PauseScreen/Resume Button(Click) .png",
CC_CALLBACK 1 (PauseMenu::Resume, this));

auto retryItem =
MenuItemImage: :create ("PauseScreen/Retry Button.png",
"PauseScreen/Retry Button(Click) .png",
CC_CALLBACK 1 (PauseMenu::Retry, this));

auto mainMenultem =
MenuItemImage: :create ("PauseScreen/Menu Button.png",
"PauseScreen/Menu_ Button (Click) .png",
CC_CALLBACK 1 (PauseMenu: :GoToMainMenuScene, this));

auto menu = Menu::create(resumeltem, retryItem, mainMenultem,
NULL) ;

menu->alignItemsVerticallyWithPadding(visibleSize.height / 4);
this->addChild (menu) ;

The first three statements create the menu item images for the menu as
mentioned previously.

The fourth statement creates a menu with the menu items created in the
previous statements.

The fifth statement aligns the menu items vertically but with padding; they
would otherwise be aligned next to each other.

The sixth statement adds the menu as a child to the scene. To add children to the
scene, the addchild () method requires a node.

[45]

Adding Game Menus

The code in the init () method should look like the following screenshot:

visibleSize
Point origin = cto)—=getVisibleOrigin(};

resumeltem = MenultemImage::create(

1(PauseMenus: =
retryltem = MenultemImage: :create(

{PauseMenu::zRetry,

r
L]
1({PauseMenu: :GoToMainMenuScene,

el resumeItem, retryItem, mainMenuItem,);
lyWithPadding({visibleSize.height f 4);

Menus in the Pause scene should now look like the following screenshot:

1)

[46]

Chapter 3

Coding the menus in the Game Over
scene

The Game Over scene requires a menu system to restart the game and to go back to
the main menu. Menu item images will be used to display the buttons that the user
can interact with to perform the actions mentioned.

Add the following code to the init () method:

auto menuTitle =
MenuItemImage: :create ("GameOverScreen/Game Over.png",
"GameOverScreen/Game_Over.png") ;

auto retryItem =

MenuItemImage: :create ("GameOverScreen/Retry Button.png",
"GameOverScreen/Retry Button(Click) .png",
CC_CALLBACK 1 (GameOver: :GoToGameScene, this));

auto mainMenultem =

MenuItemImage: :create ("GameOverScreen/Menu Button.png",
"GameOverScreen/Menu_ Button (Click) .png",
CC_CALLBACK 1 (GameOver::GoToMainMenuScene, this));

auto menu = Menu::create (menuTitle, retryItem, mainMenultem,
NULL) ;

menu->alignItemsVerticallyWithPadding(visibleSize.height / 4);
this->addChild (menu) ;

The first statement creates a menu title using the menu item image, but the callback
is not specified as it is static and the image that is tapped on is its default image,
providing the illusion of a menu title that doesn't change.

The next two statements create the menu item images with the parameters
mentioned in the previous sections.

The fourth statement creates the menu with the items created in the
previous statements.

The fifth statement aligns the items vertically with padding.

The sixth statement adds the menu as a child to the scene. To add children to the
scene, the addchild () method requires a node that is essentially menus, sprites,
labels, and so on.

[47]

[vww allitebooks.cond

http://www.allitebooks.org

Adding Game Menus

The init () method should give you the following screenshot:

ze visibleSize = Din re:
Point erigin = Director::getInstance{)->getVisi

menuTitle = MenultemImage::create(

retryItem = MenultemImage::createl

mainMenultem = MenultemImage::create(

menu = Menu te(menuTitle, retryltem, mainMenultem,
menu—=alignItems Lly hPadding(visibleSize.height 7 4});
—=addChild(men

The Game Over screen should now look like the following screenshot (testing this
screen may not be immediately possible; this can be achieved by temporarily making
the pause button call the Gameover function, but remember to change it back):

r N

Game Over

[48]

Chapter 3

Summary

This chapter covered how to create menus in different scenes with menu items and
how to position these menus. These menus provided the functionality to switch
between scenes for the game. The next chapter will show you how to implement
transitions so that the scenes feel more alive when you switch between them.
Transitions allow the scenes to switch using an animation, and Cocos2d-x provides
several animations from fading to zooming.

[49]

Scene Transitions

This chapter will guide you through the process of implementing transitions
to switch between scenes, making the process more dynamic and less static.

The topics covered in this chapter are as follows:

¢ The fade transition

e Additional transitions

Transitions allow an animation to be played when you switch between scenes,
making the game look more dynamic and attractive for the player. Transitions
can be used when you want to push or replace scenes.

The fade transition

The game that will be developed through the course of this book will incorporate

the fade transition, as it is a universal transition that is easily recognized; however,
Cocos2d-x provides many more transitions, which will be covered briefly. To

learn more about the various transitions offered by Cocos2d-x, visit http://www.
cocos2d-x.org/reference/native-cpp/V3.0/da/d00/group transition.html.

An example syntax of scene transition is as follows:

Director: :getInstance () ->replaceScene
(TransitionName: :create (transition properties)) ;

As the preceding example shows, transitions are incorporated within the existing
scene code and allow the scenes to be manipulated very easily but provide great
end results.

Scene Transitions

The fade transition fades between two different scenes. There are two instances of the
fade transition. The first instance allows you to set the duration and scene that you
want to transition to; the second provides the same functionality but also allows the
color of the fade transition to be set. The first instance will be used for this example.
To learn more about the different transitions, visit the URL mentioned earlier.

Replace all the lines of code within the project that push a scene or replace a scene
with the following code:

Director::getInstance () ->replaceScene (TransitionFade: :create
(1.0, scene));

Alternatively, you can also use the following code:

Director::getInstance () ->pushScene (TransitionFade: :create
(1.0, scene));

For example, the GoToGameScene function within the MainMenuScene . cpp file
should look similar to the following screenshot:

5

MainMenu: :GoToGameScene(cocos2d: :Ref *pSender)

scene = GameScreen::createScene();

Director::getInstance 2 1:create{l.8, scene));

Although the game will only incorporate the fade transition, the remaining
sections of this chapter will briefly cover some of the other popular transitions
that Cocos2d-x provides.

Additional transitions

This section will cover some of the additional transitions that are provided by
Cocos2d-x and how to incorporate them. Different transitions allow your game to be
more dynamic. For more in-depth information, visit http: //www.cocos2d-x.org/
reference/native-cpp/V3.0/da/d00/group__transition.html. The following
list details the additional transitions that are provided by Cocos2d-x:

* Flip transitions: These transitions flip around a specified axis, with the
current scene moving away and the new scene coming in.

The example code for this transition is as follows:

Director::getInstance () ->replaceScene
(TransitionFlipX: :create (3, scene)) ;

[52]

Chapter 4

* Zoom transitions: These transitions flip the scenes in a similar way to flip
transitions but also allow them to be zoomed.

The example code for this transition is as follows:

Director::getInstance () ->replaceScene
(TransitionZoomFlipY: :create (3, scene)) ;

* Page transitions: These transitions move between the scenes as if they
were pages in a book.

The example code for this transition is as follows:

Director::getInstance () ->replaceScene
(TransitionPageTurn: :create (3, scene, false));

[% The popScene () function cannot take a scene transition.]

Summary

This chapter covered scene transitions, which can be used to liven up the switching
between scenes. Cocos2d-x provides several built-in transitions, which aid in the
development. Although Cocos2d-x offers several different transitions, most of

the successful games use only a few selected transitions if not one. Using several
different transitions can make the game look unprofessional like the early websites
that contained loads of animations. The next chapter will cover how to add sprites
to games. Sprites allow bitmaps to be drawn; for example, obstacles and player
characters, which are the foundations of what the user sees.

[53]

The Game Sprites

This chapter will guide you through the process of using sprites to display
game objects such as the background, player characters, and Non-playable
Characters (NPCs).

Sprites are computer graphics that are used to represent objects to be displayed
within a scene; for example, a player would be a sprite within the game environment.
These player sprites would interact with other sprites that are present.

The topics that are covered in this chapter are as follows:

* Adding sprites
* DPositioning sprites

* Moving sprites

Sprites simplify the process of displaying game objects —you don't need to create
a bitmap with assigned memory, position the bitmap, and draw it. Sprites allow
all of this to be done behind the scenes. Cocos2d-x has built-in methods to create,
manipulate, and display sprites.

Each section will cover how to add the game sprites within their appropriate scenes
and manipulate them if necessary, for example, moving the background sprite to
provide a scrolling effect. The following is an example of the sprite declaration to
add a sprite to a scene:

auto backgroundSprite = Sprite::create
("MainMenuScreen/Background.png") ;

The Game Sprites

The preceding line of code creates a sprite variable called backgroundSprite,
which is created from a PNG image. It is recommended that you use PNG images
as they allow transparency. The basic process of displaying a sprite is as follows:

1. Declare a sprite.

% Declare the sprite in the header if it needs to be manipulated
after the declaration.

Initialize the sprite.
Position the sprite.

Set any other properties, such as the scale and rotation.

ARSI

Draw a sprite that is handled via Cocos2d-x.

Adding the Main Menu sprites

The only sprite that needs to be displayed in the Main Menu scene is the
background. Add the following code below the menu code in the init ()
method within the MainMenuScene . cpp file:

auto backgroundSprite = Sprite::create
("MainMenuScreen/Background.png") ;

backgroundSprite->setPosition (Point ((visibleSize.width / 2) +
origin.x, (visibleSize.height / 2) + origin.y));

this->addChild (backgroundSprite, -1);

The first statement of the preceding code declares and initializes a sprite called
backgroundSprite with a PNG image.

The second statement sets the position of the background sprite at the center of

the screen using the visible size, which is the area of the screen that is available on

a particular device, as there are different screen sizes. The origin is used as some
devices (mainly Android) don't start at (0, 0) because of onscreen buttons and so on.
This will help to overcome positioning issues.

[56]

Chapter 5

The third statement adds the sprite as a child to the scene and also sets the z-index
value, which states the order of the items. As the background sprite should be below
all the other items, the z-index is set to -1 since by default the other objects are set

to 0. Although the z-index was set to -1, a little thing to note is that any node added
after it will automatically be on top of the previous nodes if the z-index isn't set.

The init () method should give you the following screenshot:

visibleSize
t origin =

menuTitle = MenultemIm

playItem

menuTitle, playItem,)
iding{visibleSize.height / 4);

backgroundSprite)
backgroundSprite-=s 1{P ight / 2) + origin.y});
—=addChild(backgroundSprite,

The GUI after adding the Main Menu sprites will look as shown in the
following screenshot:

[57]

vww allitebooks.conl

http://www.allitebooks.org

The Game Sprites

Adding the Game Over sprites

The only sprite that needs to be displayed in the Game Over scene is the background.
Add the following code below the menu code in the init () method within the
GameOverScene. cpp file, as we did in the previous section:

auto backgroundSprite = Sprite::create
("GameOverScreen/Game Over Screen Background.png") ;

backgroundSprite->setPosition (Point ((visibleSize.width / 2) +
origin.x, (visibleSize.height / 2) + origin.y));
this->addChild (backgroundSprite, -1);

The GUI after adding the Game Over sprites should look like what is shown in the
following screenshot:

N

Game Over

/|

Adding the Pause sprites

The only sprite that needs to be displayed in the Pause scene is the background.
Add the following code below the menu code in the init () method within the
pauseScene. cpp file, as we did in the previous section:

auto backgroundSprite = Sprite::create
("PauseScreen/Pause Background.png") ;

[58]

Chapter 5

backgroundSprite->setPosition (Point ((visibleSize.width / 2) +
origin.x, (visibleSize.height / 2) + origin.y));

this->addChild (backgroundSprite, -1);

The GUI after adding the Pause sprites should look like what is shown in the
following screenshot:

RPESUME

GL verts:
GL calls:
19.2 / 0.004

B 4

Adding the Game sprites

Unlike in the previous backgrounds, the Game scene's background will be moving,
providing a scrolling effect. Before you dive into the background code, an update
function needs to be scheduled to be called in every frame using the following steps:

1. Schedule the update function in the init () method using the
following code:

this->scheduleUpdate() ;

2. Declare the update function in the GameScene . h file using the
following code:

void update (float dt);

[59]

The Game Sprites

3. Implement the update function in the GameScene. cpp file using the
following code:

void GameScreen::update (float dt)

{
}

The update function is used to handle the game's logic and takes a f£1oat parameter
called delta time, which is the time between frames. As all devices are not capable of
running at 60 fps, this is factored in during gameplay to provide a smooth experience
across a wide variety of devices.

The following are the steps to implement a scrolling background:

1. Declare a sprite array for the background consisting of two items. As the
background will be scrolling, two sprites will be used to provide the illusion
of a consistent background. However, once a sprite has gone off the screen,
it will reset back. The following code needs to be added within the header:

cocos2d: :Sprite *backgroundSpriteArray[2];

2. Initialize the sprite array and set the position of the sprites; so, one is
displayed on the screen initially, and the other one below the screen will be
displayed as the background scrolls upwards. Then, add these to the scene
as children; all this will be done within the init () method:

for (int 1 = 0; 1 < 2; i ++)

{

backgroundSpriteArray([i] = Sprite::create
("GameScreen/Game_Screen Background.png") ;
backgroundSpriteArray[i] ->setPosition

(Point ((visibleSize.width / 2) + origin.x, (-1 *
visibleSize.height * i) + (visibleSize.height / 2) +
origin.y)) ;

this->addChild (backgroundSpriteArray[i], -2);

}

3. Next, move the sprites within the update () method by factoring in the
delta time (0.75 is just the speed that can be changed, possibly by the
user in a settings scene, which could be implemented as a side task, and
it is multiplied by the screen height to keep a constant speed on different
devices). You will also need to add a visibleSize variable, similar to what
we did in the constructor:

for (int 1 = 0; 1 < 2; i ++)

backgroundSpriteArray[i] ->setPosition

[60]

Chapter 5

(Point (backgroundSpriteArray[i] ->getPosition() .x,
backgroundSpriteArray[i] ->getPosition() .y + (0.75 *
visibleSize.height * dt)));

}

Although the backgrounds scroll, they do not reset once they have gone
above the screen. Add the following code above the previous code:

Size visibleSize = Director::getInstance() ->
getVisibleSize() ;

Point origin = Director::getInstance()->getVisibleOrigin() ;
for (int 1 = 0; 1 < 2; 1 ++)

{

if (backgroundSpriteArray[i] ->getPosition() .y >=
visibleSize.height + (visibleSize.height / 2) -1)

{

backgroundSpriteArray[i] ->setPosition
(Point ((visibleSize.width / 2) + origin.x, (-1
visibleSize.height) + (visibleSize.height / 2))

}

*
) .

I

}

The background is now scrolling and resets once it has gone off the screen.

Now, the scrolling asteroids will be implemented. The asteroids will spawn every 2.5
seconds randomly in the x axis just below the screen. Once an asteroid goes off the
screen, it will be destroyed. Add the following code to implement scrolling asteroids:

1.

Declare the spawn asteroid method in GameScene .h (the scheduler requires
a float parameter for delta time, but doesn't need it to be used):

void spawnAsteroid(float dt);

Declare the asteroids that will be stored as a vector of sprites as they can be
dynamically added and removed:

std: :vector<cocos2d: :Sprite *> asteroids;

Implement the scheduler within the init () method inside the GameScene. cpp
file (as the game will spawn asteroids every 1.0 second. 1.0 is specified as the
interval time, but if it isn't specified, the method will be run for every frame):

this->schedule
(schedule selector (GameScreen: :spawnAsteroid), 1.0);

Implement the spawnAsteroid (float dt) method:

void GameScreen: :spawnAsteroid(float dt)

{

Size visibleSize = Director::getInstance()->
getVisibleSize() ;

[61]

The Game Sprites

Point origin = Director::getInstance() ->
getVisibleOrigin() ;

int asteroidIndex = (arc4random() % 3) + 1;

__ String* asteroidString = _ String::
createWithFormat ("GameScreen/Asteroid %i.png",
asteroidIndex) ;

Sprite *tempAsteroid = Sprite::create(asteroidString->

getCString()) ;

int xRandomPosition = (arc4random() % (int)
(visibleSize.width - (tempAsteroid->
getContentSize () .width / 2))) + (tempAsteroid->

getContentSize () .width / 2);

tempAsteroid->setPosition (Point (xRandomPosition +
origin.x, -tempAsteroid->getContentSize().height +
origin.y)) ;

asteroids.push back (tempAsteroid) ;
this->addChild (asteroids [asteroids.size () - 1], -1);

}

5. Before implementing the code to check whether an asteroid has gone off the
screen, let's go over what the spawnAsteroid (float dt) method does:

o

Firstly, the visible size and origin are declared and initialized

o

Then, asteroidIndex stores a random number that determines
which asteroid will be spawned (as there are three different asteroids)

Next, the filename for the random asteroid is created using Cocos2d-
x's built-in __string object, and using this, a temporary asteroid
sprite is declared and initialized

The asteroid is then positioned below the screen and randomly along
the x axis

° Then, the asteroid is added to the asteroids' vector

The asteroid is added as a child to the scene

[62]

Chapter 5

6. Finally, add the following code to the update (float dt) method, which
will move the asteroids at the same speed as the speed at which the
background is moving. Then, it will check whether the asteroid has moved
off the screen; if so, it will remove the asteroid from the scene and from the
asteroid's vector:

for (int 1 = 0; 1 < asteroids.size(); i++)

{

asteroids[i] ->setPosition (Point (asteroids[i] ->
getPosition () .x, asteroids[i]->getPosition().y +
(0.75 * visibleSize.height * dt)));

if (asteroids[i]->getPosition() .y >
visibleSize.height * 2)

{
this->removeChild (asteroids[i]) ;
asteroids.erase (asteroids.begin() + 1i);

}
}

The final sprite to be added is the player's spaceship; use the following steps:

1. Declare the player sprite in the GameScene . h file:
cocos2d: :Sprite *playerSprite;

2. Initialize the player sprite within the init () method in the
GameScene. cpp file:

playerSprite = Sprite::create("GameScreen/Space Pod.png") ;

3. Position the player sprite below the pause button centered along the x axis:

playerSprite->setPosition (Point (visibleSize.width / 2,
pauseltem->getPosition() .y - (pauseltem->
getContentSize () .height / 2) - (playerSprite->
getContentSize () .height / 2)));

4. Now add the player sprite as a child to the scene:
this->addChild(playerSprite, -1);

Now that the sprites have been implemented, here are the images of how the
GameScene.h and GameScene. cpp files should look.

[63]

The Game Sprites

The following screenshot shows how the GameScene . h file should look after all the
code has been added by following the previous steps:

H

GoToPauseScene *pSender) ;
GoToGameOverScene(*pSender) ;

update(dt);
spawnAsteroid(dt);
e %> asteroids;

*backgroundSpriteArray[2];
*playerSprite;

The following screenshot shows how the init () method inside GameScene. cpp
should look after all the code has been added by following the previous steps to
initialize the game's sprites:

e visibleSize =
origin

pauseItem = M

pauseTten—» { - 0 1) + origin.x,
() ewidth 7 £) + origin.y));

i) + (visibleSize.height 7 2)));

[64]

Chapter 5

The following screenshot shows how the update () and spawnAsteroid () methods
inside GameScene . cpp should look after all the code has been added by following
the previous steps in order to add the asteroids randomly to provide a gameplay
element to the game:

0t

y »= visibleSize ht + (visibleSize.height / 2) -1)

t({(visibleSize, h / 2) + origin.x, 1 % visibleSize. ht) + (visibleSize.height / 2)));

und t(backgro
visibleSize.h t

().y + (B.75 % visibleSize.h

visibleSize = Di
t origin =

asteroidIndex = (:
g% asteroidStrin » asteroidIndex);

ite xtempAsteroid = Spri (asteroidString-:

xRandomPosition = (() % (10t (visibleSize id-2g vidth / 2))) + (tempAsteroid

xRandomPosition + origin.x, —tempAsteroid-: Y.height + origin.y));

() - 1]

* In this tutorial, although speed was implemented as a magic number
% for general development purposes, this should be avoided and
"S>
#defines or variables should be used.

[65]

The Game Sprites

Finally, this is how our GUI will look:

GL verts:
GL calls:
18.8 / 0.004

b

Summary

This chapter covered sprites, which allow game objects to be added and drawn
within a scene. The sprites added in this chapter will serve as the basis for the
gameplay that will be implemented over the next few chapters. The next chapter
will cover sprite actions that allow sprites to be manipulated, for example, rotation
and scaling, all of which are provided via Cocos2d-x.

[66]

Implementing Actions

This chapter will cover the actions that allow the modification of node properties,
for example, rotating a sprite or moving a menu item.

The contents of this chapter will not be used for the game being
% developed through the course of this book, but it's important to
T have an understanding of these features.

As a personal task, you can figure out how to implement the actions from this
chapter to enhance the game's experience. Here is a start: rotate the asteroids as they
move. This chapter can be thought of as a general-purpose reference guide with no
additional dependencies, but the features that are learned could be implemented as a
separate task in the game to make it more interesting.

The topics covered in this chapter are as follows:
* Actions to manipulate nodes
* Repeating actions

* Sequencing actions

* Animating actions

More information regarding any of the actions covered in this chapter
e can be found at http://www.cocos2d-x.org/wiki/Reference.

Implementing Actions

Actions

Actions allow Cocos2d-x's nodes to be manipulated, such as scaling a sprite.
These actions can be performed once or several times and can be sequenced one
after another. Any object that is a node can use the actions that will be covered
throughout this chapter.

The general code structure for running an action is as follows:

auto action = actionName::create (actionProperties) ;
nodeName->runAction (actionName) ;

Moving
The movement action, as the name suggests, allows a node to move around the

scene over a set period of time that can be specified. There are two types of
movement actions:

* MoveBy: This action moves the specified node relative to its current position.
For example, assume that the node is at (400, 500) and the MoveBy action is
applied with (30, 40) with a duration of 2 seconds; the node will then travel
to (430, 540) from its original position of (400, 500) over a period of 2 seconds
in a linear manner.

The following is the syntax:

auto action = MoveBy::create(duration, Point
(xPosition, yPosition)) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = MoveBy::create (2.0, Point (30, 40));
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = MoveBy::create(2.8, Point{38, 48));

layerSprite—=runAction{action};

* MoveTo: This action moves the specified node relative to the specified
position from its current position. Take this simple example: the node is at
(400, 500) and the MoveTo action is applied with (30, 40) with a duration of 2
seconds; the node will travel to (30, 40) from its original position of (400, 500)
over a period of 2 seconds in a linear manner.

[68]

Chapter 6

The following is the syntax:

auto action = MoveTo::create(duration, Point
(xPosition, yPosition)) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = MoveTo::create (2.0, Point (30, 40));
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = MoveTo::create(2.8, Point(3@, 48)):

playerSprite—=>runAction{action);

This section covered the use of the movement actions, with some simple examples,
and the process of implementing them within a game in order to allow the nodes to
move around the scene.

Jumping
The jumping action, as the name suggests, allows a node to jump around the scene
over a set period of time that can be specified. There are two types of jumping actions:

JumpBy: This action makes the specified node jump relative to its current
position. Take this example: the node is at (400, 500) and the JumpBy action is
applied with (60, 70) with a duration of 2 seconds; jumping five times, with
each jump reaching a height of 45 pixels, the node will jump to (460, 570) from
its original position of (400, 500) over a period of 2 seconds in a linear manner.

The following is the syntax:

auto action = JumpBy::create(duration, Point
(xPosition, yPosition), heightOfEachdump, numberOfJumps) ;

playerSprite->runAction (action) ;

The following is the example's code:

auto action = JumpBy::create (2.0, Point (60, 70), 45, 5);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = Jump icreate(2.8, Point(G@,

playerSprite—s>runfction{action);

[69]

Implementing Actions

* JumpTo: This action makes the specified node jump to a specified position
from its current position. For instance, the node is at (400, 500) and the
JumpTo action is applied with (60, 70) with a duration of 2 seconds; jumping
5 times, with each jump reaching a height of 45 pixels, the node will jump to
(60, 70) from its original position of (400, 500) over a period of 2 seconds in a
linear manner.

The following is the syntax:

auto action = JumpTo::create(duration, Point
(xPosition, yPosition), heightOfEachdump, numberOfJumps) ;

playerSprite->runAction (action) ;

The following is the example's code:

auto action = JumpTo::create (2.0, Point (60, 70), 45, 5);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = JumpTo!:create(2.8, Point(6@8, 7@

playerSprite->runAction{action);

This section covered the use of the jumping actions, with some simple examples,
and the process of implementing them within a game in order to allow nodes to
jump around the scene.

Bezier actions

The Bezier action allows a node to curve around points in a Bezier manner in
the scene over a set period of time that can be specified. There are two types of
Bezier actions:

* BezierBy: This action makes the specified node curve around points relative
to its current position. Take this simple example: the node is at (400, 500)
and the BezierBy action is applied with an end position of (60, 70) with a
duration of 2 seconds around the (0, 300) and (300, 200) points to finish at
(460, 570) from its original position of (400, 500) over a period of 2 seconds
in a linear manner.

The following is the syntax:

ccBezierConfig configName;

configName.controlPoint 1 = Point (xPosition, yPosition);
configName.controlPoint 2 = Point (xPosition, yPosition);
configName.endPosition = Point (xPosition, yPosition);
auto action = BezierBy::create (duration, configName) ;
playerSprite->runAction (action) ;

[70]

Chapter 6

The following is the example's code:

ccBezierConfig bezierConfig;
bezierConfig.controlPoint 1 = Point (0, 300);
bezierConfig.controlPoint 2 = Point (300, 200);
bezierConfig.endPosition = Point (60, 70);

auto action = BezierBy::create (2, bezierConfig) ;
playerSprite->runAction (action) ;

The following is the example's screenshot:

ccBezier(
bezierConfig
bezierConfig
bezierConfig.en:

action = BezierBy::create(2, bezierConfig};
pl Sprite—=runActicn{action);

BezierTo: This action makes the specified node curve around points to end
up at the specified position. Take this simple example: the node is at (400,
500) and the BezierTo action is applied with an end position of (60, 70) with
a duration of 2 seconds around the (0, 300) and (300, 200) points to finish at
(60, 70) from its original position of (400, 500) over a period of 2 seconds in a
linear manner.

The following is the syntax:

ccBezierConfig configName;

configName.controlPoint 1 = Point (xPosition, yPosition);
configName.controlPoint 2 = Point (xPosition, yPosition);
configName.endPosition = Point (xPosition, yPosition) ;
auto action = BezierTo::create (duration, configName) ;
playerSprite->runAction (action) ;

The following is the example's code:

ccBezierConfig bezierConfig;
bezierConfig.controlPoint 1 = Point (0, 300);
bezierConfig.controlPoint 2 = Point (300, 200);
bezierConfig.endPosition = Point (60, 70);

auto action = BezierTo::create(2, bezierConfig) ;
playerSprite->runAction (action) ;

[71]

Implementing Actions

The following is the example's screenshot:

bezierConfig
bezierConfig.c

bezierConfig

acti ierTol:: bezierConfig);
playerSprite ion(action);

This section covered the use of the Bezier actions, with some simple examples,
and the process of implementing them within a game to curve nodes around points.

Placing

The place action allows a node to be placed at a specific point within the scene.
There is a single place action—Place. This action allows you to specify where the
node should be placed and places it at that location. For example, a node needs to be
placed at (40, 50) within the scene.

The following is the syntax:

auto action = Place::create(Point (xPosition, yPosition)) ;
playerSprite->runAction (action) ;

This example can be accomplished using the following code:

auto action = Place::create(Point (40, 50));
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = Place::create(Point(48, 58));

playerSprite—=runAction{action);

This section covered the use of the place action, which allows nodes to be instantly
positioned to a set location, essentially the same as setting the node's position.

Scaling
The scaling action, as the name suggests, allows a node to be scaled, essentially

resizing it over a set period of time that can be specified, from its current size.
There are two types of scaling actions as follows:

[72]

Chapter 6

ScaleBy: This action scales the specified node relative to its current size.
Take this simple example: if the node is at size (100, 200) and the ScaleBy
action is applied with (2, 3) with a duration of 2 seconds, the node will scale
to (200, 600) from its original size of (100, 200) over a period of 2 seconds in a
linear manner:

The following is the syntax:

auto action = ScaleBy::create(duration, xScale, yScale);
playerSprite->runAction (action) ;

The following is the example's code:

auto action = ScaleBy::create(2, 2, 3);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = ScaleBy::create(2,

playerSprite—>runActionf{action);

ScaleTo: This action scales the specified node relative to its original size.

For example, if the node is at size (100, 200) and the ScaleTo action is applied
with (2, 3) with a duration of 2 seconds, the node will scale to (200, 600) from
its original size of (100, 200) over a period of 2 seconds in a linear manner.

If the action is applied again, node's size will not change, as the ScaleTo
method scales relative to the node's original size and not the current size:

The following is the syntax

auto action = ScaleTo::create(duration, xScale, yScale);
playerSprite->runAction (action) ;

The following is the example's code:

auto action = ScaleTo::create(2, 2, 3);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = ScaleTozicreate(2, 2, 3);

playerSprite—=runfction{action);

If the scaleBy method was applied several times, it would scale the node each time.
However, the scaleTo method wouldn't as this method is relative to the node's
original size, so applying the same scale over and over again wouldn't change the
node's scale unless it had been explicitly changed via another action.

[73]

Implementing Actions

This section covered the use of the scaling actions, with some simple examples,
and the process of implementing them within a game to allow nodes to be scaled.

Rotation

The rotation action, as the name suggests, allows a node to be rotated over a set
period of time that can be specified. There are two types of rotation actions:

* RotateBy: This action rotates the specified node relative to its current
rotation. Take this simple example: if the node is rotated by 45 degrees and
the RotateBy action is applied with an angle of 90 degrees and a duration of
2 seconds, the node will rotate by 135 degrees from its original rotation of 45
degrees over a period of 2 seconds in a linear manner.

The following is the syntax:

auto action = RotateBy::create(duration, rotationAngle) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = RotateBy::create(2, 90);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = RotateBy::createl(2, 90);

playerSprite—==runAction{action};

* RotateTo: This action rotates the specified node relative to its original
rotation. Take this simple example: the node is rotated by 45 degrees and the
RotateTo action is applied with an angle of 90 degrees and a duration of 2
seconds. The node will rotate to 90 degrees from its original rotation of 45
degrees over a period of 2 seconds in a linear manner.

The following is the syntax:
auto action = RotateTo::create(duration, rotationAngle) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = RotateTo::create (2, 90);
playerSprite-s>runAction (action) ;

[74]

Chapter 6

The following is the example's screenshot:

action = RotateTo::create(2, 98);

playerSprite-=runAction(action);

If the RotateBy method was applied several times, it would rotate the node each
time. However, the RotateTo method wouldn't, as this method is relative to the
node's original rotation, so applying the same rotation over and over again wouldn't
change the node's rotation unless it had been explicitly changed via another action.

This section covered the use of the rotation actions, with some simple examples, and
the process of implementing them within a game to allow nodes to be rotated.

Tinting
The tinting action, as the name suggests, allows a node's color to be tinted over a set
period of time that can be specified. There are two types of tinting actions:

TintBy: This action tints the specified node relative to its current tint color.
For instance, the node has a tint value of (10, 10, 10) RGB color, and the
TintBy action is applied with the color (10, 20, -5) for a duration of 2 seconds.
The node will tint to (20, 30, 5) from its current tint of (10, 10, 10) over a
period of 2 seconds in a linear manner.

The following is the syntax:

auto action = TintBy::create(duration, redValue,
greenValue, blueValue) ;

playerSprite-s>runAction (action) ;

The following is the example's code:

auto action = TintBy::create(2, 10, 20, -5);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = Tint icreate(z,

playerSprite—=runAction{action};

[75]

Implementing Actions

TintTo: This action tints the specified node relative to its original tint color.
For example, the node has a tint value of (10, 10, 10) RGB color, with an
original tint value of (0, 0, 0), and the TintTo action is applied with the color
(10, 20, 5) and a duration of 2 seconds. The node will tint to (10, 20, 5) from its
current tint of (10, 10, 10) over a period of 2 seconds in a linear manner.

The following is the syntax:

auto action = TintTo::create(duration, redValue,
greenValue, blueValue) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = TintTo::create(2, 10, 20, 5);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = TintTo::=create(2,

playerSprite—=runAction{action);

If the TintBy method was applied several times, it would tint the node each time.
However, the TintTo method wouldn't, as this method is relative to the node's
original tint, so applying the same tint over and over again wouldn't change the
node's tint unless it had been changed explicitly via another action.

This section covered the use of the tinting actions, with some simple examples, and
the process of implementing them within a game to allow nodes to be tinted.

Fading
The fading action, as the name suggests, allows a node's opacity to be changed over
a set period of time that can be specified. There are three types of fading actions:

FadeTo: This action fades the specified node relative to its original opacity,
which is 255 (fully visible, with 0 being invisible). Take this simple example:
the node has a FadeTo action applied with the opacity value of 100 and a
duration of 2 seconds. The node will fade to an opacity value of 100 from its
original opacity value of 255 over a period of 2 seconds in a linear manner.

The following is the syntax:

auto action = FadeTo::create(duration, opacity) ;
playerSprite->runAction (action) ;

[76]

Chapter 6

The following is the example's code:

auto action = FadeTo::create(2, 100);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = FadeTo::icre

playerSprite—=runAction(a

FadeIn: This action fades the specified node to full opacity from its current
opacity; this can be used to introduce nodes within a scene. For example,
the node with a current opacity value of 200 has a FadeIn action applied
with a duration of 2 seconds. The node will fade to an opacity value of 255
(fully visible) from its current opacity of 200 over a period of 2 seconds in a
linear manner.

The following is the syntax:

auto action = Fadeln::create (duration) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = Fadeln::create(2);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = FadeIn::create(2);

playerSprite-=runAction{action);

Fadeout: This action fades the specified node to an opacity of 0 (no longer
visible) from its current opacity; this can be used to remove nodes from

a scene. For instance, the node with a current opacity value of 200 has a
FadeOut action applied with a duration of 2 seconds. The node will fade to
an opacity value of 0 (no longer visible) from its current opacity value of 200
over a period of 2 seconds in a linear manner.

The following is the syntax:
auto action = FadeOut::create (duration) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto action = FadeOut::create(2);
playerSprite->runAction (action) ;

[77]

Implementing Actions

The following is the example's screenshot:

action = FadeOut::create(2);|

playerSprite->runAction{action);

This section covered the use of the fading actions, with some simple examples,
and the process of implementing them within a game to allow nodes to be faded.

Skewing

The skewing action allows a node to be skewed by affecting its x and y skew
properties over a set period of time that can be specified. There are two types of
skewing actions:

* skewBy: This action skews the specified node relative to its current x and y
skew properties. Take this simple example: the node is at a skew value of
(2, 1) and the skewBy action is applied with the skew values of (2, 4) and a
duration of 2 seconds. The node will skew to (4, 4) from its current skew of
(2, 1) over a period of 2 seconds in a linear manner.
The following is the syntax:

auto action = SkewBy::create(duration, skewX, skewY);
playerSprite->runAction (action) ;

The following is the example's code:

auto action = SkewBy::create(2, 2, 4);
playerSprite-s>runAction (action) ;

The following is the example's screenshot:

action = SkewBy::create(2, 2

playerSprite—=runfction(action);

* skewTo: This action skews the specified node relative to its original x and y
skew properties. Take this simple example: the node is at a skew value of
(2, 1) and the skewTo action is applied with the skew values of (2, 4) and a
duration of 2 seconds. The node will skew to (2, 4) from its current skew of
(2, 1) over a period of 2 seconds in a linear manner.

The following is the syntax:

auto action = SkewTo::create(duration, skewX, skewY) ;
playerSprite->runAction (action) ;

[78]

Chapter 6

The following is the example's code:

auto action = SkewTo::create(2, 2, 4);
playerSprite->runAction (action) ;

The following is the example's screenshot:

action = Skew reate(2, 2, 4);

playerSprite->run {action);

If the skewBy method was applied several times, it would skew the node each time.
However, the skewTo method wouldn't, as this method is relative to a node's original
skew properties, so applying the same skew over and over again wouldn't change
the node's skew unless it had been changed explicitly via another action.

This section covered the use of the skewing actions, with some simple examples,
and the process of implementing them within a game to allow nodes to be skewed.

Repeating
The repeat action, as the name suggests, allows a single action to be repeated.
There are two types of repeat actions:

Repeat: This action repeats an action for a set number of times which is
specified. For example, a node at a rotation of 10 degrees has a Repeat
action applied, which consists of a RotateBy (2, 45) action and is set to
be repeated three times; after 6 seconds, the node will be at a rotation of
145 degrees:

The following is the syntax:

auto action = Repeat::create(actionToRepeat,
numberOfTimesToRepeat) ;

playerSprite->runAction (action) ;

The following is the example's code:

auto rotateAction = RotateBy::create(2, 45);
auto action = Repeat::create(rotateAction, 3);
playerSprite->runAction (action) ;

The following is the example's screenshot:

rotateAction

action = Repeat::create(rotatefAction,
playerSprite->runActionf{action);

[79]

Implementing Actions

RepeatForever: This action repeats an action forever. Take this simple
example: a node at a rotation of 10 degrees has a RepeatForever action
applied, which consists of a RotateBy (2, 45) action; the node will rotate
45 degrees every 2 seconds:

The following is the syntax:

auto action = RepeatForever::create (actionToRepeat) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto rotateAction = RotateBy::create (2, 45);
auto action = RepeatForever::create (rotateAction);
playerSprite->runAction (action) ;

The following is the example's screenshot:

rotateAction

action = RepeatForever::create(rotateAction);
playerSprite—>runAction{action);

This section covered the use of the repeat actions, with some simple examples,
and the process of implementing them within a game to allow node actions to
be repeated.

Sequencing

If you were to run multiple actions one after the other, they would all start at the
same time; this, in certain circumstances, may produce the desired effect. But

in certain instances, the need arises for an action to be performed only once the
previous action has finished, for example, moving a sprite to a specified location
and then scaling it to fit its container. This can be achieved using the Sequencing
action, which essentially contains any combination of the previous actions covered.
There is a single sequence action as follows:

Sequence: This action performs each action specified one after another,

after the previous one has finished. Take this simple example: a node has a
sequence action applied, which consists of a rotate action and a movement
action. First, the sprite will rotate to the desired angle over the set time period
and then move to the set location over the set period of time. The crucial
aspect is that an action can only start if the previous action has finished.

[80]

Chapter 6

The following is the syntax:

auto action = Sequence::create(actionl, action2, NULL) ;
playerSprite->runAction (action) ;

The following is the example's code:

auto rotateAction = RotateBy::create (2, 45);
auto moveAction = MoveTo::create (35, Point (400, 500));

auto action = Sequence::create (rotateAction,
moveAction, NULL) ;

playerSprite->runAction (action) ;
The following is the example's screenshot:

rotateAction
moveAction = P

create(rotateAction, moveAction,
onf{action);

This section covered how to sequence actions one after another to allow multiple

actions to be applied, but only one of them is run at any given time.

Animation

Until now, all the actions that have been applied have been done so in a linear

fashion. For example, when a MoveBy action was applied, it would move at a

constant speed throughout; this could be overcome by sequencing several movement
actions to provide the illusion of momentum, for instance. However, this is very

inefficient and extremely tedious. Cocos2d-x provides an immense number of

animations, all of which can be found in Cocos2d-x's API guide at http://www.
cocos2d-x.org/wiki/Reference. This section will cover a single example, which

will be a great basis for moving forward:

The following is the syntax:

auto action = ActionName: :create (actionProperties) ;
playerSprite->runAction (Animation(action)) ;

The following is the example's code:

auto action = MoveTo::create (35, Point (400, 500));
playerSprite->runAction (EaseBounceInOut: :create (action)) ;

[81]

Implementing Actions

The following is the example's screenshot:

35, Point{488, 588));

playerSprite~=runAction({EaseBounceInOut::createfaction)]);

The preceding example will move the node, but it will bounce at the start and at the
end of the action. These animations can be useful to provide the illusion of gravity
or momentum, for example. This section covered what animations are in relation to
actions and how they can be implemented.

Summary

This chapter covered a lot of in-depth topics around the concept of the actions

that can be applied to nodes. These actions allow the properties of a node to be
manipulated; although these were not implemented within the game, they are still
important. Here is a little task: implement some of the actions in the game, such as
making the asteroids rotate or even scale. Experiment and see what can be achieved
using these actions. Until now, the game has no gameplay interaction, but in the
next chapter, touch controls will be implemented to provide the user with the
functionality to move the space pod.

[82]

Moving the Space Pod
Using Touch

This chapter will cover how to set up touch events within our game. So far,

the game has had no user interaction from a gameplay perspective. This chapter
will rectify this by adding touch controls in order to move the space pod and avoid
the asteroids.

The topics that will be covered in this chapter are as follows:

* Implementing touch

[e]

Single-touch
° Multi-touch

* Using touch locations

* Moving the spaceship when touching the screen
There are two main routes to detect touch provided by Cocos2d-x:

* Single-touch: This method detects a single-touch event at any given time,
which is what will be implemented in the game as it is sufficient for most
gaming circumstances

* Multi-touch: This method provides the functionality that detects multiple
touches simultaneously; this is great for pinching and zooming; for example,
the Angry Birds game uses this technique

Though a single-touch will be the approach that the game will incorporate,
multi-touch will also be covered in this chapter so that you are aware of how
to use this in future games.

Moving the Space Pod Using Touch

The general process for setting up
touches

The general process of setting up touch events, be it single or multi-touch,
is as follows:
Declare the touch functions.
Declare a listener to listen for touch events.
3. Assign touch functions to appropriate touch events as follows:
° When the touch has begun
° When the touch has moved
° When the touch has ended

Implement touch functions.

5. Add appropriate game logic/code for when touch events have occurred.

Single-touch events

Single-touch events can be detected at any given time, and for many games this is
sufficient as it is for this game.

Follow these steps to implement single-touch events into a scene:

1. Declare touch functions in the GameScene . h file as follows:

bool onTouchBegan (cocos2d: :Touch *touch, cocos2d::
Event * event) ;

void onTouchMoved (cocos2d: :Touch *touch, cocos2d::
Event * event) ;

void onTouchEnded (cocos2d: :Touch *touch, cocos2d::
Event * event) ;

void onTouchCancelled (cocos2d: :Touch *touch, cocos2d::
Event * event) ;

This is what the GameScene . h file will look like:

onTouchBegan({cocos2d: :Touch *touch, c
1::Touch *touch, co tEvent = event);

onTouchEnded {coco ::Touch #touch, coco : t * event);
onTouchCancelled(cocos2d: : Touch #touch, cocos: vent % event);

[84]

Chapter 7

The previous functions do the following:

o

The onTouchBegan function detects when a single-touch has
occurred, and it returns a Boolean value. This should be true if the
event is swallowed by the node and false indicates that it will keep
on propagating.

The onTouchMoved function detects when the touch moves.

The onTouchEnded function detects when the touch event has ended,
essentially when the user has lifted up their finger.

The onTouchCancelled function detects when a touch event has
ended but not by the user; for example, a system alert. The general
practice is to call the onTouchEnded method to run the same code,
as it can be considered the same event for most games.

Declare a Boolean variable in the GameScene . h file, which will be true if the
screen is being touched and false if it isn't, and also declare a float variable
to keep track of the position being touched:

bool isTouching;
float touchPosition;

This is how it will look in the GameScene . h file:

1sTouching;

touchPosition;

Add the following code in the init () method of GameScene. cpp:

auto listener = EventListenerTouchOneByOne::create() ;
listener->setSwallowTouches (true) ;
listener->onTouchBegan = CC_CALLBACK 2

(GameScreen: :onTouchBegan, Ehis); B
listener->onTouchMoved = CC CALLBACK 2

(GameScreen: :onTouchMoved, Ehis); B
listener->onTouchEnded = CC CALLBACK 2

(GameScreen: :onTouchEnded, Ehis); B
listener->onTouchCancelled = CC CALLBACK 2
(GameScreen: :onTouchCancelled, Ehis); B
this->getEventDispatcher () -
>addEventListenerWithSceneGraphPriority (listener, this);
isTouching = false;

touchPosition = 0;

[85]

Moving the Space Pod Using Touch

This

is how it will look in the GameScene . cpp file:

listene

listener-»se

listener—s«
listener—

4. Ther

[}

aphPriority(listener,

e is quite a lot of new code in the previous code snippet, so let's run

through it line by line:

o

o

5. Impl

bool
coco

{

}

void

The first statement declares and initializes a listener for a single-touch

The second statement prevents layers underneath from where the
touch occurred by detecting the touches

The third statement assigns our onTouchBegan method to the
onTouchBegan listener

The fourth statement assigns our onTouchMoved method to the
onTouchMoved listener

The fifth statement assigns our onTouchEnded method to the
onTouchEnded listener

The sixth statement assigns our onTouchCancelled method to the
onTouchCancelled listener

The seventh statement sets the touch listener to the event dispatcher
so the events can be detected

The eighth statement sets the isTouching variable to false as the
player won't be touching the screen initially when the game starts

The final statement initializes the touchPosition variable to 0

ement the touch functions inside the GameScene. cpp file:

GameScreen: :onTouchBegan (cocos2d: : Touch *touch,
s2d: :Event * event)

isTouching = true;
touchPosition = touch-s>getLocation() .x;

return true;

GameScreen: :onTouchMoved (cocos2d: : Touch *touch,

[86]

Chapter 7

cocos2d: :Event * event)

{
}

// not used for this game

void GameScreen: :onTouchEnded (cocos2d: : Touch *touch,
cocos2d: :Event * event)

{
}

isTouching = false;

void GameScreen: :onTouchCancelled (cocos2d: :Touch *touch,
cocos2d: :Event * event)

{
}

The following is what the GameScene . cpp file will look like:

onTouchEnded (touch, event) ;

h *touch, « nt #* event)

eScreen: :onTouchMoved [coce ‘ouch xtouch, co 2 nt * event)

t * event)

1z sonTouchCancelled(c 1 :Touch #touch,

onTouchEnded (touch, event);

6. Let's go over the touch functions that have been implemented previously:

o

The onTouchBegan method will set the isTouching variable to true
as the user is now touching the screen and is storing the starting
touch position

The onTouchMoved function isn't used in this game but it has been
implemented so that you are aware of the steps for implementing it
(as an extra task, you can implement touch movement so that if the
user moves his/her finger from one side to another direction, the
space pod gets changed)

[87]

Moving the Space Pod Using Touch

[e]

The onTouchEnded method will set the isTouching variable to false
as the user is no longer touching the screen

[e]

The onTouchCancelled method will call the onTouchEnded method
as a touch event has essentially ended

7. If the game were to be run, the space pod wouldn't move as the movement
code hasn't been implemented yet. It will be implemented within the
update () method to move left when the user touches in the left half of the
screen and move right when user touches in the right half of the screen.
Add the following code at the end of the update () method:

// check if the screen is being touched
if (true == isTouching)
{
// check which half of the screen is being touched
if (touchPosition < visibleSize.width / 2)
{
// move the space pod left
playerSprite->setPosition() .x(playerSprite-
>getPosition().x - (0.50 * visibleSize.width * dt));

// check to prevent the space pod from going off
the screen (left side)
if (playerSprite->getPosition().x <= 0 +
(playerSprite->getContentSize () .width / 2))
{
playerSprite->setPositionX (playerSprite-
>getContentSize () .width / 2);
}
}
else
{
// move the space pod right
playerSprite->setPosition() .x(playerSprite-
>getPosition().x + (0.50 * visibleSize.width * dt));

// check to prevent the space pod from going off the
screen (right side)
if (playerSprite->getPosition() .x >=
visibleSize.width - (playerSprite->
getContentSize () .width / 2))
{
playerSprite->setPositionX (visibleSize.width -
(playerSprite->getContentSize () .width / 2));
}
}

[88]

Chapter 7

The following is how this will look after adding the code:

50 % visibleSize.w

The preceding code performs the following steps:

Ll N

5.

Checks whether the screen is being touched.
Checks which side of the screen is being touched.
Moves the player left or right.

Checks whether the player is going off the screen and if so, stops
him/her from moving.

Repeats the process until the screen is no longer being touched.

This section covered how to set up single-touch events and implement them within
the game to be able to move the space pod left and right.

Multi-touch events

Multi-touch is set up in a similar manner of declaring the functions and creating a
listener to actively listen out for touch events.

Follow these steps to implement multi-touch into a scene:

1. Firstly, the multi-touch feature needs to be enabled in the AppController.mm
file, which is located within the ios folder. To do so, add the following code
line below the viewController.view = eaglView; line:

[eaglView setMultipleTouchEnabled: YES];

[89]

Moving the Space Pod Using Touch

The following is what the AppController.mm file will look like:

- Japplication:(#*)application didFinishLaunchingWithOptions:(#*)launchOptions {

()==run{);

2. Declare the touch functions within the game scene header file (the functions
do the same thing as the single-touch equivalents but enable multiple touches
that can be detected simultaneously):

void onTouchesBegan (const std::vector<cocos2d::Touch *>
&touches, cocos2d::Event *event) ;

void onTouchesMoved (const std::vector<cocos2d::Touch *>
&touches, cocos2d::Event *event) ;

void onTouchesEnded (const std::vector<cocos2d::Touch *>
&touches, cocos2d::Event *event) ;

void onTouchesCancelled(const std::vector<cocos2d::Touch *>
&touches, cocos2d::Event *event) ;

The following is what the header file will look like:

onTouchesBegan (5. *= &touches,
onTouchesMoved (*= Etouches,

onTouchesEnded (1 EVET #=> &touches, :
onTouchesCancelled(£ T h #= &touches, *event);

Chapter 7

3. Add the following code in the init () method of the scene. cpp file to listen
to the multi-touch events that will use the EventListenerTouchAllAtOnce
class, which allows multiple touches to be detected at once:

auto listener = EventListenerTouchAllAtOnce: :create() ;
listener->onTouchesBegan = CC_CALLBACK 2

(GameScreen: :onTouchesBegan, this);
listener->onTouchesMoved = CC CALLBACK 2

(GameScreen: :onTouchesMoved, Ehis); h
listener->onTouchesEnded = CC_CALLBACK 2

(GameScreen: :onTouchesEnded, this);
listener->onTouchesCancelled = CC CALLBACK 2
(GameScreen: :onTouchesCancelled, Ehis); h
this->getEventDispatcher () -
>addEventListenerWithSceneGraphPriority (listener, this);

The following is how this will look:

listen
listener—=onT
listener=:
listener-=onT
listener—sonT

==getE

4. Implement the following multi-touch functions inside the scene. cpp:

void GameScreen: :onTouchesBegan (const std::
vector<cocos2d: : Touch *> &touches, cocos2d::Event *event)

CCLOG ("Multi-touch BEGAN") ;

void GameScreen: :onTouchesMoved (const std::
vector<cocos2d: : Touch *> &touches, cocos2d::Event *event)

{

for (int 1 = 0; 1 < touches.size(); 1i+4+)
CCLOG ("Touch %i: %f", i, touches[i]-
>getLocation () .x) ;

void GameScreen: :onTouchesEnded (const std::
vector<cocos2d: : Touch *> &touches, cocos2d::Event *event)

CCLOG ("MULTI TOUCHES HAVE ENDED") ;

[91]

Moving the Space Pod Using Touch

void GameScreen: :onTouchesCancelled(const std::
vector<cocos2d: : Touch *> &touches, cocos2d::Event *event)

{

CCLOG ("MULTI TOUCHES HAVE BEEN CANCELLED") ;

}
The following is how this will look:

onTcuchesﬂegan{ tdz: r 2 Touch #> &touches, c

¥

GameScreen::onTouchesMoved(iz iz:Touch #*= &touches, coc vent sevent)
{ i = 8; i < touches. (); i++)

, i, touches[i]->get

onTouchesEnded (- iz:Touch #*> &touches, coc vent #event)

);

onTouchesCancelled(aiz t L ich #= &touches, nt #event)

5. The multi-touch functions just print out a log, stating that they have
occurred, but when touches are moved, their respective x positions
are logged.

This section covered how to implement core foundations for multi-touch events
so that they can be used for features such as zooming (for example, zooming into
a scene in the Clash Of Clans game) and panning. Multi-touch wasn't incorporated
within the game as it wasn't needed, but this section is a good starting point to
implement it in future games.

Summary

This chapter covered how to set up touch listeners to detect touch events for
single-touch and multi-touch. We incorporated single-touch within the game to
be able to move the space pod left or right, depending on which half of the screen
was being touched. Multi-touch wasn't used as the game didn't require it, but its
implementation was shown so that it can be used for future projects. The next
chapter will cover how to implement collision detection to add the final gameplay
element so that the asteroids can collide with the player.

[92]

Collision Detection

This chapter will cover how Cocos2d-x handles collision detection. This will be used
to detect collisions between the space pod and asteroids. There are several methods
that can be used but fortunately, over the years, Chukong Technologies has refined
Cocos2d-x to incorporate a great physics engine. This is built on top of the existing
and popular Chipmunk engine while simplifying its implementation, but the
extensively used physics engine Box2d can also be used with Cocos2d-x.

Topics covered in this chapter are as follows:

* What is collision detection?
* Setting up collision detection

* Implementing collision detection

Collision detection

Before implementing collision detection in our game, let's go over what collision
detection actually is. Collision detection is the process of determining whether two
or more objects have collided using mathematical computations. Fortunately, we
won't have to implement this manually.

Player collision detection

The only collision detection that needs to be performed is between the players,
the space pod, and the moving asteroids that the player has to avoid. If the player
collides with an asteroid, then the game will transition to the Game Over scene.

Collision Detection

Setting up collision detection

In the GameScene . h file, add the following lines:

void setPhysicsWorld (cocos2d: :PhysicsWorld* world)

{

mWorld = world;
mWorld-s>setGravity (cocos2d: :Vect (0, 0));

bool onContactBegin (cocos2d: :PhysicsContact& contact) ;
cocos2d: :PhysicsWorld* mWorld;

The first statement declares and initializes the physics world method that assigns the
physics world and sets the gravity to 0 because the game doesn't require gravity as
it's in space. So, the physics engine will simply be used for collision detection.

The second statement declares the onContactBegin () method that will be called
when a collision has taken place.

The third statement creates the local physics world.

The Gamescene . h file should look like the following screenshot once the preceding
code has been added to the header:

GameScreen :

GoToPauseScene(Ref *pSender);
GoToGameOverScene(ReT *pSender);

update(dt);

spawnAsteroid(dt);

onTouchBegan *touch, #* event);
onTouchMoved *touch, 1t * event);
onTouchEnded *touch, it * event);

onTouchCancelled ch #touch, t * event);

isTouching;
touchPosition;

setPhysicsWorld(
onContactBegin(ce

%= asteroids;

backgroundSpriteArray[2];
playerSprite;

* mWorld;

[94]

Chapter 8

Implementing the collision detection

The next step is to implement the physics into the GameScene. cpp file using the
following steps:

1. Modify the init () method as follows:

° Change auto scene = Scene::create(); toauto scene =
Scene: :createWithPhysics () ;

° Add layer-s>setPhysicsWorld (scene->getPhysicsWorld()) ;
below the layer declaration

The following screenshot is how the GameScene . cpp file will look after
these modifications:

2. Add the following code lines after the player sprite initialization inside the
init () method:

auto body = PhysicsBody: :createCircle
(playerSprite->getContentSize () .width / 2);
body->setContactTestBitmask (true) ;
body->setDynamic (true) ;
playerSprite-s>setPhysicsBody (body) ;

The following screenshot is what the updated GameScene . cpp file will
look like:

- (pauseltem—=g

£ 2)));

[95]

Collision Detection

Let's go over the preceding code lines that have just been added:

o

The first statement creates a physics body for the space pod, which
will be a circle for the purpose of this game

The second statement sets the body up for collision detection

The final statement assigns the body to the player's sprite

3. Add the following code lines before the return statement inside the
init () method:
auto contactListener =
EventListenerPhysicsContact: :create() ;

contactListener->onContactBegin =
CC_CALLBACK 1 (GameScreen::onContactBegin, this);

this->getEventDispatcher () ->
addEventListenerWithSceneGraphPriority (contactListener, this);

The following screenshot is how this will look in the file:

contactListen

contactListene i F "Bl i legin,):
==getEventDi contactListener, I

4. The previous code adds a listener to actively listen for collisions; if a collision
is detected, the onContactBegin method will be called.

5. Using the following code, add a physics body for the asteroids every
time they are spawned. Add this after pushing the asteroid to the
asteroids' vector.
auto body =

PhysicsBody: :createCircle (asteroids [asteroids.size() - 1]1->
getContentSize () .width / 2);

body->setContactTestBitmask (true) ;
body->setDynamic (true) ;
asteroids [asteroids.size() - 1]->setPhysicsBody (body) ;

The following screenshot is how the file will look after adding the
preceding code:
tempAsteroid-=setPosition{Point (xRandomPosition + origin.x, -tempAsteroid-=getContentSize().height + origin.y));

asteroids.pt (tempAsteroid) ;
body = cle{asterocids[ast -5 {) - 1l-=getContentSizel).width / 2);

body-=
body—=

iy (body) ;

Nothing is done differently for the asteroid body than the space pod
= apart from changing the size and position.

[96]

Chapter 8

6. The final step is to implement the onContactBegin method, which will call
the GoToGameOverScene method that was implemented earlier in the book:

bool GameScreen::onContactBegin (PhysicsContact& contact)

{

GoToGameOverScene (this) ;

return true;

}

Though only circular collision detection was used in this chapter as it was sufficient,
when using more complex objects and shapes, the need for better and bespoke
shapes can arise, and then tools such as PhysicsEditor can be used to create custom
shapes. PhysicsEditor is an amazing tool that allows you to create custom shapes
using the built-in tracer or manipulating the physics body shape using a mouse.

Summary

This chapter covered how Cocos2d-x handles physics using its own physics
implementation built on top of the Chipmunk physics engine. Then, the scene
was modified to run using physics. Once the physics world was set up, we
implemented physics listeners and bodies to detect collisions between the player's
space pod and the asteroids. The next chapter will cover how to add audio to the
game when certain conditions are triggered, for example, when the player dies by
colliding with an asteroid.

[97]

Adding Audio to the Game

This chapter will cover how Cocos2d-x handles the implementation of audio within
a game. We will also cover the different types of audio available for use and how to
implement them using sound files that will be provided. The sound will be played
when certain conditions are met and methods are triggered.

The topics covered in this chapter are as follows:

Loading sound effects

Playing sound effects

Loading background music
Playing background music
Additional sound effect features

Additional background music features

Cocos2d-x along with many other engines supports two main types of audio
implementation. They are as follows:

Sound effects: This is used to play a short file, which could be repeated
several times. For example, clicking on a button or collecting pickups.

Music: This is used to play music files that are large and mainly designed for
background music, and usually only one is played at any given time.

Firstly, add the sound files to your Resources folder inside a sound folder (the
sound folder isn't necessary but helps with file organization). Then, add the sound
folder to the game project. This process is very similar to adding the images as we
did earlier in the book.

Adding Audio to the Game

The next few sections will cover audio implementation within our project
(Cocos2d-x only supports MP3 and WAV formats for cross-platform support
but the OGG format is supported on Android).

Loading and playing sound effects

This section will cover how to use Cocos2d-x to load and play back sound effects
within our game when certain conditions that have already been implemented
throughout the course of this book are triggered.

The following are the main steps to play sound effects:

1. Include sound header.
2. Preload sound effect file (usually in the init () method).

3. Play sound effect when appropriate.

Adding sound effects

There will be two main sound effects that will be played throughout the game:
* Button-click sound effect: This will be played whenever a menu button
is clicked excluding the pause button

* Crash sound effect: This will be played when the player's space pod collides
with an asteroid

Adding the menu-button-click sound effect
Let's add the menu-button-click sound effect in the MainMenuScene. cpp file using
the code explained in the following steps, which follows the steps given in the
Loading and playing sound effects section:
1. Add the sound header to the top of the file:
#include "SimpleAudioEngine.h"

This is how the MainMenuScene . cpp file will look after adding the preceding
header file:

#include
#include

#include

[100]

Chapter 9

2. Preload the sound effect inside the init () method (make sure when the
resource files are added, they are added as a reference and not as a group):

CocosDenshion: :SimpleAudioEngine: :getInstance() ->
preloadEffect ("audio/ButtonClick.wav") ;

This is how the preceding code will look in the MainMenuScene. cpp file:

CocosDenshion: :SimpleAudioEngine: :getInstance()—>preloadEffect(

The audio engine doesn't belong to the Cocos2d-x namespace as

it is an optional module. This allows other sound engines such as
’ FMOD to be used.

3. Play the sound effect in the GoToGameScene method:

CocosDenshion: :SimpleAudioEngine: :getInstance () ->
playEffect ("audio/ButtonClick.wav") ;

This is how the preceding code will look in the MainMenuScene. cpp file:
MainMenu: : GoToGameScene(co tRef *pSender)
CocosDenshion::5il AudicEngine: :getInstance()—=playEffect(
scene = GameScreen::crea

Director::getInstance()-=>repl

A

Before adding the crash sound effect, add all the other instances of the button-click
sound effect using the preceding steps. The following is a list of all the places it needs
to be played:

* The play button in the Main Menu scene (we just implemented it)

* The resume, main menu, and retry buttons in the Pause scene

* The retry and main menu buttons in the Game Over scene

Adding the crash sound effect

Now let's add the crash sound effect using the same steps for the button-click sound
effect. Add the code shown in the following steps in the GameScene. cpp file:

1. Add the sound header to the top of the file:
#include "SimpleAudioEngine.h"

[101]

Adding Audio to the Game

This is how it will look in the GameScene. cpp file:

2. Preload the sound effect inside the init () method:

CocosDenshion: :SimpleAudioEngine: :getInstance () ->
preloadEffect ("audio/Crash.wav") ;

This is how the preceding code will look in the GameScene . cpp file:

vion: :SimpleAudioEngine: :getInstance()-=preloadEffect (

3. Play the sound effect in the onContactBegin () method:

CocosDenshion: :SimpleAudioEngine: :getInstance () ->
playEffect ("audio/Crash.wav") ;

This is how the preceding code will look in the GameScene . cpp file:

GameScreen: :onContactBegin(Physic tact& contact)

CocosDenshion:z :SimpleAudioEngine: rgetln: cel)—=playEffect(

GoToGameOverScene ();

This section covered how to preload sound effect files and play them using
Cocos2d-x. Then, button-click and crash sound effects were implemented in the
game. There are other features that can be used for sound effects that will be
covered in the next section.

Additional sound effect features

The previous section covered loading and playing sound effect files, but there are a
few other things that can be done with sound effects. Some of them will be covered
in this section, with the rest being accessible via Cocos2d-x's reference page.

[102]

Chapter 9

Though sound effect files are small, they can be paused and resumed using the
following code:

CocosDenshion: :SimpleAudioEngine: :getInstance () ->
pauseEffect (soundID) ;
CocosDenshion: :SimpleAudioEngine: :getInstance() ->
resumeEffect (soundID) ;

The sound1D variable is an unsigned integer, which is assigned the return value
of a sound effect being played, for example:

unsigned int id;

id = CocosDenshion::SimpleAudioEngine: :getInstance () -

>splayEffect ("audio/ButtonClick.wav") ;

CocosDenshion: :SimpleAudioEngine: :getInstance () ->pauseEffect (id) ;
CocosDenshion: :SimpleAudioEngine: :getInstance () ->resumeEffect (id) ;

The volume of a sound effect playback can be set ranging from 0 to 1, using the
following code:

CocosDenshion: :SimpleAudioEngine: :getInstance () ->
setEffectsVolume (0.5) ;

This section was an overview of some of the additional features for sound effects
provided by Cocos2d-x.

Loading and playing background music

This section will cover how to use Cocos2d-x to load and play background music
within our game to add an extra dimension to the game.

The following are the main steps to play background music:

1. Include sound header.
2. Preload background music file (usually in the init () method).

3. Play background music, usually at the start of a scene in the init () method.

Adding background music

Let's add background music to the MainMenuScene . cpp file:

1. Add the sound header to the top of the file (we have already added it for the
button-click sound effect):

#include "SimpleAudioEngine.h"

[103]

Adding Audio to the Game

The following is how it will look in the MainMenuScene . cpp file:

2. Check whether the background music is already playing. If it isn't, preload
the background music file and play it on repeat (add true to repeat, after
specifying the audio file in the play method). Add the following code inside
the init () method:

if (CocosDenshion::SimpleAudioEngine::getInstance()->

isBackgroundMusicPlaying () == false)

{
CocosDenshion: :SimpleAudioEngine: :getInstance () ->
preloadBackgroundMusic ("audio/Music.mp3") ;
CocosDenshion: :SimpleAudioEngine: :getInstance () ->
playBackgroundMusic ("audio/Music.mp3", true)

}

The following is how it will look in the MainMenuScene. cpp file:

This section covered how to preload a background music file and play it using
Cocos2d-x by first checking whether the music is already playing. There are other
features that can be used for background music. These will be covered in the

next section.

Additional background music features

The previous section covered loading and playing background music, but there are a
few other features provided by Cocos2d-x for background music. Some of them will be
covered in this section, with the rest being accessible via Cocos2d-x's reference page.

Background music can be paused and resumed as well through Cocos2d-x. This
needs to be done when the application goes to the background. iOS automatically
prevents the music from playing but Android OS doesn't. Modify the AppDelegate.
cpp file using the following steps:

[104]

Chapter 9

1. Add the following code to the applicationDidEnterBackground () method
to pause the music when the application goes to the background. For
example, when the home button is tapped:

CocosDenshion: :SimpleAudioEngine: :getInstance () -
pauseBackgroundMusic () ;

The following is what the preceding code will look like in the AppDelegate.
cpp file:

groundMusic();

2. Add the following code to the applicationWillEnterForeground ()
method to resume the music when the application returns to the foreground.
For example, when the user navigates back to the application from the
device's home screen:

CocosDenshion: :SimpleAudioEngine: :getInstance () -
resumeBackgroundMusic () ;

The following is what the preceding code will look like in the AppDelegate.
cpp file:

::applicationWillEnterForeground() {
[nstance()—=startAnimation();

gpundMusicl);

3. The volume of the background music playback can be set to range from
0 to 1, using the following code:
CocosDenshion: :SimpleAudioEngine: :getInstance() -

setBackgroundMusicVolume (0.5) ;

The following is what the preceding code will look like in the AppDelegate.
cpp file:

CocosDenshion: :SimpleAudioEngine: :getInstance()—>setBackgroundMusicVolume(®.5);

This section was an overview of some of the additional features provided by
Cocos2d-x for background music. These additional features can be used to
enhance the gameplay and create an immersive atmosphere within the game.

[105]

Adding Audio to the Game

Summary

This chapter covered how Cocos2d-x handles audio loading and playback along
with some of the additional features provided such as setting the audio volume.
Sound effects were applied with background music constantly being played in the
background. The next chapter will cover the use of an accelerometer to enable more
dynamic and engaging gameplay for the user.

[106]

10

Implementing Accelerometer
Support

This chapter will cover how to set up accelerometer support within a Cocos2d-x
project using the built-in functions. This chapter can be thought of as a general
purpose reference guide with no additional dependencies.

_ The contents of this chapter will not be used for the game that is being
% developed through the course of this book, but it is still important to
% have an understanding of accelerometer support using Cocos2d-x,
enabling you to implement it in future projects.

The topics covered in this chapter are as follows:

* Setting up the accelerometer
* Detecting motion
* Getting the motion's direction

Many existing games make use of accelerometer support to enhance the gaming
experience. Accelerometers allow the phone/application to detect motion, for example,
tilting a device. Fortunately, Cocos2d-x provides built-in functionalities to set up and
handle motion through the accelerometer. Most devices have accelerometers, so if an
application only supported accelerometer gameplay, it wouldn't have an issue running
on most, if not all, devices.

This isn't to say that other input techniques such as touch should be omitted, as not
all users like motion or touch. Providing multiple avenues of input is the ideal route
to go down when developing games. The touch functionality should be provided

as a minimum requirement as users are more familiar with this kind of input.
Accelerometer support will not be implemented in the game created throughout
this book; you can implement it as an additional feature after reading this chapter.

Implementing Accelerometer Support

Setting up the accelerometer

This section will cover how to use Cocos2d-x to set up the accelerometer support
within a scene in order to enable motion detection. Setting up the accelerometer is
very similar to setting up touch events, as it requires a listener to actively check for
motion that calls the appropriate functions.

The following steps will guide you through the process of implementing
accelerometer support within a game:

1.

Open the scene header file that you would like to add accelerometer
support to, and add the acceleration method that will be called every
time motion is detected:

void onAcceleration (cocos2d: :Acceleration *acc,
cocos2d: :Event *event) ;

The following is how the file will look after adding the preceding code line:

onAcceleration{cocos2d::Acceleration #acc, cocos2d::Event #event);

Add the following code lines inside the init () method of the scene's
implementation file:

Device: :setAccelerometerEnabled (true) ;

auto listener = EventListenerAcceleration::create
(CC_CALLBACK 2 (MainMenu::onAcceleration, this));

Director::getInstance () ->getEventDispatcher () ->
addEventListenerWithSceneGraphPriority (listener, this);

The following is how the file will look after adding the preceding code lines:

Device::setAccele Enabled(Y3
listener = Eventl ALLBACK_2{MainMenu: :onAcceleration, 1);

Director::getInstance()->getEventDispatcher()—>addEventlistenerWithSceneGraphPriority({listener,

Let's go over the code added to the init () method:

° The first statement enables the accelerometer

o

The second statement sets up an acceleration listener to actively
check for motion and call the onAcceleration () method when
motion is detected

The third statement sets the listener to the event dispatcher to pick up
the motion event

[108]

Chapter 10

3. Add the following implementation for the onAcceleration () method:

void MainMenu: :onAcceleration (cocos2d: :Acceleration *acc,
cocos2d: :Event *event)

{

CCLOG ("x = %$f", acc->x);
CCLOG("y = %f", acc->y);
CCLOG ("z = %$f", acc->z);

}

The following screenshot is how the file will look after adding the preceding
code lines:

:Event sevent)

, acc-=x):

. acc—=>yl;
. acc—>z);

The onAcceleration () method that was just implemented simply prints out the
different axes' acceleration values. Using these, you could keep a track of previous
values and check what direction it has moved, to possibly move the space pod.
Use this chapter and implement the accelerometer support into the game as an
additional feature.

Using the preceding code, you can test the accelerometer on a device. The values
received can be stored and compared to see how they change depending on how the
device is moved. This will enable you to determine the range for the implementation of
the desired motion effect within the game, which could be used to move the space pod
using the accelerometer. This could be achieved by storing the acceleration value and
comparing it to the current acceleration and then moving in a particular direction.

Summary

This chapter covered how Cocos2d-x handles motion through the accelerometer
support. However, it wasn't implemented within the game. This chapter serves

as a good foundation for implementing it within the game to move the space pod
using motions such as tilting the device. The next chapter will cover how to solve
some of the common problems you might face when using Cocos2d-x and where to
go from there.

[109]

11

Problem Solving
and What's Next

Congratulations! We have completed the game development. Together, we created
a space game, which tasks the player with avoiding the oncoming asteroids using
touch. This chapter won't add anything to the game in particular but will show you
some of the common pitfalls you will most likely face when developing games using
Cocos2d-x and how to overcome them.

We will cover the following topics in this chapter:

* Common issues when developing games using Cocos2d-x
* Overcoming the issues
* What to do with the skills acquired through the course of the book

Problem solving

This section will cover some of the issues that may plague a Cocos2d-x project;
it will also cover the methods to overcome them.

Removing debug information

A new project, by default, has the debug information situated in the
bottom-left corner of the screen; this information should be disabled before
publishing a game. However, it is still important, so it should only be disabled
once the game development is complete.

Problem Solving and What's Next

The following is what the debug information looks like:

GL verts: 270

GL calls: 4
51.8 7/ 0.015

To remove the debug information, use the following steps:

1. Open AppDelegate.cpp.

2. Change the line director->setDisplayStats (true) ; to director-
>setDisplayStats (false) ;, as shown in the following screenshot:

Positioning on different devices

There are several devices the user can use; therefore, developing for a single device
isn't a practical route, as it would alienate many potential users, thus reducing
revenue. The main problem to avoid is developing using magic numbers (arbitrary
values within the code). For example, for positioning, use relative positioning
instead; this will be dynamic.

Let's look at an example. A background needs to be added to a scene and should
be centered. The developer might be using an iPhone in landscape mode with a
resolution of 480 x 320 pixels; in this case, the developer could set the background
position to (240, 160). This will work well on their device but not on iPhone Retina,
iPad, or most Android devices. Instead, the best method would be to position the
background at (screenSize.width / 2, screenSize.height / 2).Using this
method, the background will be positioned well on all devices. A similar system
should be used for all assets.

Moving an object on different devices

When moving objects on different devices, there can be speed differences; this can be
due to two main problems:

* Frame rate: This problem arises when more powerful devices can run the game
at higher frame rates. This can be overcome by factoring in delta time using an
update () function, as we did when scrolling the game's background.

[112]

Chapter 11

* Screen size: Different screen sizes can cause issues as a moving object could
take longer to move on an iPad Retina compared to an iPad. This can be
overcome by factoring in the screen resolution; width or height can be used,
but it's important to be consistent. This was demonstrated earlier in the book
when scrolling the background.

Trouble generating new projects

When generating new projects, several issues can arise; one of the main causes is that
the setup wasn't successful. Confirm that all the environment variables have been
added by running the setup.py command again.

Reusing actions

If you try and reuse actions on a node, the game will crash. The only way to overcome
this is to create a new action or clone an action (you need to autorelease it for
Cocos2d-x 2.x.x) for each instance instead of trying to reuse it.

Sequencing actions

When running several actions, you might want them to run one after another, that
is, when the previous one has finished running. If multiple actions are run using the
runAction method on a node, they will start as soon as they are called. However, to
run them one after another, the sequence action should be run; this has already been
covered in this book.

Running your application on simulators

A general rule of thumb is to not run applications on Android simulators as they
are terrible; run them on an actual device. For iOS, the simulators are a lot better but
still not as good as a real device, so you should run the application on a real device
if applicable. This is due to certain features such as motion missing from a simulator
and simulators having poor performance. A very good alternative to the Android
simulator is BlueStacks, which is free.

[113]

Problem Solving and What's Next

Application size

Many users think that because the generated application's folder is over 200 MB, the
size of their application will also be 200 MB; it won't as there is all the extra stuff.
An easy way to find it out is to build the project and check the application's size.
However, this doesn't mean you shouldn't try and reduce the application size.

Use the following tips to reduce the application's size:

* Use sprite sheets instead of separate images

* Reduce image size, as high-resolution assets aren't always required for
mobile devices

* Make sure that all the unnecessary files are removed, including duplicates

* Try to avoid big images if they are not needed (images above 1024 x 1024
pixels resolution are not good for cross-platform games)

Breakpoints

This is more of a general tip: use breakpoints when you are having issues, as it
allows individual lines to be tested while being able to check the status of variables
using the console. Using logs (CCLOG) is also a useful technique for debugging.

What's next?

Until now, we discussed some of the issues that may occur when developing using
Cocos2d-x. The best way to overcome them is to check out the tests that are provided
by Cocos2d-x; check out the Cocos2d-x forum, stack overflow, and our YouTube
channel (https://www.youtube.com/user/sonarsystemslimited), which contains
hundreds of tutorials.

Together we created a game from scratch, providing you with the foundation to
create games. The game developed through the course of this book will be available
for iOS and Android for free; it is titled Space Drop Free.

[114]

Chapter 11

So, what's next now that this book is finished? First, this book is a great reference
guide for Cocos2d-x, so it can be used over and over again when implementing
features and trying to recap how they work. Here is a list of things that you could
do as learning tasks:

Implement accelerometer support into the game
Add a scoring feature

Increase the speed of the background as the game progresses, similar to the
Super Jet Bunny game

Add multiple levels

Implement a power up feature

[115]

A

accelerometer
about 107
setting up 108
accelerometer support
about 107
implementing 108
setting up 109
actions
about 68
Bezier action 70-72
fading action 76-78
jumping action 69, 70
movement action 68, 69
place action 72
reference link 67
repeat action 79, 80
reusing 113
rotation action 74,75
scaling action 72,73
sequencing action 80
skewing action 78,79
tinting action 75, 76
addChild() method 41
additional transitions, Cocos2d-x
flip transitions 52
page transitions 53
zoom transitions 53
Android Developer Tools (ADT)
URL 6
animation
about 81, 82
reference link 81
Apache ANT
URL 6

Index

AppDelegate.cpp
refactoring 16, 17
application
running, on simulators 113
application size
reducing, tips 114
audio implementation, Cocos2d-x
music 99
sound effect 99

B

background music
adding 103, 104
features 104, 105
loading 103
playing 103
Bezier action
about 70
BezierBy 70
BezierTo 71
BezierBy action 70
BezierTo action 71, 72
Box2d 93
breakpoint
using 114
button-click sound effect 100

C

Chipmunk engine 93
Cocos2d-JS 5
Cocos2d-x
about 5
additional transitions 52
background music, loading 103

background music, playing 103
C++ 5
collision detection 93
games 5
learning tasks 114, 115
Lua 5
scenes 23
touch 83
transitions, URL 51
URL 6
Cocos2d-x APIs
URL 39
collision detection
about 93
between players 93
collision detection, between players
implementing 95-97
setting up 94
crash sound effect
about 100
adding 101, 102

D

debug information
removing 111, 112
different devices, positioning
example 112

F

Fadeln action 77
FadeOut action 77
FadeTo action 76
fade transition
about 51
instances 52
fading action
about 76
Fadeln 77
FadeOut 77
FadeTo 76
features, background music 104, 105
features, sound effects 102
flip transitions 52

G

Game Over scene

sprites, adding to 58

menus, coding in 47, 48

scenes, coding in 33, 34
Game scene

menus, coding in 43, 44

sprites, adding to 59-65

scenes, coding in 31, 32
GameScene.cpp file

refactoring 25, 26
GameScene.h file

refactoring 25
GoToGameOverScene function 32
GoToGameScene function 30, 34
GoToMainMenuScene function 34, 36
GoToPauseScene function 32

H

HelloWorldScene.cpp
refactoring 14-16
HelloWorldScene.h
refactoring 13, 14
housekeeping
about 13
AppDelegate.cpp, refactoring 16
HelloWorldScene.cpp, refactoring 14
HelloWorldScene.h, refactoring 13

init() method 40

J

JumpBy action 69

jumping action
about 69
JumpBy 69
JumpTo 70

JumpTo action 70

L

Last-In First-Out (LIFO) 27

[118]

Main Menu scene
sprites, adding to 56, 57
menus, coding in 40, 41
scenes, coding in 29
menu-button-click sound effect
adding 100, 101
menu items
about 39
Menu Font item 39
Menu Label item 39
Menu Sprite item 39
menus
about 39
coding, in Game Over scene 47, 48
coding, in Game scene 43, 44
coding, in Main Menu scene 40-42
coding, in PauseScene.h file 45, 46
setting up 39
use cases 40
methods, scenes manipulation
scene, popping 27
scene, pushing 27
scene, replacing 27
use cases 28
motion detection
enabling 108
MoveBy action 68
movement action
about 68
MoveBy 68
MoveTo 68, 69
MoveTo action 68, 69
multiresolution support
implementing 18-21
multi-touch events
detecting, with multi-touch 89
multi-touch method
about 83
implementing 89-92
music, Cocos2d-x 99

N

Native Development Kit (NDK)
URL 6

new projects
generating, issues 113
Non-playable Characters (NPCs) 55

(0

object
moving, frame rate issue 112
moving, screen size issue 113
onAcceleration() method 109
onTouchCancelled function 85
onTouchEnded function 85
onTouchMoved function 85

P

page transitions 53
Pause scene
menus, coding in 45, 46
scenes, coding in 35, 36
sprites, adding to 58, 59
place action 72
prerequisites, Cocos2d-x project setup
Android Developer Tools (ADT) 6
Apache ANT 6
Cocos2d-x 6
Native Development Kit (NDK) 6
problem solving methods, Cocos2d-x project
about 111
actions, reusing 113
actions, sequencing 113
application, running on simulators 113
application size, reducing 114
breakpoints, using 114
debug information, removing 111, 112
different devices, positioning 112
new project, generating issues 113
objects, moving on different devices 112
project, Cocos2d-x
prerequisites 6
setting up 6-12

R

repeat action
about 79, 80
Repeat 79
RepeatForever 80

[119]

RepeatForever action 80
Retry function 36
RotateBy action 74
RotateTo action 74,75
rotation action

RotateBy 74

RotateTo 74, 75

S

ScaleBy action 73

ScaleTo action 73

scaling action
ScaleBy 73
ScaleTo 73

scene
about 23
coding, in Game Over scene 33, 34
coding, in Game scene 30-32
coding, in Main Menu scene 29
coding, in Pause scene 35, 36
creating 24

GameScene.cpp file, refactoring 25, 26

GameScene.h file, refactoring 25
manipulating 27, 28
popping 27
pushing 27
replacing 27
scene manipulation
methods 27
sequencing action
Sequence 80, 81
simulators
application, running on 113
single-touch events
implementing 84-89
single-touch method 83
SkewBy action 78
skewing action
about 78, 79
SkewBy 78
SkewTo 78
SkewTo action 78
sound effects
about 99
button-click sound effect 100

crash sound effect 100

crash sound effect, adding 101, 102

features 102
loading 100

menu-button-click sound effect,

adding 100, 101

playing 100

sprite declaration
example 55

sprites
about 55
adding, to Game Over scene 58
adding, to Game scene 59-65

adding, to Main Menu scene 56, 57

adding, to Pause scene 58, 59
displaying 56
sprites, Game scene

scrolling asteroids, implementing 61
scrolling background, implementing 60

T

TintBy action 75
tinting action
about 75
TintBy 75
TintTo 76
TintTo action 76
touch, Cocos2d-x
multi-touch 83
single-touch 83
touch events
setting up, process 84

U

update function 60

\'

visibleSize variable 43

Y4

zoom transitions 53

[120]

Nikki
Typewriter
uploaded by [stormrg]

open source

community experience distilled

PUBLISHING

Thank you for buying
Cocos2d-x Game Development Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Cocos2d-x by Example
Beginner's Guide
ISBN: 978-1-78216-734-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1. Learn to build multi-device games in simple,
easy steps, letting the framework do all the
heavy lifting.

2. Spice things up in your games with
easy-to-apply animations, particle effects,
and physics simulation.

3. Quickly implement and test your own
gameplay ideas, with an eye for optimization
and portability.

Creating Games with cocos2d for

iPhone 2
ISBN: 978-1-84951-900-7 Paperback: 388 pages

Master cocos2d through building nine complete
games for the iPhone

1. Games are explained in detail, from the design
decisions to the code itself.

Creating Gar_nes with 2. Learn to build a wide variety of game types,
cocos2d for iPhone 2 from a memory tile game to an endless runner.

3. Use different design approaches to help you
explore the cocos2d framework.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Cocos2d for iPhone 1
Game Development
Cookbook

Cocos2d for iPhone 1 Game

Development Cookbook
ISBN: 978-1-84951-400-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development using
cocos2d

1. Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process.

2. Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting.

3. Full of fun and engaging recipes with modular
libraries that can be plugged into your project.

Cocos2d for iPhone 0.99

Cocos2d for iPhone 0.99

Beginner's Guide
ISBN: 978-1-84951-316-6 Paperback: 368 pages

Make mind-blowing 2D games for iPhone with this
fast, flexible, and easy-to-use framework!

1. A cool guide to learning Cocos2d with iPhone to
get you into the iPhone game industry quickly.

2. Learn all the aspects of Cocos2d while building
three different games.

3. Add alot of trendy features such as particles
and tilemaps to your games to captivate your
players.

4. Full of illustrations, diagrams, and tips for
building iPhone games, with clear step-by-step
instructions and practical examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up
	What is Cocos2d-x?
	Setting up the project
	Housekeeping
	Refactoring HelloWorldScene.h
	Refactoring HelloWorldScene.cpp
	Refactoring AppDelegate.cpp

	Implementing multi-resolution support
	Summary

	Chapter 2: Adding Scenes
	Creating new scenes
	Refactoring GameScene.h
	Refactoring GameScene.cpp

	Manipulating scenes
	Code for the Main Menu scene
	Code for the Game scene
	Code for the Game Over scene
	Code for the Pause scene

	Summary

	Chapter 3: Adding Game Menus
	Setting up the menu
	Coding the menus in the Main Menu scene
	Coding the menus in the Game scene
	Coding the menus in the Pause scene
	Coding the menus in the Game Over scene
	Summary

	Chapter 4: Scene Transitions
	The fade transition
	Additional transitions
	Summary

	Chapter 5: The Game Sprites
	Adding the Main Menu sprites
	Adding the Game Over sprites
	Adding the Pause sprites
	Adding the Game sprites
	Summary

	Chapter 6: Implementing Actions
	Actions
	Moving
	Jumping
	Bezier actions
	Placing
	Scaling
	Rotation
	Tinting
	Fading
	Skewing
	Repeating
	Sequencing

	Animation
	Summary

	Chapter 7: Moving the Space Pod
Using Touch
	The general process for setting up touches
	Single-touch events
	Multi-touch events
	Summary

	Chapter 8: Collision Detection
	Collision detection
	Player collision detection
	Setting up collision detection
	Implementing the collision detection

	Summary

	Chapter 9: Adding Audio to the Game
	Loading and playing sound effects
	Adding sound effects
	Adding the menu-button-click sound effect
	Adding the crash sound effect
	Additional sound effect features

	Loading and playing background music
	Adding background music
	Additional background music features

	Summary

	Chapter 10: Implementing Accelerometer Support
	Setting up the accelerometer
	Summary

	Chapter 11: Problem Solving
and What's Next
	Problem solving
	Removing debug information
	Positioning on different devices
	Moving an object on different devices
	Trouble generating new projects
	Reusing actions
	Sequencing actions
	Running your application on simulators
	Application size
	Breakpoints

	What's next?

	Index
	Uploaded by [StormRG]

