N
Programming

Microsoft:

ASP.NET 4

Dino Esposito

Microsoft

Programming
Microsoft- ASP.NET 4

Dino Esposito

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2011 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2011920853
ISBN: 978-0-7356-4338-3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@
microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Roger LeBlanc

Editorial Production: Waypoint Press
Technical Reviewer: Scott Galloway
Cover: Tom Draper Design

Body Part No. X17-45994

http://www.microsoft.com/mspress
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

To Silvia, with love

Contents at a Glance

Part |

H W NN

Part Il

%,

O 00 N O

10
11
12

Part lll
13
14
15

The ASP.NET Runtime Environment

ASPNETWeb FormsTodayccoviiiininenn...
ASPINETand lIS. ... i i i e e
ASP.NET Configuration.,
HTTP Handlers, Modules, and Routing

ASP.NET Pages and Server Controls

Anatomy of an ASPNET Page.................cooiian...
ASP.NET Core ServerControls
Working withthePage,
Page Composition and Usability.
ASPNET Input Forms
DataBindingccoiiiiiiiii i i e
The ListView Control. i,
CustomControls.......... ..ottt

Design of the Application

Principles of Software Design............................
Layers of an Application,
The Model-View-Presenter Pattern.......................

Part IV Infrastructure of the Application

16
17
18
19

Part V
20

21

The HTTP Request Contextccccivinion...
ASP.NET State Management
ASP.NET Cachingottt
ASP.NET Securityoiiuiiiiiniinie it

The Client Side

Ajax Programmingottt
jQuery Programmingc.ooiiiiiiniininninennannnn

Table of Contents

Acknowledgments. Xvii

INtrodUCtion ... oo e XiX

Part]| The ASP.NET Runtime Environment

1 ASPNETWebFormsToday.................c.ciiiiion.... 3
The Age of Reason of ASP.NETWeb Forms 4
The Original Strengths. i i 4
Today's Perceived Weaknesses.c.c.ouiiiiiiiininnan. 8

How Much Is the Framework and How Much Is It You?............ 11

The AJAXRevolution ... i i i 14
Moving Away from Classic ASP.NET. coiiiiian.. 15
AJAX as a Built-in Feature of theWeb. 19
ASP.NET of the Future i 20
ASPINET MVC. ...t e e 21
ASP.NET Web Pagesooiiiiiiii it 25
SUMIMANY. . ot i e e e ettt et et e e 26
2 ASPNETand lIS. i i it ii e 27
The Web Server Environment....... i i, 28
A Brief History of ASPNETand IS 28

The Journey of an HTTP Requestin lIS.......................... 31
Some New Features in lIS7.5 i, 37
Deploying ASP.NET Applications 39
XCopy Deployment for Web Sitesot 40
Packaging Files and Settings.o i, 43

Site Precompilation. i i 52
Configuring IS for ASP.NET Applications........................ 55
Application Warm-up and Preloading 59

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

http://www.microsoft.com/learning/booksurvey/

viii Table of Contents

3 ASPNET Configuration.coiiiiiiiiininenn... 63
The ASP.NET Configuration Hierarchy................................ 63
Configuration Files 64

The <location> Section iiiiiiinieiiiinnnnnnnn 68

The <system.web> Section oo i, 71
Other Top-Level Sections.t 105
Managing ConfigurationDatacoiiiiiiiiiinnnn... 110
Using the Configuration APl oiiiiii... 110
EncryptingaSection i 113
SUMIMAATY. « ettt et e et ettt et e e 117
4 HTTP Handlers, Modules, and Routing 119
Writing HTTP Handlers i 121
The IHttpHandler Interface it 121

The Picture Viewer Handler. it 128
Serving Images More Effectively o 133
Advanced HTTP Handler Programming 141
Writing HTTP Modules. i it 149
The IHttpModule Interface it 149
ACustom HTTPModule. i, 151
Examining a Real-World HTTP Module. 154

URL ROULING ..ottt e et et 156
The URLRouting Engineo it 157
RoutinginWeb Forms i i 160

Y 14 40T T 78 165

Part I ASP.NET Pages and Server Controls

5 Anatomyofan ASPNETPage............ccovvuivinnennn.. 169
Invoking aPage.o 170

The Runtime Machinery. i i 170

Processing the Request i 174

The Processing DirectivesofaPage 179

The Page Class.ttt e et 190
Propertiesof the PageClasso iiiiiaia... 191

Methods of the Page Classcccoviiiiiiniiiinnnan.. 194

Events of the Page Class. o ... 198

The EventingModelo i 199

Asynchronous Pages.t 201

Table of Contents

The Page Life Cycle.ot et 209
Page Setupot e 209
Handling the Postback i i 212
Page Finalization.......... i, 214

SUMMAIY. . ettt et et et et e et e et 215

6 ASP.NET Core ServerControls 217

Generalities of ASP.NET ServerControls.coouunnnn... 218
Properties of the Control/ Class........... ... iiiiiii.e. 218
Methods of the ControlClassc.oiiiiiiiiiiia... 228
Events of the Control Classccuiuuiiiiiinnnnnn... 229
Other Features. it e 230

HTML Controls. o e 235
Generalitiesof HTML Controlso i ... 236
HTML ContainerControlst 239
HTML Input Controlsttt 246
The Htmlimage Control iiiiiiiniiinnnany 252

Web Controlst e e 253
Generalities of Web Controls, 253
CoreWeb Controls ...t 256
Miscellaneous Web Controls. oot 262

SUMIMANY. . ottt e e et e et e e 268

7 WorkingwiththePage 269

Dealing with Errors in ASP.NET Pages. ..., 269
Basics of Exception Handling 270
Basics of Page Error Handling. i, 272
Mapping Errorsto Pages.o 278
Error Reportingttt i e e 283

Page Personalization i 285
Creating the User Profile o i, 285
Interacting withthePage i i 292
Profile Providers i i 300

Page Localizationt i e e 303
Making Resources Localizable 304
Resourcesand Cultures o il 308

Adding Resourcesto Pages.oiiiiiiiiiiiiiii i, 312
Using Script Files. i 312
Using Cascading Style Sheetsand Images 315

SUMMAAIY. .« ettt ettt ettt e e ettt et 317

X

Table of Contents

8 Page Composition and Usability.......................... 319
Page Composition Checklist........ i, 319
Working with Master Pages oot 320
WritingaContentPage i 323
Processing Master and Content Pages 329
Programming the Master Page. cooiiii... 333
Styling ASP.INET Pagesttt 336

Page Usability Checklist. i 344
Cross-BrowserRenderingc..oi .. 344
Search Engine Optimization 348

Site Navigation i 351
Configuring theSiteMap ..., 357
Testingthe Pageot it 361
SUMIMANY. ottt et ettt et ettt et et ea s 364
9 ASPNETInputForms i, 365
Programming with Forms 365
The HtEMIForm Class ittt 366
Multiple Forms. e 368
Cross-Page Postingsttt 374
Validation Controls. 379
Generalities of Validation Controls 379
GalleryofControls it i i e 382
Special Capabilities. 387
Working with Wizards oo i 397
An Overview of the Wizard Control. 397
Adding StepstoaWizard i 402
Navigating Through the Wizard. o oo 405

Y 14140 - T 78 P 409
10 DataBindingottt 411
Foundation of the Data BindingModel 411
Feasible Data Sources. ...t 412
Data-Binding Properties it 415
Data-Bound Controls.......... ... i 421
List Controls.t e e 421
Iterative Controls. 427

View Controls. e 432

Data-Binding EXpressionsooiiiuiiiiiiiiii i, 434

Table of Contents

SimpleDataBinding 434

The DataBinder Classouuiiiiuiineiiiiaeinnnnann 436
Managing Tablesof Data., 438
The GridView's Object Model o o it 439
Binding Datatothe Grid it 443
Working with the GridView. 451

Data Source Componentsottt it 456
Internals of Data Source Controls 456

The ObjectDataSource Controliiiiiiiennn... 459
SUMMAIY. . ettt e ettt et e ettt et 469
11 ThelListViewControl.......... iiiiiiiiiiian.. 471
The ListView Control. o i i 471
The ListView Object Model it 472
Defining the Layoutof the List................, 479
Building a Tabular Layout i it 480
Building a Flow Layout. ittt 485
Building a Tiled Layout iiiiiiiiiiiiiiiiie, 487
Stylingthe List 493
Working with the ListView Controlo iin.. 496
In-Place Editingt 496
ConductingtheUpdate........... i, 499
Inserting New Dataltems it 501
Selectinganltem i 505
Paging the Listof ltems.......... ...t iiiiiiiiiinnnn, 507
SUMMAIY. . ettt ettt e et ettt et 511
12 CustomControls.......... ..., 513
Extending Existing Controls i, 514
ChoosingaBase Class.c.ouiiiiniiniiiii i, 514

A Richer HyperLink Control. iiiiiii... 515
Building Controls from Scratch L. 518
Base Class and Interfaces oo .. 518
Choosing aRendering Style o i, 520

The SimpleGaugeBar Control oot 522
Rendering the SimpleGaugeBar Control........................ 527
Building a Data-Bound Control 533
Key Features.ttt i e e e 533

The GaugeBar Controlttt 535

xii Table of Contents

Building a Composite Templated Control. 543
Generalities of Composite Data-Bound Controls 544
The BarChart Control........ i 547
Adding Template Support........ ... 556
SUMIMAATY. « ettt et e e et et et e e 561

Part Il Design of the Application

13 Principles of Software Design............. 565
TheBigBallof Mud e 566
ReasonsfortheMud i 566
Alarming Symptoms. e 567
Universal Software Principles.coi i, 569
Cohesionand Couplingo, 569
Separation of CONCernsoviiiiiniiiiinniiiieneennnn. 571
SOLID Principles e e 573
The Single Responsibility Principle 573

The Open/Closed Principle i 575
Liskov’s Substitution Principle. L. 576

The Interface Segregation Principle 579

The Dependency Inversion Principle............. 580
Tools for Dependency Injection.............c..oo i, 583
Managed Extensibility Framework ata Glance 584
UnityataGlance ...ttt 587
SUMMAATY. . o ettt et et et e et ettt et 591
14 Layers of an Application 593
A Multitiered Architecture i 594
The Overall Designcouii i it 594
Methodologies 595

The Business Layerouiiiniit ittt eiaeenns 596
Design Patterns forthe BLL. it 596

The Application LOgiC.o ie vt it 602

The Data Access Layerttt it 605
Implementationof a DALottt 605
Interfacingthe DAL.t 608
Using an Object/Relational Mapper 610
Beyond Classic Databases, 613

SUMIMAATY. « ettt e e et et et e 614

15

Table of Contents

The Model-View-Presenter Pattern....................... 615
Patterns for the Presentation Layer...................ciiiiiiennnn.. 615
The MVC Pattern.o i 616

The MVP Pattern.t i it 619

The MVVM Pattern.ttt 621
Implementing Model View Presenter.................. 623
AbstractingtheView i 624
Creating the Presenter......... ... it 626
Navigation e 632
Testability in Web Forms with MVP. o it 636
Writing Testable Code i 637
Testinga Presenter Classooiiiiiiiiiiiiniinnnny 639
SUMMAAIY. .« ettt ettt et et et et e ettt 642

Part IV Infrastructure of the Application

16

The HTTP Request Contextccviviiinnnn.. 645
Initialization of the Application i, 645
Properties of the HttpApplicationClass 645
ApplicationModules 646
Methods of the HttpApplication Class. 647
Events of the HttpApplication Class. 648

The global.asax File. i i 651
Compiling global.asax iiiiiiiiiiiinnan. 652
Syntax of global.asax 653

The HttpContext Classot 656
Properties of the HttpContext Class.coiiiin... 656
Methods of the HttpContext Class.cc..oiiiii... 658

The Server Objecto e et 660
Properties of the HttpServerUtility Class 660
Methods of the HttpServerUtility Class. 660

The HttpResponse Objecto, 663
Properties of the HttpResponse Class 664
Methods of the HttpResponse Class.ccoiiiii... 667

The HttpRequest Object.ttt 670
Properties of the HttpRequest Class 670
Methods of the HttpRequest Class.ccoviieeiinnnn.n. 673

SUMMAAIY. .« ettt et ettt et e ettt et 674

xiii

xiv Table of Contents

17 ASP.NET State Management 675
The Application’s State.t 676
Properties of the HttpApplicationState Class.................... 676
Methods of the HttpApplicationStateClass 677

State Synchronization......... i 678
Tradeoffs of ApplicationState 679

The Session’'s Stateottt 680
The Session-State HTTP Module. iiia... 680
Properties of the HttpSessionState Class. 685
Methods of the HttpSessionState Class. 686
Working with a Session’sState............ ... oo i, 686
IdentifyingaSession...........c i 687
Lifetimeof aSession............. . il 693
Persist Session Data to Remote Servers 695
Persist Session Datato SQLServer............cciiiiiinnnnn.. 699
Customizing Session State Management 704
Building a Custom Session State Provider 704
Generating a Custom SessionIDcoiiiiiaia.. 708

The View StateofaPage..........oooiiiiiiiiiiiiiiiiiiiiiiann. 710
The StateBag Classoieiuiie it 711
Common Issues with View State. 712
Programming the View State 715
SUMIMANY. « ottt e e et et e ettt 720
18 ASPNETCachingot 721
Caching ApplicationData oo i 721
The Cache Class.oui i it 722
Working with the ASP.NET Cache 725
Practical Issues. i 732
Designing a Custom Dependencycoooiiviinn.... 737

A Cache Dependency for XML Data. ...t 739

SQL Server Cache Dependency...........ccooviiiiinnnenn... 743
Distributed Cache. 744
Features of a Distributed Cache.................. 745
AppFabric Caching Services i i 747
OtherSolutions i i 753
Caching ASP.NET Pagesciuuiiiniiin i iiieneeneennnnn 755

ASP.NET and the BrowserCache. 756

Table of Contents

Making ASP.NET Pages Cacheable 758

The HttpCachePolicy Class.vuuiiiie it 763
Caching Multiple VersionsofaPage........................... 765
Caching Portions of ASPNET Pages.ccovviiiunnnennnn.. 768
Advanced Caching Features ity 774
SUMMANY. . ot e e ettt e et et 777
19 ASPNET Securitycoiiuiiiiiiii i iiinnnannnn 779
Where the Threats Come From 779
The ASP.NET Security Contextoiiuiniiiiiin i, 781
Who Really Runs My ASP.NET Application? 781
Changing the Identity of the ASP.NET Process 784

The Trust Level of ASP.NET Applications. 786
ASP.NET Authentication Methods 789
Using Forms Authentication............ i ittt 791
Forms Authentication Control Flow............. 792

The FormsAuthentication Class. 796
Configuration of Forms Authentication 798
Advanced Forms Authentication Features 801

The Membership and Role Management APl 806
The Membership Classot 807

The Membership Provider. ity 812
Managing Roles. e 817
Quick Tour of Claims-Based Identity 821
Claims-Based Identity.o, 822
Using Claims in ASP.NET Applications 824
Security-Related Controls i 825
The Login Control i 826

The LoginName Control. o ity 828

The LoginStatus Control.t 829

The LoginView Control. i 830

The PasswordRecovery Control.......... ity 832

The ChangePassword Control....... oot 833

The CreateUserWizard Control...........y 834

SUMMAIY. . ettt e e et et e et 835

Xv

xvi Table of Contents

PartV The Client Side

20 AjaxProgrammingiiiiiiiii i 839
The Ajax Infrastructure o ittt 840

The Hidden Engine of Ajaxcooiiiiiiiiiiiii i, 840
JavaScriptand AjaX. 845

Partial Rendering in ASP.INET i i 851

The ScriptManager Control........ it 852

The UpdatePanel Control. coiiiiiiiiii ... 860
Considerations Regarding Partial Rendering......................... 865
Configuring for Conditional Refresh........................... 866

Giving FeedbacktotheUser........ 870

The Ins and Outs of Partial Rendering. 876

REST and AjaX . ..ottt e e e 879
Scriptable Services 880

JSON Payloads. ...ttt e 890

JavaScript ClientCode 893

SUMMANY. . oottt et e e et et ittt 897

21 jQuery Programming...........c.couieiiinennennenennnn. 899
PowertotheClient........ o i 899
Programming within the Browser 900

The Gist of JQUErY. . ..ot 903

Working with JQUery i e 905
Detecting DOM Readiness.cooiiuiiiiiiiiiniiinnnenn. 906

Wrapped Sets. e 908
OperatingonaWrapped Set, 915
Manipulatingthe DOM it 920
ThejQueryCachet e 923

Ajax Capabilitieso i 925
Cross-DomainCalls. i, 929

YT 1440 T 7% 932
INdeX. . oo e 933

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

http://www.microsoft.com/learning/booksurvey/

Acknowledgments

As is usual for a book, the cover of this book shows only the name of the author, but in no
way can an author produce a book all alone. In fact, a large ensemble of people made this
book happen. First, | want to thank Devon Musgrave for developing the idea and scheduling
new books for me to author at an amazingly quick pace for the next two years!

Next comes Roger LeBlanc, whom I've had the pleasure to have as a copy editor on previous
books of mine—including the first edition of this Programming ASP.NET book (Microsoft
Press, 2003). This time, Roger assisted me almost every day—not just as the copy editor,

but also as the development manager. | dare to say that as my English gets a little bit better
every year, the amount of copy editing required does not amount to much for a diligent
editor like Roger. So he decided to take on extra tasks.

In the middle of this project, | had to take a short break to have back surgery. The surgery
increased the number of lengths | could swim and improved my tennis game, especially
the penetration of my first serve and my top-spin backhand, but it put a temporary stop to
my progress on the book. As a result, Roger and | had to work very hard to get the book
completed on a very tight schedule.

Steve Sagman handled the production end of the book—things like layout, art, indexing,
proofreading, prepping files for printing, as well as the overall project management. Here,
too, the tight schedule required a greater effort than usual. Steve put in long days as well as
weekends to keep everything on track and to ensure this edition equals or exceeds the high
standards of previous editions.

Scott Galloway took the responsibility of ensuring that this book contains no huge technical
mistakes or silly statements. As a technical reviewer, Scott provided me with valuable insights,
especially about the rationale of some design decisions in ASP.NET. Likewise, he helped me
understand the growing importance JavaScript (and unobtrusive JavaScript) has today for
Web developers. Finally, Scott woke me up to the benefits of Twitter, as tweeting was often
the quickest way to get advice or reply to him.

To all of you, | owe a monumental “Thank you"” for being so kind, patient, and accurate.
Working with you is a privilege and a pleasure, and it makes me a better author each time.
And | still have a long line of books to author.

My final words are for Silvia, Francesco, and Michela, who wait for me and keep me busy.
But I'm happy only when I'm busy.

—Dino

Xvii

Introduction

In the fall of 2004, at a popular software conference | realized how all major component
vendors were advertising their ASP.NET products using a new word—Ajax. Only a few weeks
later, a brand new module in my popular ASP.NET master class made its debut—using Ajax
to improve the user experience. At its core, Ajax is a little thing and fairly old too—as |
presented the engine of it (Xm/HttpRequest) to a C++ audience at TechEd 2000, only four
weeks before the public announcement of the .NET platform.

As emphatic as it may sound, that crazy little thing called Ajax changed the way we approach
Web development. Ajax triggered a chain reaction in the world of the Web. Ajax truly repre-
sents paradigm shift for Web applications. And, as the history of science proves, a paradigm
shift always has a deep impact, especially in scenarios that were previously stable and con-
solidated. We are now really close to the day we will be able to say “the Web” without feeling
the need to specify whether it contains Ajax or not. Just the Web—which has a rich client
component, a made-to-measure layer of HTTP endpoints to call, and interchangeable styles.

Like it or not, the more we take the Ajax route, the more we move away from ASP.NET
Web Forms. In the end, it's just like getting older. Until recently, Web Forms was a fantastic
platform for Web development. The Web, however, is now going in a direction that Web
Forms can't serve in the same stellar manner.

No, you didn't pick up the wrong book, and you also did not pick up the wrong technology
for your project.

It's not yet time to cease ASP.NET Web Forms development. However, it's already time for
you to pay a lot more attention to aspects of Web development that Web Forms specifically
and deliberately shielded you from for a decade—CSS, JavaScript, and HTML markup.

In my ASP.NET master class, | have a lab in which | first show how to display a data-bound
grid of records with cells that trigger an Ajax call if clicked. | do that in exactly the way one
would do it—as an ASP.NET developer. Next, | challenge attendees to rewrite it without inline
script and style settings. And yes—a bit perversely—I also tell anyone who knows jQuery

not to use it. The result is usually a thoughtful and insightful experience, and the code |

come up with gets better every time. ASP.NET Web Forms is not dead, no matter what
ASP.NET MVC—the twin technology—can become. But it's showing signs of age. As a
developer, you need to recognize that and revive it through robust injections of patterns,
JavaScript and jQuery code, and Ajax features.

In this book, | left out some of the classic topics you found in earlier versions, such as

ADO.NET and even LINQ-to-SQL. | also reduced the number of pages devoted to controls.
| brought in more coverage of ASP.NET underpinnings, ASP.NET configuration, jQuery, and
patterns and design principles. Frankly, not a lot has changed in ASP.NET since version 2.0.

Xix

XX Introduction

Because of space constraints, | didn't cover some rather advanced aspects of ASP.NET
customization, such as expression builders, custom providers, and page parsers. For coverage
of those items, my older book Programming Microsoft ASP.NET 2.0 Applications: Advanced
Topics (Microsoft Press, 2006) is still a valid reference in spite of the name, which targets the
2.0 platform. The new part of this book on principles of software design is a compendium

of another pretty successful book of mine (actually coauthored with Andrea Saltarello)—
Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008).

Who Should Read This Book?

This is not a book for novice developers and doesn't provide a step-by-step guide on how

to design and code Web pages. So the book is not appropriate if you have only a faint idea
about ASP.NET and expect the book to get you started with it quickly and effectively. Once
you have grabbed hold of ASP.NET basic tasks and features and need to consolidate them,
you enter the realm of this book.

You won't find screen shots here illustrating Microsoft Visual Studio wizards, nor any
mention of options to select or unselect to get a certain behavior from your code. Of course,
this doesn’t mean that | hate Visual Studio or that I'm not recommending Visual Studio

for developing ASP.NET applications. Visual Studio is a great tool to use to write ASP.NET
applications but, judged from an ASP.NET perspective, it is only a tool. This book, instead, is
all about the ASP.NET core technology.

| do recommend this book to developers who have knowledge of the basic steps required to
build simple ASP.NET pages and easily manage the fundamentals of Web development. This
book is not a collection of recipes for cooking good (or just functional) ASP.NET code. This
book begins where recipes end. It explains to you the how-it-works, what-you-can-do, and
why-you-should-or-should-not aspects of ASP.NET. Beginners need not apply, even though
this book is a useful and persistent reference to keep on the desk.

System Requirements

You'll need the following hardware and software to build and run the code samples for
this book:

B Microsoft Windows 7, Microsoft Windows Vista, Microsoft Windows XP with Service
Pack 2, Microsoft Windows Server 2003 with Service Pack 1, or Microsoft Windows
2000 with Service Pack 4.

B Any version of Microsoft Visual Studio 2010.

Introduction XXi

Internet Information Services (IIS) is not strictly required, but it is helpful for testing
sample applications in a realistic runtime environment.

Microsoft SQL Server 2005 Express (included with Visual Studio 2008) or Microsoft SQL
Server 2005, as well as any newer versions.

The Northwind database of Microsoft SQL Server 2000 is used in most examples in this
book to demonstrate data-access techniques throughout the book.

766-MHz Pentium or compatible processor (1.5-GHz Pentium recommended).
256 MB RAM (512 MB or more recommended).

Video (800 x 600 or higher resolution) monitor with at least 256 colors (1024 x 768 High
Color 16-bit recommended).

CD-ROM or DVD-ROM drive.

Microsoft Mouse or compatible pointing device.

Code Samples

All of the code samples discussed in this book can be downloaded from the book’s
Companion Content page accessible via following address:

http://go.microsoft.com/fwlink/?Linkid=209772

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion content. If
you do find an error, please report it on our Microsoft Press site at oreilly.com:

1.
2.
3
4

5.

Go to http://microsoftpress.oreilly.com.

In the Search box, enter the book’s ISBN or title.

. Select your book from the search results.

. On the book’s catalog page, under the cover image, you'll see a list of links.

Click View/Submit Errata.

You'll find additional information and services for your book on its catalog page. If you need
additional support, please e-mail Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://go.microsoft.com/fwlink/?Linkid=209772
http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com

xxii Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http.//www.microsoft.com/learning/booksurvey.

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

Programming Microsoft® ASP.NET 4

Part |
The ASP.NET Runtime
Environment
In this part:
Chapter 1: ASP.NET Web FormsTodaycciiiiiiniiininnnnnnn. 3
Chapter 2: ASP.INET and 1St i i et e iie e eens 27
Chapter 3: ASP.NET Configurationt iiiiiiinnnneann. 63
Chapter 4: HTTP Handlers, Modules, and Routing 119

Chapter 1

ASP.NET Web Forms Today

Inspiration is wonderful when it happens, but the writer must develop an approach
for the rest of the time. The wait is simply too long.

—Leonard Bernstein

In its early years, the Web pushed an unusual programming model and a set of programming
tools and languages that were unknown or unfamiliar to the majority of programmers.
Anybody who tried to build even a trivial Web site in the 1990s had to come to grips with
the HTML syntax and at least the simplest JavaScript commands and objects. That required
developing a brand new skill set, which forced people to neglect other, perhaps more
productive, activities.

The code and user interface of Web pages—sometimes referred to as the markup mix—
had to be written manually in the past decade. And this created a sort of trench separating
die-hard C/C++/Java programmers from freaky Web developers. And a growing number

of developers using Microsoft Visual Basic were left sitting in the middle and, in some way,
were kept from taking a decisive step in either direction—whether it was toward C++ server
programming or client Web programming.

Microsoft scored a remarkable victory in the Web industry with the introduction of the
ASP.NET platform back in 2001. ASP.NET opened the doors of Web development to a huge
number of professionals and contributed to changing the development model of Web ap-
plications. ASP.NET wasn’t alone in producing this effort. ASP.NET followed up the progress
made by at least a couple of earlier technologies: classic Active Server Pages (ASP) and Java
Server Pages (JSP).

So ASP.NET was a success and, more importantly, it has been adopted for nearly any new
Web project that has been started in the past decade when targeting the Microsoft platform.
Today, ASP.NET is unanimously considered a stable, mature, and highly productive platform
for Web development.

Microsoft significantly improved and refined ASP.NET along the way. Today ASP.NET includes
a number of extensibility points that weren't part of it in the beginning. It also offers a rich
platform for AJAX development, and built-in controls have been adapted to better support
cascading style sheet (CSS) and XHTML requirements.

For a long time, "ASP.NET" just referred to applications written using the Web Forms program-
ming model. More specifically, we could say that ASP.NET refers to the underlying platform
and runtime environment whereas “Web Forms” refers to how you create your pages and
applications. For about a decade, the two terms mostly were used interchangeably.

4 Part| The ASP.NET Runtime Environment

A decade is a lot of time, however, especially in the software world. An alternative framework
for Web development—ASP.NET MVC—is available these days, and it's growing and matur-
ing quickly. Is ASP.NET Web Forms still an excellent option for companies developing Web
applications? Is the Web Forms model the best model possible? Should we look around for
an alternative approach?

While the present book is all about architecting Web applications for the ASP.NET 4 platform
and using the Web Forms model, this first chapter offers an annotated overview of the Web
Forms model and attempts to outline future developments of Web frameworks for the
Microsoft platform.

Note In this book (and other works of mine), you might sometimes find the term “classic
ASP.NET" used to refer to ASP.NET applications written according to the Web Forms
programming model. The term is analogous to “classic ASP,” which is often used to distinguish
the Active Server Pages technology from ASP.NET Web Forms.

The Age of Reason of ASP.NET Web Forms

ASP.NET was devised in the late 1990s as a way to improve on the current best practices
defined by ASP developers. Many of these practices were engineered and baked into a new
framework. Even better, the framework was perfectly integrated with the emerging Rapid
Application Development (RAD) model that was largely responsible for the success of Visual
Basic.

At the time, RAD was coming out as a lightweight, and often more effective, alternative to
object-oriented programming (OOP). With a RAD approach supported by visual designers
and editors, nearly everybody could quickly and easily prototype, demonstrate, and test an
application in a matter of minutes. There was no need for the extra complexity and analysis
work required by more theoretical (and bothersome?) approaches like object-oriented design
and programming. “You don’t need object-orientation and software principles to write good
and effective software on time"—that was the payoff offered by the advertising campaign
promoting RAD about a decade ago.

The Original Strengths

The ASP.NET Web Forms model was originally devised to bring the power of RAD to the
world of the Web. Hence, the quest for productivity was the primary driving force behind
most of the features that still represent the major characteristics and pillars of ASP.NET.

There are three pillars to the Web Forms model: page postbacks, view state, and server
controls. They work together according to the model depicted in Figure 1-1.

Chapter 1 ASP.NET Web Forms Today 5

Web server
http:// VT TTTTTTTTTTTTT T i
i I
i i
1 | Initialize page Postback event |
L 1 ! controls !
1 1] 1
— 1 |
! Apply view state New view state |
i i
H | | i
i Process posted data HTML rendering !
i |
i i

FIGURE 1-1 The Web Forms model in action.

Each HTTP request that hits the Web server and is mapped to the ASP.NET runtime goes
through a number of stages centered on the processing of the postback event. The postback
event is the main action that the user expects out of her request.

First, the request is processed to extract preparatory information for the successive postback
action. Information includes the state of controls that altogether will produce the final

HTML for the page. Following the postback, the HTML response is arranged for the browser,
including the new state of controls to be used upon the next request.

All of the server-side steps are wrapped up together according to the definition of the
Page Controller pattern. In light of this, each request is seen as processed by a control-
ler entity ultimately responsible for outputting an HTML page. The page controller entity
is implemented as a class that fires a few events in the developer’s code, thus giving the
developer a way to interact with the request and influence the final output.

To better understand the sense of the Web Forms model and the reasons for its success, look
at the following code snippet:

void Buttonl_Click(Object sender, EventArgs args)

{
Labell.Text = TextBoxl.Text;

}

Defined in a Web Forms class, the Button1_Click function represents the handler of a
postback event. When the user clicks the HTML element with a matching ID (in this case,
Buttonl), a request occurs that is resolved by running the code just shown. If it weren't

for the stateless nature of the Web protocols, this would be like the standard event-driven
programming model that many of us used (and enjoyed) in the early Visual Basic days of the
late 1990s.

In the body of the handler method, you can access in a direct manner any other page
elements and set its state accordingly as if you were just touching on the user interface.

http://Initialize
http://Initialize

Part| The ASP.NET Runtime Environment

Interestingly enough, though, the preceding code runs on the Web server and needs a bit
of extra work to mediate between the client HTML and the server environment. But it works,
and it is easy—extraordinarily easy—to understand and apply.

Page Postbacks

An ASP.NET page is based on a single form component that contains all of the input
elements the user can interact with. The form can also contain submission elements such as
buttons or links.

A form submission sends the content of the current form to a server URL—Dby default, the
same URL of the current page. The action of posting content back to the same page is known
as the postback action. In ASP.NET, the page submits any content of its unique form to itself.
In other words, the page is a constituent block of the application and contains both a visual
interface and some logic to process user gestures.

The click on a submit button or a link instructs the browser to request a new instance of the
same page from the Web server. In doing so, the browser also uploads any content available
in the (single) page’s form. On the server, the ASP.NET runtime engine processes the request
and ends up executing some code. The following code shows the link between the button
component and the handler code to run:

<asp:Button runat="server" ID="Buttonl" OnClick="Buttonl_Click" />

The running code is the server-side handler of the original client-side event. From within the
handler, the developer can update the user interface by modifying the state of the server
controls, as already shown and as reiterated here:

public void Buttonl Click(object sender, EventArgs args)

{
// Sets the Tabel to display the content of the text box
Labell.Text = "The textbox contains: " + TextBoxl.Text;

3

At the time the handler code runs, any server controls on the page have been updated to
hold exactly the state they had during the last request to the page, plus any modifications
resulting from posted data. Such stateful behavior is largely expected in a desktop scenario;
in ASP.NET, however, it requires the magic of page postbacks.

The View State

The view state is a dictionary that ASP.NET pages use to persist the state of their child
controls across postbacks. The view state plays an essential role in the implementation of the
postback model. No statefulness would be possible in ASP.NET without the view state.

Chapter 1 ASP.NET Web Forms Today 7

Before ASP.NET, in classic, VBScript-based ASP, developers frequently used hidden fields to
track critical values across two successive requests. This approach was necessary when mul-
tiple HTML forms were used in the page. Posting from one would, in fact, reset any values in
the fields within the other. To make up for this behavior, the values to track were stored in a
hidden field and employed to programmatically initialize fields during the rendering of the

page.

The view state is just an engineered and extended version of this common trick. The view
state is a unique (and encoded) hidden field that stores a dictionary of values for all controls
in the (unique) form of an ASP.NET page.

By default, each page control saves its entire state—all of its property values—to the view
state. In an average-sized page, the view state takes up a few dozen KBs of extra data. This
data is downloaded to the client and uploaded to the server with every request for the page.
However, it is never used (and should not be used) on the client. The size of the view state
has been significantly reduced over the years, but today the view state is still perceived as
something that has a heavy impact on bandwidth.

It is definitely possible to write pages that minimize the use of the view state for a shorter
download, but the view state remains a fundamental piece of the ASP.NET Web Forms
architecture. To eliminate the view state from ASP.NET, a significant redesign of the
platform would be required.

ASP.NET 4 introduces new features that deliver to developers more control over the size of
the view state without compromising any page functionality.

Server Controls

Server controls are central to the ASP.NET Web Forms model. The output of an ASP.NET page
is defined using a mix of HTML literals and markup for ASP.NET server controls. A server con-
trol is a component with a public interface that can be configured using markup tags, child
tags, and attributes. Each server control is characterized by a unique ID and is fully identified
by that.

In the ASP.NET page markup, the difference between a server control and a plain HTML
literal string is the presence of the runat attribute. Anything in the source devoid of the
runat attribute is treated as literal HTML and is emitted to the output response stream as is.
Anything flagged with the runat attribute is identified as a server control.

Server controls shield developers from the actual generation of HTML and JavaScript code.
Programming a server control is as easy as setting properties on a reusable component.
When processed, though, the server control emits HTML. In the end, programming server
controls is a way of writing HTML markup without knowing much about its unique syntax
and feature set.

Part| The ASP.NET Runtime Environment

Server controls consume view state information and implement postback events. In addition,
server controls are responsible for producing markup and do that without strictly requiring
strong HTML skills on your end.

Today's Perceived Weaknesses

In the beginning of ASP.NET Web Forms, requiring very limited exposure to HTML and
JavaScript was definitely a plus. However, the bold advent of AJAX in the middle of the past
decade modified the perspective of Web applications and, more importantly, significantly
changed user expectations of them. As a result, much more interaction and responsiveness
are required.

To increase the degree of responsiveness of Web applications, you can increase the amount
of script code that runs within the browser only when a given page is being displayed. This
simple fact raised the need for developers to gain much more control over the actual markup
being sent out.

More Control over HTML

To code AJAX features, developers need to make clear and reliable assumptions about the
structure of the Document Object Model (DOM) displayed within the browser. It turns out
that smart black boxes, which are what ASP.NET server controls were initially conceived as,
are no longer ideal tools to build Web pages.

Developers need to be sure about the layout of the HTML being output; likewise, developers
need to control the ID of some internal elements being inserted into the resulting DOM. The
adoption of the Web model in a large area of the industry and the public sector has resulted
in the creation of applications with a potential audience of a few million people—not neces-
sarily power users, perhaps users with disabilities, and not necessarily users equipped with
the latest version of a given browser. And still developers are tasked with ensuring that all of
this heterogeneous audience has the best experience and a common interface.

As you can see, the advent of AJAX brought about the complete turnaround of one of the
ASP.NET pillars. Originally designed to favor independence from HTML, ASP.NET is now asked
to favor a programming model that heralds total control over HTML. As you'll see in the rest
of the book, although this is far from being a mission-impossible task, it requires you to pay
much more attention to how you configure controls and design pages. It also requires you,
on your own, to attain a lot more awareness of the capabilities of the platform.

Chapter 1 ASP.NET Web Forms Today 9

Separation Between Processing and Rendering

ASP.NET made the Web really simple to work with and made every developer a lot more
productive. To achieve this result, ASP.NET was designed to be Ul focused. All you do as a
page developer is author pages and the code that runs behind the page.

The page gets input; the page posts back; the page determines the output for the browser.
The underlying model leads you to perceive any requests simply as a way to generate HTML
through a page. The page entity dwarfs anything else; you don't really see any correspon-
dence between a request and a subsequent server action. All you see is an incoming HTTP
request and a server page object that takes care of it and returns HTML.

In this model, there's no clear separation between the phase of processing the request to
grab raw data to be incorporated in the response (for example, a list of records to be dis-
played in a grid) and the phase of formatting the raw data into an eye-catching, nice-looking
layout.

Again, you'll see in the rest of the book that achieving separation between processing and
rendering is definitely possible in ASP.NET Web Forms and is not at all a mission-impossible
task. However, it requires that you pay a lot more attention and have more discipline when
it comes to writing pages and the code behind pages. Figure 1-2 extends the schema of
Figure 1-1 and provides a more detailed view of the page-based pattern used to process
requests in ASP.NET Web Forms. (I'll return in a moment to the Page Controller pattern.)

Web server

Initialize page
controls
I

Apply view state
| R

Process posted data

New view state J

]
HTML rendering

http://

L]
L

—

Postback event [y

FIGURE 1-2 ASP.NET request processing and HTML rendering.

http://Initialize
http://Initialize

10

Part| The ASP.NET Runtime Environment

The entire processing of an HTTP request is done by progressively updating the state of the
server controls the page is made of. At the end of the cycle, the current state of controls is
flushed to the response output stream and carried to the browser. The entire cycle is based
on the idea of building a page, not performing an action and showing its results.

For years, this aspect of Web Forms was just accepted for what it was, with no special com-
plaints and some praises. Today, the growing complexity of the business logic of applications
built on top of the ASP.NET platform raises the need for unit tests and static analysis that are
harder to set up in a runtime environment strongly focused on the plain Ul.

Again what was a huge winning point in the beginning is now slowly turning into a significant
weakness.

Lightweight Pages

The view state is a fundamental element of the ASP.NET puzzle because it allows for the
simulated statefulness of the Web Forms model. Many developers who recently embraced
ASP.NET MVC—the alternate framework for ASP.NET development fully integrated in Visual
Studio 2010—still find it hard to understand that each view can have shared data that must
be refilled even though nothing in the request processing happened to modify it. More
simply, it is the lack of view state that keeps any Ul element (grids, drop-down lists, and text
boxes) empty until explicitly filled on each and every request.

The view state has always been a controversial feature of ASP.NET. Starting with ASP.NET

2.0 (some five years ago), however, Microsoft introduced significant changes to the internal
implementation of the view state and reduced the average size of the view state hidden field
by a good 40 percent.

The view state is functional only to an application model extensively based on server controls
and using server controls extensively to generate HTML. At a time when architects ques-

tion the applicability of the classic ASP.NET model to their applications and look for more
client-side interaction, separation of concerns (SoC), and control over the markup, the view
state feature—a pillar of ASP.NET—is not that significant. Hence, it is now, more than ever,
perceived as deadweight to get rid of.

Important More and more applications require pages rich with client code that limit the
number of postbacks and replace many postbacks with AJAX calls. In this context, Web Forms
can be adapted—maybe even to a great degree—but the approach has some architectural
limitations that must be known and taken into account. These limitations are not necessarily
something that would make you lean toward an alternate framework such as ASP.NET MVC, but
they also are not something a good architect can blissfully ignore.

Chapter 1 ASP.NET Web Forms Today 11

How Much Is the Framework and How Much Is It You?

Introduced a decade ago, ASP.NET Web Forms has evolved and has been improved over the
years. Its flexible design allowed for a lot of changes and improvements to be made, and the
framework is still effective and productive. Although the design of the ASP.NET framework
was inspired by a totally different set of principles and priorities than the ones you would
apply today, most of the alleged limitations of ASP.NET that I've outlined so far (heavyweight
pages, limited control over markup, lack of testability) can still be largely worked out,
smoothed over, and integrated to serve up an effective solution. This is to say that the advent
of a new framework such as ASP.NET MVC doesn't necessarily mean that ASP.NET Web Forms
(and, with it, your existing skills) are out of place. There's always a strong reason for new
things (frameworks in this regard) to be developed, but understanding needs, features, and
capabilities is still the only proven way of dealing with hard decisions and architecture.

ASP.NET Web Forms is designed around the Page Controller pattern. Let’s find out a bit more
about the pattern and what you can do to limit some of its current downsides.

The Page Controller Pattern

The ASP.NET Web Forms model resolves an incoming request by dispatching the request to
an HTTP handler component. (An HTTP handler component is simply a class that implements
the IHttpHandler interface.) According to the ASP.NET Web Forms model, the HTTP handler
is expected to return HTML for the browser. (You'll find out more about HTTP handlers in
Chapter 4, "HTTP Handlers, Modules, and Routing.”) The way in which the HTML for the
browser is prepared is strongly oriented to the creation of a Web page. The pattern behind
this approach is the Page Controller pattern.

The pattern envisions the processing of a request as a task that goes through a number of
steps, such as instantiating the page, initializing the page, restoring the page's state, updat-
ing the page, rendering the page, and unloading the page. Some of these steps have been
rendered in Figure 1-2, and all of them will be discussed in detail in Chapter 2, “ASP.NET
and IIS,” and in Chapter 3.

In the implementation of the pattern, you start from a base page class and define a strategy
to process the request—the page life cycle. In the implementation of the page life cycle,
you come up with an interface of virtual methods and events that derived pages will have to
override and handle. (See Figure 1-3.)

12 Part| The ASP.NET Runtime Environment

System.Web.Ul.Page

void ProcessRequest

{

AN
/7 1\

[Init] [Load] [Postback] [PreRender] [Unload]

public ‘Default : Sys'iem.WeB:llI:Page

i S et e
} Your code-behind class

FIGURE 1-3 The internal page life cycle exposed to user code via page controller classes.

Derived page classes are known as code-behind classes in ASP.NET jargon. Writing an
ASP.NET page ultimately means writing a code-behind class plus adding a description of the
user interface you expect for it. The code-behind class is the repository of any logic you need
to serve any possible requests that can be originated by the input elements in the page. A
code-behind class derives from a system class—the System.Web.Ul.Page class.

Taken individually, a code-behind class is simply the “controller” object responsible for
processing a given request. In the context of an application, on the other hand, it can lead
you to building a small hierarchy of classes, as shown in Figure 1-4.

Chapter 1 ASP.NET Web Forms Today 13

Runtime Dynamically created page class
(ASP. filename_aspx)

|

Application Code-behind class
(mandatory) (YourApp.YourPage)
4)
Application Custom hierarchy of controller class
(optional) (YourApp.YourController)
Page controller class
Framework (System.Web.UI.Page)

- J

FIGURE 1-4 A sample hierarchy of classes.

Your code-behind class can inherit from the system base class or from intermediate classes
with a richer behavior. Developers can extend the hierarchy shown in the figure at will.
Especially in large applications, you might find it useful to create intermediate page classes to
model complex views and to fulfill sophisticated navigation rules. Building a custom hierarchy
of page classes means placing custom classes in between the page controller and the actual
code-behind class.

The ultimate reason for having a custom hierarchy of pages is to customize the page con-
troller, with the purpose of exposing a tailor-made life cycle to developers. An intermediate
class, in fact, will incorporate portions of common application behavior and expose specific
new events and overridable methods to developers.

Revisiting the Page Controller Pattern

Today the main focus of Web architectures is more oriented toward the action rather than
the concrete result. This is essentially because of a paradigm shift that generalized the use of
the Web tool—it's no longer just a way to get HTML pages but is a lower level producer of
data with its own (variable) representation.

14

Part| The ASP.NET Runtime Environment

To serve the needs of the new Web, you probably don't need all the thick abstraction layer
that purposely was added on top of the Web Forms model ten years ago with the precise
goal of simplifying the production of the sole conceivable output—the HTML page.

A framework like ASP.NET MVC—even though it is built on the same runtime environment
as ASP.NET Web Forms—will always adhere more closely than ASP.NET Web Forms to the
new paradigm. It's a matter of structure, skeleton, and posture; it's not a matter of gesture
or behavior. However, there's some room for teams of developers to revisit the Web Forms
model and change its posture to achieve benefits in terms of both testability and separation
of concerns.

Revisiting the Page Controller pattern today means essentially taking into account design
patterns that privilege separation of concerns between involved parts of the system. This
probably doesn't mean that you can rearrange the entire page life cycle—you need a new
framework for that similar to ASP.NET MVC—but you can restructure some portions of
the page life cycle to isolate portions of code as distinct components that are testable and
writable in isolation.

For example, revisiting the Page Controller pattern means applying the Model View
Presenter (MVP) pattern to decouple the implementation of the postback mechanism with
the subsequent rendering of the view. We'll get back to this topic in Chapter 15, “The Model-
View-Presenter Pattern.”

In the end, in the second decade of the 2000s ASP.NET Web Forms is approaching an archi-
tectural dead end. On one hand, it is recommended that you do not unconsciously ignore
newer frameworks (for example, ASP.NET MVC); on the other hand, however, Web Forms is
still highly effective, mature, and functional and certainly doesn't prevent you from achieving
great results.

Whether you're considering shifting to ASP.NET MVC or sticking to Web Forms, it is essential
that you reconsider the design and architecture of your views and pages. The classic Page
Controller pattern is getting obsolete and needs solutions to make it more testable and
layered. An effective Web Forms application today needs separation of concerns, interface-
based programming, and cohesive components. No framework will give you that free of
charge, but with Web Forms you need a great deal of awareness and commitment.

The AJAX Revolution

Like it or not, the Web is changing, and this time it is changing for developers and architects.
In the evolution of software, we first observe a spark of genius triggering an innovative pro-
cess and the teaching of new tricks and new ways of doing things. In this case, it was the
spark of AJAX and the need to build effective and rich user experiences. Next, developers

Chapter 1 ASP.NET Web Forms Today 15

start generalizing and abstracting things to make them reusable and easy to replicate
repeatedly in a variety of scenarios. When this happens, we have a paradigm shift.

Today we are moving away from many of the ideas and pillars of Web Formes. It's not a
process that has a well-known and defined completion date yet, but nobody doubts that
such a day is in our near future.

The spark of AJAX was just the realization that we can place out-of-band requests, bypass the
classic browser machinery, and gain total control of the request and subsequent response. Is
this just a little, geeky detail? Maybe, but this little detail triggered a huge transformational
process—an entire paradigm shift—whose results will be clear and definitive only in a few
years. That's my guess, at least. Let’s briefly consider what paradigm shifts are and what they
mean (and have meant) to humans throughout history.

Moving Away from Classic ASP.NET

As drastic as it might sound, the Web revolutionized the concept of an application. Now
AJAX is revolutionizing the concept of a Web application. The Web will always remain
separate from the desktop, but Web applications are going to enter a new age.

What's a Paradigm Shift?

According to Wikipedia, a paradigm shift describes a change in most of the basic
assumptions within the ruling theory of a science. The shift creates a break and clearly
contrasts with the current ideas and approaches. A paradigm shift is a long process that
begins naturally when enough significant limitations and anomalies have been found within
the current state of the art in a discipline.

At this point, new ideas are tried—often ideas that were considered years before and then
discarded. The community proceeds by trial and error, experimenting and trying to come
to general conclusions. Inevitably, a paradigm shift puts the discipline into a state of crisis.
(This is the term used by Thomas Kuhn, who coined the term paradigm shift and formalized
these concepts.) The state of crisis manifests itself through a number of attempts to change,
each presented as possibly definitive but that hardly work for everybody, at least in the
original form.

The impact of a paradigm shift is particularly deep in areas that appear to be stable and
mature. A great example of a paradigm shift is the changes in physics at the beginning of
the twentieth century. Before the advent of Einstein’s theory of relativity, physics was unani-
mously considered to be a largely worked-out system. The theory of relativity he formulated
in 1905 changed everything in the field, but it was only about three decades later that the
process of redefining the fundamentals of physics was completed. For more information, pay
a visit to http.//en.wikipedia.org/wiki/Paradigm_shift. It's definitely illuminating reading.

http://en.wikipedia.org/wiki/Paradigm_shift

16

Part| The ASP.NET Runtime Environment

So now, how does this apply to ASP.NET and AJAX?

The AJAX Paradigm Shift

Even though we tend to date the advent of AJAX around the 2004, one of the core tools of
AJAX—the XmlIHttpRequest object—is much older. In the late 1990s, we already had all the
technologies we are using today to set up AJAX solutions. For a number of reasons, the idea
of using JavaScript, the HTML DOM, and the Xm/HttpRequest object to update pages asyn-
chronously was discarded for most applications, even though Outlook Web Access and a
number of niche applications continued using it.

It was tried again in the early 2000s, and this time it really stuck.

Like physics in the early twentieth century, ASP.NET Web Forms was a stable and mature
platform when AJAX experiments started. In the beginning, it was simply a matter of spicing
up some pages with a piece of JavaScript code and downloading raw data from an HTTP
endpoint. However, it is one thing to download a number or a string and refresh the small
portion of the user interface that contains it, but it's quite another to download a collection
of data objects to repopulate a grid. And what if you intend to post the content of a form
and then update a large section of the current view?

The underlying machinery and tools remain the same, but the way in which they are
organized, exposed to developers, and consumed requires a lot of thinking and perhaps a
brand new application model.

In particular, the advent of AJAX raised the need for developers to embed more JavaScript
code in HTML pages. The JavaScript code, however, has to deal with HTML DOM elements,
each of which is commonly identified with a unique ID. In an ASP.NET Web Forms application,
it's the set of server controls defined in a page that ultimately determines the structure of the
HTML DOM and the ID of the constituent elements.

To support AJAX deeply and effectively, Web Forms developers have to dig out some of the
internal details of the server control black boxes. In doing so, developers attack one of the
pillars of the Web Forms model. The more AJAX you want, the more control you need over
HTML; the more control over HTML you want, the more you are mining the foundation of
ASP.NET Web Forms.

But there’s more than just this.

The Data-for-Data Model

For years, the Web worked around a Pages-for-Forms model. It was just fine in the
beginning of the Web age when pages contained little more than formatted text, hyperlinks,
and maybe some images. The success of the Web has prompted users to ask for increasingly

Chapter 1 ASP.NET Web Forms Today 17

more powerful features, and it has led developers and designers to create more sophisticated
services and graphics. As a result, today's pages are heavy and cumbersome. (See Figure 1-5.)

Browser

[HTTP request

<html>

CSS

</html>

I

FIGURE 1-5 A page sends out the content of an HTML form and receives an HTML page.

Given the current architecture of Web applications, each user action requires a complete
redraw of the page. Subsequently, heavier pages render out slowly and produce a good
deal of flickering. Projected to the whole set of pages in a large, portal-like application, this
mechanism is perfect for causing great frustration to the poor end user.

AJAX just broke this model up. A request might or might not post a form and request an
entire page. More often, an HTTP request might just pass raw data and request raw data—an
overall simplification of the interaction model. (See Figure 1-6.)

Browser
—
1 HTTP request
| I
I HTTP response

FIGURE 1-6 HTML elements fire out-of-band calls passing raw data and getting raw data, not necessarily
HTML pages.

ASP.NET Web Forms was created to receive forms and return pages. It is difficult to turn it
into a model that fully supports the Data-for-Data model of AJAX. Web Forms hides a lot of
its machinery and offers a higher level view of the Web operation than many demand today.

This fact can't be ignored when making architectural decisions about which platform to use
for a given Web project.

18

Part| The ASP.NET Runtime Environment

It's not relevant whether Web Forms was designed in the wrong or right way. It was right for
the time it was designed. The advent of AJAX created different business conditions; in these
conditions, Web Forms is not necessarily the ideal framework.

But is there any ideal ASP.NET framework out there?

What Web Do We Want for Developers?

A decade ago, we just wanted applications deployed through the Web. And Web Forms
worked just fine to satisfy us. Later on, we wanted richer applications that were quicker and
smoother to use and more responsive. And a good set of AJAX capabilities added to Web
applications made us happier as end users.

What about developers?

We probably completed the step of understanding what kind of Web applications we want to
serve to our users. We don't yet have an effective set of developer tools to make the creation
of modern Web applications quick, easy, and productive—in one word, effective. So we're

in search of the perfect framework. Developers need to build user interfaces to be served
and consumed over the Web and within a Web browser. Such a framework must simplify a
number of common tasks. Here's a list of the capabilities we expect:

B The user interface must be dynamic and adjust itself as the user interacts. This means,
for example, hiding or showing panels and buttons as the user makes a choice.

B The user interface must be responsive and perform quick cross-checks on data
displayed, and it must perform remote validation whenever possible and required.

B |t should be possible to start a remote operation and update the current view even with
a new user interface if necessary.

B |t should be possible to display dialog boxes on top of the existing pages.
B |t should be possible to request data for remote application-specific endpoints.

In terms of technologies, we definitely need a rich client infrastructure, a simple controller
component to parse HTTP requests and dispatch commands to the back end, and we need a
layered architecture to keep business tasks separate from presentation and data access.

The development team is directly responsible for the architecture and for adding as many
layers as they think are necessary. The framework, on the other hand, should simplify the
other aspects and provide smooth integration between client and server code and naturally
and effectively process the incoming requests. We don't yet have the perfect framework. It
will probably take a couple more years for this to materialize. But we see all around signs of
libraries and tools being consolidated.

The family of jQuery libraries (including the jQuery Ul library and various plug-ins) seems to
be the catalyst for dynamic user interfaces; ASP.NET MVC seems to be the simpler framework

Chapter 1 ASP.NET Web Forms Today 19

to start with and to build new made-to-measure abstractions. Abstraction is still important
because it's only via abstraction that you build productivity.

Whatever emerges as the ideal ASP.NET framework for the next decade, my guess is that
it will build on jQuery and most of the principles and solutions in ASP.NET MVC. ASP.NET
Web Forms today is in the middle of a transition. It is neither the future nor the past. It can
be adapted and still be effective. It requires an awareness of the changes, in business and
subsequently architecture, we are experiencing.

AJAX as a Built-in Feature of the Web

The biggest challenge of ASP.NET development today is unifying the programming model,
which is currently split in two: ASP.NET Web Forms on one side and ASP.NET MVC on the
other side. The biggest challenge of Web development in general, though, is removing the
label “AJAX" from the term “Web."

Because it started such a huge paradigm shift, AJAX can't simply be considered an umbrella
term to refer to a specific set of software capabilities. AJAX today is a constituent part of
the Web. We would like to be able to write the next generation of Web applications using a
framework in which AJAX is just part of the deal. You might be asked to configure it once,
and then enjoy it free of charge and without any additional cost of writing specific code.

As a built-in feature of a Web framework, AJAX requires you to have an API to code against
that just does AJAX without needing developers to think about it. ASP.NET offered a com-
mon and familiar programming model for writing Web applications, and this was one of the
keys to its rapid adoption. Before ASP.NET, there were various ways of writing Web applica-
tions and different tools. You had to choose the tool beforehand and adapt to its vision of
the Web. Today with AJAX, we are experiencing something similar. You have an AJAX API

in ASP.NET Web Forms based on a technology known as partial rendering; you have the
possibility of defining ASP.NET endpoints and exposing them as Web services; you have
similar technologies in ASP.NET MVC; you have direct scripting via jQuery and a bunch of
other JavaScript libraries. We don't have yet a unique (and updated) model for doing Web
development with AJAX in it. AJAX changed the Web; now we want a framework for writing
Web applications with AJAX built inside.

Selective Updates

Basically, there are two ways in which you can incorporate AJAX into a Web framework. | like
to refer to them as selective updates and direct scripting.

You perform a selective update when you execute a server action and then return a chunk
of HTML to selectively update the current view. This approach descends from the HTML
Message AJAX pattern as summarized at http.//ajaxpatterns.org. The trick is all in bypassing

http://ajaxpatterns.org

20 Part| The ASP.NET Runtime Environment

the browser when a request—form post or hyperlink—has to be submitted. You place a
script interceptor at the DOM level (for example, a handler for the Form DOM object submit
event), capture the ongoing request, cancel the operation, and replace it with your own
asynchronous implementation. When a response is received, it is assumed to be HTML and
integrated into the current DOM at a given location.

An ASP.NET framework that fully supports the Selective Update model will specify details for
how the script interceptor has to be defined and for how the current view has to be modified.
In ASP.NET Web Forms, the Selective Update model is implemented via partial rendering. In
ASP.NET MVC, it comes through the services of the AJAX HTML helper.

Direct Scripting
Direct scripting is plain JavaScript code through which you connect to a remote endpoint to

send and receive data. You likely rely on a rich JavaScript framework (for example, jQuery)
and use the JSON format to move complex data around.

In my opinion, the Direct Scripting model is good for little things that can improve a feature
of the user interface. | don't see the Direct Scripting model growing to become the reference
pattern for AJAX applications. To be effective, direct scripting requires an ad hoc architecture
and a new set of standards. Rich Internet Application (RIA) services and open protocols such
as Open Data (oData) and Open Authorization (0oAuth) are coming out, but direct scripting
remains an option for a subset of sites and applications.

| wouldn't pick up direct scripting as the solution for a unified programming model that
accommodates the server-side Web and the client-side Web. Why not? With direct script-
ing, you are indissolubly bound to JavaScript and HTML. This is certainly great for some
applications, but not for all.

To achieve direct scripting capabilities, today you have to look in the direction of the jQuery
library and its plug-ins. I'll cover jQuery in Chapter 21, “jQuery.”

ASP.NET of the Future

ASP.NET 4 is the latest release of the ASP.NET framework that has seen the light in the same
timeframe as Visual Studio 2010. As expected, ASP.NET 4 comes with a number of improve-
ments mostly in the area of controlling the markup served by controls. You also find in
ASP.NET 4 a richer caching API, routing support, further extensions of the provider model,
and a few new server controls.

If you try to weigh out the new features in the framework, you probably find enough to
justify a new release, but not necessarily a fundamental release in the history of the product.
Why is this so?

Chapter 1 ASP.NET Web Forms Today 21

As mentioned, ASP.NET as we've known it for a decade is really approaching an architectural
dead end. There's not much else that can be added to the Web Forms model; likewise, there
are a few aspects of it that sound a bit obsolete today, but changing them would require a
significant redesign of the system. From here, the following question arises: What will be the
ASP.NET of the future?

Will it be just a further improved version of ASP.NET MVC? Will it be Web Forms with some
built-in infrastructure that makes it easier to write testable and layered code? If | look into the
future of ASP.NET, | see big two challenges:

B Having AJAX on board without calling for it

B One ASP.NET platform that offers testability, simplicity, layering, control, styling, AJAX,
and productivity

Nothing is in sight yet at the moment that handles both challenges. So we're left with using
ASP.NET Web Forms the best we can and exploring alternatives. The entire book is devoted
to examining ways to write smarter and better ASP.NET Web Forms code. For now, let’s
briefly explore two alternatives.

ASP.NET MVC

With version 2 released at the same time as ASP.NET 4 (and version 3 released by the time
you read this book), ASP.NET MVC is a good candidate to find a place in the sun in the
ASP.NET arena. As clearly stated by Microsoft, ASP.NET MVC is not the successor to Web
Formes. It is rather a fully fledged, and fully qualified, alternative to Web Forms. Each
framework has its own set of peculiarities. At the end of the day, it is difficult, and also kind of
pointless, to try to decide objectively which one is better.

Choosing between ASP.NET Web Forms and ASP.NET MVC is essentially a matter of personal
preference, skills, and of course, customer requirements. As an architect or developer, how-
ever, it is essential that you understand the structural differences between the frameworks so
that you can make a thoughtful decision.

ASP.NET MVC Highlights

ASP.NET MVC is a completely new framework for building ASP.NET applications, designed
from the ground up with SoC and testability in mind. With ASP.NET MVC you rediscover the
good old taste of the Web—stateless behavior, full control over every single bit of HTML,
and total script and CSS freedom.

Processing the request and generating the HTML for the browser are distinct steps and
involve distinct components—the controller and the view. The controller gets the request and
decides about the action to take. The controller grabs the raw response and communicates it
to the view engine for the actual writing onto the browser’s output stream.

Part| The ASP.NET Runtime Environment

In ASP.NET MVC, there's no dependency on ASPX physical server files. ASPX files might still
be part of your project, but they now serve as plain HTML templates that the default view
engine uses as a template for creating the HTML response for the browser. When you author
an ASP.NET MVC application, you reason in terms of controllers and actions. Each request
must be mapped to a pair made by a controller and an action. Executing the action pro-
duces data; the view engine gets raw data and a template and produces the final markup

(or whatever else it is expected to produce, such as JSON or JavaScript). Figure 1-7 shows the
sequence of steps that characterize a typical ASP.NET MVC request.

[Browser HTTP Handler

mvc y [Controller y

Model y

. I
1

POST

[

I

I

I
new L

[
I
I
I
I
I
I
Invoke action | |

—
Invoke method

-

view_Data

Lookup view

Render(view_Data)

HTML response

S

FIGURE 1-7 The sequence diagram for an ASP.NET MVC request.

A Runtime for Two

The runtime environment that supports an ASP.NET MVC application is largely the same as
in ASP.NET Web Forms, but the request cycle is simpler and more direct. An essential part of
the Web Forms model, the page life cycle, is now just an optional implementation detail in
ASP.NET MVC. Figure 1-8 compares the run time stack for Web Forms and ASP.NET MVC.

Chapter 1 ASP.NET Web Forms Today 23

(Browser)

1S
ASPNET HTTP Runtime

(Mapped) MVC HTTP Handl
u Page HTTP Handler c andler
e Page Class Controller Factory
Page Life Cycle Method Execution ASP.NET
(preliminaries) MVC
Web < Postback Event View Engine
Forms

Page Life Cycle

(finalization)

\ Updating Controls

!

Response Output Stream

FIGURE 1-8 The run-time stack of ASP.NET MVC and Web Forms.

As you can see, the run-time stack of ASP.NET MVC is simpler and the difference is due to the
lack of a page life cycle. As mentioned earlier, the page life cycle and the entire thick abstrac-
tion layer built by Web Forms saves the developer a lot of work.

ASP.NET MVC is closer to the metal, and this has its own side effects. If you need to maintain
state, that is up to you. For example, you can store it into Session or Cache, or you can even
create, guess what, your own tailor-made, view state-like infrastructure. In the end, the sim-
plicity of ASP.NET MVC is due to different architectural choices rather than to some overhead
in the design of the Web Forms model.

So ASP.NET MVC brings to the table a clean design with a neat separation of concerns, a
leaner run-time stack, full control over HTML, an unparalleled level of extensibility, and a
working environment that enables, not penalizes, test-driven development (TDD).

ASP.NET Web Forms and ASP.NET MVC applications can go hand in hand and live side by
side in the same process space. The runtime environment must be configured to host an
ASP.NET MVC application. This means installing a routing module that intercepts requests at
the gate and decides how they are to be processed. An ASP.NET MVC application lists one
or more URL patterns it will accept. Requests whose URL matches any defined patterns are

24

Part| The ASP.NET Runtime Environment

processed as ASP.NET MVC requests, while others are left to the standard processing engine
of Web Forms.

Control over Markup

Just like with Web Forms, what some perceive as a clear strength of ASP.NET MVC, others
may see as a weakness. ASP.NET MVC doesn't offer server controls of its own and also se-
verely limits the use of classic ASP.NET server controls. Even though you describe the view of
an ASP.NET MVC page via ASPX markup, you can’t embed in it server controls that handle
postbacks. In other words, you are allowed to use a DataGrid if your goal is creating a table
of records, but your code will receive an exception if the DataGrid is configured to allow
paging, sorting, or inline editing.

To gain full control over HTML, JavaScript, and CSS, ASP.NET MVC requires that you write
Web elements manually, one byte after the next. This means that, for the most part, you are
responsible for writing every single </i> or <table> tag you need. In ASP.NET MVC, there’s
no sort of component model to help you with the generation of HTML. As of today, HTML
helpers and perhaps user controls are the only tools you can leverage to write HTML more
quickly. Overall, some developers might see ASP.NET MVC as taking a whole step backward
in terms of usability and productivity.

Adding visual components to ASP.NET MVC is not impossible per se; it is just arguably what
most users of the framework really want. My opinion is that keeping any form of markup
abstraction far away from ASP.NET MVC is OK as long as you intend to have two distinct
frameworks for ASP.NET development. But | do hope that we move soon to a new frame-
work that unifies the Web Forms and ASP.NET MVC models. In this new framework, if it ever
arrives, | do expect some markup abstraction as the only way to increase productivity and
have people move to it.

ASP.NET MVC and Simplicity

Simplicity is a characteristic that is often associated with ASP.NET MVC. If you look at
Figure 1-8, you can hardly contest the point—ASP.NET MVC is architecturally simpler than
Web Forms because the sequence of steps to process a request follows closely the rules of
the underlying protocols, with no abstractions created by the framework.

This is a correct statement, but it is a bit incomplete. ASP.NET MVC processes a request
through an action and passes return values to a view engine. In doing so, though, ASP.NET
MVC offers a number of free services that you might or might not need. For example, when a
form posts its content, the framework attempts to bind posted data to the formal parameters
of the action method in charge of serving the request. There's a lot of reflection involved in
this approach, and some work is done that might not strictly be needed. Can you opt out of
this model binding, and how easy is it to do so?

This is the point that shows why ASP.NET MVC targets simplicity in a much more effective
way than Web Forms.

Chapter 1 ASP.NET Web Forms Today 25

In ASP.NET MVC, opting out of a built-in feature simply requires that you use a different
coding convention. There's nothing to disable and no closure to crack open to get a differ-
ent behavior. Any complexity in ASP.NET MVC is built in a bottom-up manner, by compos-
ing layers of code one on top of the other. At any time, you can step back and remove the
topmost layer to replace it or simply do without it.

In Web Forms, opting out of any built-in feature is much harder because the framework was
deliberately built around them in a top-down manner. You can still create HTML-based pages
in Web Forms, but it will be significantly hard and counterintuitive. To alter the default be-
havior of Web Forms, you have to resort to tricks or override methods. In ASP.NET MVC, you
just change your programming style or simply replace the component.

ASP.NET Web Pages

ASP.NET Web Forms was relatively easy to embrace for developers and software
professionals. ASP.NET MVC requires a bit of extra work and doesn't really lend itself to

being learned and discovered on a trial-and-error basis. So how high is the barrier to get into
the world of ASP.NET?

ASP.NET Web Pages offers a new approach. ASP.NET Web Pages is not a framework aimed at
professional developers, but still it is part of the ASP.NET platform and will be updated in the
future. Let's find out more.

Small, Simple, and Seamless

ASP.NET Web Pages targets an audience of Web developers who are involved in very simple
projects either because they're not software specialists or because the site to create is ex-
tremely simple indeed. This audience would benefit from even further simplicity such as a
single page model and a simplified way of writing code and the view. ASP.NET Web Pages
comes with a new IDE called WebMatrix and a simplified version of IIS, aptly named IIS
Express. WebMatrix, in particular, wraps up server code, markup, and database tables in a
new designer environment that makes it a snap to write pages and publish them to a site.

Code and View Together

With ASP.NET Web Pages, you write pages using a mixed syntax that incorporates both
markup and code, but in a way that is a bit cleaner than today with either Web Forms or
ASP.NET MVC code blocks. By using the @xxx syntax, where xxx is a built-in object, you can
insert in the markup some dynamically calculated value and also use those components to
emit ad hoc markup. Here's an example:

<body>
Today is @DateTime.Now
</body>

mailto:@DateTime.Now

26

Part| The ASP.NET Runtime Environment

Such objects are more similar to ASP.NET MVC HTML helpers than to Web Forms controls,
and they represent dynamic code you can interact with in a single environment while
building the output you expect.

Note The syntax supported by ASP.NET Web Pages (formerly codenamed Razor) is the new
default language for defining views in ASP.NET MVC 3.

Summary

ASP.NET Web Forms is the Microsoft premier platform for Web applications. It was originally
designed a decade ago to fit as closely as possible the skills and needs of the average
developer of the time. Ten years ago, the typical developer was either a former C/C++/

Java developer or an early adopter of HTML willing to do fancier things that JavaScript could
just not support. In the middle, there was the Visual Basic developer, accustomed to RAD
programming and slowly absorbing the basic concepts of object-oriented programming.
ASP.NET Web Forms was designed for these developers. And it worked great for several
years. Now, however, it is showing some clear signs of age.

The advent of AJAX revolutionized the perception of a Web application and sparked a
paradigm shift—a long process that we have probably gone through for no more than 70
percent of its natural length. Web Forms is really close to its architectural end. If you lead
a team of developers, and if your business is based on ASP.NET and Web applications, you
should make sure that the framework of choice will take you just where you want and do it
comfortably enough.

In the past years, the number of Web applications (including simple sites) has grown beyond
imagination. As a developer, you might be asked to design and build anything from a

simple site with just a small collection of data-driven pages up to the Web front end of an
enterprise-class application, where scalability, extensibility, and customization are high on the
priority list.

Is Web Forms up to the task? Sure it is, but you should consider that the conventional way of
working of Web Forms doesn't lend itself very well to creating testable code, mockable views,
and layers. Web Forms is essentially Ul focused and highly optimized for the RAD paradigm.

| recommend that you seriously consider alternatives such as ASP.NET MVC or a new set of
patterns and practices to make the most of the Web Forms framework.

To learn about ASP.NET MVC, | recommend an earlier book of mine, Programming Microsoft
ASP.NET MVC (Microsoft Press, 2010). The rest of this book focuses instead on how to make
the most of Web Forms today.

Chapter 2

ASP.NET and IIS

As a general rule, the most successful man in life is the man who has the
best information.

—Benjamin Disraeli

Any Web application is hosted within a Web server; for ASP.NET applications, the Web
server uses typically Microsoft Internet Information Services (IIS). A Web server is primarily

a server application that can be contacted using a bunch of Internet protocols, such as HTTP,
File Transfer Protocol (FTP), and Simple Mail Transfer Protocol (SMTP). [IS—the Web server
included with the Microsoft Windows operating system—is no exception.

A Web server such as IS spends most of its time listening to a variety of ports, including

port 80, which is where HTTP packets are usually forwarded. The Web server captures incom-
ing requests and processes them in some way. The details of how that happens depend on
both the programming interface of the Web server and the functionalities of the additional
components installed on the server.

These components altogether form the runtime environment of ASP.NET and are collectively
responsible for processing an incoming HTTP request to produce some response for the
client browser. Note that this ASP.NET runtime machinery is the same for both ASP.NET Web
Forms and ASP.NET MVC. Among other things, this means that classic ASP.NET pages and
ASP.NET MVC resources can be hosted side by side in the same application.

In this chapter, I'll first review the architecture and application model of the ASP.NET runtime
environment and then explain the work it does to serve a request. In the second part of the
chapter, I'll discuss tools and techniques to publish and administer ASP.NET applications
hosted on an IIS Web server.

Note Any Web framework needs a Web server for applications to stay online, and ASP.NET
is no exception. ASP.NET works very well with [IS—the Microsoft Web server—and very few
attempts have been made to run ASP.NET applications outside the Microsoft stack of server
products. Furthermore, many of these attempts are just experiments, if not just toy projects.
Overall, because IIS is so tightly integrated with ASP.NET, it does not make much sense to look
around for an alternate Web server.

With this said, however, note that with the proper set of add-on modules you can also make
ASP.NET run on other Web servers, such as Apache. In particular, for Apache the mod_mono
module is used to run ASP.NET applications. The mod_mono module runs within an Apache
process and forwards all ASP.NET requests to an external Mono process that actually hosts
your ASP.NET application. For more information, pay a visit to http://www.mono-project.com/
Mod_mono.

27

http://www.mono-project.com/

28

Part| The ASP.NET Runtime Environment

The Web Server Environment

At the dawn of ASP.NET planning, IIS and the ASP.NET framework were supposed to be a
tightly integrated environment sharing the same logic for processing incoming requests. In
this regard, ASP.NET was expected to be the specialist capable of handling page requests
through port 80, whereas IIS was envisioned as the general-purpose Web server capable of
serving any other type of requests on a number of predefined ports.

This is more or less what we have today with the latest IIS 7.5 and Microsoft Windows Server
2008 R2; it took a while to get there though.

A Brief History of ASP.NET and IIS

Back in 2002, ASP.NET 1.0 was a self-contained, brand new runtime environment bolted onto
[IS 5.0. With the simultaneous release of ASP.NET 1.1 and IIS 6.0, the Web development and
server platforms have gotten closer and started sharing some services, such as process re-
cycling and output caching. The advent of ASP.NET 2.0 and newer versions hasn't changed
anything, but the release of IIS 7.0 with Windows Server 2008 signaled the definitive fusion
of the ASP.NET and IS programming models.

Let's step back and review the key changes in the IIS architecture and the architecture’s
interaction with ASP.NET applications.

The Standalone ASP.NET Worker Process

Originally, the ASP.NET and IIS teams started together, but at some point the respective
deadlines and needs created a fork in the road. So ASP.NET 1.0 couldn’t rely on the planned
support from IIS and had to ship its own worker process. Figure 2-1 shows the runtime
architecture as of Windows 2000 and IIS 5.0.

11S 5.0
CLR
- ASP.NET -
Browser ——aspnet_asapidll |) worker — HTTP Pipeline
named process [HttpRuntime H HttpApplication]
pipe
inetinfo.exe

aspnet_wp.exe
FIGURE 2-1 ASP.NET requests processed by a separate worker process outside IIS.
Captured by the IIS executable listening on port 80, an HTTP request was mapped to an IIS

extension (named aspnet_isapi.dll) and then forwarded by this component to the ASP.NET
worker process via a named pipe. As a result, the request had to go through a double-stage

Chapter 2 ASP.NET and IIS 29

pipeline: the IS pipeline first and the ASP.NET runtime pipeline next. The ASP.NET developer
had little control over preliminary steps (including authentication) performed at the IIS gate
and could gain control over the request only after the request had been assigned to the
ASP.NET worker process. The ASP.NET worker process was responsible for loading an instance
of the Common Language Runtime (CLR) in process and triggering the familiar request

life cycle, including application startup, forms authentication, state management, output
caching, page compilation, and so forth.

The IIS Native Worker Process

With Windows Server 2003 and IIS 6.0, Microsoft redesigned the architecture of the Web
server to achieve more isolation between applications. IIS 6.0 comes with a predefined
executable that serves as the worker process for a bunch of installed applications sharing the
same application pool. Application pools are an abstraction you use to group multiple Web
applications under the same instance of an IIS native worker process, named w3wp.exe.

[IS 6.0 incorporates a new HTTP protocol stack (http.sys) running in kernel mode that
captures HTTP requests and forwards them to the worker process. The worker processes use
the protocol stack to receive requests and send responses. (See Figure 2-2.)

Application Pool
11S 6.0

HTTP CLR

Browser —— ASPNET -
aspnet_asapi.dll HTTP Pipeline
www

Static [HttpRuntime H HttpApplication]

service

http.sys

w3wp.exe

FIGURE 2-2 The worker process isolation mode of IS 6.0.

An ad hoc service—the WWW publishing service—connects client requests with hosted sites
and applications. The WWW service knows how to deal with static requests (for example,
images and HTML pages), as well as ASP and ASP.NET requests. For ASP.NET requests, the
WWW service forwards the request to the worker process handling the application pool
where the target application is hosted.

The 1IS worker process loads the aspnet_isapi.dil—a classic IIS extension module—and lets it
deal with the CLR and the default ASP.NET request life cycle.

30

Part| The ASP.NET Runtime Environment

A Shared Pipeline of Components

Before IIS 7, you had essentially two distinct runtime environments: one within the IS process
and one within the application pool of any hosted ASP.NET application. The two runtime
environments had different capabilities and programming models. Only resources mapped
to the ASP.NET ISAPI extension were subjected to the ASP.NET runtime environment; all the
others were processed within the simpler IS machinery.

With 1IS 7, instead, you get a new IIS runtime environment nearly identical to that of
ASP.NET. When this runtime environment is enabled, ASP.NET requests are authenticated and
preprocessed at the IIS level and use the classic managed ASP.NET runtime environment (the
environment centered on the managed HttpRuntime object) only to produce the response.
Figure 2-3 shows the model that basically takes the ASP.NET pipeline out of the CLR closed
environment and expands it at the IIS level.

Application Pool

11S 7.0 1IS Messaging Pipeline

W —»HTTP Authentication
Browser Static/Non-static
Output Caching ASPNET HTTP

CLR

v
>

a www Handl
g . E Hand| andler
£ service xecute Handler

Response Generation

w3wp.exe

FIGURE 2-3 The unified architecture of IIS 7 that offers an integrated pipeline for processing HTTP requests.

An incoming request is still captured by the kernel-level HTTP stack and queued to the target
application pool via the WWW service. The difference now is that whatever request hits IS is
forwarded run through the unified pipeline within the application pool. Application services
such as authentication, output caching, state management, and logging are centralized and
no longer limited to requests mapped to ASP.NET. In this way, you can, for example, also
subject HTML pages or JPEG images to forms authentication without having to first map
them to an ASP.NET-specific extension.

Note that in IIS 7, the unified architecture is optional and can be disabled through the IIS
Manager tool, as shown in Figure 2-4. The Integrated Pipeline mode, however, is the default
working mode for new application pools. In the rest of the chapter, I'll assume application
pools are configured in Integrated Pipeline mode unless otherwise specified.

Chapter 2 ASP.NET and IIS

= Internet Information Services (IS) Manager

File View Help

—, -
@ &) [v MV-LAPTOP » Application Pools

Connections

495 MV-LAPTOP (My-Laptop\DinoE)
L} Application Pools
» (8] Sites

G%l Application Pools

This page lets you view and manage the list of application paols on the server. Application |
more applications, and provide isolation among different applications.

Filter: - [fiGo - G Show All | Group by: Ne Grouping
Name B Status MET Fram... Managed Pipeline Mode
[T RSB.NET i Started . vA030 9
LY ASP.NET vi.0 Classic Stated V4030319 Classic
Edit Application Pool | Integrated
Classic
Integrated
255, NET va.0| Integrated
NET Eramework version:
[w030319 -
Managed pipeline mode:
Start application pool immediately

FIGURE 2-4 Configuring the application pool Integrated Pipeline mode in IIS 7.

The Journey of

To make sense of the IIS architecture, let’s go through the steps of the typical journey of

HTTP requests that hit

Any HTTP request that knocks at the IS door is queued to the application pool that the

an HTTP Request in IIS

an ASP.NET application.

31

target application belongs to. The worker process picks up the request and forwards it to the

application. The details of what happens next depend on the IIS 7 pipeline mode—Classic
or Integrated Pipeline. (IS 7 configured to work in Classic mode behaves according to the

model of its predecessor, IS 6.)

In IIS 7.0 running in Integrated Pipeline mode, no explicit handoff of the request from IIS to
ASP.NET ever occurs. The runtime environment is unified and each request goes through

only one chain of events.

Part| The ASP.NET Runtime Environment

Events in the Request Life Cycle

The following list of events is fired within the IS messaging pipeline. Handlers for these
events can be written through managed code both in the form of HTTP modules (as
discussed in Chapter 4, "HTTP Handlers, Modules, and Routing”) and code snippets in
global.asax. Events are fired in the following sequence:

1. BeginRequest The ASP.NET HTTP pipeline begins to work on the request. For the first
request ever in the lifetime of the application instance, this event reaches the applica-
tion after Application_Start.

2. AuthenticateRequest The request is being authenticated. ASP.NET and IIS integrated
authentication modules subscribe to this event and attempt to produce an identity.
If no authentication module produced an authenticated user, an internal default au-
thentication module is invoked to produce an identity for the unauthenticated user.
This is done for the sake of consistency so that code doesn't need to worry about null
identities.

3. PostAuthenticateRequest The request has been authenticated. All the information
available is stored in the HttpContext's User property at this time.

4. AuthorizeRequest The request authorization is about to occur. This event is commonly
handled by application code to perform custom authorization based on business logic
or other application requirements.

5. PostAuthorizeRequest The request has been authorized.

6. ResolveRequestCache The runtime environment verifies whether returning a
previously cached page can resolve the request. If a valid cached representation is
found, the request is served from the cache and the request is short-circuited, calling
only any registered EndRequest handlers. ASP.NET Output Cache and the new IIS 7.0
Output Cache both feature “execute now” capabilities.

7. PostResolveRequestCache The request can't be served from the cache, and the
procedure continues. An HTTP handler corresponding to the requested URL is created
at this point. If the requested resource is an .aspx page, an instance of a page class is
created.

8. MapRequestHandler The event is fired to determine the request handler.

9. PostMapRequestHandler The event fires when the HTTP handler corresponding to the
requested URL has been successfully created.

10. AcquireRequestState The module that hooks up this event is willing to retrieve any
state information for the request. A number of factors are relevant here: the handler
must support session state in some form, and there must be a valid session ID.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Chapter 2 ASP.NET and IIS 33

PostAcquireRequestState The state information (such as Application or Session) has
been acquired. The state information is stored in the HttpContext's related properties
at this time.

PreRequestHandlerExecute This event is fired immediately prior to executing the
handler for a given request.

ExecuteRequestHandler At this point, the handler does its job and generates the
output for the client.

PostRequestHandlerExecute When this event fires, the selected HTTP handler has
completed and generated the response text.

ReleaseRequestState This event is raised when the handler releases its state
information and prepares to shut down. This event is used by the session state module
to update the dirty session state if necessary.

PostReleaseRequestState The state, as modified by the page execution, has been
persisted.

UpdateRequestCache The runtime environment determines whether the generated
output, now also properly filtered by registered modules, should be cached to be
reused with upcoming identical requests.

PostUpdateRequestCache The page has been saved to the output cache if it was
configured to do so.

LogRequest The event indicates that the runtime is ready to log the results of the
request. Logging is guaranteed to execute even if errors occur.

PostLogRequest The request has been logged.

EndRequest This event fires as the final step of the pipeline. At this point, the
response is known and made available to other modules that might add compression
or encryption, or perform any other manipulation.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent. The PreSendRequestHeaders event
informs the HttpApplication object in charge of the request that HTTP headers are about to
be sent. The PreSendRequestContent event tells the HttpApplication object in charge of the
request that the response body is about to be sent. Both these events normally fire after
EndRequest, but not always. For example, if buffering is turned off, the event gets fired as
soon as some content is going to be sent to the client.

Speaking of nondeterministic application events, it must be said that a third nondeterministic
event is, of course, Error.

Let's delve deeper into the mechanics of ASP.NET request processing.

34

Part| The ASP.NET Runtime Environment

Note Technically, most of the IIS pipeline events are exposed as events of the ASP.NET
HttpApplication class. A significant exception is ExecuteRequestHandler. You find this event in the
[IS messaging pipeline, but you won't find an easy way to subscribe to it from within ASP.NET
code. Internally, the ASP.NET runtime subscribes to this event to receive notification of when an
ASP.NET request needs to produce its output. This happens when using unmanaged code that is
not publicly available to developers. If you want to control how an incoming request is executed
by IIS, you have to resort to Win32 ISAPI filters. If you want to control how an ASP.NET request is
executed, you don't need the IS ExecuteRequestHandler event, because a simpler HTTP handler
will do the job.

ASP.NET Request Processing in Integrated Pipeline Mode

In an integrated pipeline, an ASP.NET request is like any other request except that, at some
point, it yields to a sort of simplified ASP.NET runtime environment that now just prepares
the HTTP context, maps the HTTP handler, and generates the response.

When the application pool that contains an ASP.NET application running in Integrated
Pipeline mode is initialized, it hosts ASP.NET in the worker process and gives ASP.NET a
chance to register a set of built-in HTTP modules and handlers for the IIS pipeline events.
This guarantees, for example, that Forms authentication, session state, and output caching
work as expected in ASP.NET. At the same time, the ASP.NET runtime also subscribes to re-
ceive notification of when an ASP.NET request needs processing.

In between the PreRequestHandlerExecute and PostRequestHandlerExecute events, IIS hands
an ASP.NET request to some code in the ASP.NET runtime environment for actual processing.
Hosted in the IIS worker process, the ASP.NET environment is governed by a new class—the
ApplicationManager class. This class is responsible for creating and managing any needed
AppDomains to run the various ASP.NET applications located in the same pool. During the
initialization, the ApplicationManager class invokes a specific PipelineRuntime object, which
ultimately registers a handler for the ExecuteRequestHandler.

This ASP.NET internal handler is called back by 1IS whenever an ASP.NET request needs to be
processed. The handler invokes a new static method on the HttpRuntime object that kicks in

to take care of the request notification. The method retrieves the HTTP handler in charge of

the request, prepares the HTTP context for the request, and invokes the HTTP handler’s pub-
lic interface. Figure 2-5 offers a graphical view of the steps involved.

Chapter 2 ASP.NET and IIS 35

HTTP
Request
[Authentication]
CLR
| Basic || Windows ||Anonymous|| Forms |
i |:| ApplicationManager |
[Request Handling] _>| HttpApplication |
[_col][staticFile || IsAPI Extensions [Building HTTP Context |
—_—
! "'@ | Execute HTTP Handler |
|
[Output]
| Log || Compression |

FIGURE 2-5 How the IIS 7 integrated pipeline processes an ASP.NET request.

Building a Response for the Request

Each ASP.NET request is mapped to a special component known as the HTTP handler. The
ASP.NET runtime uses a built-in algorithm to figure out the HTTP handler in charge of a given
ASP.NET request.

In Web Forms, this algorithm is based on the URL of the requested page. You have a different
HTTP handler for each page requested. If you requested, say, page.aspx, the HTTP handler is
a class named ASP.page_aspx that inherits from the code-behind class you specified in your
source code. The first time the request is made this class doesn’t exist in the AppDomain. If
the class does not exist, the source code for the class is obtained by parsing the ASPX markup
and then it's compiled in memory and loaded directly into the AppDomain. Successive
requests then can be served by the existing instance.

36

Part| The ASP.NET Runtime Environment

An HTTP handler is a managed class that implements the /HttpHandler interface, as shown in
the following code snippet. The body of the ProcessRequest method ultimately determines
the response for the request.

public interface IHttpHandler

{
void ProcessRequest(HttpContext context);
bool IsReusable { get; }

}

The base class for Web Forms pages—the System.Web.UI.Page class—is simply a class

that provides an extremely sophisticated implementation of the IHttpHandler interface,
which basically turns out to be a full implementation of the Page Controller pattern. The
ProcessRequest method of the System.Web.Ul.Page class consumes posted data, view state,
and server controls to produce the resulting HTML for the client. Needless to say, the Page
class assumes that your request is for an HTML page as described by the content available in
a server ASPX file.

For individual requests, or for a logically defined group of requests, within an application you
can define an alternate handler class that employs different logic to generate the response.
This alternate HTTP handler can be mapped to a particular URL, and it doesn’t have to point
necessarily to an existing server resource. Ultimately, this is just what ASP.NET MVC does.

Note Asyou'll see in Chapter 4, ASP.NET Web Forms supports URL routing, which essentially
allows you to map an incoming URL to a specific ASPX page. The standard algorithm for
mapping URLs to HTTP handler classes as described here only works if you're not using Web
Forms URL routing.

Adding Your Own Code to the Pipeline

As mentioned, you can write your own handlers for many of the request life-cycle events
listed earlier in the chapter. You can do that by writing a managed HTTP module or by add-
ing code to the global.asax file of your ASP.NET application. Let’s briefly consider what it
takes to extend the global.asax file. Here's a piece of code that shows what you end up with:

protected void Application_PostAuthenticateRequest()
{

// Your code here

}

You use the Application_Xxx notation to define a handler for the Xxx event fired at the
application level. For example, the code snippet gives you a chance to run some custom code
after the request has been authenticated. These handlers affect your application only.

Chapter 2 ASP.NET and IIS 37

As you'll see in much more detail in Chapter 4, a managed HTTP module is a class that
implements a specific interface—the IHttpModule interface. In its startup code, the HTTP
module programmatically registers as the handler for one or more of the request events.
Next, you register the module with the application and just wait for it to kick in for each and
every application request.

Note that the HTTP module can be registered in two ways: via the configuration file of the
application (web.config) or administratively through the IIS Manager tool. Mappings set
directly within IIS Manager are stored in the applicationHost.config file.

In 1IS Manager, you select the Modules applet and then bring up the dialog box shown in
Figure 2-6 to add a new module by specifying its unique name and, of course, the type.

Add Managed Module -7 |z

MName:
MyHttpModule

Type

[T] Invoke only for requests to ASP.MET applications or managed handlers

Cancel

FIGURE 2-6 Adding a new HTTP module in IS Manager.

An HTTP module can operate on both ASP.NET managed and native requests. A native
request is intended as a request that doesn't strictly require the ASP.NET runtime machinery
to be served successfully. The canonical example of a native request is a JPEG image or a
static HTML page.

Some New Features in IS 7.5

Recently, IIS 7 has been further refined to better serve the needs of Web developers and site
administrators. Here's a quick list of new features you might want to take advantage of to
improve the performance and effectiveness of ASP.NET applications.

Note that the list is not exhaustive and is mostly meant to serve the needs of members of an
ASP.NET development team rather than site administrators. For example, IIS 7.5 incorporates
a number of administrator-level extensions that have been released along the way as add-
ons to IIS 7, such as the Application Request Routing and the URL Rewrite Module. The for-
mer is a routing module that forwards HTTP requests to content servers based on predefined
settings to ensure proper balancing of traffic. The latter is a highly configurable module to
block, redirect, and rewrite incoming requests.

38

Part| The ASP.NET Runtime Environment

For developers, features like application warm-up and hardened security are perhaps more
attractive.

Autostarting Web Applications

It comes as no surprise that some Web applications might take a while to get up and running
and ready to serve the first request. Application restarts happen for a number of reasons,
and sometimes they're beyond the explicit control of the site administrators. (I'll get back to
application restarts in a moment.)

If the application needs to perform expensive initialization tasks before serving the first
request, every restart is a performance hit. The user all of a sudden experiences significant
delays and can't easily figure out why. There are no fancy ways to solve the issue; in the end,
all you need to do is keep your application awake and “distribute” the time it takes to initial-
ize your application across its entire uptime. This might mean, for example, that if your ap-
plication requires lengthy database processing, you ensure that data is cached in a location
that's faster to access than the database itself. Some effective solutions in this regard have
been arranged using an always running Windows service. All the service does is periodically
refresh a cache of data for the Web application to access from within the Application_Start
event handler in global.asax.

ASP.NET 4 and IIS 7.5 on Windows Server 2008 R2 offer an integrated solution to this
relatively frequent issue. A new feature named autostart provides a controlled approach for
starting up an application pool and initializing the ASP.NET application before the application
can accept HTTP requests.

You edit the configuration file of IS to inform IS of your intentions and then provide your
own component that performs the warm up and accomplishes whatever tasks are required
for your application to be as responsive as expected. The feature is a joint venture between
[IS 7.5 and ASP.NET 4. ASP.NET ensures the preloader component is invoked in a timely
manner; IS 7.5, on the other hand, prevents the ASP.NET application from receiving any
HTTP traffic until it is ready. As you can see, the warm-up is not really magic and does not
squeeze extra computing power out of nowhere; it stems from the fact that users perceive
the application is down until it is ready to accept and promptly serve requests.

I'll demonstrate concretely how to set up the IIS 7.5 autostart feature later in the chapter in
the section about the configuration of IIS.

Application Pool Custom Identities

For years, worker processes under both IIS 6.0 and IS 7.0 have run under the aegis of the
NETWORKSERVICE account—a relatively low-privileged, built-in identity in Windows.
Originally welcomed as an excellent security measure, in the end the use of a single account
for a potentially high number of concurrently running services created more problems than

Chapter 2 ASP.NET and IIS 39

it helped to solve. In a nutshell, services running under the same account could tamper with
each other.

In IIS 7.5, worker processes by default run under unique identities automatically and
transparently created for each newly created application pool. (The underlying technology
is known as Virtual Accounts and is currently supported by Windows Server 2008 R2 and
Windows 7. For more information, have a look at http://technet.microsoft.com/en-us/library/
dd548356(WS.10).aspx.)

You can still change the identity of the application pool using the IIS Manager dialog box
shown in Figure 2-7.

Advanced Settings

B (General)
\NET Framework Version
Managed Pipeline Mode
Name
Queue Length
Start Automatically

= cPu
Limit
Limit Action
Limit Interval (minutes)
Processor Affinity Enabled
Processor Affinity Mask

v4.0.30319
Integrated
ASP.NET 4.0
1000

True

0
NoAction
5

False
4294967295

m

= Process Model

CE Aovicopotienty ()

Idle Time-out (minutes)

Application Pool Identity [|
Load User Profile
Maximurn Worker Proces| @) Built-in account:
Ping Enabled -
Ping Maximum Respanse] [AgplicationPooldentty |
= _ LocalSenvice
Identity) {LocalSystem
[identityType, usemame, pq NetworkService
as built-in account, i.e. App ApplicationPaolidenti
Service, Local System, Local

FIGURE 2-7 Modifying the identity of an application pool.

Deploying ASP.NET Applications

An ASP.NET application must be installed on an IIS machine for it to be usable by its end
users. Installing a Web application means moving files and configuration from the develop-
ment server to a staging server first or directly to the production environment. In general,
deployment of a Web application entails a number of steps that relate to moving settings
and data around a few server machines. This process can obviously be accomplished manu-
ally but does offer a high degree of automation. Automation is always useful and welcome;
it becomes a necessity, though, when you need to install on a hosted server instead of an
enterprise server that you might have direct access to.

In the beginning of the Web development era, deployment was not an exact science and
everybody developed their own set of practices and tools to simplify and speed up necessary

http://technet.microsoft.com/en-us/library/

40

Part| The ASP.NET Runtime Environment

tasks. Today, Web deployment is part of the job, and effective tools are integrated into the
development environment and are taken care of as part of the development cycle.

Not all scenarios are the same for the deployment of Web applications. You still can
recognize simple and less simple scenarios and pick appropriate tools for each. Let's start
with plain XCopy deployment for Web site projects and then move on to consider more
enterprise-level tools, such as the IS 7 integrated Web Deployment Tool, that are better
suited for Web application projects.

Note In Microsoft Visual Studio, you can choose between two main types of Web projects—
Web Site Project (WSP) and Web Application Project (WAP). The biggest difference between the
two is the deployment of the source code. In a WSP, you deploy markup and source code; in a
WAP, you deploy markup and compiled code. There are, of course, pros and cons in both situa-
tions. Having source code deployed to the Web server enables you to apply quick fixes and up-
dates even via FTP. If you need to control the rollup of updates, or you are subject to strict rules
for deployment, a WAP is preferable as you build a single package and run it through the server.

A comprehensive comparison of WSP and WAP can be found in the whitepaper available at
http://msdn.microsoft.com/en-us/library/aa730880(VS.80).aspx#wapp_topic5. An interesting
post that helps you make the choice through a series of questions is found at http://vishaljoshi.
blogspot.com/2009/08/web-application-project-vs-web-site.html.

XCopy Deployment for Web Sites

In simple scenarios, installing an ASP.NET application is simply a matter of performing a
recursive copy of all the files (assemblies, scripts, pages, style sheets, images) to the tar-

get folder on the target server machine. This process is often referred to as performing an
XCopy. Performing an XCopy doesn’t preclude applying additional configuration settings to
the IIS machine, but you keep XCopy and configuration on two distinct levels and run them
as distinct operations.

The Copy Web Site Function of Visual Studio 2010

Visual Studio 2010 offers XCopy capabilities only for Web site projects through the Copy Web
Site function on the Website menu. The typical user interface is shown in Figure 2-8.

http://msdn.microsoft.com/en-us/library/aa730880
http://vishaljoshi

Chapter 2 ASP.NET and IIS

©0 MySite - Microsoft Visual Studio

“Hll Copy Web D:AMySite\ X
Connections: D:\MyDeployedsSite

== - IR

- -5 | b) [Debug

File Edit View Website Build Debug Team Data Tools Architecture Test ReSharper Anslyze Window Help

~| | [# | OnBegin

o) & -

~ & Connect % Disconnect

Source Web site: Remote Web site: (#
D:\MySite D:\MyDeployedSite
Name Status Date Modified Name Status Date Modified
iAccount Account
| App_Data Scripts
Seripts Styles
. Styles [Z] Aboutaspx Unchanged ~ 5/28/2010 9:08 AM
E| About.aspx Unchanged 5/28/2010 9:08 AN] About.aspres Unchanged 5/28/2010 9:08 AM
] About.aspi.cs Unchanged 5/28/2010 9:08 AN =] Defaultaspx Unchanged 5/28/2010 9:08 AM
E| Defautt.aspx Unchanged 5/28/2010 9:08 AN] Default.aspx... Unchanged 5/28/2010 9:08 AM
] Default.aspx.cs Unchanged 5/28/2010 9:08 AN &]Global.asax Unchanged 5/28/2010 9:08 AM
4] Global.asax Unchanged 5/28/2010 9:08 AN [F] Sitemaster Unchanged ~ 5/28/2010 9:08 AM
] Site.master Unchanged 5/28/2010 9:08 AN] Sitemaster.cs Unchanged ~ 5/28/2010 9:08 AM
<] Site.master.cs Unchanged 5/28/2010 9:08 AN i3 Web.config Unchanged 5/28/2010 3:08 AM
3 Web.config Unchanged 5/28/2010 9:08 AN
a4 [+ 4 T] »

Last refresh: 5/28/2010 9:44 AM

Show deleted files since the last copy operation

Last refresh: 5/28/2010 9:44 AM

<

R ErrorList B Output

Ready

I

I3

n

[E=8 B =)

Solution Explorer > 1 x

e CRE o)
2P D:AMySite\

» [Account
(4 App_Data
[Seripts
[Styles
] About.aspx
] Default.aspx
4] Global.asax
] Site.master
i3 Web.config

3 Solu...

Properties

Bl E

FIGURE 2-8 The Copy Web Site function of Visual Studio 2010.

41

Visual Studio offers you two list boxes representing the source and remote Web sites. All you
do is copy files from the source to the target and synchronize content if needed.

This approach works very well if you just want to have the source on the server machine in a
native format that can be edited live to apply updates and fixes. In a WSP, Visual Studio does
not really compile your source code and doesn’t deploy assemblies. It is limited to validating
the correctness of the code by running the ASP.NET compiler in the background and spotting

possible failures.

The actual compilation occurs only when the page is requested by some end users. This
ensures that any applied change is promptly detected without the need of an extra step of

compilation and deployment.

Note As mentioned, the Copy Web Site function is enabled only for Web site projects. There are
no technical reasons, however, that prevent the feature from also being implemented for Web
application projects. It was merely a matter of opportunity and a design choice. The assumption

is that if you opt for a WAP, you primarily intend to deploy compiled assemblies and markup

files. This means that editing a code-behind class on the fly and live on the production server (for
example, to apply a sensitive update) is not a priority of yours. Therefore, you are probably more

interested in an automated deployment experience.

42

Part | The ASP.NET Runtime Environment
Copying Files
The Copy Web Site function allows you to sync up your project files directly with the target

directory on the IIS machine (as illustrated in Figure 2-8) or in other ways. For example, you
can connect to the IS Web site via FTP or via FrontPage extensions.

Beyond the Copy Web Site facility of Visual Studio, to copy files to a target site you can use
any of the following: FTP transfer, any server management tools providing forms of smart
replication on a remote site, or an MSI installer application.

Each option has pros and cons, and the best fit can be found only after you know exactly the
runtime host scenario and if the purpose of the application is clearly delineated. Be aware
that if you're going to deploy the application on an ISP host, you might be forced to play

by the rules (read, “use the tools”) that your host has set. If you're going to deliver a front
end for an existing system to a variety of servers, you might find it easier to create a setup
project. On the other hand, FTP is great for general maintenance and for applying quick
fixes. Ad hoc tools, on the other hand, can give you automatic sync-up features. Guess what?
Choosing the right technique is strictly application-specific and is ultimately left to you.

FTP gives you a lot of freedom, and it lets you modify and replace individual files. It doesn’t
represent a solution that is automatic, however—whatever you need to do must be accom-
plished manually. Assuming that you have gained full access to the remote site, using FTP is
not much different than using Windows Explorer in the local network. | believe that with the
Copy Web Site functionality the need for raw FTP access is going to lessen. If nothing else,
the new Copy Web Site function operates as an integrated FTP-like tool to access remote
locations.

The new copy function also provides synchronization capabilities too. It is not like the set

of features that a specifically designed server management tool would supply, but it can
certainly work well in a number of realistic situations. At the end of the day, a site replication
tool doesn’t do much more than merely transfer files from end to end. Its plusses are the user
interface and the intelligence that are built around and atop this basic capability. So a rep-
lication tool maintains a database of files with timestamps, attributes, and properties, and it
can sync up versions of the site in a rather automated way, minimizing the work on your end.

Building a Setup Project

Another common scenario involves using an out-of-the-box installer file. Deploying in this
way is a two-step operation. First, create and configure the virtual directory; next, copy the
needed files. Visual Studio makes creating a Web setup application a snap. You just create a
new type of project—a Web Setup Project—select the files to copy, and build the project.

Chapter 2 ASP.NET and IIS 43

Ideally, you proceed by adding a Web Setup Project to the solution that contains the Web
application. In this way, you can automatically instruct the tool to copy the project output in
the Bin folder and copy the content files directly in the root of the Web application folder.
The benefit is that you don't have to deal with specific file names but can work at a higher
level of abstraction.

You create a Web application folder to represent the virtual directory of the new application
on the target machine. The Properties dialog box lets you configure the settings of the new
virtual directory. For example, the AllowDirectoryBrowsing property lets you assign browsing
permission to the IIS virtual folder you will create. You can also control the virtual directory
name, application execute permissions, the level of isolation, and the default page. The Bin
subfolder is automatically created, but you can have the setup process create and populate
as many subfolders as you need. (See Figure 2-9.)

Properties - ax
Web Application Folder File Installation Properties -
B
B
(Name) Web Application Folder
AllowDirectoryBrowsing False
AllowReadAccess True
AllowScriptSourceAccess False
AllowWriteAccess False

ApplicationProtection
AppMappings
Condition
DefaultDecument
ExecutePermissions

vsdapMedium
(Mone)

default.aspx
vsdepScriptsOnly

Index True

IsApplication True
LogVisits True
Property TARGETDIR
Transitive False
VirtualDirectory WebSetupl

Misc

FIGURE 2-9 Configuring the Web application folder in a Web setup project.

When you build the project, you obtain a Windows Installer .msi file that constitutes the
setup to ship to your clients. The default installer supports repairing and uninstalling the
application. The setup you obtain in this way—which is the simplest you can get—does not
contain the Microsoft .NET Framework, which must be installed on the target machine or
explicitly included in the setup project itself.

Packaging Files and Settings

The XCopy strategy is well suited for relatively simple scenarios where you don’t need to do
much more than copy files. All in all, the Web setup project is a solution that works well for
implementing an XCopy strategy in a context (for example, hosted servers) where you don't
have direct access to the IIS machine.

44

Part| The ASP.NET Runtime Environment

In general, installing an ASP.NET Web application is not simply a matter of copying a bunch
of files and assemblies. It is likely that you will have to perform additional tasks, includ-

ing adapting configuration settings to the destination environment, creating databases,
configuring the Web server environment, and installing security certificates. In the first place,
you must be able to express the detailed deployment logic you need (that is, what has to be
done, and where and how it must be done). Second, you need tools that allow you to push
content to one server (or more) in an automated way so that manual steps are eliminated,
which decreases the possibility of making mistakes.

For WAP projects only, Visual Studio 2010 offers a powerful set of tools centered on the Web
Deployment Tool.

The Web Deployment Tool

The Web Deployment Tool (WDT, or Web Deploy) is an IS tool that recognizes ad hoc deploy
packages and runs them in the server environment. A deploy package contains setup instruc-
tions for a Web application, including the list of files to copy, assemblies to install, database
scripts to run, certificates, and IIS and registry configuration.

You don't even need administrative privileges to deploy these packages to IIS—delegated
access to IIS is enough to run Web Deploy packages. You can get Web Deploy for IIS 6 and
[IS 7 from http.//www.iis.net/download/webdeploy. As shown in Figure 2-10, you can install
the tool on an IIS machine via the latest version of Web Platform Installer.

© Web Platform Installer 2.0 (=% B =<=|

Web Deployment Tool 1.1 (Installed)

What's New? View more products to install

Web Platform

The Weh Deployment Tool provides deployment and
migration support for application packages and I5 6.0
and 7.0 Web servers. For developers, the Web
Deployment Tool provides a framework for adding

Web Applications

manifest files to ZIP packages that simplify local and
remote Web application deployment. The Web
Deployment Tool also incorporates many features that
enable Web server administrators to deploy, sync, and
migrate sites, including configuration, content, SSL
certificates, and other types of data associated with a
Web server.

Publisher: Microsoft
Download Size: 5.01 MB
Version: 7.0.0.0

Release date: 2/2/2010

More informatien

Options Install Exit

FIGURE 2-10 The Web Deployment Tool installed through Web Platform Installer.

http://www.iis.net/download/webdeploy

Chapter 2 ASP.NET and IIS 45

After you have WDT on board, all you need to do is prepare a deployment script and push it
to the tool installed on the IIS machine.

Notice that you can use WDT for clean installations as well as for updating existing
applications. In other words, the tool gives you an API to synchronize files over HTTP, the
ability to execute setup and configuration commands remotely; more importantly, it works in
both enterprise and hosted environments.

The strict requirement, of course, is that WDT must be installed on the server machine.

Note To successfully operate with WDT, you need compatible versions of WDT installed on the
server and the client machine. However, note that WDT is automatically installed if you have
Visual Studio 2010. In addition, you must have appropriate permissions on the target computer
to perform the tasks you require.

Building a WDT Package

A deployment package is a zipped file with a manifest. The package includes all the
information required to set up the IS application and the files to copy. In a package, in
addition to the application’s source files and binaries, you find IIS and application pool
settings, changes required to the web.config file in the production environment, database
scripts, security certificates, registry settings, and assembilies to place in the global assembly
cache (GAQ).

You can create a WDT package either from Visual Studio 2010 or using Windows PowerShell
or the command-line version of the tool. From Visual Studio 2010, you have a highly auto-
mated user interface you control through the Package/Publish Web tab. (See Figure 2-11.)

46 Part| The ASP.NET Runtime Environment

50 WebApplicationl - Microsoft Visual Studic ===
File Edit View Project Build Debug Team Data Tools Architecture Test ReSharper Analyze Window Help
il SEd |k a9 -0 -E-E| b8 [vebug || [0nBegin || 2 -
i Publish: | Create Publish Settings =| &] =
W WebApplicationl x [ECTIEEY + Solution Explo... * B X
=ilea|
Application “A WebApplicationl
Configuration: |Release +| Platform: |Active (Any CPU) - . =4 Properties
Build » [l References
Web Package/Publish enables you to deploy your Web application to Web servers. |~ > [Account
Learn more about Package/Publish Web 5 App_Datz
Package/Publish Web > [Scripts
Tterns to deploy (applies to all deployment methods) > [Styles
Package/Publish SQL > [E] About.aspx
[Only files needed to run this application - + =] Default.aspx
Silverlight Applications , iﬂ Global.asax
. 7] Exclude generated debug symbels - T SiteMuter
CEdEsens 7 Exclude files from the App_Data folder - [Web.config
Resources
Items to depley (applies te Web Deploy only)
Settings Include all databases configured in Package/Publish SQL tab Qpen Settings
Reference Paths on
Signing L
Code Analysis Web Deployment Package Settings F— -0 x

Create deployment package as a zip file

®=: |
s rhaerEe et o=zl

obj\Release\Package\WebApplicationl. zip|

IS Web site/application name to use on the destination server:
Default Web Site/WebApplicationl_deploy

Physical path of Web application on destination server (used only when IS settings are included):

di\WebApplicationl\WebApplicationl_deploy

Password used to encrypt secure IIS settings:

I ErrorList B Output

Ready ® .

FIGURE 2-11 The Package/Publish Web tab, which is used to configure default settings for WDT.

You access the tab from the Project menu and use it to set your default settings for the
projects. Interestingly, the tab goes hand in hand with the Package/Publish SQL tab, where
you can list the databases you intend to configure and script on the server. The tool also
offers to load some database information from your web.config file.

In Visual Studio 2010, you can choose to publish the application directly or you can build

a WDT package and deploy it later. To build a package, you select the Build Deployment
Package item from the Project menu. You obtain a ZIP file in the specified location that,
among other things, contains a Windows PowerShell script to be used on a server machine.
Figure 2-12 shows the content of such a package.

Chapter 2 ASP.NET and IIS 47

0 WebApplication] - Microsoft Visual Studio
File Edit View Project Build Debug Tesm Data Tools Architecturs Test ReSharper Analyze Window Help
i@ SH@| % 2B - - E-E| b pebug ~| | (# | OnBegin -

i) Back ()] (2] wly AT | =) LA < i Publish: | Create Publish Settings -| i & =

A LEESEER Default.aspx

URL: | D:\WebApplicationl\WebApplicationl\obj\Debug\Package

Name Date modified Type Size
! PackageTmp 5/28/2010 10:54 AM File folder
[&] WebApplication!.deploy.cmd 5/28/201010:59 AM Windows Comm, 10 KB

ebApplication].SetParameters.xml 5/28/201010:59 AM XML Document 1KB
[WebApplicationl SourceManifestxml 5/28/2010 10:59 AM XML Decument 1KE
CDWebApplicationl zip 5/28/201010:59 AM WinZip File 166 KB

FIGURE 2-12 The content of a sample WDT package.

You can also publish the application in single step by choosing the Publish item on the Build
menu. You are then shown the dialog box seen in Figure 2-13 where you indicate the full
name of the target site or application and whether you want it to be a new application or
simply a virtual directory. To turn the newly installed package into a new application, you
select the Mark As IIS Application On Destination check box. For the entire operation to
work, you need to run Visual Studio 2010 in administrative mode.

Publish Web

Publish profile:

Profilel =

Publish uses settings from "Package/Publish Web" and "Package/Publish SQL" tabs
in Project Properties.

Find Web hosting provider that supports ane-click publish.
Publish

Build configuration: Debug

Use Build Configuration Manager to change configuration

Publish method: | Web Deploy -]

Service URL: localhost @
&.0. localhost or hitps://RemoteServer8172/MsDeploy.axd

Site/application: Default Web Site/WebAppl @
&.9. Default Web Site/MyApp or MyDomain.com/MyApp
[] Mark asTIS application on destination

Leave egtra files on destination (do not delete)

Credentials
Allow untrusted certificate
Use this option only for trusted servers

User name:

Password:

Save password

[pubish || clse |

FIGURE 2-13 Publishing a Web application via Web Deploy.

If you choose to deploy a new IS application, it will be placed in the default application pool.
Obviously, if the application pool is configured for, say, the .NET Framework 2.0, it can't be
used to host an ASP.NET 4 application.

48

Part | The ASP.NET Runtime Environment

Propagating IIS Settings

How would you specify IIS settings for the application? The first option is importing a
package that will be installed in the application pool of choice, configured as appropriate.
Another option is creating the desired IIS environment in the development machine and then

just propagating those settings up to the destination environment via WDT. There are some
snags, though.

The Visual Studio Publish Wizard doesn't let you determine the target application pool unless
the source Web project is an IS Web project. So what's an IS Web project, exactly?

An IIS Web project is a project that relies on the local IIS Web server instead of the ASP.NET
Development Server that comes with Visual Studio. (Note that this internal Web server is also
referred to as the Visual Studio Development Server or, more familiarly, Cassini.) For a WAP,
you switch to the local IIS Web server by selecting the Web tab in the application properties
dialog box, as shown in Figure 2-14.

Publish Web -7l

Publish profile: % x
Profilel v| |Rename | Delete | Save

Publish uses settings from "Package/Publish Web" and "Package/Publish S5QL" tabs
in Project Properties.

Find Web hosting provider that supports ane-click publish.
Publish

Build configuration: Debug

Use Build Configuration Manager to change configuration

Publish method: [Web Deploy -

Service URL: localhost @
&.0. localhost or hitps://RemoteServer8172/MsDeploy.axd

Site/application: Default Web Site/WebAppl @
&.9. Default Web Site/MyApp or MyDomain.com/MyApp
[] Mark asTIS application on destination

Leave egtra files on destination (do not delete)

Credentials
Allow untrusted certificate
Use this option only for trusted servers

User pame:
Password:

Save password

[pubish || clse |

FIGURE 2-14 Switching to an IIS Web project.

At this point, when you open the Publish Settings tab you find a couple of check boxes
selected that allow you to propagate current IIS settings down to the destination.

(See Figure 2-15.) To configure the local IS for the current project, you just click the Open
Settings link. Any application pool or configuration scenario you define will be reported in
the deployment script.

Chapter 2 ASP.NET and IIS 49

Web Package/Publish enables you to deploy your Web application to Web servers,

Learn more about Package/Publish Web

Package/Publish Web*
Items to deplay (applies to all deployment methods)

Package/Publish SQL

[Only files needed to run this application -

Silverlight Applications
7] Exclude generated debug symbols

Build Events [] Exclude files from the App_Data folder

Resources
Items to deploy (applies to Web Deploy only)

Sais: Include all databases configured in Package/Publish SQLtab Open Settings

Reference Paths Include all IS settings as configured in IS Manager (used only for IS Web projects) Qpen Settings
Signing Include application pool settings used by this Web project

Code Analysis Web Deployment Package Settings

Create deployment package as a zip file

Location where package will be created:

FIGURE 2-15 Propagating IIS settings.

Web.config Transformations

During the development of a Web site, you rely on a bunch of settings stored in the
web.config file that refer to the current environment. So, for example, the data access layer
targets a development database and the security settings are different from those required
by the production environment. When it comes to deploying the site to the real host, you
need to tweak the web.config appropriately. This is usually a manual process. You open the
development version of the web.config in Visual Studio and then proceed with any required
changes.

To make the whole matter even more complicated, sometimes you need to go through a
battery of integration tests. An integration test is typically a situation in which you test the
behavior of your site (or part of it) in an environment that simulates the production environ-
ment and in which multiple elements are being tested together. You might need yet another
web.config file for this scenario. In the end, you likely need about three different versions of
the web.config file: debug, release, and test. How do you deal with that?

The simplest, but not necessarily most effective, solution is managing distinct files and
keeping them in sync by manual intervention. However, if you made the switch to Visual
Studio 2010, you can rely on a new IDE feature that automatically maintains a single copy

of the web.config file—the skeleton—and then transforms it into as many versions as you
need when you publish the solution using WDT. This feature is supported by Web application
projects and is not available for simple Web site projects.

The web.config file of a Visual Studio 2010 WAP looks like the one shown in Figure 2-16. It
shows up as a subtree in Solution Explorer. If you expand the node, you see two child files—
web.debug.config and web.release.config. The debug version of web.config looks like a regular
configuration file except for a little detail.

50

Part| The ASP.NET Runtime Environment

Solution Explorer * O Xx

aleEe
(2} WebApplicationl
> [=d| Properties
» [«g] References
» [Account
3 App_Data
> [Scripts
> [Styles
-] About.aspx
- || Default.aspx
> 4] Global.asax
> [Site.Master
4 |9 Web.config
%] Web.Debug.config
%] Web.Release.config

L?IQ LRI A= % Tearn Expl.. B Server Expl...

FIGURE 2-16 Predefined transformations of the web.config file.
Here's how the root <configuration> element appears for transformation files:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

The element includes the definition of a new namespace whose suffix is xdt. The namespace
refers to a specific XML schema used to express transformations required on the content of
the file. You use xdt elements to insert commands in the configuration file to be processed
during the publish process to apply transformations to the actual web.config file being de-
ployed for a given configuration (debug, release, or any other one you want to support).

Suppose, for example, that the web.config file you use for development purposes contains
a <connectionString> node that needs be updated for a production install to target a real
database. You edit the web.release.config file to contain the following:

<connectionStrings>
<add name="YourDatabase"
xdt:Locator="Match(name)"
xdt:Transform="Replace"
connectionString="..." />
</connectionStrings>

The Transform attribute indicates the operation to perform on the current element. In this
case, you intend to perform a Replace. The Locator attribute, on the other hand, refers to
the attribute to process. In the example, the target of the replacement is any attribute that
matches the value of the name attribute. In other words, when processing the development
web.config file, the Publish Wizard will try to locate any connection string entry there that
matches the YourDatabase name. If any is found, the entire <add> subtree is replaced with
the one provided in the transformation file.

http://schemas.microsoft.com/XML-Document-Transform

Chapter 2 ASP.NET and IIS 51

If you open up the Release transformation file that comes with the default Visual Studio
ASP.NET template, you find the following:

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
<system.web>
<compilation xdt:Transform="RemoveAttributes(debug)" />
</system.web>
</configuration>

The <compilation> element is definitely one that needs to be updated when you move to a
production environment. The Transform element indicates that a given attribute—the debug
attribute—must be removed. As a result, when the web.release.config file is transformed, the
debug attribute is removed from the <compilation> element.

The overall idea is that you write a base web.config file for the development environment and
then express the delta between it and any other one you might need through transforma-
tions. At a minimum, you need a transformation for the release version for the configura-
tion file. The delta results from the transformation applied via the XDT transform. The XDT
processor is incorporated in the Web Deployment Tool.

You can have a distinct transformation of the web.config for each build configuration you
handle in your solution. Figure 2-17 shows how to define a custom build configuration. After
you successfully add a new custom build configuration, you right-click the web.config file

and select the Add Config Transform menu item. This will add a new web. Xxx.config file,
where Xxx is the name of the new configuration. At this point, you can edit the file at will and
add as many XDT tags as needed. The file transformation occurs only when you generate a
deployment package from the Project menu.

Configuration Manager -7l
Active solution configuration: Active solution platform:
Debug -] [anycru -
Project contexts (check the project configurations to build or deploy):
Project Configuration Platform Build
WebApplicationl Debug [=] anycpu =]
New Selution Cenfiguration 7 ==

Name:

Staging

Copy settings from:
[sEmpty> -

<Em§>
Release ‘
[o]4 Cancel

Close

FIGURE 2-17 Adding a new build configuration.

http://schemas.microsoft.com/XML-Document-Transform

52

Part| The ASP.NET Runtime Environment

Site Precompilation

Another aspect related to deploying an ASP.NET application is the site precompilation. Every
ASP.NET page needs an extra step of runtime compilation to serve its markup. As you'll see
in the upcoming chapters, when you author an ASP.NET page you write a markup file (ASPX)
plus a code-behind class using C#, Visual Basic, or any other supported .NET language.

In a WSP scenario, you deploy markup and code-behind classes as is and wait for the users to
make requests to have them compiled. In a WAP scenario, you deploy markup files and one
or more assemblies containing the compiled code-behind classes. In both cases, the dynamic
compilation step for each available page is still required at least the first time a given page

is served. The WAP project type simply saves you from deploying the source code of your
classes.

In Visual Studio, when you attempt to publish a WSP project you are shown a different user
interface than for a WAP project where a new term is introduced: site precompilation. In spite
of this, site precompilation is a general ASP.NET feature and is not limited to WSP projects.
It's the Visual Studio 2010 user interface that seems to limit it to Web site projects.

Is site precompilation really useful?

Site precompilation consists of programmatically invoking all pages so that the ASP.NET
runtime can process them as if a user had already invoked each. The benefit is that us-
ers won't experience any extra delay after the first request. In addition, you catch any
compile-time errors that slipped into pages after the previous tests.

Precompilation doesn't necessarily deliver a huge performance improvement; most of the
time, it is a small-scale optimization instead. However, if you have pages that cache a lot of
data and take a while to initialize, this little bit of speed can improve the user’s perception of
your application.

Precompilation can take two forms: in-place precompilation and deployment precompilation.

Note Site precompilation is sometimes sold as a feature that saves you from having to deploy
your source code to the production environment. This is definitely the wrong way to approach
things. ASP.NET allows you to deploy pages with their source code-behind classes, but it doesn't
mandate it. It's ultimately your choice, and the option has both pros and cons. If you don't want
to deploy source code, just opt for a Web application project instead of a Web site project. Site
precompilation can be applied to any ASP.NET project regardless of the type and in spite of the
Visual Studio tooling support that for some reason is only offered if you opt for a WSP.

Chapter 2 ASP.NET and IIS 53

In-Place Precompilation

In-place precompilation consists of running a tool over the entire set of project files to
request each page as if it were being used by end users. As a result, each page is compiled as
if it's for ordinary use. The site is fully compiled before entering production, and no user will
experience a first-hit compilation delay.

In-place precompilation usually takes place after the site is deployed but before it goes
public. To precompile a site in-place, you use the following command, where /yourApp
indicates the virtual folder of the application:

aspnet_compiler -v /yourApp

Note that with the previous syntax, YourApp is assumed to be deployed within the default
Web site. If that is not your case, you might want to indicate the site explicitly, as shown here:

aspnet_compiler -v /W3SVC/2/Root/YourApp
In this case, you are addressing YourApp within the Web site characterized by an ID of 2.

If you precompile the site again, the compiler skips pages that are up to date and only
new or changed files are processed and those with dependencies on new or changed files.
Because of this compiler optimization, it is practical to compile the site after even minor
updates.

Precompilation is essentially a batch compilation that generates all needed assemblies in the
fixed ASP.NET directory on the server machine. If any file fails compilation, precompilation
will fail on the application. The ASP.NET compiler tool also supports a target directory. If you
choose this option, the tool will generate all of its output in a distinct directory. Next, you can
zip all of the content and deploy it manually to the IIS machine. I'll discuss the command line
of the ASP.NET compiler tool in a moment.

Precompilation for Deployment

Precompilation for deployment generates a representation of the site made of assemblies,
static files, and configuration files—a sort of manifest. This representation is generated on
a target machine and also can be packaged as MSI and then copied to and installed on a
production machine. This form of precompilation doesn't require source code to be left on
the target machine.

Precompilation for deployment is also achieved through the aspnet_compiler command-line
tool. Here's a common way to use the tool:

aspnet_compiler -m metabasePath
-c virtualPath
-p physicalPath
targetPath

54

Part| The ASP.NET Runtime Environment

The role of each supported parameter is explained in Table 2-1.

TABLE 2-1 Parameters of the aspnet_compiler Tool

Switch Description

—aptca If this switch is specified, compiled assemblies will allow partially trusted callers.

—-C If this switch is specified, the precompiled application is fully rebuilt.

-d If this switch is specified, the debug information is emitted during compilation.

—delaysign If this switch is specified, compiled assemblies are not fully signed when created.

—errorstack Shows extra debugging information.

-m Indicates the full [IS metabase path of the application.

-f Indicates that the target directory will be overwritten if it already exists and
existing contents will be lost.

—fixednames If this switch is specified, the compiled assemblies will be given fixed names.

—keycontainer Indicates the name of the key container for strong names.

—keyfile Indicates the physical path to the key file for strong names.

-p Indicates the physical path of the application to be compiled. If this switch is
missing, the 1IS metabase is used to locate the application. This switch must be
combined with —v.

-u If this switch is specified, it indicates that the precompiled application is
updatable.

-v Indicates the virtual path of the application to be compiled. If no virtual path is

specified, the application is assumed to be in the default site: W3SVC/1/Root.

If no target path is specified, the precompilation takes place in the virtual path of the

application, and source files are therefore preserved. If a different target is specified, only
assemblies are copied, and the new application runs with no source file in the production
environment. The following command line precompiles YourApp to the specified disk path:

aspnet_compiler -v /YourApp c:\DeployedSite

Static files such as images, web.config, and HTML pages are not compiled—they are just
copied to the target destination.

Precompilation for deployment comes in two slightly different forms—with or without
support for updates. Sites packaged for deployment only are not sensitive to file changes.
When a change is required, you modify the original files, recompile the whole site, and
redeploy the new layout. The only exception is the site configuration; you can update
web.config on the production server without having to recompile the site.

Sites precompiled for deployment and update are made of assemblies obtained from all files
that normally produce assemblies, such as class and resource files. The compiler, though,
doesn't touch .aspx page files and simply copies them as part of the final layout. In this way,
you are allowed to make limited changes to the ASP.NET pages after compiling them. For

Chapter 2 ASP.NET and IIS 55

example, you can change the position of controls or settings regarding colors, fonts, and
other visual parameters. You can also add new controls to existing pages, as long as they do
not require event handlers or other code.

In no case can new pages be added to a precompiled site without recompiling it from
scratch.

The fixednames parameter in Table 2-1 plays an important role in update scenarios for

sites that need to release updates to specific portions without redeploying the entire set

of assemblies. In this case, you must be able to just replace some of the dynamically created
assemblies and subsequently require that their names be fixed.

Note In Visual Studio 2010, you have a graphical user interface for site precompilation only if
you create a Web site project. If this is the case, and you get to publish the site, you are offered
a nice dialog box with options to select to make the precompiled site updatable and to enable
strong naming on precompiled assemblies.

Configuring IIS for ASP.NET Applications

Because an ASP.NET application lives within the context of the IIS Web server, the settings
you apply to IS might have an impact on the application itself. Let's review some of the
aspects of IIS you want to consider for achieving good performance and stability.

Recycling Policies

The application pool that hosts your ASP.NET application is subject to process recycling.
Process recycling is a configurable setting by means of which you determine when the appli-
cation pool (and subsequently all of its contained applications) is to be restarted. Recycling is
not necessarily a bad thing and doesn't necessarily indicate a problem. However, if it happens
too often and without a clear reason, well, it's not really a good sign.

Process recycling is an IIS feature introduced as a sort of insurance against programming
errors that can cause the application to leak memory, hang, or just slow down. By recycling
the worker process behind the application pool regularly, the Web server tries to ensure an
acceptable average quality of service.

In light of this, process recycling is expected to happen naturally but occasionally, and in
a way that doesn't affect the perceived performance. What if, instead, you detect that the
application is restarted too often?

There are many reasons for a recycle of the worker process to be triggered. Natural reasons
are those configured through the wizard shown in Figure 2-18.

56

Part| The ASP.NET Runtime Environment

Edit Application Pool Recycling Settings (-5 [Esa]
£ " "
= Recycling Conditions

E=

Fixed Intervals
Regular time intervals (in minutes): [T] Fixed number of requests:

1740
[C] Specific timefs):

Example: 8:00 PM,12:00 AM

Memory Based Maximums

[] Virtual memory usage (in KB): [*] Private memory usage (in KB):

FIGURE 2-18 Application pool recycling settings.

The application pool can be recycled at regular intervals (which is the default choice, as
shown in Figure 2-18), after serving a fixed number of requests, at specific times, or when
enough memory is consumed. Beyond this, the pool is recycled when you apply changes to
the deployed site and modify configuration files or the Bin folder. If you frequently update
bits and pieces of the site (for example, you published it as a Web site), an application restart
also happens when a given number of assemblies is loaded in memory.

In the .NET Framework, you can’t unload a given assembly. Therefore, when an ASP.NET page
is modified, it is recompiled upon the next access, resulting in a new assembly being loaded
in the AppDomain. The number of recompiles allowed is not unlimited and is controlled by
the numRecompilesBeforeAppRestart attribute in the <compilation> section of the configura-
tion file. When the maximum number of recompiles is exceeded, the application just restarts.

Unexpected Restarts

Aside from all these reasons, an application pool can recycle because of unhandled
exceptions, timeouts, low memory, or threads or connection pool issues. In general, the
worker process recycling is a defensive measure aimed at keeping the application in shape
and preventing any worse troubles. An application restart is not free of issues because it
causes the user's session to disappear, for example; however, that is probably the lesser evil
compared to having a site that hangs or crashes.

An application restart is not something you can spot easily. It manifests through diminished
and periodical responsiveness of the site. Diagnosing the cause is usually hard. When you
suspect undue process recycling, the first place to look is in the event viewer to see whether
some interesting information is being tracked. Memory usage is another good successive
area to investigate.

Chapter 2 ASP.NET and IIS

57

In IS 7.x, you can use the settings shown in Figure 2-19 to determine which event log entries
you want to be generated in the case of process recycling events.

Advanced Settings -7 [3a]
Shutdown Executable Parameters B
B Recycling
Disable Overlapped Recycle False

Disable Recycling for Configuration Changes False

I2] Generate Recycle Event Log Entry

Application Pool Configuration Changed False

Isapi Reported Unhealthy False
Manual Recycle False
Private Memary Limit Exceeded True
Regular Time Interval True
Request Limit Exceeded False
Specific Time False
Virtual Memory Limit Exceeded True B
Private Memory Limit (KE) 0
Regular Time Interval (minutes) 1740 |
Request Limit 0 1
Specific Times TimeSpan(] Array
Virtual Memory Limit (KB) 0

Generate Recycle Event Log Entry
[logEventOnRecycle] Generates an event log entry for each occurrence of
the specified recycling events.

FIGURE 2-19 Setting up event log entries for process recycling.

To make sure you track effective termination of the application, or to handle that in a
customized way, you can resort to using the following code, adapted from an old but very

nice post by Scott Guthrie:

public static class HttpApplicationExtensions

{

public static void TrackAppShutdown(this HttpApplication theApp)

{

// Use reflection to grab the current instance of the HttpRuntime object
var runtime = typeof(HttpRuntime).InvokeMember("_theRuntime",
BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.GetField,

null, null, null);
if (runtime == null) return;

// Use reflection to grab the current value of an internal property explaining the

// reason for the application shutdown

var messageShutdown = runtime.GetType() .InvokeMember("_shutDownMessage",
BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,

null, runtime, null);

// Log an entry in the event viewer (or elsewhere ..

if (!EventLog.SourceExists("YourApp"))

)

EventLog.CreateEventSource("YourApp", "Application™);

var log = new EventLog { Source = "YourApp" };

log.WriteEntry(messageShutdown, EventLogEntryType.Error);

58

Part| The ASP.NET Runtime Environment

Written as an extension method for the HttpApplication object, the method can be invoked
easily from the Application_End handler in global.asax, as shown here:

void Application_End(object sender, EventArgs e)

{
this.TrackAppShutdown() ;

}

The result is an entry written in the application log for each restart. It's not a magic wand, but
it's a nice extension you can incorporate into all applications or just in case of problems.

Output Caching Settings

Devised in the context of earlier versions of ASP.NET, output caching in IIS 7 is a fully fledged
feature of the Web server. Output caching refers to caching for performance reasons some
of the semi-dynamic content served by the Web server. Semi-dynamic content is any content
that partially changes from request to request. It is the opposite of static content, such as
JPEG images or HTML pages, and also different from classic ASP.NET pages that need to be
entirely regenerated for every request.

The whole point of output caching is skipping the processing of a given ASP.NET page for

a number of seconds. For each interval, the first request is served as usual; however, its
response is cached at the IIS level so that successive requests for the same resource that
could be placed in the interval are served as if they were for some static content. When the
interval expires, the first incoming request will be served by processing the page as usual but
caching the response, and so forth. I'll say a lot more about output caching in Chapter 17,
“ASP.NET State Management.”

When it comes to configuring output caching in IS, you proceed by first defining the
extensions (for example, aspx) you intend to cache, and then you have to choose between
user-mode and kernel-mode caching. What's the difference?

It all depends on where IIS ends up storing your cached data. If you opt for user-mode
caching, any content will be stored in the memory of the IIS worker process. If you go for
kernel-mode caching, it is then the http.sys driver that holds the cache.

Using the kernel cache gives you a throughput of over ten times the throughput you would
get with a user-mode cache. Additionally, the latency of responses is dramatically better.
There are some drawbacks too.

Kernel caching is available only for pages requested through a GET verb. This means that
no kernel caching is possible on ASP.NET postbacks. Furthermore, pages with semi-dynamic
content that needs to be cached based on form values or query string parameters are not

Chapter 2 ASP.NET and IIS 59

stored in the kernel cache. Kernel caching only supports multiple copies of responses based
on HTTP headers. Finally, note that ASP.NET Request/Cache performance counters will not be
updated for pages served by the kernel cache.

Application Warm-up and Preloading

As mentioned, an ASP.NET application is hosted in an IIS application pool and run by an
instance of the 1IS worker process. An application pool is started on demand when the first
request for the first of the hosted applications arrives. The first request, therefore, sums up
different types of delay. There's the delay for the application pool startup; there's the de-
lay for the ASP.NET first-hit dynamic compilation; and finally, the request might experience
the time costs of its own initialization. This delay sums up any time the application pool is
recycled, or perhaps the entire 1IS machine is rebooted.

In IS 7.5, with the IIS Application Warm-up module (also available as an extension to IIS 7),
any initialization of the application pool is performed behind the scenes so that it doesn’t
add delays for the user. The net effect of the warm-up module is simply to improve the user
experience; the same number of system operations is performed with and without warm-up.

Behavior of a Warmed-up Application Pool

You apply the warm-up feature to an application pool. An application pool configured in this
way has a slightly different behavior when the whole IIS publishing service is restarted and in
the case of process recycling.

In the case of an IIS service restart, any application pools configured for warm-up are started
immediately without waiting for the first request to come in, as would the case without
warm-up.

When warm-up is enabled, IIS also handles the recycling of the worker process differently.
Normally, recycling consists of killing the current instance of the worker process and start-
ing a new one. For the time the whole process takes, however, IIS keeps getting requests;
of course, these requests experience some delay. With warm-up enabled, instead, the two
operations occur in the reverse order. First a new worker process is started up, and next the
old one is killed.

When the new process is up and running, it notifies IS that it is ready to receive requests.
At this point, 1IS shuts down the old worker process and completes the recycle in a way that
doesn’t add hassle for the user.

60

Part| The ASP.NET Runtime Environment

Setting Up the Application Pool

To configure an application pool for warm-up, you need to edit the applicationHost.config
file under the IS directory. The folder is \inetsrv\config and is found under the Windows
System32 folder. You need to change the value of the startMode attribute of the application
pool entry from OnDemand to AlwaysRunning. Here's the final snippet you need to have:

<applicationPools>
<add name="MyAppWorkerProcess"
managedRuntimeVersion="v4.0"
startMode="AlwaysRunning" />
</appTlicationPools>

You can achieve the same effect in a much more comfortable way via the IIS Manager user
interface, as shown in Figure 2-20.

Collection Editor - system. i i -7l
Ttems: Actions:
name queuelength autoStart enable32BitAppOnWin6d manage.. managedRuntimel * || Collaction =
DefaultAppPool 1000 True False w20 webengined.dll Add
Classic .NET AppPool 1000 True False V20 webengined.dll | er]
Atp 1000 True False w20 webengined.dll
ASP.NET vi.0 1000 True False vi webengined.dll Item Properties g
ASP.NET v4.0 Classic 1000 True False v webengined.dll Lock tem
Smart-Up 1000 True False V20 webengined.dll ~ || 3¢ ponoue
‘ il
I ‘ ' @ Help
Properties: Online Help
autoStart True =
CLRConfigFile il
E cpu
enable32BitAppOnWin64 False
enableCenfigurationOverride True
failure
managedPipelineMode Integrated
managedRuntimel oader webengined.dl
managedRuntimeVersion w40 1
name ¢ ASP.NET vi.0 7
passAnonymousToken True
processModel
queuelength 1000
recycling
[amess T p—— =
state Started
workerProcesses (Count=0) =
startMode
Data Type:enum

FIGURE 2-20 Activating the warm-up feature for an application pool.

Because an application pool can host multiple ASP.NET applications, you also need to specify
which applications the warm-up applies to. You can do that either by entering the following
script into the applicationHost.config file or by using the IS Manager interface:

<sites>
<site name="YourApp" serverAutoStart="true" ...>

</s1"-cé;>
From within IS Manager, you just navigate to the application and select the Warm-up applet
for it.

Chapter 2 ASP.NET and IIS 61

Note Warm-up is configured at the host level, not the application level. As mentioned, changes
are saved to the applicationHost.config file, not the web.config file. This means that the hoster
(including a hosting company) or the administrator decides about the policy and whether or not
warm-up is allowed. (In a hosting scenario, that could cause a lot of extra data to be hanging
around and, subsequently, a loss of performance.)

Specifying the Warm-up Code
So far, we've configured the application pool for warming up, but we haven't discussed

yet the actions to take to actually warm up an application. At the IIS level, all you need to
indicate is a URL to your application that runs the warm-up code.

The Warm-up applet in [IS Manager gives you a dialog box where you enter the URL to
the page on your site that will execute the preloading code. You also indicate a range of
acceptable HTTP status codes that indicate the success of the operation.

This approach works with both IIS 7 and 1IS 7.5.

With 1IS 7.5, however, you can define an autostart service provider—namely, a managed
component that runs any required preloading code for a given application. Such providers
are registered in the IIS configuration using the following new section:

<serviceAutoStartProviders>
<add name="MyPreloader" type="Samples.MyPreloader, MyWebApp" />

</serviceAutoStartProviders>

There's no visual interface to configure this aspect. You either edit the configuration file
manually or resort to the generic configuration editor of IS Manager. After you have
registered a bunch of autostart providers, you can pick up one for a particular application, as
shown here:

<sites>
<site name="YourApp" serverAutoStart="true">
<application serviceAutoStartProvider ="MyPreloader" ... />
</sites>

An autostart provider is a class designed to execute any initialization or cache-loading logic
you want to run before requests are received and processed. Here's an example:

using System.Web.Hosting;

public class MyPreloader : IProcessHostPreloadClient

{
public void Preload(String[] parameters)
{
// Perform initialization here...
}

62 Part| The ASP.NET Runtime Environment

When the Preload method on the autostart provider returns, IS sets up the application to
receive incoming requests. If the Preload method throws an unhandled exception, the worker
process is shut down and the whole warm-up feature fails. The result is that the worker
process will be activated on demand by the next Web request as in the default scenario.

However, if the preload continues to fail, at some point IIS will mark the application as broken
and put it in a stopped state for awhile. (All these parameters are configurable. For more
information, refer to http.//www.iis.net/ConfigReference.)

Note The warm-up feature is an IS feature. Autostart providers are an ASP.NET 4 extension that
works for any type of ASP.NET applications, including Web Forms applications and ASP.NET MVC
applications. Furthermore, warm-up also works for Windows Communication Foundation (WCF)
services running under IIS.

Summary

With the release of IIS 7 just a couple of years ago, the ASP.NET platform and the Microsoft
Web server platform are finally aligned to the same vision of HTTP request processing. A
request that hits the 1IS Web server goes through a number of steps—nearly the same set of
steps that for years have characterized the ASP.NET runtime environment.

Today, you need to understand the internal mechanics of IIS to optimize deployment and
configuration of ASP.NET applications. The great news is that if you know ASP.NET and
its runtime machinery, you're more than halfway to understanding and leveraging IIS
capabilities.

Put another way, the integration between ASP.NET 4 and IIS 7.x couldn't be tighter and
more rewarding for Web application developers. In this chapter, | reviewed the key facts of
the internal workings of IS and ASP.NET when they process a request and discussed some
of the features you want to dig out to deploy an application and optimize its behavior in a
production environment.

In the next chapter, I'll take a look at some details of the configuration of ASP.NET
applications and discuss the schema of configuration files.

http://www.iis.net/ConfigReference

Chapter 3

ASP.NET Configuration

Computers are useless. They can only give you answers.

—Pablo Picasso

The .NET Framework defines a tailor-made, XML-based API to access configuration files and,
in doing so, forces developers to adopt a common, rich, and predefined schema for storing
application settings. In the more general context of the .NET configuration scheme,
ASP.NET applications enjoy specific features such as a hierarchical configuration scheme that
allows settings inheritance and overriding at various levels: machine, application, or specific
directories.

Configuration files are typically created offline or during the development of the application.
They are deployed with the application and can be changed at any time by administra-

tors. Changes to such critical files are promptly detected by the ASP.NET runtime, Internet
Information Services (lIS), or both, and they typically cause a restart of the worker process.
ASP.NET pages can use the classes in the System.Configuration namespace to read from, and
to write to, configuration files.

In this chapter, I'll specifically delve into the ASP.NET configuration machinery. You'll see how
to fine-tune the ASP.NET runtime and review the whole collection of parameters you can set
for an individual application.

The ASP.NET Configuration Hierarchy

Configuration files are standard XML files that rigorously follow a given schema. The schema
defines all possible settings for machine and application files. Configuration in ASP.NET is
hierarchical by nature and is based on a unique, machine-specific file known as the
machine.config file plus a number of web.config files. The syntax of machine.config and
web.config files is identical.

63

64

Part| The ASP.NET Runtime Environment

Note ASP.NET protects its configuration files from direct Web access by instructing IIS to

block browser access to configuration files. An HTTP access error 403 (forbidden) is returned to
all browsers that attempt to request a .config resource as a URL. At least, this was considered

to be true for a few years. In September 2010, an ASP.NET vulnerability was discovered and
fixed by Microsoft via a security patch. You can read about it at http://weblogs.asp.net/scottgu/
archive/2010/09/18/important-asp-net-security-vulnerability.aspx. The article includes a link

to the patch, which is also available through standard Windows Update channels. Why is that
important here? One of the effects of the vulnerability was that it fooled a system HTTP handler
to return the content of any file being requested, including web.config.

Configuration Files

The ASP.NET runtime processes configuration information hierarchically, proceeding from a
root common to all applications on the machine—machine.config—down to all the
web.config files found in the various folders of the particular application.

Note The machine.config file is located in the CONFIG directory under the ASP.NET installation
folder. The installation folder is located under the Windows directory at the following path:
\Microsoft.NET\Framework\[version]\. For the .NET Framework 4, the version folder is v4.0.30319.
If you take a look at the contents of the CONFIG directory, you'll find three similar files: machine.
config, machine.config.default, and machine.config.comments. Provided for educational purposes,
the latter two files provide the description and default values of each configuration section. To
gain a bit of performance, and a lot of readability, the contents of the machine.config file contain
only the settings that differ from their defaults.

The Tree of Configuration Files

When an ASP.NET application starts, all configurable parameters are set to the default values
defined in machine.config. These values can be overridden in the first place by a web.config
file placed in the root folder of the application. The web.config file can also add new appli-
cation-specific settings. In theory, a root web.config file can also clear all the settings in the
original machine configuration and replace them altogether. However, in practice it is rare
that you would reconfigure ASP.NET for your application to this extreme.

You can also define additional web.config files in child folders to apply other settings to all
the resources contained in the subtree rooted in the folder. Also in this case, the innermost
web.config can overwrite, restrict, or extend the settings defined at upper levels. Figure 3-1
illustrates how ASP.NET processes system and application settings for each page in the
Web site.

http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx
http://weblogs.asp.net/scottgu/�archive/2010/09/18/important-asp-net-security-vulnerability.aspx

Chapter 3 ASP.NET Configuration 65

Machine.config <configuration>

<configSections> . .. </configSections>

<system.web> ... </system.web>

</c'onfiguration> |7

/ web web.c.onflg |s'merged with
.config machine.config and can
override, restrict, or extend
settings. Resultant settings are

- applied to all pages in the root
(/) folder and below.

[+ /Protected web.config is merged with the
‘—4 web current settings for the subtree

and can override, restrict, or
extend settings. Resultant
settings are applied to all pages

in the /Protected folder and
below.
.

.config

FIGURE 3-1 The hierarchical nature of ASP.NET configuration.

Configuring the machine file is an administrative task and should be performed with the
server offline when the application is deployed or during periodical maintenance. Application
settings can be changed on the fly administratively or even programmatically. Usually,
changes to the application’s configuration file result in a process recycling. However, in IIS 7
application pools can be configured to make recycling after a configuration change optional.

Important Only in very special cases should the application write to its web.config file. If

you need to persist some data on the server (for example, user profile data), you should take
advantage of cookies or, better yet, the user profile APl or some custom form of storage. The
need for writing to a configuration file should be taken as an alarm bell that warns you against
possible bad design choices. ASP.NET comes with a set of tailor-made classes, maps all the
feasible sections and nodes in the configuration schema, and exposes methods to read and write.
The primary role of configuration files is just the overall configuration of the system, namely a set
of options that can be changed offline without recompiling the system.

Part| The ASP.NET Runtime Environment

The Configuration Schema

All configuration files have their root in the <configuration> element. Table 3-1 lists the main
first-level children of the <configuration> element. Each node has a specified number of
child elements that provide a full description of the setting. For example, the <system.web>
element optionally contains the <authorization> tag, in which you can store information
about the users who can safely access the ASP.NET application.

TABLE 3-1 Main Children of the <configuration> Element

Element Description

<appSettings> Contains custom application settings.

<configSections> Describes the configuration sections for custom settings. If this
element is present, it must be the first child of the <configuration>
node.

<connectionStrings> Lists predefined connection strings that are useful to the application.

<configProtectedData> Contains ciphered data for sections that have been encrypted.

<runtime> Run-time settings schema; describes the elements that configure

assembly binding and run-time behavior such as probing and
assembly redirect.

<startup> Startup settings schema; contains the elements that specify which
version of the common language runtime (CLR) must be used.

<system.diagnostics> Describes the elements that specify trace switches and listeners that
collect, store, and route messages.

<system.net> Network schema; specifies elements to indicate how the .NET
Framework connects to the Internet, including the default proxy,
authentication modules, and connection parameters.

<system.runtime.remoting> Settings schema; configures the client and server applications that
exploit the .NET Remoting.

<system.serviceModel> Contains configuration settings for Windows Communication
Foundation (WCF) services being used by the ASP.NET application.

<system.web> The ASP.NET-specific configuration section; it contains the elements
that control all aspects of the behavior of an ASP.NET application.

<system.web.extensions> Contains elements that configure ASP.NET AJAX capabilities and
services and control their behavior.

<system.webServer> Specifies settings for the IS 7 Web server (and newer versions) that
configure the host environment for the ASP.NET application.

Because we're discussing ASP.NET applications, in this chapter I'll focus primarily

on the <system.web> section, with a look at <system.webServer>. I'll cover
<system.web.extensions> later on in Chapter 20, which is dedicated to AJAX
programming. Other sections for which you'll find significant coverage here are
<connectionStrings> and <configProtectedData>. However, this doesn't mean that, as an
ASP.NET developer, you'll never be using other sections—most certainly not!

Chapter 3 ASP.NET Configuration 67

For example, the <configSections> element defines the sections that will be used to group
information in the rest of the document. The <appSettings> element contains user-defined
nodes whose structure has been previously defined in the <configSections> node. You might
need to interact with the <system.diagnostics> section if you want to use a custom trace
listener that logs its results to an application-defined file.

Another section that is often found in the configuration of ASP.NET applications is
<system.serviceModel>. The section is used to store settings about WCF services your
ASP.NET application is going to use. Settings typically include binding information
(transportation, security, credentials) and endpoint details (URL, contract, operations).

Sections and Section Groups

All sections used in a configuration file must be declared in the initial <configSections>
section. The following code snippet demonstrates how the <system.web> section is declared
in machine.config:

<configSections>
<sectionGroup name="system.web"
type="System.Web.Configuration.SystemWebSectionGroup, ...">
<section name="authentication"
type="System.Web.Configuration.AuthenticationSection, ...
allowDefinition="MachineToApplication" />

</sectionGroup>
</configSections>

The <sectionGroup> element has no other role than marking and grouping a few child
sections, thus creating a sort of namespace for them. In this way, you can have sections with
the same name living under different groups. The <section> element takes two attributes:
name and type. The name attribute denotes the name of the section being declared. The
type attribute indicates the name of the managed class that reads and parses the contents of
the section from the configuration file. The value of the type attribute is a comma-separated
string that includes the class and full name of the assembly that contains it.

The <section> element also has two optional attributes: allowDefinition and allowLocation.
The allowDefinition attribute specifies which configuration files the section can be used in.
Feasible values for the allowDefinition attribute are listed in Table 3-2.

TABLE 3-2 Values for the allowDefinition Attribute

Value Description

Everywhere The section can be used in any configuration file. (Default.)
MachineOnly The section can be used only in the machine.config file.
MachineToApplication The section can be used in the machine.config file and in the

application’s web.config file. You cannot use the section in web.config
files located in subdirectories of the virtual folder.

68

Part| The ASP.NET Runtime Environment

The allowLocation attribute determines whether the section can be used within the
<location> section. The <location> section in a machine.config file allows you to apply the
specified machine-wide settings only to the resources below a given path. (I'll say more
about the </ocation> section shortly.)

Many sections in the configuration files support three special elements, named <add>,
<remove>, and <clear>. The <add> element adds a new setting to the specified section,
while <remove> removes the specified one. The <clear> element clears all the settings that
have previously been defined in the section. The <remove> and <clear> elements are par-
ticularly useful in ASP.NET configuration files in which a hierarchy of files can be created. For
example, you can use the <remove> element in a child web.config file to remove settings that
were defined at a higher level in the configuration file hierarchy.

The <remove> and <clear> elements don't affect the actual data stored in the configuration
file. Removing a section doesn't erase the related data from the file, it simply removes

the data from the in-memory tree of settings that ASP.NET builds and maintains for an
application.

Note Sections are a necessary syntax element in configuration files. However, you don’t need
to declare sections in all application-specific web.config files. When processing a web.config file,
in fact, ASP.NET builds a configuration tree starting from the root machine.config file. Because
all standard sections are already declared in the machine.config file that ships with the .NET
Framework, your application needs to declare only custom sections you plan to use. Finally, bear
in mind that an exception is thrown if a configuration section lacks a corresponding entry in the
<configSections> section and when the layout of the data does not match the declaration.

Let's start our tour of the configuration schema with a closer look at the </ocation> section.

The <location> Section

The <location> section serves one main purpose in two distinct scenarios. The section pro-
vides an alternative technique to apply different settings to various parts of an application.
You typically employ the </ocation> section to apply different settings to subdirectories of
the same application and to configure distinct applications installed on the same machine.

When defined inside an application’s root web.config file, it allows you to apply different
settings to different subdirectories. Instead of defining child web.config files, you can create a
single web.config file in the root folder and specify settings on a per-directory basis. Basically,
the <location> element lets you create embedded configuration sections associated with a
particular directory. From a functional point of view, this is equivalent to having a web.config
file in each directory.

Chapter 3 ASP.NET Configuration 69

When defined inside the machine.config file, or in a site's root web.config file, the <location>

section enables you to specify different machine-wide settings for various Web applications.
Used in this way, the section turns out to be an extremely powerful tool to let multiple appli-
cations apply individual machine-wide settings in an ISP scenario.

Important Note the difference between the application’s root web.config file and the site’s

root web.config file. The application’s root configuration file is the web.config file you find in the
application’s root folder. You use this file to adapt ASP.NET settings to the needs of the particular
application and its subdirectories. In contrast, the site’s root web.config file is located in the same
folder as machine.config, and therefore is well outside the Web space of any deployed applica-
tions. This file is a sort of appendix of machine.config and should be used as an additional level of
settings personalization. A </location> element defined in this file can be scoped to any applica-
tions on the machine. A </ocation> element without the path attribute will affect all applications
in the machine.

Centralized Configuration

The <location> section has two attributes: Path and allowOverride. The Path attribute
represents the virtual path to which the embedded settings apply. The following snippet
shows how it works. The code shown is taken from a web.config file. Note that the name of
the folder must be relative and should not begin with slashes, backslashes, or dots.

<configuration>
<system.web>
<!-- Settings for the application go here -->
</system.web>

<location path="Reserved">
<system.web>
<!-- Settings for the /Reserved folder go here -->
</system.web>
</Tocation>
</configuration>

The defining characteristic of this approach is that you have a single, centralized web.config
file to maintain and can still configure subdirectories individually and independently. This
feature saves you from the burden of maintaining several web.config files, but it also intro-
duces some unpleasant side effects that in the long run can turn out to be quite harsh. For
example, any change to the file results in a new compilation for all the pages in the applica-
tion. If you maintain distinct web.config files, the compilation occurs only for the pages really
affected by the change.

70

Part| The ASP.NET Runtime Environment

Note If the path attribute is omitted in the </ocation> element, the embedded settings will
apply to all subfolders of the application in the case of an application’s root web.config. Settings
will affect all installed applications on the server machine if the </ocation> element that is
missing the path attribute is found in the site's root web.config or machine.config.

Machinewide Settings

Used within the machine.config file or the site's root web.config file, the <location> element
lets you specify different machinewide settings for all the Web applications hosted on the
server machine. Note that in this case, though, you must indicate the name of the application
you're configuring prefixed by the IIS name of the Web site. The Web site name is read in the
[IS Manager. The following script applies to the YourApp application in the default Web site:

<location path="Default Web Site/YourApp">
<system.web>
<!-- Settings for the Web site go here -->
</system.web>
</Tocation>

When you develop the ASP.NET code, you typically test it on a development machine with
its own copies of machine.config and site web.config files. When you deploy the applica-
tion on a production box, especially in an ISP scenario, you might not be able to restore the
same settings. One possible reason is that the administrator does not want you to modify
the current settings because they work well for all other applications or because of security
concerns.

You can work around the issue by simply replicating any needed global settings into the
application’s root web.config. If you are deploying your code to a service provider, you might
find that many configuration elements have been locked down and cannot be overridden.
(I'll say more about this aspect in a moment.) In this case, a new application-specific
<location> section created in machine.config or the site’s web.config can contain all the
machine settings needed for your application without breaking others.

Whenever possible, though, you should try to replicate needed changes into the application’s
web.config. This should always be the first option considered because it makes the entire
application self-contained.

Unmodifiable Settings

The second <location> attribute you can specify—allowOverride—allows you to lock some
settings at either the machine or application level. By grouping settings in a </ocation>
element with the allowOverride attribute set to false, you tell the ASP.NET configuration
system to raise an exception whenever a protected setting is overridden in a lower-level
configuration file.

Chapter 3 ASP.NET Configuration 71

<location path="Default Web Site/YourApp" allowOverride="false">
<system.web>
<!-- These settings cannot be overridden -->
</system.web>
</location>

The ultimate goal of this feature is to enable administrators to control the settings of a server
that provides ASP.NET hosting. When a new application is installed in production, changes
might be required on the target machine to reflect the native environment of the application.
Updating the machine.config file on the production machine is not an issue as long as yours
is the only application running or if you can directly control and configure all the applica-
tions hosted on that machine. However, in an application-hosting scenario, the administrator
might decide to lock some machine settings to prevent installed applications from modifying
them. In this way, the administrator can preserve, to the extent possible, the integrity of the
hosting environment and guarantee that all applications run under the same conditions.

Note By default, nearly all predefined sections can appear within a </ocation> section. In
general, sections can be disallowed from appearing in <location> by using the allowLocation
attribute. The allowLocation attribute of the <section> element determines the section'’s
capability of being customized for a particular path. Set it to false, and the section is not allowed
to be used within a </ocation> section.

The <system.web> Section

The <system.web> section contains all the configuration elements that set up the ASP.NET
runtime environment and controls how ASP.NET applications behave. Table 3-3 lists the
entire sequence of first-level elements and their override level.

TABLE 3-3 The Full List of Important Sections Allowed Within <system.web>

Section Overridable Description
<anonymousldentification> Machine, application Configures identification for users
that are not authenticated.
<authentication> Machine, application Sets the authentication mechanism.
<authorization> Everywhere Indicates authorized users.
<browserCaps> Everywhere Lists known browser capabilities.
<clientTarget> Everywhere Lists predefined client targets.
<compilation> Everywhere Settings for batch compilation.
<customErrors> Machine, application Settings for custom error pages.
<deployment> Machine only Indicates how the application is

deployed.

72

Part| The ASP.NET Runtime Environment

Section

<deviceFilters>

Overridable

Everywhere

Description

Lists known mobile device
capabilities.

<fullTrustAssemblies>

Machine, application

Lists full-trust assemblies for the
application.

<globalization> Everywhere Settings for application localization.
<healthMonitoring> Machine, application Settings to monitor the status of the
application.
<hostingEnvironment> Machine, application Defines configuration settings that
control the behavior of the applica-
tion hosting environment.
<httpCookies> Everywhere Configures properties for cookies
used by an ASP.NET application.
<httpHandlers> Everywhere Lists registered HTTP handlers.
<httpModules> Everywhere Lists registered HTTP modules.
<httpRuntime> Everywhere Lists HTTP runtime settings.
<identity> Everywhere Sets impersonation.

<machineKey>

Machine, application

Encryption key for sensitive data.

<mobileControls>

Everywhere

Configures the behavior of mobile
controls. In ASP.NET 4.0, mobile
controls are deprecated.

<membership> Machine, application Defines settings for user
authentication via ASP.NET
membership.

<pages> Everywhere Controls features of ASP.NET pages.

<partialTrustVisibleAssemblies>

Machine, application

Lists partial-trust visible assemblies
for the application

<processModel> MachineOnly Configures the process model.

<profile> Machine, application Defines settings for user profile's data
model.

<roleManager> Machine, application Defines settings for role
management.

<securityPolicy> Machine, application Defines allowed trust levels.

<sessionPageState> Everywhere Defines page view-state settings for
mobile controls.

<sessionState> Machine, application Configures the Session object.

<siteMap> Machine, application Defines settings used to support the
navigation infrastructure.

<trace> Everywhere Configures the tracing system.

<trust> Machine, application Defines the default trust level.

Chapter 3 ASP.NET Configuration 73

Section Overridable Description

<urlMappings> Machine, application Defines routes mapping a requested
URL to a real page.

<webControls> Everywhere Locates client scripts.

<webParts> Everywhere Managed Web Parts.

<webServices> Everywhere Configures Web services. The Web

Services technology is considered
obsolete, as is this section.

<xhtmlConformance> Everywhere Defines settings for XHTML
conformance.

Each of the elements listed in Table 3-3 features its own schema and provides attributes and
enumerations to pick values from.

In addition to the sections listed in Table 3-3, the <system.web> group contains a subgroup
named <Caching>. Table 3-4 lists the child elements.

TABLE 3-4 Sections Allowed Within <Caching>

Section Overridable Description

<cache> Machine, application Configures the global cache settings for an
ASP.NET application.

<outputCache> Machine, application Configures the output cache for a Web
application.

<outputCacheSettings> Machine, application Defines caching profiles.

<sqlCacheDependency > Machine, application Configures the SQL cache dependencies for

an ASP.NET application.

Let's examine some of the aforementioned sections in a bit more detail. For a complete
reference, though, you might want to check out the excellent MSDN online documentation
starting at http.//msdn.microsoft.com/en-us/library/b5ysx397.aspx.

The <anonymousldentification> Section

Anonymous identification is a feature that assigns a predefined identity to users who connect
anonymously to an application. Anonymous identification has nothing to do with the anony-
mous user you can set at the IIS level, nor does it affect the authentication mechanism of
ASP.NET. The feature is designed to work with the user profile API to simplify the way you
write code in scenarios where both authenticated and unauthenticated users can use the site.

http://msdn.microsoft.com/en-us/library/b5ysx397.aspx

74

Part| The ASP.NET Runtime Environment

The <anonymousldentification> section allows you to configure how it works. Here's the
overall schema of the section:

<anonymousIdentification
enabled="[true | false]"
cookieless="[UseUri | UseCookies | AutoDetect | UseDeviceProfile]"
cookieName="""
cookiePath=
cookieProtection="[None | Validation | Encryption | A11]"
cookieRequireSSL="[true | false]"
cookieSTidingExpiration="[true | false]"
cookieTimeout="[DD.HH:MM:SS]"
domain="cookie domain"

/>

nn

Basically, anonymous identification creates a cookied or cookieless ticket and associates it
with the ongoing request. The enabled attribute turns the feature on and off; the cookieless
attribute instructs the ASP.NET runtime about cookie usage. Table 3-5 illustrates the options
for the cookieless attribute.

TABLE 3-5 Options for the cookieless Attribute

Value Description

AutoDetect Uses cookies if the browser has cookie support currently enabled. It uses the
cookieless mechanism otherwise.

UseCookie Always uses cookies, regardless of the browser capabilities.

UseDeviceProfile Uses cookies if the browser supports them, and uses the cookieless

mechanism otherwise. When this option is used, no attempt is made to check
whether cookie support is really enabled for the requesting device. This is the
default option.

UseUri Never uses cookies, regardless of the browser capabilities.

All other attributes relate to the cookie, if one gets created. You can set its name—the
default name is ASPXANONYMOUS—as well as its path, domain, protection, expiration, and
timeout. You can also indicate whether Secure Sockets Layer (SSL) should be used to transmit
the cookie.

The <authentication> Section

The <authentication> section allows you to configure a Web site for various types of user
authentication, including Forms authentication as well as Passport and IIS-driven authentica-
tion. This section has two mutually exclusive subsections—<forms> and <passport>—and the
mode attribute to control the authentication mode requested by an application. Allowable
values for the mode attribute are shown in Table 3-6.

Chapter 3 ASP.NET Configuration 75

TABLE 3-6 Supported Authentication Modes

Value Description

Forms Makes use of a custom form to collect logon information.

Passport Exploits the authentication services of Microsoft Passport (now LivelD). In
ASP.NET 4, classes dealing with Passport authentication are marked obsolete.

None Indicates ASP.NET should not enforce any type of authentication, which means
only anonymous users can connect or the application itself provides a built-in
mechanism.

Windows Exploits any authentication services of IIS—basic, digest, NTLM\Kerberos, or

certificates. This is the default mode.

When using Forms authentication, you are allowed to specify a few additional parameters,
such as name, loginURL, protection, and cookieless. Table 3-7 lists the attributes of the

<forms> element.

TABLE 3-7 Attributes of the <forms> Element

Attribute Description

cookieless Defines whether and how cookies are used for authentication tickets.
Feasible values are the same as those listed in Table 3-5.

defaultUr! Defines the URL to redirect after authentication. The default is default.
aspx.

domain Specifies a domain name to be set on outgoing authentication cookies.

enableCrossAppRedirects Indicates whether users can be authenticated by external applications

when authentication is cookieless. The setting is ignored if cookies are
enabled. When cookies are enabled, cross-application authentication is
always possible.

loginUrl

Specifies the URL to which the request is redirected for login if no valid
authentication cookie is found.

name

Specifies the name of the HTTP cookie to use for authentication. The
default name is .ASPXAUTH.

path

Specifies the path for the authentication cookies issued by the applica-
tion. The default value is a slash (/). Note that some browsers are case-
sensitive and will not send cookies back if there is a path case mismatch.

protection

Indicates how the application intends to protect the authentication
cookie. Feasible values are All, Encryption, Validation, and None. The
default is All.

requireSSL

Indicates whether an SSL connection is required to transmit the
authentication cookie. The default is false. If true, ASP.NET sets the
Secure property on the authentication cookie object so that a compliant
browser does not return the cookie unless the connection is using SSL.

slidingExpiration

Indicates whether sliding expiration is enabled. The default is false,
meaning that the cookie expires at a set interval from the time it was
originally issued. The interval is determined by the timeout attribute.

timeout

Specifies the amount of time, in minutes, after which the authentication
cookie expires. The default value is 30.

76

Part| The ASP.NET Runtime Environment

Note that the description of cookie-related attributes in Table 3-7 works also for similar
attributes in the <anonymousldentification> section.

I'll return to authentication and security in Chapter 19, “ASP.NET Security.” In particular, in
that chapter you'll discover various flavors of Forms authentication that, although described
as custom types of Forms authentication, are gaining wide acceptance in real-world applica-
tions. Two examples are OpenlD and claims-based Windows Identity Foundation (WIF).

Overall, when it comes to providing authentication for an ASP.NET application, the primary
choice is Forms authentication, including when it's in the form of OpenID implementations
such as dotnetOpenAuth. Windows authentication and Passport are seldom used today even
though both, especially Windows authentication, still serve the needs of a particular seg-
ment of applications. An emerging approach is based on Windows Identity Foundation (WIF).
With a WIF integrated with Web Forms, the user navigates to inside the application and

then, when authentication is required, the user is redirected to the configured Security Token
Service (STS), logs in there, and is then redirected back to the application with his own set of
claims. (I'll return to WIF in Chapter 19.)

The <authorization> Section

The <authorization> section is used to define a declarative filter to control access to the
resources of the application. The <authorization> section contains two subsections, named
<allow> and <deny>, that can be used to allow and deny access to users. Both elements
feature three attributes—users, roles, and verbs—filled with a comma-separated list of
names, as the following code demonstrates:

<authorization>
<allow users="comma-separated 1list of users"
roles="comma-separated list of roles"
verbs="comma-separated list of verbs" />
<deny users="comma-separated list of users"
roles="comma-separated 1ist of roles"
verbs="comma-separated 1list of verbs" />
</authorization>

The <allow> element authorizes access to any user whose name appears in the list—that is,
to all users with any of the specified roles. Authorized users can execute only the HTTP verbs
(for example, POST and GET) indicated by the verbs attribute.

Conversely, the <deny> element prohibits listed users from executing the specified actions.
The default setting allows all users free access to the resources of the application. When
specifying the user name, a couple of shortcuts are allowed. The asterisk (*) means “all users,”
whereas the question mark (?) stands for the “anonymous user.”

WV

Chapter 3 ASP.NET Configuration 77

Important The <authorization> section is all about declarative authorization. It uses a fixed
syntax to feed authorization modules (UrlAuthorization and FileAuthorizationModule) and

have them block unauthorized users as they try to access a URL or a file. Most applications,
instead, prefer to incorporate authorization within their business layer in a fluent way. In doing
so, applications associate users with roles and check roles before proceeding with any critical
operations. For this approach, you don't need the <authorization> section. The section, however,
remains quite useful for relatively simple scenarios when you just want to limit access to a specific
subset of users or protect the entire content of pages in a given area of the application. (See
Chapter 19))

The <browserCaps> Section

The <browserCaps> section enumerates the characteristics and capabilities of the supported
browsers, including mobile devices. The <browserCaps> section is tightly coupled with the
HttpBrowserCapabilities class and MobileCapabilities, which allows the ASP.NET runtime to
gather technical information about the browser that is running on the client.

So ASP.NET supports the concept of browser capabilities and gives you a chance to check
them and build your applications accordingly. You use any browser information available
through the Browser property of the intrinsic Request object. The point is, where would
ASP.NET find information to feed the Browser property?

Internally, the Request object first looks at the user-agent information that comes with the
HTTP request and then matches this information to some sort of provider. The internal struc-
ture of the browser provider has evolved quite significantly lately and especially in ASP.NET 4.

In the beginning, the <browserCaps> section was the only repository for browser
information. Under the <browserCaps> section, you find a number of commercial browsers
described in terms of their run-time capabilities, such as cookies, tables and frames support,
accepted script languages, XML DOM, and operating system. The element can be declared
at any level in the application, thus making it possible for you to enable certain levels of
browser support for certain applications. The list of available browsers can be updated as
required to detect future browsers and browser capabilities. The use of the <browserCaps>
element to define browsers was deprecated already in ASP.NET 2.0. It is, however, fully
supported still today.

An alternate approach to using <browserCaps> is reading browser information from
matching files with a .browser extension located in the folder Microsoft. NET\framework\
[version]\config\browsers. Figure 3-2 shows the default content of the folder for a site
equipped with ASP.NET 4.

78

Part| The ASP.NET Runtime Environment

[E=3 Bl =)
@Ov‘ <« Framework » v4.0.30319 » Config » Browsers - | 3 ‘ ‘ Search Browsers pel |
Eile Edit View Tools Help
Organize * Includeinlibrary v Sharewith = Bum Mew folder = 0 @
> ¢ Favorites Name . Date modified Type Size
| blackberry.browser 3/18/20101:33 AM BROWSER File 3KB
» 4 Libraries | chrome.browser /17/2010 11:28 PM 3KB
|| Default.browser 3/17/201011:28 PM 12KB
> #dy Homegroup || firefox.browser 3/17/201011:28 PM 3KB
| gateway.browser 3/17/2010 11:28 PM 6KB
4 8 Computer || generic.browser 3/17/2010 11:28 PM 3KB
3 & Local Disk (C:) || ie.browser 3/17/201011:28 PM 5KB
> [y Local Disk (D:) || iemobile.browser 3/18/2010 1:38 AM 5KB
|| iphone.browser 3/18/2010 1:38 AM 2KB
» €l Network |] operabrowser 3/17/2010 11:28 PM 5Ke
|| safari.browser 3/17/201011:28 PM BROWSER File 4 KB
l 11 items

FIGURE 3-2 The list of .browser files in ASP.NET 4.

In ASP.NET 4, yet another approach is supported to provide browser capabilities—browser
providers. In a nutshell, a browser provider is a class you register with the application using
the classic provider model, as shown in the following code snippet, or using a line of code in
global.asax:

<system.web>
<browserCaps provider="Samples.CustomProvider, Samples" />
</system.web>

The browser provider usually derives from the system-provided base class
HttpCapabilitiesProvider and extends it by overriding some methods.

The <caching> Section

The <caching> section configures the cache settings for an ASP.NET application. It consists of
four child sections: cache, outputCache, outputCacheSettings, and sq/CacheDependency.

The <cache> section defines a few application-wide settings that relate to caching. For
example, the percentagePhysicalMemoryUsedLimit and privateBytesLimit attributes indicate
the maximum size of memory (percentage and bytes) that can be occupied before the cache
starts flushing expired items and attempting to reclaim memory. Here's the schema of the
section with default values:

<cache disableMemoryCollection = "false"
disableExpiration = "false"
privateBytesLimit = "0"
percentagePhysicalMemoryUsedLimit = "89"
privateBytesPol1Time = "00:02:00" />

Chapter 3 ASP.NET Configuration 79

The default time interval between polling for the memory usage is 2 minutes. Note that by
setting the disableExpiration attribute you can disable the automatic scavenging of expired
cache items—the most defining trait of ASP.NET cache.

The <outputCache> section takes care of output caching. Here is the schema of the section
with default values:

<outputCache defaultProvider="AspNetInternalProvider"
enableOutputCache = "true"
enableKernelCacheForVaryByStar = "false"
enableFragmentCache = "true"
sendCacheControlHeader = "true"
omitVaryStar = "false">

</outputCache>

If output or fragment caching is disabled in the configuration file, no pages or user controls
are cached regardless of the programmatic settings. The sendCacheControlHeader attribute
indicates whether the cache-control:private header is sent by the output cache module by
default. Similarly, the omitVaryStar attribute enables or disables sending an HTTP Vary: *
header in the response. The enableKernelCacheForVaryByStar attribute controls whether
kernel caching is enabled or not. You should note that kernel caching is supported only for
compressed responses. This means that regardless of the attribute’s value, kernel caching
won't work any time the client requests an uncompressed response.

The defaultProvider attribute indicates the component that takes care of storing and
serving the cached output. The default provider is based on the same code that pow-
ered output caching in earlier versions of ASP.NET. The store is the in-memory cache. By
writing your own provider, you can change the storage of the output cache. Note that the
AspNetinternalProvider provider name doesn't really match any class in the system.web
assembly. It is simply a moniker that instructs the system to go with the built-in logic that
worked for any previous versions of ASP.NET. The framework offers a new abstract class—
OutputCacheProvider—that represents your starting point on the way to building custom
output cache providers.

The <outputCacheSettings> section contains groups of cache settings that can be applied
to pages through the @OutputCache directive. The section contains only one child section,
named <outputCacheProfiles>. An output cache profile is simply a way of referencing
multiple settings with a single name. Here's an example:

<outputCacheSettings>
<outputCacheProfiles>
<add name="ServerOnly"
duration="60"
varyByCustom="browser" />
</outputCacheProfiles>
</outputCacheSettings>

80

Part| The ASP.NET Runtime Environment

In the example, the ServerOnly profile defines a cache duration of 60 seconds and
stores different versions of the page based on browser type. Here is the schema of
<outputCacheProfiles>:

<outputCacheProfiles>
<add name = ""

enabled = "true"
duration = "-1"
Jocation = ""
sq1Dependency =
varyByCustom =
varyByControl =
varyByHeader =
varyByParam =
noStore = "false"/>

</outputCacheProfiles>

"

nn
nn

nn

"

A database dependency is a special case of custom dependency that consists of the
automatic invalidation of some cached data when the contents of the source database table
changes. In ASP.NET, this feature is implemented through the Sq/CacheDependency class.

The <sglCacheDependency> section defines the settings used by the Sq/CacheDependency
class when using database caching and table-based polling against versions of Microsoft SQL
Server equal or newer than version 7.

<sqlCacheDependency enabled="true" poll1Time="1000">
<databases>
<add name="Northwind" connectionStringName="LocalNWind" />
</databases>
</sqlCacheDependency>

The pollTime attribute indicates (in milliseconds) the interval of the polling. In the

preceding sample, any monitored table will be checked every second. Under the
<databases> node, you find a reference to monitored databases. The name attribute is used
only to name the dependency. The connectionStringName attribute points to an entry in

the <connectionStrings> section of the web.config file and denotes the connection string to
access the database. Which tables in the listed databases will really be monitored depends on
the effects produced by another tool—aspnet_regsql.exe. I'll return to this form of caching in
Chapter 18, "ASP.NET Caching.”

Any values stored in the <sg/CacheDependency> section have no effect when using
SglCacheDependency in conjunction with query notifications on SQL Server 2005 and newer
versions.

The <customErrors> Section

The <customErrors> section specifies the error-handling policy for an ASP.NET application. By
default, when an error occurs on a page, the local host sees the detailed ASP.NET error page,

Chapter 3 ASP.NET Configuration 81

while remote clients are shown a custom error page or a generic page if no custom page is
specified. This policy is controlled through the Mode attribute.

The Mode attribute can be set to On, Off, or RemoteOnly, which is the default. If it's set to
On, custom error pages are displayed both locally and remotely; if it's set to Off, no special
error-handling mechanism is active and all users receive the typical ASP.NET (yellow) error
page with the original runtime’s or compiler’s error message and the stack trace.

Custom error pages can be specified in two ways. You can provide a generic error page as
well as error-specific pages. A custom error page that is not error-specific can be set through
the defaultRedirect attribute of the <customErrors> element. This setting is ignored if the
mode is Off.

<customErrors defaultRedirect="Errors/appGenericError.aspx" mode="0On">
<error statusCode="404" redirect="Errors/notfound.aspx" />
<error statusCode="500" redirect="Errors/internal.aspx" />
</customErrors>

The <customErrors> section supports a repeatable child <error> tag that is used to associate
a custom page with a particular error code. You should note that only certain status codes
are supported. Some error codes, such as 403, might come directly from IIS and never get to
ASP.NET.

The <error> tag has two optional attributes, redirect and statusCode. The redirect attribute
points to the URL of the page, whereas the statusCode specifies the HTTP status code that
will result in an error. If the custom mode is enabled, but no error-specific page is known, the
default redirect is used. If the custom mode is enabled, but no custom page is specified, the
ASP.NET generic error page is used.

Important The aforementioned ASP.NET vulnerability discovered in September 2010 brought
about a best practice as far ASP.NET security is concerned. You are now discouraged from using
any <error> element to return an error-specific page. By examining the error code, in fact, the
attacker could learn enough to compromise your system. The recommended approach is set-
ting the Mode attribute to On and to have all errors handled by the same error page, which is set
through the defaultRedirect attribute. The content of the default error page is not relevant; what
matters is that you don’t provide means to potential attackers to distinguish between types of
responses.

The <deployment> Section

The <deployment> section indicates the deployment mode of the application and has
only one Boolean attribute, named retail. The attribute indicates whether the application is
intended to be deployed for production (retail equals true) or test (retail equals false).

<deployment retail="true" />

Part| The ASP.NET Runtime Environment

When retail is set to true, ASP.NET automatically disables certain configuration settings, such
as trace output, custom errors, and debug capabilities. When the default value of retail is
false, each application is automatically deployed for testing.

The <globalization> Section

The <globalization> section configures the globalization settings of ASP.NET applications
so that requests and responses take into account encoding and culture information. The
attributes of the <globalization> section are shown in Table 3-8.

TABLE 3-8 Globalization Attributes

Attribute Description
culture Specifies the culture to be used to process requests.
fileEncoding Specifies the encoding for ASP.NET resource files (.aspx, .asmx, and

.asax). Unicode and UTF-8 files saved with the byte order mark prefix
are recognized regardless of the value of the attribute.

requestEncoding Specifies the assumed encoding of each request, including posted
data and the query string. The default is UTF-8.

responseEncoding Specifies the content encoding of responses. The default is UTF-8.

uiCulture Specifies the culture name to be used to look up locale-dependent

resources at run time.

Note that, if specified, the Accept-Charset attribute in the request overrides the default
requestEncoding setting. If you remove any encoding setting from the configuration files,
ASP.NET defaults to the server’s locale. In the majority of cases, requestEncoding and
responseEncoding have the same value.

Valid names for the culture and uiCulture attributes are non-neutral culture names such as
en-US, en-AU, and it-IT. A culture name is made of two elements—the language and country/
region—and both are to be specified in this context.

The <httpHandlers> Section

The section allows you to register application-specific HTTP handlers that take care of ad hoc
URLs invoked over given HTTP verbs. I'll dissect the syntax and usage of the <httpHandlers>
section in the next chapter.

The <httpModules> Section

The <httpModules> section allows you to register application-specific HTTP modules that
take care of hooking up specific stages during the processing of an ASP.NET request. I'l
dissect the syntax and usage of the <httpModules> section in the next chapter.

Chapter 3 ASP.NET Configuration 83

The <healthMonitoring> Section

Health monitoring is a system feature that allows the production staff to monitor the sta-
tus of a deployed application and track significant events related to performance, failures,
and anomalies. The ASP.NET health monitoring system works by firing events to providers.
The event contains actual information about what happened; the provider processes the
information. Here is the overall schema:

<healthMonitoring
enabled="true|false"
heartbeatInterval="HH:MM:SS">
<bufferModes>...</bufferModes>
<providers>...</providers>
<eventMappings>...</eventMappings>
<profiles>...</profiles>
<rules>...</rules>

</healthMonitoring>

The enabled attribute specifies whether health monitoring is enabled. It is true by default. The
heartbeatinterval attribute indicates how often the heartbeat event is raised. The heartbeat
event serves as a timer for the whole subsystem and is raised at regular intervals to capture
useful runtime state information. The heartbeat is just one of the events that the health
monitoring system can detect. Other events track unhandled exceptions, request processing,
application lifetime, and the success and failure audits. Child sections, listed in Table 3-9, let
you configure the whole subsystem.

TABLE 3-9 Elements for Health Monitoring
Element Description

bufferModes Used with Microsoft SQL Server and Web event providers (with built-in e-mail
capability) to determine how often to flush the various events to the provider
and the size of the intermediate buffer.

eventMappings Maps friendly event names to the event classes. You use this element to register
custom event types.

profiles Defines parameter sets to use when configuring events.

providers Defines the health monitoring providers that process events. Predefined

providers write to a SQL Server table and the Event Log, and they send e-mail.
You use this element to register custom Web event providers.

rules Maps events to providers.

The interval for the heartbeat event is set to 0 by default, meaning that no heartbeat event is
raised by default.

84

Part| The ASP.NET Runtime Environment

The <hostingEnvironment> Section

The <hostingEnvironment> section defines configuration settings that control the behavior
of the application-hosting environment. As you can see in the following code segment, the
section has three attributes: idleTimeout, shadowCopyBinAssemblies, and shutdownTimeout:

<hostingEnvironment idleTimeout="HH:MM:SS"
shadowCopyBinAssemblies="true|false"
shutdownTimeout="number"
urlMetadataSlidingExpiration="HH:MM:SS" />

The idleTimeout attribute sets the amount of time to wait before unloading an inactive
application. It is set to Infinite by default, meaning that inactive applications are not auto-
matically unloaded. Note also that “inactive” doesn't mean nonresponsive; an application is
inactive if no user is working with it, and this is normally not by itself a good reason to kill it.
The shadowCopyBinAssemblies attribute indicates whether the assemblies of an application

in the Bin directory are shadow-copied to the application’s ASP.NET temporary files directory.
It is true by default. Finally, the shutdownTimeout attribute sets the number of seconds (30 by
default) it should take to shut down the application. Finally, the urlMetadataSlidingExpiration
attribute indicates for how long the URL metadata will be cached by ASP.NET. The default is 1
minute. Both idleTimeout and urlMetadataSlidingExpiration attributes can be set to any time
span, ranging from seconds to minutes and hours.

Note Shadow-copy is a feature of the .NET Framework that ASP.NET uses extensively. When
shadow-copy is enabled on an AppDomain, assemblies loaded in that AppDomain will be
copied to an internal cache directory and used from there. In this way, the original file is

not locked and can be changed at will. In ASP.NET, you can control the feature through the
shadowCopyBinAssemblies attribute.

The <httpCookies> Section

The <httpCookies> section is used to configure properties for cookies used by ASP.NET
applications. Here is the overall schema:

<httpCookies domain="string"
httpOnlyCookies="true|false"
requireSSL="true|false" />

The domain attribute indicates the default Internet domain of the cookie and is set to the
empty string by default. The requireSSL attribute is false by default. If it's true, SSL is required
for all cookies. The httpOnlyCookies attribute enables ASP.NET to output an extra HttpOnly
cookie attribute that can help mitigate cross-site scripting threats that result in stolen
cookies. When a cookie that has the HttpOnly attribute set to true is received by a compliant
browser such as Internet Explorer 6 SP1 (and superior), it is inaccessible to client-side script.

Chapter 3 ASP.NET Configuration 85

Adding the HttpOnly attribute is as easy as appending the HttpOnly string to the path of all
response cookies.

Caution The HttpOnly attribute is helpful when it comes to raising the security bar, but it is not
a silver bullet. Any network monitoring tool, in fact, can easily detect it, thus giving malicious
users an important bit of help.

Finally, note that any settings defined in the <httpCookies> section can be overridden by
classes that actually create cookies in ASP.NET pages.

The <httpRuntime> Section

The <httpRuntime> section configures some run-time parameters for the ASP.NET pipeline.
Interestingly enough, the section can be declared at any level, including subdirectory levels.
This fact accounts for the great flexibility that allows you to set up the run-time environment
with the finest granularity. Configurable attributes are listed in Table 3-10.

TABLE 3-10 ASP.NET Runtime Attributes
Attribute Description

apartmentThreading Enables apartment threading for classic ASP compatibility. The
default is false.

appRequestQueuelimit Specifies the maximum number of requests the application is
allowed to queue before returning error 503—Server too busy. The
default is 5000.

delayNotificationTimeout Specifies the timeout for delaying notifications. The default is 5
seconds.
Enable Specifies whether the AppDomain is enabled to accept incoming

requests. This is true by default.

enableHeaderChecking Specifies whether ASP.NET should check the request header
for potential injection attacks. If an attack is detected, ASP.NET
responds with an error. This is true by default.

enableKernelOutputCache Enables the http.sys kernel-level cache on IIS 6 and higher. The
default is true.

enableVersionHeader Outputs a header with the ASP.NET version with each request. The
default is true. You can disable it for production sites.

encoderType Indicates the class to be used for any encoding and decoding tasks
in ASP.NET, such as those performed by HttpServerUtility.

executionTimeout Specifies the maximum number of seconds a request is allowed to
execute before ASP.NET automatically times it out. The default is 110
seconds.

maxQueryStringLength Indicates the maximum accepted size of the query string. The

default is 260.

86

Part| The ASP.NET Runtime Environment

Attribute Description

maxRequestLength Indicates the maximum accepted size (in KB) of a Web request.
No request is accepted if its overall length exceeds the threshold of
4 MB.

maxUrlLength Indicates the maximum accepted size of the URL. The default is 260.

minLocalRequestFreeThreads Indicates the minimum number of free threads needed to allow the
execution of new local requests. The default threshold value is set
to 4.

minFreeThreads Indicates the minimum number of free threads needed to allow the
execution of new Web requests. The default threshold value is set
to 8.

requestLengthDiskThreshold Specifies the input stream buffering threshold limit in number
of bytes. Its value should not exceed the maxRequestLength. The
default is 256 bytes.

requireRootedSaveAsPath Specifies whether the file name parameter in a Request's SaveAs
method must be an absolute path.

requestValidationMode Indicates whether HTTP request validation can be customized
(only in ASP.NET 4) or whether it should happen through a system-
provided layer (as in earlier versions). The default value is “4.0".
Anything else is considered as “do as ASP.NET 2.0 does.”

requestValidationType Indicates the name of a type that is used to validate HTTP requests.
sendCacheControlHeader Specifies whether to send a cache control header.
shutDownTimeout Number of seconds that are allowed for the worker process to shut

down. When the timeout expires, ASP.NET shuts down the worker
process. The default is 90 seconds.

useFullyQualifiedRedirectUrl Indicates whether client redirects must be automatically converted
to fully qualified URLs (true) or used as specified in the page source
code (false). The default is false.

waitChangeNotification, max- Indicates the minimum and maximum number of seconds to wait

WaitChangeNotification (0 by default) before restarting the AppDomain after a file change
notification. This is actually pretty important for XCopy deployment,
especially with named assemblies in precompiled sites.

Notice that ASP.NET won't process a request if not enough free threads are available in the
thread pool. When this happens, the request is queued to the application until the threshold
set by the appRequestQueuelimit is exceeded. But why, in the default case, does ASP.NET
need at least eight free threads to execute a request? These free threads are at the disposal
of ongoing requests (for example, the request for a download of linked images, style sheets,
or user controls) if they issue child requests to complete processing.

Another small number of threads (four by default) is kept reserved for child requests coming
through the local host. If the request has been generated locally—that is, the client IP is
127.0.0.1 or matches the server IP—it is scheduled on one of the threads in the pool reserved
for local calls. Often local requests originate as child requests—for example, when an

Chapter 3 ASP.NET Configuration 87

ASP.NET page invokes a Web service on the same server. There's no need in this case to
consume two threads from the pool to serve two related requests, one of which is waiting for
the other to terminate. By using an additional thread pool, you actually assign local requests
a slightly higher priority and reduce the risk of deadlocks.

The <identity> Section

The <identity> section controls the identity of the ASP.NET application. It supports three
attributes: impersonate, userName, and password. The key attribute is impersonate. It is set to
false by default, which means that the application does not impersonate any client user.

<identity impersonate="true" />

When impersonate is set to true, each request is served by ASP.NET impersonating either the
Windows user currently logged on or the user specified through the userName and password
attributes.

Note that user name and password are stored in clear text in the configuration file. Although
[IS never serves requests for configuration files, a web.config file can be read by other means.
You should consider forms of protection for the contents of the section. In ASP.NET, you can
encrypt the <identity> section using XML Encryption.

The <machineKey> Section

Valid at the machine and application levels, the <machineKey> section configures the keys to
encrypt and decrypt forms authentication tickets and view-state data. Here's the schema:

<machineKey
validationKey="AutoGenerate,IsolateApps"
decryptionKey="AutoGenerate,IsolateApps"
validation="HMACSHA256"
decryption="Auto" />

The validationKey and decryptionKey attributes are strings and specify the encryption and
decryption keys, respectively. An encryption key is a sequence of characters whose length
ranges from a minimum of 40 characters to a maximum of 128.

The validation attribute, on the other hand, indicates the type of encryption used to
validate data. Allowable values are SHA1, MD5, 3DES, AES, HMACSHA256 (the default),
HMACSHA384, and HMACSHA512.

Finally, the decryption attribute indicates the type of hashing algorithm that is used for
decrypting data. Feasible values are DES, AES, and 3DES. The default is Auto, meaning
that ASP.NET determines which decryption algorithm to use based on the configuration
default settings.

Part| The ASP.NET Runtime Environment

The default value of both the validationKey and decryptionKey attributes is
AutoGenerate,lsolateApps. This means that keys are autogenerated at setup time and stored
in the Local Security Authority (LSA). LSA is a protected subsystem of Windows NT-based
operating systems that maintains information about all aspects of local security on a
system. The IsolateApps modifier instructs ASP.NET to generate a key that is unique for each
application.

Settings in the <machineKey> section are a critical element of applications hosted on
multiple machines, such as in a Web farm or a failover cluster. All machines across a net-
work must share the same <machineKey> settings. For this reason, you might want to set
validationKey and decryptionKey attributes manually to ensure consistent configuration in a
multiserver environment.

The <membership> Section

The <membership> section defines parameters for managing and authenticating user
accounts through the ASP.NET membership API. Here's the schema of the section:

<membership
defaultProvider="provider name"
userIsOnlineTimeWindow="number of minutes”
hashAlgorithmType="SHA1">
<providers>

</providers>
</membership>

The defaultProvider attribute indicates the name of the default membership provider—it is
SglMembershipProvider by default. The attribute named user/sOnlineTimeWindow specifies
how long a user can be idle and still be considered online. The interval is set to 15 minutes by
default. The hashAlgorithmType refers to the name of the encryption algorithm that is used
to hash password values. (The default is SHA1.)

The <providers> child section lists all registered membership providers. Here's the schema:

<membership>
<providers>
<add name="MyProvider"

type="SampTles.MyMembershipProvider"
connectionStringName="MyConnString"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
passwordFormat="Hashed" />

</providers>
</membership>

Chapter 3 ASP.NET Configuration 89

You use the <providers> section to add custom membership providers. Each provider has its
own set of attributes, as shown in the upcoming sections.

The <pages> Section

The <pages> section sets default values for many of the @Page directive attributes and
declaratively configures the run-time environment for a Web page. Table 3-11 enumerates

the supported attributes.

TABLE 3-11 Attributes to Configure ASP.NET Pages

Attribute Description

asyncTimeout Number of seconds to wait for an asynchronous handler to
complete during asynchronous processing. The default is 45
seconds.

autoEventWireup Indicates whether page events are automatically assigned to
event handlers with a particular name (for example,
Page_Load). It's set to true by default.

buffer Indicates whether or not response buffering is enabled. It's
set to true by default.

clientiDMode Specifies the algorithm to use to generate the client ID for

server controls. Feasible values are AutolD, Static, Predictable,
and Inherit.

compilationMode

Indicates whether an ASP.NET page or control should be
compiled at run time. Allowable values are Never, Auto,
and Always—the default. Auto means that ASP.NET will not
compile the page, if possible.

controlRenderingCompatibilityVersion

Indicates how controls are expected to render out their
markup. The default value is 4.0, meaning that the markup

is updated to the latest version. By setting it to 3.5 (no other
values are supported), you fall back to the behavior of earlier
versions of ASP.NET.

enableEventValidation

Specifies whether pages and controls validate postback and
callback events. The default is true.

enableSessionState

Indicates whether session state is enabled. It's set to true
by default; it also accepts as values false and ReadOnly. The
session state is disabled altogether if the attribute is set to
false; it is accessible only for reading if set to ReadOnly.

enableViewState

Specifies whether view state is enabled. It's set to true by
default.

enableViewStateMac

Specifies whether the view state of a page should be checked
for tampering on each page postback. It's set to true by
default.

maintainScrollPositionOnPostBack

If this is set to true, the page maintains the same scroll
position after a postback.

90 Part | The ASP.NET Runtime Environment

Attribute Description

masterPageFile Specifies the master page for the pages in the scope of the
configuration file.

maxPageStateFieldLength Indicates the maximum length of the view-state field. A
negative value indicates that no upper limit exists. If the size
of the view state exceeds the maximum, the contents will be
sent in chunks.

pageBaseType Indicates the base code-behind class that .aspx pages inherit
by default—unless a code-behind class is explicitly provided.
The default class is System.Web.Ul.Page. The new class name
must include assembly information.

pageParserFilterType Specifies the type of filter class that is used by the ASP.NET
parser to determine whether an item is allowed in the page at
parse time.

smartNavigation Specifies whether smart navigation is enabled. This is

set to false by default. It's deprecated in favor of the
maintainScrollPositionOnPostBack attribute.

styleSheetTheme Name of the style-sheet theme used for the pages in the
scope of the configuration file.

theme Name of the theme used for the pages in the scope of the
configuration file.

userControlBaseType Indicates the code-behind class that .ascx user controls inherit
by default. The default class is System.Web.Ul.UserControl.
The new class name must include assembly information.

validateRequest Indicates that ASP.NET examines all input from the browser
for potentially dangerous data. It's set to true by default.

viewStateEncryptionMode Indicates the encryption mode of the view state. Feasible
values are Always, Never, or Auto. Auto means that the view
state is encrypted only if a control requests it.

In particular, the pageBaseType attribute is an extremely powerful setting you might want to
leverage when all your application pages inherit from a common code-behind class. In this
case, instead of modifying all the pages, you centralize the setting in the web.config file at the
level (machine, application, or subdirectory) you want.

An interesting attribute is maxPageStateFieldLength. One of the problems developers
might experience with a too-large view state is that some legacy firewalls and proxy
servers might not be capable of carrying all those bytes back and forth for a single input
field. As a result, the content of the view state is truncated and the application fails. This
is particularly likely to happen on pretty simple Web browsers, such as those you find

in palmtops and smartphones. If the real size of the view state exceeds the upper limit

Chapter 3 ASP.NET Configuration 91

set through the maxPageStateFieldLength attribute, ASP.NET automatically cuts the view
state into chunks and sends it down using multiple hidden fields. For example, if you set
maxPageStateFieldLength to 5, here's what the page contains:

<input type="hidden" id="__ VIEWSTATEFIELDCOUNT" value="..." />
<input type="hidden" id="__VIEWSTATE" value="/wEPD" />
<input type="hidden" id="__VIEWSTATE1" value="wUKLT" />
<input type="hidden" id="__VIEWSTATE2" value="I2MjI" />

The final byte count of the client page is even a bit higher than in the default case, but at
least your page won't fail because of a truncated view state on simple and not too powerful
Web browsers.

A sign of the evolution of the Web platform is the clientIDMode attribute introduced in
ASP.NET 4. Earlier versions of ASP.NET use a built-in algorithm to generate the client ID
values for HTML elements output by server controls. The algorithm guarantees uniqueness
but do not necessarily result in predictable IDs. Until the advent of AJAX, that has never been
a problem. AJAX brought developers to write more client-side code and subsequently raised
the need for accessing in a reliable and easy way any DOM element added by ASP.NET con-
trols. The clientiIDMode attribute offers two main options: using static IDs (and thus accepting
the potential risk of having duplicates) and using predictable IDs. A predictable ID is essen-
tially an ID generated by ASP.NET but through a much simpler algorithm that doesn’t walk
through the entire list of naming containers like the default algorithm we used for years.

The <pages> section contains a bunch of child sections, as shown here:

<pages>
<controls>...</controls>
<namespaces>. ..</namespaces>
<tagMapping>. ..</tagMapping>
<ignoreDeviceFilters>...</ignoreDeviceFilters>
</pages>

The <controls> and <namespaces> sections define a collection of @Register and @/mport
directives to be implicitly added to any page. The <tagMapping> section, instead, plays the
role of remapping an existing control type to another type specified in the markup:

<pages>
<tagMapping>
<add
tagType=
"System.Web.UI.WebControls.TextBox"
mappedTagType=
"Samples.MyTextBox" />
</tagMapping>
</pages>

92

Part| The ASP.NET Runtime Environment

As an example, you can use this tag to automatically invoke a TextBox of yours wherever the
source code invokes, instead, the standard TextBox control out of the <asp:TextBox> markup.

Finally, <ignoreDeviceFilters> defines a collection of elements that identify the device-specific
content that ASP.NET should ignore when it displays a page. Device-specific content is listed
through a <filter> child element. The usefulness of this feature is illustrated by the following
example. Suppose you have the following markup in an ASP.NET page:

<asp:Text moz:Text="Hello Mozilla" ie:Text="Hello IE">

In this instance, moz and je are device filters, meaning that the property they attribute should
be used only if the user agent matches the filter. So where's the problem? The problem arises
with some AJAX functionality and microformats that extended the schema to allow additions.
An example is when some JavaScript libraries add their own expando attributes prefixed with
a string, as shown here:

<asp:Text sys:Text="Hello from Ajax">

Without countermeasures, the sys prefix would be mistaken for a device filter and the whole
attribute would be stripped off in absence of a matching filter. In fact, sys is not likely to be
the nickname of any browser.

<pages>
<ignoreDeviceFilters>
<filter add="sys" />
</ignoreDeviceFilters>
</pages>

In ASP.NET 4, by adding the previous script to the configuration file you instruct ASP.NET to
ignore some of the names that appear to be device filters.

The <processModel> Section

This section configures the ASP.NET process model—that is, the procedure that brings a re-
quest to be processed in the HTTP pipeline. The attributes of the <processMode/> section are
actually read by unmanaged code—the aspnet_isapi.dll ISAPI extension. For this reason, you
need to restart IIS to have any changes applied. For the same reason, you can never override
any attributes in the <processModel> section in a web.config file. The <processModel> section
can exist only within a machine.config file, and it affects all ASP.NET applications that are
running on the server. The following code snippet illustrates the schema of the section:

<processModel
enable="true|false"
timeout="hrs:mins:secs|Infinite"
idleTimeout="hrs:mins:secs|Infinite"
shutdownTimeout="hrs:mins:secs|Infinite"
requestLimit="num|Infinite"
requestQueueLimit="num|Infinite"
restartQueueLimit="num|Infinite"
memoryLimit="percent"
webGarden="true|false"

Chapter 3 ASP.NET Configuration 93

cpuMask="num"
userName="username"
password="password"
TogLevel="AT1|None|Errors"
clientConnectedCheck="hrs:mins:secs|Infinite"
comAuthenticationLevel="Default|None|Connect|Call|
Pkt|PktIntegrity|PktPrivacy"
comImpersonationLevel="Default|Anonymous|Identify|
Impersonate|Delegate”
responseDeadlockInterval="hrs:mins:secs|Infinite"
responseRestartDeadlockInterval="hrs:mins:secs|Infinite"
autoConfig="true|false"
maxWorkerThreads="num"
maxIoThreads="num"
minWorkerThreads="num"
minIoThreads="num"
serverErrorMessageFile=
pingFrequency="Infinite"
pingTimeout="Infinite"
maxAppDomains="2000" />

nwn

As mentioned, the machine.config file remains the root of the configuration hierarchy also in
[IS 7 and newer versions. The second level in the hierarchy is given by the root web.config file
located in the same folder as machine.config.

Under IIS 7, or newer, an additional level in the hierarchy is represented by the
applicationHost.config file located in the system32\inetsrv\config folder. To edit the content of
this file, and thus configure most of the settings of the process model, you can use the visual
editors in the IIS Manager tool. Figure 3-3 shows how to configure some parameters of the
process model for a given application pool in the server.

Advanced Settings \EI
B (General)
JMNET Framework Version 4.0
Managed Pipeline Made Classic
Marne ASPMET w40 Classic
Queue Length 1000
Start Autarnatically True
CPU
B Process Model
Identity ApplicationPoolldentity
Idle Time-out (minutes) 20
Load User Profile False
Maximurn Worker Processes 1
Ping Enabled True E
Ping Mazxirnurn Response Tire (s 0
Ping Period (seconds) 30

Shutdown Time Limit (seconds) 90
Startup Tirme Limnit (seconds) an
Process Orphaning
Rapid-Fail Protection
Recyding

Ping Enabled

[pingingEnabled] If true, the worker process(es) serving this application
pool are pinged periodically to ensure that they are still responsive, This ..

FIGURE 3-3 Configure the process model for a given application pools in 1IS 7.5.

Part| The ASP.NET Runtime Environment

By default, the machine.config file contains the following:

<system.web>
<processModel autoConfig="true"/>

</system.web>

This means that ASP.NET automatically configures some critical attributes to achieve optimal
performance. You might want to tweak some of these attributes to tailor a configuration for
your specific application. Table 3-12 describes these attributes.

TABLE 3-12 Optimizing the ASP.NET Process Model

Attribute Description

maxloThreads Indicates the maximum number of IO threads per CPU in the thread
pool. The default is 20 (indicating a total of 20xN threads on a machine
with N CPUs).

maxWorkerThreads Indicates the maximum number of worker threads per CPU in the

thread pool. The default is 20 (meaning a total of 20xN threads on a
machine with N CPUs).

memoryLimit Indicates the percentage of memory that the worker process can
consume before being recycled by IIS. The number indicates the
percentage of the total system memory. The default value is 60.

minloThreads Configures the minimum number of /O threads to use for the process
on a per-CPU basis. The default is 1.

minWorkerThreads Configures the minimum amount of worker threads to use for the
process on a per-CPU basis. The default is 1.

requestQueuelimit Indicates the number of requests the ASP.NET process can queue
before returning error 503 (Server too busy.) The default is 5000.

responseDeadlockinterval Indicates the time after which a process with queued requests that has
not returned a response is considered deadlocked and is shut down.
The default is three minutes.

Let's consider some alternatives, starting with memory limits. The default value of 60 has
been determined by looking at an average scenario where your application is likely not to
be the only one on the server. However, if you're lucky enough to be the only server process
that consumes memory, the number can set to a higher threshold such as 75 without raising
significant issues.

I/O threads are threads used to perform asynchronous operations that tend to take a
while to complete. The typical example is reading a file or calling into a Web service. /0
threads are implicitly set up by high-level code you call usually through BeginXxx methods.
Worker threads are, instead, threads used for plain operations. You might want to increase
the number of 1/O threads or worker threads based on the characteristics of your applica-
tion. As you might have noticed, two minimum settings exist for threads: minloThreads and

Chapter 3 ASP.NET Configuration 95

minWorkerThreads. These values determine the lower bound that, when reached, cause
ASP.NET to queue successive requests. A new request for a worker process is queued when
fewer than the minWorkerThreads free threads are counted. The same happens for 1/0
threads.

Process Model and IIS 7.x Integrated Mode

ASP.NET uses threads differently when an application is hosted in an application pool
running under IIS 7 in integrated mode. The biggest difference is that by default ASP.
NET counts and keeps under control the number of concurrent requests instead of the
number of concurrent threads. Is this really different? The two quantities are the same
except when asynchronous requests are present. Asynchronous requests, in fact, might
be pending without blocking an ASP.NET thread. As a result, you can have far more
requests than threads.

You can still use the settings for threads exposed by the <processModel> section,
but they are just ignored in integrated mode. How can you configure the maximum
number of concurrent requests per CPU? A new configuration file has been added
that supports an extra section named <applicationPool>. The new configuration file
is aspnet.config and is available in the .NET Framework folder. For ASP.NET 4, it is
\microsoft.net\framework\v4.0.30319 under the Windows folder. You can add the
following section:
<system.web>
<applicationPool

maxConcurrentRequestsPerCPU="5000"

maxConcurrentThreadsPerCPU="0"

requestQueuelLimit="5000" />
</system.web>
The requestQueuelLimit value specified in aspnet.config is the same as in
<processModel> and will override any value you assign at the machine.config level.

Note that in integrated mode any requests are handed to ASP.NET by IIS for mere
execution. When this happens, a thread switch occurs—from the IIS thread to a CLR
thread. If you set maxConcurrencyRequestPerCPU to 0, the request will execute on the
[IS 1/0 thread, without switching to a CLR thread. This is not a recommended approach
because it could slow down the application when it comes to serving static resources. If
you have IIS threads engaged in dynamic (and likely lengthier) requests, there are more
chances that at peak times no threads are left to serve simpler requests.

In integrated mode, ASP.NET defaults to counting requests instead of threads. You can
change this behavior by tweaking the values of maxConcurrencyRequestsPerCPU and
maxConcurrencyThreadsPerCPU. You can also set both to nonzero values, in which case
ASP.NET will manage to honor both of your settings.

96

Part| The ASP.NET Runtime Environment

The <profile> Section

The <profile> section is used to configure storage and layout of the user-profiling feature.
Basically, each user can be assigned a set of properties whose values are loaded and persist-
ed automatically by the system when the request begins and ends. A profile provider takes
care of any 1/0O activity using a particular data store. The default profile provider, for example,
uses the AspNetDb.mdf file and SQL Server Express.

The <profile> section has the following schema:

<profile
enabled="true|false"
inherits="fully qualified type reference"
automaticSaveEnabled="true|false"
defaultProvider="provider name">
<properties>...</properties>
<providers>...</providers>

</profile>

The enabled attribute indicates whether user profiles are enabled. The default value is
true. The set of properties that is associated with each authenticated user is defined in the
<properties> child element:

<profile>
<properties>
<add name="BackColor" type="string" />
<add name="ForeColor" type="string" />
</properties>
</profile>

Table 3-13 lists the attributes allowed on the Profile property.

TABLE 3-13 Attributes of the Profile Property

Attribute Description

allowAnonymous Allows storing values for anonymous users. It's false by default.
customProviderData Contains data for a custom profile provider.

defaultValue Indicates the default value of the property.

name Name of the property.

provider Name of the provider to use to read and write the property.

readOnly Specifies whether the property value is read-only. It's false by default.
serializeAs Indicates how to serialize the value of the property. Possible values are

Xml, Binary, String, and ProviderSpecific.

type The .NET Framework type of property. It is a string object by default.

All properties are packaged in a dynamically created class that is exposed to user code
through the Profile property on the HttpContext object. The Inherits attribute allows you
to define the base class of this dynamically created profile class. The automaticSaveEnabled

Chapter 3 ASP.NET Configuration 97

attribute specifies whether the user profile should be automatically saved at the end of the
execution of an ASP.NET page. (The default is true.) Note that the profile is saved only if the
HTTP module in charge of it detects that the profile has been modified.

The <providers> element lists all available profile providers. You use this section to register
custom providers. The defaultProvider attribute indicates the currently selected provider that
pages will use.

The <roleManager> Section

The <roleManager> section configures role management for an ASP.NET application. Role
management is carried out by two components: an HTTP module that intercepts incoming
requests, and a role provider that retrieves and sets role information for the authenticated
user. The provider acts as a proxy for the data store where the role information is stored. All
available providers are listed in the <providers> child section. A new provider should be add-
ed here. The default provider is specified in the defaultProvider attribute. The overall schema
of the section is shown here:

<roleManager
cacheRolesInCookie="true|false"
cookieName="name"
cookiePath="/"
cookieProtection="A11|Encryption|Validation|None"
cookieRequireSSL="true|false "
cookieSTidingExpiration="true|false
cookieTimeout="number of minutes"
createPersistentCookie="true|false"
defaultProvider="provider name"
domain="cookie domain">
enabled="true|false"
maxCachedResults="maximum number of role names cached"
<providers>...</providers>

</roleManager>

"

After the HTTP module receives the role information from the currently selected provider, it
usually creates a cookie to cache the information for future requests. All cookie-related at-
tributes you see in the schema configure a different aspect of the cookie. The default name is
.ASPXROLES.

The <securityPolicy> Section

In the <securityPolicy> section, you define mappings between security levels and policy files.
The section can be configured at the application level but not in subdirectories. The section
contains one or more <trustLevel> elements with name and policyFile attributes. You also
can use the section to extend the security system by providing your own named trust levels
mapped to a custom security policy file.

98

Part| The ASP.NET Runtime Environment

Here's an excerpt from the site's root web.config file that ASP.NET installs:

<securityPolicy>
<trustlLevel name="Full" policyFile="internal" />
<trustLevel name="High" policyFile="web_hightrust.config" />
<trustLevel name="Medium" policyFile="web_mediumtrust.config" />
<trustLevel name="Low" policyFile="web_lowtrust.config" />
<trustLevel name="Minimal" policyFile="web_minimaltrust.config" />
</securityPolicy>

The name attribute can be set to Full, High, or Low in all versions of the .NET Framework.
Each trust level identifies a particular security level that you map to a policy file. Security
policy files are XML files located in the same folder as machine.config.

Notice that in ASP.NET the Full level of trust doesn’t need to have an associated policy file
full of permission sets and code-group definitions. The reason is that ASP.NET doesn’'t add
extra security settings in the case of Full trust, so in such cases the content of the policyFile
attribute is ignored.

The <sessionState>Section

The <sessionState> section stores session-state settings for the current application. The
section determines the behavior and implementation details of the ASP.NET Session object.
The Session object can work in different modes to accommodate the application’s require-
ments for performance, robustness, and data reliability. In Table 3-14, you can see the list of
acceptable attributes for the element. The mode attribute is the only mandatory attribute.
Some attributes are mutually exclusive.

TABLE 3-14 Session-State Attributes

Attribute Description

allowCustomSqlDatabase If this is set to true, it enables you to specify a custom SQL Server
database to store session data instead of using the default ASPState
database.

compressionEnabled Specifies whether compression is applied to the session-state data.

cookieless Specifies how to communicate the session ID to clients. Feasible values
are those listed in Table 3-5.

cookieName Name of the cookie, if cookies are used for session IDs.

customProvider Name of the custom session-state store provider to use for storing and

retrieving session-state data.

Attribute

mode

Chapter 3 ASP.NET Configuration 929

Description

Specifies the implementation mode of the session state. Acceptable
values are Off, InProc, Custom, StateServer, and SQLServer. When it's
set to Off, session-state management is disabled and the Session ob-
ject is not available to the application. InProc is the default working
mode, and it stores session data locally in the Web server's memory.
Alternatively, the session state can be stored on a remote server
(StateServer) or in a SQL Server database (SQLServer). The Custom
option indicates that the application is using a custom data store.

partitionResolverType

Indicates the type and assembly of the partition resolver component
to be loaded to provide connection information when session state is
working in SQLServer or StateServer mode. If a partition resolver can
be correctly loaded, the sq/ConnectionString and stateConnectionString
attributes are ignored.

regenerateExpiredSessionld

When a request is made with a session ID that has expired, if this
attribute is true, a new session ID is generated; otherwise, the expired
one is revived. The default is false.

sessionIDManagerType Null by default. If this attribute is set, it indicates the component to use
as the generator of session IDs.
sqlCommandTimeout Specifies the number of seconds a SQL command can be idle before it

is canceled. The default is 30.

sqlConnectionRetryinterval

Specifies the time interval, in seconds, between attempts to connect to
the database. The default is 0.

sglConnectionString

Used when the mode is set to SQLServer; specifies the connection
string for the SQL Server database to use for storing session data.

stateConnectionString

Used when the mode is set to StateServer; specifies the server name
and port where session state should be stored.

stateNetworkTimeout Specifies the number of seconds the TCP/IP network connection
between the Web server and the state server can be idle before the
request is canceled. The default is 10.

timeout Specifies the number of minutes a session can be idle before it is
abandoned. The default is 20.

useHostingldentity Indicates that the ASP.NET process identity is impersonated to ac-

cess a custom state provider or the SQLServer provider configured for
integrated security. It's true by default.

In addition, the child <providers> section lists custom session-state store providers. ASP.NET
session state is designed to enable you to easily store user session data in different sources,
such as a Web server’'s memory or SQL Server. A store provider is a component that manages
the storage of session-state information and stores it in alternative media (for example, an
Oracle database) and with an alternative layout.

The default connection string for the SQLServer mode is set to the following:

data source=127.0.0.1;Integrated Security=SSPI

100

Part| The ASP.NET Runtime Environment

As you can seeg, it doesn’t contain the database name, which defaults to AspState. You
create this database before the application is released using either T-SQL scripts or the
aspnet_regsql command-line utility.

The default connection string for the StateServer mode is set to

tcpip=127.0.0.1:42424

You can change the TCP/IP address and the port used at will. Note, though, that to change
the port you must edit the Port entry under the registry key:

HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters

In other words, just writing the new port number in the configuration file is not enough.

The <siteMap> Section

The <siteMap> section configures settings and providers for the ASP.NET site navigation
system. The schema of the section is quite simple:

<sitemap
enabled="true|false"
defaultProvider="provider name">
<providers>...</providers>
</siteMap>

The feature relies on site-map providers—that is, made-to-measure components that return
information representing the structure of the site. ASP.NET comes with one predefined
provider: the AspNetXmlSiteMapProvider class. The default site-map provider is specified
through the defaultProvider attribute. All available providers, including custom providers, are
listed in the <providers> section.

The <trace> Section

Tracing refers to the program’s ability to send informative messages about the status of the
execution. In general, tracing is a way to monitor the behavior of an application in a produc-
tion environment, and debugging is used for development time testing. The <trace> section
defines attributes that can modify the behavior of application-level tracing. The attributes are
listed in Table 3-15.

TABLE 3-15 Application-Level ASP.NET Tracing Attributes
Attribute Description

enabled Specifies whether tracing is enabled for an application. The default is false.
Tracing must be enabled in order to use the trace viewer (trace.axd) and
other tracing facilities.

Chapter 3 ASP.NET Configuration 101

localOnly If this attribute is set to true, the trace viewer is available only on the local
host; if it's set to false, the trace viewer is also available remotely. The
default is true. Note that trace.axd is one of the default HTTP handlers
registered at installation time.

pageOutput Specifies whether trace output is rendered at the end of each page. If this

attribute is set to false, trace output is accessible through the trace viewer
only. The default is false. Regardless of this global setting, individual pages
can enable tracing using the Trace attribute of the @Page directive.

requestLimit

Indicates the maximum number of trace results to store on the server that
are subsequently available through trace.axd. The default value is 10. The
maximum is 10,000.

traceMode

Indicates the criteria by which trace records are to be sorted and dis-
played. Acceptable values are SortByTime (the default) or SortByCategory.
Sorting by time means that records are displayed in the order in which
they are generated. A category, on the other hand, is a user-defined name
that can be optionally specified in the trace text.

writeToDiagnosticsTrace

This is false by default. It specifies whether trace messages should be
forwarded to the diagnostics tracing infrastructure, for any registered
listeners.

In the .NET Framework, tracing is provided through a unified, abstract API that uses ad hoc
drivers to physically output the messages. These drivers are called listeners and redirect the
tracing output to the specified target—typically a log file or an output stream. Listeners are
defined in the <system.diagnostics> section. When writeToDiagnosticsTrace is true, any
ASP.NET-generated trace message is also forwarded to all registered listeners.

The <trust> Section

The <trust> section configures the trust level under which the application will be run and
determines the code-access security (CAS) restrictions applied to the application. By default,
all ASP.NET applications run on the Web server as fully trusted applications and are allowed
to do whatever their account is allowed to do. The CLR doesn’t sandbox the code. Hence, any
security restrictions applied to an application (for example, the inability to write files or write
to the registry) are not the sign of partial trust but simply the effect of the underprivileged
account under which ASP.NET applications normally run. Here's the schema for the section:

<trust

hostSecurityPolicyResolverType ="security policy resolution type"
TegacyCasModel = "[True|False]"

102

Part| The ASP.NET Runtime Environment

Tevel="[Ful1|High|Medium|Low|Minimal]l"
originUr1="URL"

permissionSetName = "name of the permission set"
processRequestInApplicationTrust = "[True|False]"

/>

You act on the <trust> section if you want to run a Web application with less than full trust.
The following code snippet shows the default <trust> setting in the site root web.config:

<trust level="Full" originUrl="" />

Allowable values for the level attribute are all the <trustLevel> entries defined in the
<securityPolicy> section.

The originUrl attribute is a sort of misnomer. If you set it, what really happens is quite simple:
the application is granted the permission of accessing the specified URL over HTTP using
either a Socket or WebRequest class. Of course, the Web permission is granted only if the
specified <trust> level supports that. Medium and higher trust levels do.

The <trust> section supports a Boolean attribute named processRequestinApplicationTrust. If
true (the default), the attribute dictates that page requests are automatically restricted to the
permissions in the trust policy file applied to the application. If it's false, there’s the possibility
that a page request runs with higher privileges than set in the trust policy.

Note The <trust> section is allowed only at the machine level and application level because
of technical reasons, not because of security concerns. An ASP.NET application runs in its own
AppDomain, and the trust level for that application is set by applying the appropriate secu-

rity policy to the AppDomain. Although policy statements can target specific pieces of code,
the AppDomain is the lowest level at which a security policy can be applied. If the CLR has a
policy level more granular than the AppDomain, you can define different trust levels for various
portions of the ASP.NET application.

The following script shows how to specify Medium trust-level settings for all applications on
a server. The script is excerpted from a site’s root web.config file. With allowOverride set to
false, the trust level is locked and cannot be modified by the application’s root web.config file.

<location allowOverride="false">
<system.web>
<trust level="Medium" originUrl="" />
</system.web>
</Tocation>

Chapter 3 ASP.NET Configuration 103

By adding the following script, instead, you release the lock for a particular application on
the machine:

<location allowOverride="true" path="Default Web Site/MySite40">
<system.web>
<trust level="Medium" originUrl="" />
</system.web>
</Tocation>

With the .NET Framework 4, Microsoft made some significant changes to the CAS model for
managed applications. These changes might actually cause some ASP.NET applications to
fail. At risk are partial-trust ASP.NET applications that either rely on trusted code running in
the global assembly cache (GAC) or require extensive modifications to machine CAS policy
files. For this reason, the legacyCasModel attribute has been added to revert partial-trust ASP.
NET 4 applications to the behavior of earlier versions of ASP.NET built for earlier versions of
the CLR. All you do is set legacyCasModel to true if you want to include a legacy CAS-related
behavior from your ASP.NET 4 application.

In ASP.NET 4, there are various ways of associating a permission set with any assemblies
required by the application. As in earlier versions, you can shape up the permission set by
editing the partial-trust policy file for an individual trust level (for example,
web_mediumtrust.config). In addition, you can specify a permission set explicitly through
the PermissionSetName attribute. In ASP.NET 4, there are three possible permission sets:
FullTrust, ASP.Net, and Nothing.

The FullTrust permission set makes any code run as fully trusted. The ASP.Net permission

set is typically used for partial-trust applications and is the default name assigned to the
PermissionSetName attribute. Nothing is not really an alternate permission set; rather, it

is simply the empty permission set. The CLR throws a security exception for any assembly
associated with the empty permission set. When you change the name of the permission set,
ASP.NET 4 will search the partial-trust policy file with the same name.

Note Changing the name of the default partial trust permission set is not an action you want to
take without a valid reason. The feature exists mostly for when you need a SharePoint application
to define its own set of permissions distinct from those of typical ASP.NET applications. Keep in
mind that with the new CAS model of the .NET Framework 4, you are no longer allowed to have
multiple named permission sets to define partial-trust permissions. So you can change the name
from ASP.Net to something else, but that won’t give you multiple partial trust permission sets for
each application.

Finally, you can also opt for a programmatic approach to the task of choosing the permission
set for an assembly. The CLR queries a HostSecurityManager object every time an assembly
is loaded. One of the tasks associated with the HostSecurityManager type is returning the
permission set for the assembly being loaded. In ASP.NET 4, you can gain control over

this process by defining your own resolver type. A resolver type is registered through the

104

Part| The ASP.NET Runtime Environment

hostSecurityPolicyResolverType attribute and consists of a type derived from the system'’s
HostSecurityPolicyResolver type. I'll return to CAS for ASP.NET 4 applications in Chapter 19.
You can find some good literature about this topic at http.//msdn.microsoft.com/en-us/
library/dd984947%28VS.100%29.aspx.

The <urlMappings> Section

The <urlMappings> section contains a list of mappings between fake URLs and real
endpoints in the application. Here's a quick example that is worth a thousand words:

<ur1Mappings enabled="true">
<add url="~/main.aspx" mappedUrl="~/default.aspx?tab=main" />
</urlMappings>

The url attribute indicates the URL that users request from their browser. The mappedUr!
attribute indicates the corresponding URL that is passed on to the application. Both URLs are
application-relative. In addition to the <add> node, the <urlMappings> section also supports
the <remove> and <clear> nodes.

Note The <urlMappings> section was introduced as the declarative counterpart of the
RewritePath method defined on the HttpContext class. In ASP.NET 4, the URL-rewriting API
has been further improved with the introduction of routing. You might want to choose the
new routing API as your first option in an ASP.NET 4 application. (I'll cover routing in the next
chapter.)

The <webControls> Section

The <webControls> section contains only the clientScriptsLocation attribute that specifies
the default path to ASP.NET client script files. These files are included in the HTML code
generated for .aspx pages when these pages require client-side functionalities such as smart
navigation and client-side control validation.

<webControls clientScriptsLocation="/aspnet_client/{0}/{1}/" />

The preceding code snippet represents the default contents of the <webControls> section.
The content of clientScriptsLocation, properly expanded, is the URL used for searching scripts
to be included. The aspnet_client directory is automatically created under the Web server’s
root when you install ASP.NET. The two placeholders in the string represent subdirectories
whose name might change in future versions of ASP.NET. The first placeholder is always set to
system_web. The second placeholder expands to a subdirectory name based on the version
of the .NET Framework.

http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/�library/dd984947%28VS.100%29.aspx

Chapter 3 ASP.NET Configuration 105

ASP.NET 4 doesn't use this folder to store client script files. Client script files are, in fact,
embedded as resources in the system.web assembly and are injected in pages through the
webresource.axd HTTP handler.

You can use the client script folder to store script files employed by any custom ASP.NET
controls you might write.

The <xhtmIConformance> Section

The <xhtmlConformance> section designates the XHTML rendering mode for an application.
The default rendering for pages and controls is XHTML 1.0 Transitional. This is also the
default for new pages created in Microsoft Visual Studio 2010. You can configure the
preferred rendering by setting options in the <xhtm/Conformance> section, which enables
you to select XHTML 1.0 Transitional, XHTML1.0 Strict, and legacy rendering.

<xhtm1Conformance mode="Transitional|Legacy|Strict"/>

If you opt for Legacy, pages and controls will render as in ASP.NET 1.x.

Other Top-Level Sections

The sections under the <system.web> element don't exhaust the list of configuration
elements that are useful to ASP.NET developers. At least three other sections should be
known and mastered.

The <appSettings> Section

The <appSettings> section stores custom application configuration data such as file paths,
URLs of interest, or any other application-wide information:

<configuration>
<appSettings>
<add key="DefaultCacheDurationForData" value="..." />
</appSettings>
</configuration>

The syntax of the <appSettings> section is defined as follows:

<appSettings>
<add key="..." value="..." />
<remove key="..." />
<clear />

</appSettings>

The <add> element adds a new setting to the internal collection. This new setting has a value
and is identified by a unique key. The <remove> element removes the specified setting from

106

Part| The ASP.NET Runtime Environment

the collection. The setting is identified using the key. Finally, the <clear> element clears all
settings that have previously been defined in the section.

As the name of the section implies, you should store in the section application-specific
settings and avoid storing user-specific information. For user-specific information, you can
use the user profile API. (See Chapter 8, “Page Composition and Usability.”)

Any contents you design for storage in the <appSettings> section can be saved to an external
XML file that is linked to the section through the file attribute:

<appSettings file="myfile.config" />

The content of the file pointed to by the file attribute is read as if it is an <appSettings>
section in the web.config file. Note that the root element of the file must match
<appSettings>.

Note Changes to the external file are not detected until the application is restarted. If you
incorporate <appSettings> in the web.config file, any changes are instead detected in real time.

The <connectionStrings> Section

The section is specifically designed to contain connection strings and is laid out as follows:

<connectionStrings>
<add name="NwWind"
connectionString="SERVER=. ..;DATABASE=...;UID=...;PWD=...;"
providerName="System.Data.Sq1Client" />
</connectionStrings>

You can manipulate the contents of the section by using <add>, <remove>, and <clear>
nodes. Each stored connection is identified with a name you set through the name
attribute. The connection parameters are set in the connectionString attribute. Finally, the
providerName attribute indicates the ADO.NET data provider to use.

Connection names are also used within the configuration file to link a connection string to
other sections, typically the <providers> section of <membership> and <profile> nodes.

Note You are not really forced to place all of your connection strings in the <connectionStrings>
section. You can place your strings in <appSettings> as well as in a custom section. Look at this
section as a system facility for a common task you would accomplish anyway.

Chapter 3 ASP.NET Configuration 107

The <configProtectedData> Section

ASP.NET lets you encrypt specific sections of configuration files that might contain sensitive
data. It does that through industry-standard XML encryption. XML encryption (which you
can learn more about at http.//www.w3.org/TR/xmlenc-core) is a way to encrypt data and
represent the result in XML.

Encryption of configuration sections is optional, and you can enable it for any configuration
sections you want by running a command-line tool, as you'll see later in this chapter in the
section “Managing Configuration Data.”

You can specify the type of encryption you want by selecting the appropriate provider from
the list of available encryption providers. The .NET Framework 4.0 comes with two predefined
providers: DPAPIProtectedConfigurationProvider and RSAProtectedConfigurationProvider. The
former uses the Windows Data Protection APl (DPAPI) to encrypt and decrypt data; the latter
(the default provider) uses the RSA encryption algorithm to encrypt and decrypt data.

Most configuration sections that are processed by the managed configuration system are
eligible for protection. The <configProtectedData> section itself, though, can't be protected.
In this case, clear text is necessary to describe the behavior of the system. Similarly, sections
consumed by the CLR from Win32 code or from ad hoc managed XML parsers can't be
protected by this system because they don't employ section handlers to consume their
configuration. This includes at least the following sections: <processModel>, <runtime>,
<mscorlib>, <startup>, and <system.runtime.remoting>.

The <system.web.extensions> Section

This section contains elements that configure AJAX-related services and control their
behavior. The section is laid out as shown here:

<system.web.extensions>
<scripting>
<scriptResourceHandler
enableCompression="true|false"
enableCaching="true|false" />
</scripting>
<webServices>
<jsonSerialization ... />
<authenticationService ... />
<roleService ... />
<profileService ... />
</webServices>
</system.web.extensions>

The scriptResourceHandler element allows you to specify whether script files embedded as
resources in a given application assembly are to be cached or compressed. Both options are
false by default.

http://www.w3.org/TR/xmlenc-core

108

Part| The ASP.NET Runtime Environment

The content of the <webServices> element is related to Web or WCF services used by
AJAX-enabled applications. The <jsonSerialization> element configures JSON serialization
and is made of two attributes: maxJsonLength and recursionLimit. The former indicates the
maximum length of a JSON string; the latter sets the maximum level of nesting allowed in
the type being serialized.

The <authenticationService> element configures the ASP.NET authentication APl exposed as
a Web service to ASP.NET AJAX applications. The section has only two Boolean attributes:
enabled and requireSSL. Both are false by default.

The <roleService> element configures the ASP.NET role management AP| exposed as a Web
service to ASP.NET AJAX applications. The section has only Boolean attribute—enabled—
which is false by default.

The <profileService> element configures the ASP.NET profile APl exposed as a Web service to
ASP.NET AJAX applications. The section has three attributes—enabled, readAccessProperties,
and writeAccessProperties. The latter two properties consist of a list of comma-separated
names of properties to be read and written as part of the user's profile.

The <system.webServer> Section

In general, the <system.webServer> section contains site-level settings for IIS 7.x. Defined
within the applicationHost.config file and edited via the user interface of IIS Manager, the
section specifies any settings used by the Web server engine and modules. Full documenta-
tion is available at http.//www.iis.net/ConfigReference/system.webServer.

The section can also be used within the application’s web.config file to make some of the
settings specific to a given application. There's a specific situation, though, that requires
you to have a <system.webServer> section in the application’s web.config file—an ASP.NET
application that employs HTTP modules, HTTP handlers, or both and runs under IIS 7.x in
integrated mode.

Before IIS 7 came along, any ASP.NET request had to go through two distinct pipelines: one
right at the 1IS gate, and one mapped to the ASP.NET runtime environment. Subsequently,
an ASP.NET application in need of supporting special HTTP modules or handlers simply
registered them in the web.config file and waited for them to be invoked. In IS 7 integrated
mode, instead, the request pipeline is unified at the IIS level. As a result, any HTTP handlers
and HTTP modules you might have registered in the <httpHandlers> and <httpModules>
sections of the web.config file will be blissfully ignored.

For an IIS 7-integrated ASP.NET application to properly deal with HTTP modules and
handlers, you have to move the <httpHandlers> and <httpModules> sections to a new
<system.webServer> section in the same application’s web.config file. There are some
snags though.

http://www.iis.net/ConfigReference/system.webServer

Chapter 3 ASP.NET Configuration 109

Important When developing HTTP handlers and modules, you should be aware of a key

point. The ASP.NET Development Server (also known as Cassini) doesn't honor the content of
the <webServer> section. This means that, for development purposes only, you should copy

the registration of your handlers and modules also in the <httpHandlers> and <httpModules>
section, regardless of whether your application will actually be deployed on IS 7. The ASP.NET
Development Server that comes with Visual Studio is designed to capture and process all re-
quests within its own pipeline; in this regard, its overall behavior is more similar to 1IS 6 than IIS 7.

Under <system.webServer>, sections have been renamed <modules> and <handlers>
and have a slightly different set of attributes. In particular, each handler must have a
name attribute and support additional attributes, namely precondition and allowpolicy.
The precondition attribute lists what's required for the handler to work: type of pipeline
(classicMode or integratedMode), bitness (32 or 64), and runtime version of ASP.NET (v2
or v4). The allowPolicy attribute sets the permissions granted to the handler: read, write,
execute, or script.

The <modules> section counts a couple of Boolean attributes, such as
runAllManagedModulesForAllRequests and runManagedModulesForWebDavRequests.

Both properties default to false. This is the typical content for <system.webServer> in a new
ASP.NET 4 application in Visual Studio 2010.

<modules runAllManagedModulesForAl1Requests="true">
</modules>

The attribute runAllManagedModulesForAllRequests indicates that all managed modules can
process all requests, even if the request was not for managed content. Instead, the attribute
runManagedModulesForWebDavRequests specifies whether managed modules can process
WebDAV requests.

These differences between classic and integrated mode lead you toward using different
web.config files to set up handlers and modules for the same application deployed in
different scenarios. By using the <validation> element, however, you can have a single
web.config file with settings for both classic and integrated IIS 7 working modes:

<system.webServer>
<validation validateIntegratedModeConfiguration="false" />

</system.webServer>

The <validation> element tells IIS not to validate the schema of the web.config file against
the known configuration schema of integrated mode. In this way, when you are working in
integrated mode, <httpHandlers> and <httpModules> are ignored; and when you are in
classic mode, the entire <system.webServer> section is ignored.

110

Part| The ASP.NET Runtime Environment

Note If you're having trouble while hosting an ASP.NET application under IIS 7.x in integrated
mode, you might want to read the following article for more information and a very good
background of the whole topic: http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-
on-iis-70.

Managing Configuration Data

Configuration data can be managed by developers and administrators in two main ways:
programmatically through an ad hoc API, and manually through command-line utilities, XML
editors, or perhaps the Web Site Administration Tool (WSAT). Let’s take a closer look at these
options.

Using the Configuration API

ASP.NET includes a full configuration management API that enables you to navigate, read,
and write an application’s configuration files. Configuration settings are exposed as a set
of strongly typed objects that you can easily program against. These classes—one for each
section in the overall schema—are all defined in the System.Configuration namespace.

The configuration APl is smart enough to provide a merged view of all the settings that apply
to that level. When settings are modified, the API automatically writes changes to the correct
node in the correct configuration file. The management API can be used to read and write
configuration settings of local and remote applications. Custom configuration sections are
automatically manageable through the API.

Retrieving Web Configuration Settings

You use the WebConfigurationManager class to get access to the ASP.NET configuration files.
The class is the preferred way to work with configuration files related to Web applications.
The following code snippet illustrates how to retrieve the HTTP handlers in use in the current
application:

void Buttonl_Click(object sender, EventArgs e)

{
var name = @"system.web/httpHandlers";
var cfg = WebConfigurationManager.OpenWebConfiguration("/");
var handlers = (HttpHandlersSection) cfg.GetSection(name);
EnumerateHandlers(handlers);

3

void EnumerateHandlers(HttpHandlersSection section)

{

foreach (var handler in section.Handlers)

{

3

http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70
http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70
http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70

Chapter 3 ASP.NET Configuration 111

You open the configuration file using the OpenWebConfiguration method. The parameter
you pass to the method indicates the level at which you want to retrieve information. If you
specify null or /, you intend to capture configuration data at the site’s root level. If you want
information at the machine level, you resort to the OpenMachineConfiguration method.

The OpenWebConfiguration method returns a Configuration object on which you can call
GetSection to retrieve the contents of a particular section. For HTTP handlers, you do as
follows:

HttpHandlersSection section;
section = (HttpHandlersSection) cfg.GetSection(@"system.web/httpHandlers™);

Each section class has a programming interface that closely reflects the attributes and child
sections on the element.

To access configuration data at the application level, you pass the application’s URL to the
OpenWebConfiguration method:

var path = Request.CurrentExecutionFilePath;
Configuration cfg = WebConfigurationManager.OpenWebConfiguration(path);

To retrieve information about other sections, you use the same pattern illustrated earlier by
changing section names and section classes.

Note The .NET Framework offers two similar classes to achieve the same goals: the
aforementioned WebConfigurationManager and ConfigurationManager. Their functionalities
overlap to a good extent, but they are not the same thing. In particular, they do the same thing if
all you need to do is read data from mapped sections such as AppSettings and ConnectionStrings
If you need to access a specific section, remember that WebConfigurationManager can be
configured to open a Web configuration file, whereas ConfigurationManager is designed for
other types of applications.

Retrieving Application Settings

As mentioned, most ASP.NET applications need to access data in sections outside the
<system.web> element. Canonical examples are <appSettings> and <connectionString>.

For sections not included in the <system.web> element, you normally use the
ConfigurationManager class. However, WebConfigurationManager contains a couple of helper
public properties to access AppSettings and ConnectionStrings collections. The following code
snippet shows the implementation of these properties in WebConfigurationManager:

public static NameValueCollection AppSettings
{

get {return ConfigurationManager.AppSettings;}

}

112

Part| The ASP.NET Runtime Environment

public static NameValueCollection ConnectionStrings

{

get {return ConfigurationManager.ConnectionStrings;}

3

As you can see, to access application settings and connection strings you can
interchangeably use the AppSettings and ConnectionStrings collections on both
WebConfigurationManager and ConfigurationManager. Here's how to obtain a registered
connection string named Northwind:

WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString

For a value stored in the <appSettings> section, you need the following:

WebConfigurationManager.AppSettings["CacheDurationForData"]

In case you need to access other sections outside <system.web>, the ConfigurationManager
class supplies the OpenMachineConfiguration method to access the tree of configuration
data. Here's the code to retrieve the supported protocol prefixes for Web requests (https,
http, ftp, and the like):

var name = @"system.net/webRequestModules";

Configuration cfg = ConfigurationManager.OpenMachineConfiguration();
var section = (WebRequestModulesSection) cfg.GetSection(name);
foreach (WebRequestModuleElement m in section.WebRequestModules)

{
3

To explore the content of a section, you need to cast the return value of the GetSection
method to a specific type. A section type is defined for each system-provided support-

ed section in the system.configuration assembly. Note, though, that you won't find any
such section classes for elements under the <system.webServer> section. If you need to
programmatically read or write within the <system.webServer> section, you must reference
the Microsoft.Web.Administration assembly where such classes are defined. You find the
assembly in the IIS folder, specifically under System32\inetsrv.

Updating Application Settings

The entire content of the configuration tree is exposed to applications through a sort of
Document Object Model (DOM). This DOM is modifiable in memory. After you're done, you

Chapter 3 ASP.NET Configuration 113

can persist changes by calling the Save method on the corresponding Configuration class.
The following code snippet shows how to programmatically add a new HTTP handler to the
current application:

var name
var path

@"system.web/httpHandlers";
"'/myapp";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (HttpHandlersSection) config.GetSection(name);

var newHandler = new HttpHandlerAction("*.xyz", "System.Web.HttpForbiddenHandler", "*");
section.Handlers.Add(newHandler);
config.Save(Q);

The newly added handler configures the system so that requests for .xyz files are blocked.
The application’s web.config file is modified as follows:

<httpHandlers>

<add path="*.xyz
verb="*"
type="System.Web.HttpForbiddenHandler" />
</httpHandlers>

To re-enable .xyz resources, you need to remove the handler that was just added. The
following code shows how to proceed programmatically:

var name = @"system.web/httpHandlers";
var path = "/myapp";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (HttpHandlersSection) config.GetSection(name);

section.Handlers.Remove("*", "*.xyz");
config.Save(Q);

After this, any request for an .xyz resource is likely to produce the, perhaps more familiar,
“resource not found” message.

Encrypting a Section

With the exceptions listed earlier while discussing the <protectedData> section, all sections in
a configuration file can be encrypted both programmatically using the configuration APl and
in offline mode using a command-line tool. Let’s tackle this latter option first.

114

Part| The ASP.NET Runtime Environment

Using a Command-Line Tool

You use the newest version of a popular system tool: aspnet_regiis.exe. Here's a sample usage
of the utility to encrypt connection strings for the /MyApp application. Note that the section
names are case-sensitive.

aspnet_regiis.exe -pe connectionStrings -app /MyApp

After running this command, the web.config looks different. The <connectionStrings> section
now incorporates a child <EncryptedData> section, which is where the ciphered content

has been stored. If you open the web.config file after encryption, you see something like the
following:

<configuration>
<connectionStrings
configProtectionProvider="RsaProtectedConfigurationProvider">
<EncryptedData ...>

<CipherData>
<CipherValue>cQyofWFQ ... =</CipherValue>
</CipherData>
</EncryptedData>
</connectionStrings>
</configuration>

To restore the web.config file to its original clear state, you use the —pd switch in lieu of —pe in
the aforementioned command line. The nice part of the story is that this form of encryption
is completely transparent to applications, which continue working as before.

Using a Programmatic Approach

To encrypt and decrypt sections programmatically, you use the ProtectSection and
UnprotectSection methods defined on the Sectioninformation object. Here's how to proceed:

var name = "connectionStrings";
var path = "/myApp";
var provider = "RsaProtectedConfigurationProvider";

var config = WebConfigurationManager.OpenWebConfiguration(path);
var section = (ConnectionStringsSection) cfg.GetSection(name);

section.SectionInformation.ProtectSection(provider);
config.Save(Q);

To unprotect, you change the call to ProtectSection with the following:

section.SectionInformation.UnprotectSection();
config.Save(Q);

Note that to persist changes it is still essential to place a call to the Save method on the
Configuration object.

Chapter 3 ASP.NET Configuration 115

Choosing the Encryption Provider

Any page that uses protected sections works like a champ as long as you run it inside the
local Web server embedded in Visual Studio. You might get an RSA provider configuration
error if you access the same page from within a canonical (and much more realistic) IS virtual
folder. What's up with that?

The RSA-based provider—the default protection provider, if you use the command-line
tool—needs a key container to work. A default key container is created upon installation

and is named NetFrameWorkConfigurationKey. The aspnet_regiis.exe utility provides a lot of
command-line switches for you to add, remove, and edit key containers. The essential point
is that you have a key container created before you dump the RSA-protected configuration
provider. The container must not only exist, but it also needs to be associated with the user
account attempting to call it. The system account (running the local Web server) is listed with
the container; the ASP.NET account on your Web server might not be. Note that granting
access to the key container is necessary only if you use the RSA provider.

Assuming you run ASP.NET under the NETWORK SERVICE account (the default on Windows
Server 2003 machines), you need the following code to add access to the container for the
user:

aspnet_regiis.exe -pa "NetFrameworkConfigurationKey"
"NT AUTHORITY\NETWORK SERVICE"

It is important that you specify a complete account name, as in the preceding code. In IS 7.5
where ApplicationPoolldentity is used by default in lieu of NETWORK SERVICE, how would
you identify the account exactly? Here's how:

aspnet_regiis.exe -pa "NetFrameworkConfigurationKey"
"IIS APPPOOL\YourAppPool"

You use IIS APPPOOL followed by the name of the IIS application pool whose identity you
want to retrieve.

Both the RSA and DPAPI providers are great options for encrypting sensitive data. The DPAPI
provider dramatically simplifies the process of key management—keys are generated based
on machine credentials and can be accessed by all processes running on the machine. For
the same reason, the DPAPI provider is not ideal to protect sections in a Web-farm scenario,
where the same encrypted web.config file will be deployed to several servers. In this case,
either you manually encrypt all web.config files on each machine or you copy the same con-
tainer key to all servers. To accomplish this, you create a key container for the application,
export it to an XML file, and import it on each server that will need to decrypt the encrypted
web.config file. To create a key container, you do as follows. Using the command-line utility is
mandatory here.

aspnet_regiis.exe —-pc YourContainerName -exp

116

Part| The ASP.NET Runtime Environment

Next, you export the key container to an XML file:

aspnet_regiis.exe —-px YourContainerName YourXmlFile.xml

Next, you move the XML file to each server and import it as follows:

aspnet_regiis.exe -pi YourContainerName YourXmlFile.xml

As a final step, grant the ASP.NET account permission to access the container.

Note For more information about the aspnet:_regiis tool and its command line, refer to the
following URL: http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx.

Creating Custom Configuration Sections

The predefined XML schema for configuration files fits the bill in most cases, but when you
have complex and structured information to persist, none of the existing schemas appear
to be powerful enough. At this point, you have two possible workarounds. You can simply
avoid using a standard configuration file and instead use a plain XML file written accord-
ing to the schema you feel is appropriate for the data. Alternatively, you can embed your
XML configuration data in the standard application configuration file but provide a tailor-
made configuration section handler to read it.

Creating a new section (plus an optional new section group) requires editing the web.config
file to register the section (or section group). While registering the new section, you need to
specify the section handler component—that is, the piece of software in charge of parsing
the contents of the section to processable data. Depending on what kind of data you're
going to store in the section, you can use one of the existing handlers or, more likely, create
your own section handler.

In ASP.NET, the configuration section handler is a class that ultimately inherits from the
ConfigurationSection class. The section handler class defines public properties and maps
them to attributes in the XML element. In addition, these class properties are decorated with
a special attribute named ConfigurationProperty. The following example shows how to create
the handler for a new <MyPages> section with just one attribute—pageBackColor:

public class MyPagesSection : ConfigurationSection

{

private static readonly ConfigurationProperty propPageBackColor = null;

static MyPagesSection()
{
MyPagesSection.propPageBackColor = new ConfigurationProperty(
"PageBackColor", typeof(string), "yellow",
ConfigurationPropertyOptions.IsRequired);

http://msdn.microsoft.com/en-us/library/k6h9cz8h

Chapter 3 ASP.NET Configuration 117

[ConfigurationProperty("pageBackColor™)]

public string PageBackColor

{
get { return (string) base[MyPagesSection.propPageBackColor]; }
set { base[MyPagesSection.propPageBackColor] = value; }

}

The mapping between a property and a section attribute is established through the
ConfigurationProperty attribute. The parameter of the attribute constructor indicates the
name of the section attribute used to feed the decorated property.

A custom section must be registered to work properly. Here's how to do it:

<configuration>
<configSections>
<section name="myPages"
type="Samples.MyPagesSection, Samples" />
</configSections>

<configuration>

The type property in the <section> tag indicates the class being used to read and write

the contents of the section. For the sample <myPages> section, the system will use the
MyPagesSection class in the specified assembly. If the assembly is strongly typed and located
in the GAC, you should indicate its full name.

Summary

ASP.NET applications have many configurable settings. The various settings can all be
controlled at different levels and overridden, extended, or restricted as appropriate. ASP.NET
configuration is hierarchical by nature and lets you apply different configuration schemes at
various levels of granularity—the machine, the Web site, the application, and even the folder.

Configuration files are probably the most critical aspect to consider when preparing the de-
ployment of ASP.NET applications. Arranging a setup program has never been as easy as it is
with Visual Studio (not considering third-party products), but deciding how to replicate the
settings of the native environment might not be trivial. ASP.NET applications, in fact, can be
deployed on a Web farm or in an ISP scenario, which requires particular care of the machine.
config and web.config files.

Tweaking the content of the myriad sections you can have in a configuration file is a delicate
art that requires awareness of the IIS runtime environment, the ASP.NET process model, and
the endless list of settings and default values that this chapter attempted to cover in detail.

Chapter 4

HTTP Handlers, Modules, and
Routing

Advice is what we ask for when we already know the answer but wish we didn't.

—Erica Jong

HTTP handlers and modules are truly the building blocks of the ASP.NET platform. Any
requests for a resource managed by ASP.NET are always resolved by an HTTP handler and
pass through a pipeline of HTTP modules. After the handler has processed the request, the
request flows back through the pipeline of HTTP modules and is finally transformed into
markup for the caller.

The Page class—the base class for all ASP.NET runtime pages—is ultimately an HTTP handler
that implements internally the page life cycle that fires the well-known set of page events,
including postbacks, Init, Load, PreRender, and the like. An HTTP handler is designed to pro-
cess one or more URL extensions. Handlers can be given an application or machine scope,
which means they can process the assigned extensions within the context of the current
application or all applications installed on the machine. Of course, this is accomplished by
making changes to either the site’s web.config file or a local web.config file, depending on the
scope you desire.

HTTP modules are classes that handle runtime events. There are two types of public events
that a module can deal with. They are the events raised by HttpApplication (including asyn-
chronous events) and events raised by other HTTP modules. For example, SessionStateModule
is one of the built-in modules provided by ASP.NET to supply session-state services to an
application. It fires the End and Start events that other modules can handle through the
familiar Session_End and Session_Start signatures.

In Internet Information Services (IIS) 7 integrated mode, modules and handlers are resolved
at the IS level; they operate, instead, inside the ASP.NET worker process in different runtime
configurations, such as IIS 7 classic mode or IIS 6.

HTTP modules and handlers are related to the theme of request routing. Originally
developed for ASP.NET MVC, the URL routing engine has been incorporated into the over-
all ASP.NET platform with the .NET Framework 3.5 Service Pack 1. The URL routing engine
is a system-provided HTTP module that hooks up any incoming requests and attempts to
match the requested URL to one of the user-defined rewriting rules (known as routes). If a
match exists, the module locates the HTTP handler that is due to serve the route and goes
with it. If no match is found, the request is processed as usual in Web Forms, as if no URL
routing engine was ever in the middle. What makes the URL routing engine so beneficial to

119

120 Part| The ASP.NET Runtime Environment

applications? It actually enables you to use free-hand and easy-to-remember URLs that are
not necessarily bound to physical files in the Web server.

In this chapter, we'll explore the syntax and semantics of HTTP handlers, HTTP modules, and
the URL routing engine.

The ISAPI Extensibility Model of 1IS

A Web server generally provides an application programming interface (API) for
enhancing and customizing the server's capabilities. Historically speaking, the first of
these extension APIs was the Common Gateway Interface (CGl). A CGlI module is a new
application that is spawned from the Web server to service a request. Nowadays, CGlI
applications are almost never used because they require a new process for each HTTP
request, and this approach poses severe scalability issues and is rather inadequate for
high-volume Web sites.

More recent versions of Web servers supply an alternate and more efficient model to
extend the capabilities of the server. In lIS, this alternative model takes the form of the
ISAPI interface. When the ISAPI model is used, instead of starting a new process for
each request, the Web server loads a made-to-measure component—namely, a Win32
dynamic-link library (DLL)—into its own process. Next, it calls a well-known entry
point on the DLL to serve the request. The ISAPI component stays loaded until IIS is
shut down and can service requests without any further impact on Web server activ-
ity. The downside to such a model is that because components are loaded within the
Web server process, a single faulty component can tear down the whole server and all
installed applications. Some effective countermeasures have been taken over the years
to smooth out this problem. Today, IIS installed applications are assigned to application
pools and each application pool is served by a distinct instance of a worker process.

From an extensibility standpoint, however, the ISAPI model is less than optimal because
it requires developers to create Win32 unmanaged DLLs to endow the Web server with
the capability of serving specific requests, such as those for ASPX resources. Until IIS 7
(and still in 1IS 7 when the classic mode is configured), requests are processed by IIS and
then mapped to some ISAPI (unmanaged) component. This is exactly what happens
with plain ASPX requests, and the ASP.NET ISAPI component is aspnet_isapi.dll. In IIS 7.x
integrated mode, you can add managed components (HTTP handlers and HTTP mod-
ules) directly at the IIS level. More precisely, the IIS 7 integrated mode merges the
ASP.NET internal runtime pipeline with the IIS pipeline and enables you to write Web
server extensions using managed code. This is the way to go.

Today, if you learn how to write HTTP handlers and HTTP modules, you can use such
skills to customize how any requests that hit IIS are served, and not just requests that
would be mapped to ASP.NET. You'll see a few examples in the rest of the chapter.

Chapter 4 HTTP Handlers, Modules, and Routing 121

Writing HTTP Handlers

As the name suggests, an HTTP handler is a component that handles and processes a
request. ASP.NET comes with a set of built-in handlers to accommodate a number of system
tasks. The model, however, is highly extensible. You can write a custom HTTP handler when-
ever you need ASP.NET to process certain types of requests in a nonstandard way. The list of
useful things you can do with HTTP handlers is limited only by your imagination.

Through a well-written handler, you can have your users invoke any sort of functionality via
the Web. For example, you could implement click counters and any sort of image manipula-
tion, including dynamic generation of images, server-side caching, or obstructing undesired
linking to your images. More in general, an HTTP handler is a way for the user to send a
command to the Web application instead of just requesting a particular page.

In software terms, an HTTP handler is a relatively simple class that implements the
IHttpHandler interface. An HTTP handler can either work synchronously or operate in an
asynchronous way. When working synchronously, a handler doesn’t return until it's done
with the HTTP request. An asynchronous handler, on the other hand, launches a potentially
lengthy process and returns immediately after. A typical implementation of asynchronous
handlers is asynchronous pages. An asynchronous HTTP handler is a class that implements a
different interface—the IHttpAsyncHandler interface.

HTTP handlers need be registered with the application. You do that in the application’s web.
config file in the <httpHandlers> section of <system.web>, in the <handlers> section of
<system.webServer> as explained in Chapter 3, "ASP.NET Configuration,” or in both places. If
your application runs under IIS 7.x in integrated mode, you can also configure HTTP handlers
via the Handler Mappings panel of the IIS Manager.

The IHttpHandler Interface

Want to take the splash and dive into HTTP handler programming? Well, your first step is
getting the hang of the IHttpHandler interface. An HTTP handler is just a managed class
that implements that interface. As mentioned, a synchronous HTTP handler implements the
IHttpHandler interface; an asynchronous HTTP handler, on the other hand, implements the
IHttpAsyncHandler interface. Let's tackle synchronous handlers first.

The contract of the IHttpHandler interface defines the actions that a handler needs to take to
process an HTTP request synchronously.

Members of the IHttpHandler Interface

The IHttpHandler interface defines only two members: ProcessRequest and IsReusable, as
shown in Table 4-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

122

Part| The ASP.NET Runtime Environment

TABLE 4-1 Members of the IHttpHandler Interface
Member Description

IsReusable This property provides a Boolean value indicating whether the HTTP
runtime can reuse the current instance of the HTTP handler while serving
another request.

ProcessRequest This method processes the HTTP request from start to finish and is
responsible for processing any input and producing any output.

The IsReusable property on the System.Web.Ul.Page class—the most common HTTP handler
in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed to
serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the request payload. Handlers
used as simple barriers to filter special requests can set IsReusable to true to save some CPU
cycles. I'll return to this subject with a concrete example in a moment.

The ProcessRequest method has the following signature:
void ProcessRequest(HttpContext context);
It takes the context of the request as the input and ensures that the request is serviced. In

the case of synchronous handlers, when ProcessRequest returns, the output is ready for
forwarding to the client.

A Very Simple HTTP Handler
The output for the request is built within the ProcessRequest method, as shown in the
following code:

using System.Web;
namespace AspNetGallery.Extensions.Handlers

{
public class SimpleHandler : IHttpHandler
{
public void ProcessRequest(HttpContext context)
{
const String htmiTemplate = "<html><head><title>{0}</title></head><body>" +
"<hl>Hello I'm: " +
"{1}</h1>" +
"</body></htm1>";
var response = String.Format(htmiTemplate,
"HTTP Handlers", context.Request.Path);
context.Response.Write(response);
}
pubTlic Boolean IsReusable
{
get { return false; }
}
}

Chapter 4 HTTP Handlers, Modules, and Routing 123

You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IIS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>
<system.web>
<httpHandlers>
<add verb=
path="hello.axd"
type="Samples.Components.SimpleHandler" />
</httpHandlers>
</system.web>
<system.webServer>
<validation validateIntegratedModeConfiguration="false" />
<handlers>
<add name="Hello"
preCondition="integratedMode"
verb="*"
path="hello.axd"
type="Samples.Components.SimpleHandler" />
</handlers>
</system.webServer>
</configuration>

nen

The <httpHandlers> section lists the handlers available for the current application. These
settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.axd. Note that the URL hello.axd doesn’t have to be a physical resource
on the server; it's simply a public resource identifier. The type attribute references the class
and assembly that contain the handler. Its canonical format is type[,assembly]. You omit the
assembly information if the component is defined in the App_Code or other reserved folders.

Important As noted in Chapter 3, you usually don't need both forms of an HTTP handler
declaration in <system.web> and <system.webServer>. You need the former only if your applica-
tion runs under IIS 6 (Windows Server 2003) or if it runs under IS 7.x but is configured in classic
mode. You need the latter only if your application runs under IIS 7.x in integrated mode. If you
have both sections, you enable yourself to use a single web.config file for two distinct deploy-
ment scenarios. In this case, the <validation> element is key because it prevents IIS 7.x from
strictly parsing the content of the configuration file. Furthermore, as discussed in Chapter 3, the
<httpHandlers> and <httpModules> sections help in testing handlers and modules within Visual
Studio if you're using the embedded ASP.NET Development Server (also known as, Cassini).

If you invoke the hello.axd URL, you obtain the results shown in Figure 4-1.

124

Part| The ASP.NET Runtime Environment

@HTI'PI' dlers - Wind: Internet Explorer EI@
@Q L |§. http://localh... v| B | "?| &b | |b g il

f\? Favorites i,};

/& HTTP Handlers & B - = Qé; v Page~

Hello ’m: /hello.axd

& Internet | Protected Mode: On fy v H100% v

FIGURE 4-1 A sample HTTP handler that answers requests for hello.axd.

The technique discussed here is the quickest and simplest way of putting an HTTP handler to
work, but there is more to know about the registration of HTTP handlers and there are many
more options to take advantage of.

Note It's more common to use the ASHX extension for a handler mapping. The AXD extension
is generally reserved for resource handlers that inject embedded content such as images, scripts,
and so forth.

Registering the Handler

An HTTP handler is a class and must be compiled to an assembly before you can use it. The
assembly must be deployed to the Bin directory of the application. If you plan to make this
handler available to all applications, you can copy it to the global assembly cache (GAC). The
next step is registering the handler with an individual application or with all the applications
running on the Web server.

You already saw the script you need to register an HTTP handler. Table 4-2 expands a bit
more on the attributes you can set up.

TABLE 4-2 Attributes Required to Register an HTTP Handler in <system.web>
Attribute Description

path A wildcard string, or a single URL, that indicates the resources the handler will
work on—for example, *.aspx.

type Specifies a comma-separated class/assembly combination. ASP.NET searches
for the assembly DLL first in the application’s private Bin directory and then in
the system global assembly cache.

validate If this attribute is set to false, ASP.NET loads the assembly with the handler on
demand. The default value is true.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT, and
POST. The wildcard character (*) is an acceptable value and denotes all verbs.

Chapter 4 HTTP Handlers, Modules, and Routing 125

All attributes except for validate are mandatory. When validate is set to false, ASP.NET

delays as much as possible loading the assembly with the HTTP handler. In other words, the
assembly will be loaded only when a request for it arrives. ASP.NET will not try to preload the
assembly, thus catching earlier any errors or problems with it.

Additional attributes are available if you register the handler in <system.webServer>. They are
listed in Table 4-3.

TABLE 4-3 Attributes Required to Register an HTTP Handler in <system.webServer>
Attribute Description

allowPathinfo If this attribute is set to true, the handler processes full path information
in the URL or just the last section. It is set to false by default.

modules Indicates the list of HTTP modules (comma-separated list of names) that
are enabled to intercept requests for the current handler. The standard
list contains only the ManagedPipelineHandler module.

name Unique name of the handler.

path A wildcard string, or a single URL, that indicates the resources the
handler will work on—for example, *.aspx.

preCondition Specifies conditions under which the handler will run. (More information
appears later in this section.)

requireAccess Indicates the type of access that a handler requires to the resource,
either read, write, script, execute, or none. The default is script.

resourceType Indicates the type of resource to which the handler mapping applies: file,
directory, or both. The default option, however, is Unspecified, meaning
that the handler can handle requests for resources that map to physical
entries in the file system as well as to plain commands.

responseBufferLimit Specifies the maximum size, in bytes, of the response buffer. The default
value is 4 MB.
scriptProcessor Specifies the physical path of the ISAPI extension or CGl executable that

processes the request. It is not requested for managed handlers.

type Specifies a comma-separated class/assembly combination. ASP.NET
searches for the assembly DLL first in the application’s private Bin
directory and then in the system global assembly cache.

verb Indicates the list of the supported HTTP verbs—for example, GET, PUT,
and POST. The wildcard character (*) is an acceptable value and denotes
all verbs.

The reason why the configuration of an HTTP handler might span a larger number of
attributes in IS is that the <handlers> section serves for both managed and unman-
aged handlers. If you configure a managed handler written using the ASP.NET API, you
need only preCondition and name in addition to the attributes you would specify in the
<httpHandlers> section.

126

Part| The ASP.NET Runtime Environment

Preconditions for Managed Handlers

The preCondition attribute sets prerequisites for the handler to run. Prerequisites touch
on three distinct areas: bitness, ASP.NET runtime version, and type of requests to respond.
Table 4-4 lists and explains the various options:

TABLE 4-4 Preconditions for an IIS 7.x HTTP Handler

Precondition Description

bitness32 The handler is 32-bit code and should be loaded only in 64-bit worker
processes running in 32-bit emulation.

bitness64 The handler is 64-bit and should be loaded only in native 64-bit

worker processes.

integratedMode The handler should respond only to requests in application pools
configured in integrated mode.

ISAPIMode The handler should respond only to requests in application pools
configured in classic mode.

runtimeVersionvl1.1 The handler should respond only to requests in application pools
configured for version 1.1 of the ASP.NET runtime.

runtimeVersionv2.0 The handler should respond only to requests in application pools
configured for version 2.0 of the ASP.NET runtime.

Most of the time you use the integratedMode value only to set preconditions on a managed
HTTP handler.

Handlers Serving New Types of Resources

In ASP.NET applications, a common scenario when you want to use custom HTTP handlers is
that you want to loosen yourself from the ties of ASPX files. Sometimes you want to place a
request for a nonstandard ASP.NET resource (for example, a custom XML file) and expect the
handler to process the content and return some markup.

More in general, you use HTTP handlers in two main situations: when you want to custom-
ize how known resources are processed and when you want to introduce new resources. In
the latter case, you probably need to let IIS know about the new resource. Again, how you
achieve this depends on the configuration of the application pool that hosts your ASP.NET
applications.

Suppose you want your application to respond to requests for .report requests. For example,
you expect your application to be able to respond to a URL like /monthly.report?year=2010.
Let's say that monthly.report is a server file that contains a description of the report your han-
dler will then create using any input parameters you provide.

In integrated mode, you need to do nothing special for this request to go successfully.
Moreover, you don't even need to add a .report or any other analogous extension. You

Chapter 4 HTTP Handlers, Modules, and Routing 127

can specify any custom URL (much like you do in ASP.NET MVC) and as long as you have a
handler properly configured, it will work.

In classic mode, instead, two distinct pipelines exist in IIS and ASP.NET. The extension, in this
case, is mandatory to instruct IIS to recognize that request and map it to ASP.NET, where the
HTTP handler actually lives. As an example, consider that when you deploy ASP.NET MVC

in classic mode you have to tweak URLs so that each controller name has an .mvc suffix. To
force IIS to recognize a new resource, you must add a new script map via the IIS Manager, as
shown in Figure 4-2.

Add Script Map -7 |z

Request path:
*.report

Example: *.bas, wsvc.axd
Executable:

CA\Windows\Microsoft. NET\Framework\v4.0.3031%\aspnet_isapi.dil E

MName:

Report

Request Restrictions...

oK l ’ Cancel

FIGURE 4-2 Adding an IIS script map for .report requests.

The executable is the ISAPI extension that will be bridging the request from the IIS world
to the ASP.NET space. You choose the aspnet_isapi DLL from the folder that points to the
version of the .NET Framework you intend to target. In Figure 4-2, you see the path for
ASP.NET 4.

Note In Microsoft Visual Studio, if you test a sample .report resource using the local embedded
Web server, nothing happens that forces you to register the .report resource with IIS. This is just
the point, though. You're not using IIS! In other words, if you use the local Web server, you have
no need to touch IIS; you do need to register any custom resource you plan to use with IIS before
you get to production.

Why didn't we have to do anything special for our first example, hello.axd? Because AXD is
a system extension that ASP.NET registers on its own and that sometimes also can be used
for registering custom HTTP handlers. (AXD is not the recommended extension for custom
handlers, however.)

Now let’s consider a more complex example of an HTTP handler.

128

Part| The ASP.NET Runtime Environment

The Picture Viewer Handler

To speed up processing, IIS claims the right to personally serve some typical Web resources
without going down to any particular ISAPI extensions. The list of resources served directly
by IS includes static files such as images and HTML files.

What if you request a GIF or a JPG file directly from the address bar of the browser? IIS
retrieves the specified resource, sets the proper content type on the response buffer, and
writes out the bytes of the file. As a result, you'll see the image in the browser’s page. So far
so good.

What if you point your browser to a virtual folder that contains images? In this case, IIS
doesn't distinguish the contents of the folder and returns a list of files, as shown in Figure 4-3.

/& Directory Listing -- fimages/ & B - = Qé; v Page~ Safel

Directory Listing -- /images/

[To Parent Directory]

Saturday, February 27, 1993 07:25
Monday, November 03, 2003 06:07
Monday, November 03, 2003 05:53
Monday, November 03, 2003 05:51

wednesday, November 19, 2003 06:42
Thursday, April 1z, 2007 10:30
saturday, June 1%, 2010 03:21
saturday, June 19, 2010 04:32
saturday, June 19, 2010 04:25
saturday, June 19, 2010 04:21
saturday, June 1%, 2010 04:19
saturday, June 19, 2010 03:27
saturday, June 19, 2010 04:28
saturday, June 19, 2010 03:13
saturday, June 1%, 2010 04:26
saturday, June 19, 2010 04:27
saturday, June 1%, 2010 03:20

23,122 D444.BMP

19,847 15780.7pg

29,730 18011.7ipg

32,597 19034.7pg

22,924 20245.3PG

7,923 ajaxext.jpg

213,209 app_arch_2008.png

144,222 asp3.ipg
1,404,870 AspData.bmp

251,327 aspnet20adv.png

196,651 aspnet20core.png
1,331,406 aspnet3S.bmp

47,268 ie4.ipg

39,425 mvc.jpg

56,372 scriptlets.jpg

38,159 shell. jpg

155,607 web_arch_2003.png

L R

FIGURE 4-3 The standard IIS-provided view of a folder.

Wouldn't it be nice if you could get a preview of the contained pictures instead?

Designing the HTTP Handler

To start out, you need to decide how to let IIS know about your wishes. You can use a
particular endpoint that, when appended to a folder’s name, convinces IIS to yield to
ASP.NET and provide a preview of contained images. Put another way, the idea is to bind
your picture viewer handler to a particular endpoint—say, folder.axd. As mentioned earlier in
the chapter, a fixed endpoint for handlers doesn't have to be an existing, deployed resource.
You make the folder.axd endpoint follow the folder name, as shown here:

http://www.contoso.com/images/folder.axd

http://www.contoso.com/images/folder.axd

Chapter 4 HTTP Handlers, Modules, and Routing 129

The handler processes the URL, extracts the folder name, and selects all the contained
pictures.

Note In ASP.NET, the .axd extension is commonly used for endpoints referencing a special
service. Trace.axd for tracing and WebResource.axd for script and resources injection are
examples of two popular uses of the extension. In particular, the Trace.axd handler implements
the same logic described here. If you append its name to the URL, it will trace all requests for
pages in that application.

Implementing the HTTP Handler

The picture viewer handler returns a page composed of a multirow table showing as many
images as there are in the folder. Here’s the skeleton of the class:

class PictureViewerInfo
{
public PictureViewerInfo() {
DisplayWidth = 200;
CoTumnCount = 3;
}
pubTlic int DisplayWidth;
pubTic int ColumnCount;
public string FolderName;

public class PictureViewerHandler : IHttpHandler
{
// Override the ProcessRequest method
pubTlic void ProcessRequest(HttpContext context)
{
PictureViewerInfo info = GetFolderInfo(context);
string html = CreateOutput(info);

// Output the data
context.Response.Write("<html><head><title>");
context.Response.Write("Picture Web Viewer");
context.Response.Write("</title></head><body>");
context.Response.Write(html);
context.Response.Write("</body></htm1>");

// Override the IsReusable property
pubTlic bool IsReusable
{

get { return true; }

}

130

Part| The ASP.NET Runtime Environment

Retrieving the actual path of the folder is as easy as stripping off the folder.axd string from
the URL and trimming any trailing slashes or backslashes. Next, the URL of the folder is
mapped to a server path and processed using the .NET Framework API for files and folders to
retrieve all image files:

private static IList<FileInfo> GetAllImages(DirectoryInfo di)

{
String[] fileTypes = { "*.bmp", "*.gif", "*.jpg", "*.png" };
var images = new List<FileInfo>();
foreach (var files in fileTypes.Select(di.GetFiles).Where(files => files.Length > 0))

{
images.AddRange(files);

}

return images;

}

The Directorylnfo class provides some helper functions on the specified directory; for
example, the GetFiles method selects all the files that match the given pattern. Each file is
wrapped by a FileInfo object. The method GetFiles doesn't support multiple search patterns;
to search for various file types, you need to iterate for each type and accumulate results in an
array list or equivalent data structure.

After you get all the images in the folder, you move on to building the output for the
request. The output is a table with a fixed number of cells and a variable number of rows to
accommodate all selected images. For each image file, a new tag is created through
the Image control. The width attribute of this file is set to a fixed value (say, 200 pixels),
causing browsers to automatically resize the image. Furthermore, the image is wrapped by
an anchor that links to the same image URL. As a result, when the user clicks on an image,
the page refreshes and shows the same image at its natural size.

private static String CreateOutputForFolder(PictureViewerInfo info, DirectoryInfo di)

{

var images = GetAllImages(di);

var t = new Table(Q);
var index = 0;
var morelmages = true;

while (moreImages)

{
var row = new TableRow();
t.Rows.Add(row) ;

for (var i = 0; i < info.ColumnCount; i++)
{
var cell = new TableCell(Q);
row.Cells.Add(cell);

Chapter 4 HTTP Handlers, Modules, and Routing 131

var img = new Image();
var fi = images[index];
img.ImageUr1 = fi.Name;
img.Width = Unit.Pixel(info.DisplayWidth);

var a = new HtmlAnchor {HRef = fi.Name};
a.Controls.Add(img);
cell.Controls.Add(a);

index++;
moreImages = (index < images.Count);
if (!moreImages)

break;

}

You might want to make the handler accept some optional query string parameters, such
as the width of images and the column count. These values are packed in an instance of the
helper class PictureViewerInfo along with the name of the folder to view. Here's the code to
process the query string of the URL to extract parameters if any are present:

var info = new PictureViewerInfo();
var pl = context.Request.Params["Width"];
var p2 = context.Request.Params["Cols"];
if (pl != null)

info.DisplayWidth = pl.ToInt32(Q);
if (p2 !'= null)

info.ColumnCount = p2.ToInt32(Q);

ToInt32 is a helper extension method that attempts to convert a numeric string to the
corresponding integer. | find this method quite useful and a great enhancer of code readabil-
ity. Here's the code:

public static Int32 ToInt32(this String helper, Int32 defaultValue = Int32.MinValue)
{

Int32 number;

var result = Int32.TryParse(helper, out number);

return result ? number : defaultValue;

3

Figure 4-4 shows the handler in action.

132 Part| The ASP.NET Runtime Environment

.'é Picture Web Viewer - Windows Internet Explorer E@

@\J = [B] httpr/localhost 51800 images/folder axd?cols=4 v\ B |‘y\ % | [8ing £ -

¢ Favorites | 93

»

& Picture Web Viewer fii v B & v Pagev Safetyv Took~ @~

APPLIED Tz vl INTRODUCING

XML PROGRAMMING
FO ROS

.NET

INSTANT DHTML

Programming
Microsoft

Programming MVC

m

PI:OFESSIONAI.
Active Server
Pages 3.0

Microsoft .NET:
Architecting
Applications for the
Enterprise

hitp://localhost51800/images/ajaxextjpg @ Intemet | Protected Mode: On fa v ®100% -

FIGURE 4-4 The picture viewer handler in action with a given number of columns and a specified width.

Registering the handler is easy too. You just add the following script to the <httpHandlers>
section of the web.config file:

<add verb="*"
path="folder.axd"
type="PictureViewerHandler, AspNetGallery.Extensions" />

You place the assembly in the GAC and move the configuration script to the global
web.config to extend the settings to all applications on the machine. If you're targeting IIS 7
integrated mode, you also need the following:

<system.webServer>
<handlers>
<add name="PictureFolder"
preCondition="1integratedMode"
verb="*"

Chapter 4 HTTP Handlers, Modules, and Routing 133

path="folder.axd"
type="PictureViewerHandler, AspNetGallery.Extensions" />
</handlers>
</system.webServer>

Serving Images More Effectively

Any page you get from the Web these days is topped with so many images and is so well
conceived and designed that often the overall page looks more like a magazine advertise-
ment than an HTML page. Looking at the current pages displayed by portals, it's rather hard
to imagine there ever was a time—and it was only a decade ago—when one could create

a Web site by using only a text editor and some assistance from a friend who had a bit of
familiarity with Adobe PhotoShop.

In spite of the wide use of images on the Web, there is just one way in which a Web page can
reference an image—nby using the HTML tag. By design, this tag points to a URL. As

a result, to be displayable within a Web page, an image must be identifiable through a URL
and its bits should be contained in the output stream returned by the Web server for that
URL.

In many cases, the URL points to a static resource such as a GIF or JPEG file. In this case, the
Web server takes the request upon itself and serves it without invoking external components.
However, the fact that many tags on the Web are bound to a static file does not mean
there’s no other way to include images in Web pages.

Where else can you turn to get images aside from picking them up from the server file
system? One way to do it is to load images from a database, or you can generate or modify
images on the fly just before serving the bits to the browser.

Loading Images from Databases

The use of a database as the storage medium for images is controversial. Some people have
good reasons to push it as a solution; others tell you bluntly they would never do it and that
you shouldn’t either. Some people can tell you wonderful stories of how storing images in a
properly equipped database was the best experience of their professional life. With no fear
that facts could perhaps prove them wrong, other people will confess that they would never
use a database again for such a task.

The facts say that all database management systems (DBMS) of a certain reputation and
volume have supported binary large objects (BLOB) for quite some time. Sure, a BLOB field
doesn't necessarily contain an image—it can contain a multimedia file or a long text file—
but overall there must be a good reason for having this BLOB supported in Microsoft SQL
Server, Oracle, and similar popular DBMS systems!

134 Part| The ASP.NET Runtime Environment

To read an image from a BLOB field with ADO.NET, you execute a SELECT statement on the
column and use the ExecuteScalar method to catch the result and save it in an array of bytes.
Next, you send this array down to the client through a binary write to the response stream.
Let’s write an HTTP handler to serve a database-stored image:

public class DbImageHandler : IHttpHandler

{
pubTlic void ProcessRequest(HttpContext ctx)
{
// Ensure the URL contains an ID argument that is a number
var id = -1;
var pl = context.Request.Params["id"];
if (pl != null)
id = pl.ToInt32(-1);
if (id < 0)
{
context.Response.End(Q);
return;
}
var connString = "...";
const String cmdText = "SELECT photo FROM employees WHERE employeeid=@id";
// Get an array of bytes from the BLOB field
byte[] img = null;
var conn = new SqlConnection(connString);
using (conn)
{
var cmd = new SqlCommand(cmdText, conn);
cmd.Parameters.AddwithvValue("@id", id);
conn.Open();
img = (byte[])cmd.ExecuteScalar();
}
// Prepare the response for the browser
if (img != null)
{
ctx.Response.ContentType = "image/jpeg";
ctx.Response.BinaryWrite(img);
}
}
pubTlic bool IsReusable
{
get { return true; }
}

Chapter 4 HTTP Handlers, Modules, and Routing 135

There are quite a few assumptions made in this code. First, we assume that the field named
photo contains image bits and that the format of the image is JPEG. Second, we assume that
images are to be retrieved from a fixed table of a given database through a predefined con-
nection string. Finally, we assume that the URL to invoke this handler includes a query string
parameter named id.

Notice the attempt to convert the value of the id query parameter to an integer before
proceeding. This simple check significantly reduces the surface attack area for malicious users
by verifying that what is going to be used as a numeric ID is really a numeric ID. Especially
when you're inoculating user input into SQL query commands, filtering out extra characters
and wrong data types is a fundamental measure for preventing attacks.

The BinaryWrite method of the HttpResponse object writes an array of bytes to the output
stream.

Note If the database you're using is Northwind, an extra step might be required to ensure that
the images are correctly managed. For some reason, the SQL Server version of the Northwind
database stores the images in the photo column of the Employees table as OLE objects. This is
probably because of the conversion that occurred when the database was upgraded from the
Microsoft Access version. As a matter fact, the array of bytes you receive contains a 78-byte
prefix that has nothing to do with the image. Those bytes are just the header created when the
image was added as an OLE object to the first version of Access.

Although the preceding code works like a champ with regular BLOB fields, it must undergo the
following modification to work with the photo field of the Northwind.Employees database:

Response.QutputStream.Write(img, 78, img.Length-78);

Instead of using the BinaryWrite call, which doesn't let you specify the starting position, use the
code shown here.

A sample page to test BLOB field access is shown in Figure 4-5. The page lets users select an
employee ID and post back. When the page renders, the ID is used to complete the URL for
the ASP.NET /mage control.

var url = String.Format("photo.axd?id={0}", DropDownListl.SelectedValue);
Imagel.ImageUrl = url;

136

Part| The ASP.NET Runtime Environment

(& nitp://localhost:51800/nwindphoto.aspx - Windows ... [= || & | [w5a]
@Q = [&] httpirtocath... ~| 5| 4| x | [ging

S Favorites | 95
@ hitpi//localhost 51800/ ... - M=

PROGRAMMING ASP.NET 4

Demos The Book The Class

The page demonstrates how to use a made-to-measure HTTP

SELECT AN EMPLOYEE

bnoin 5] [viwPias)

m

P —TT— b

& Internet | Protected Mode: On v H100% v

FIGURE 4-5 Downloading images stored within the BLOB field of a database.

An HTTP handler must be registered in the web.config file and bound to a public endpoint. In
this case, the endpoint is photo.axd and the script to enter in the configuration file is shown
next (in addition to a similar script in <system.webServer>:

<httpHandlers>
<add verb="*"
path="photo.axd"
type=" NorthwindPhotoImageHandler, AspNetGallery.Extensions" />
</httpHandlers>

Note The preceding handler clearly has a weak point: it hard-codes a SQL command and the
related connection string. This means that you might need a different handler for each different
command or database to access. A more realistic handler would probably use an external and
configurable database-specific provider. Such a provider can be as simple as a class that imple-
ments an agreed-upon interface. At a minimum, the interface will supply a method to retrieve
and return an array of bytes.

Alternatively, if you want to keep the ADO.NET code in the handler itself, the interface will just
supply members that specify the command text and connection string. The handler will figure
out its default provider from a given entry in the web.config file.

Chapter 4 HTTP Handlers, Modules, and Routing 137

Serving Dynamically Generated Images

Isn't it true that an image is worth thousands of words? Many financial Web sites offer charts
and, more often than not, these charts are dynamically generated on the server. Next, they
are served to the browser as a stream of bytes and travel over the classic response out-

put stream. But can you create and manipulate server-side images? For these tasks, Web
applications normally rely on ad hoc libraries or the graphic engine of other applications
(for example, Microsoft Office applications). ASP.NET applications are different and, to some
extent, luckier. ASP.NET applications, in fact, can rely on a powerful and integrated graphic
engine integrated in the .NET Framework.

In ASP.NET, writing images to disk might require some security adjustments. Normally, the
ASP.NET runtime runs under the aegis of the NETWORK SERVICE user account. In the case of
anonymous access with impersonation disabled—which are the default settings in ASP.NET—
the worker process lends its own identity and security token to the thread that executes the
user request of creating the file. With regard to the default scenario, an access-denied excep-
tion might be thrown if NETWORK SERVICE (or the selected application pool identity) lacks
writing permissions on virtual directories—a pretty common situation.

ASP.NET provides an interesting alternative to writing files on disk without changing security
settings: in-memory generation of images. In other words, the dynamically generated image
is saved directly to the output stream in the needed image format or in a memory stream.

Writing Copyright Notes on Images

The .NET Framework graphic engine supports quite a few image formats, including JPEG, GIF,
BMP, and PNG. The whole collection of image formats is in the ImageFormat structure of the
System.Drawing namespace. You can save a memory-resident Bitmap object to any of the
supported formats by using one of the overloads of the Save method:

Bitmap bmp = new Bitmap(file);
bmp.Save(outputStream, ImageFormat.Gif);

When you attempt to save an image to a stream or disk file, the system attempts to locate
an encoder for the requested format. The encoder is a module that converts from the native
format to the specified format. Note that the encoder is a piece of unmanaged code that
lives in the underlying Win32 platform. For each save format, the Save method looks up the
right encoder and proceeds.

The next example wraps up all the points we've touched on. This example shows how to load
an existing image, add some copyright notes, and serve the modified version to the user. In
doing so, we'll load an image into a Bitmap object, obtain a Graphics for that bitmap, and use
graphics primitives to write. When finished, we'll save the result to the page’s output stream
and indicate a particular MIME type.

138 Part| The ASP.NET Runtime Environment

The sample page that triggers the example is easily created, as shown in the following listing:

<html>
<body>

</body>
</htm1>

The page contains no ASP.NET code and displays an image through a static HTML
tag. The source of the image, though, is an HTTP handler that loads the image passed
through the query string and then manipulates and displays it. Here's the source code for the
ProcessRequest method of the HTTP handler:

public void ProcessRequest (HttpContext context)

{

var o = context.Request["url"];

if (o == null)

{
context.Response.Write("No image found.");
context.Response.End(Q);
return;

}

var file = context.Server.MapPath(o);

var msg = ConfigurationManager.AppSettings["CopyrightNote"];

if (File.Exists(file))

{
Bitmap bmp = AddCopyright(file, msg);
context.Response.ContentType = "image/jpeg";
bmp.Save(context.Response.OutputStream, ImageFormat.Jpeg);
bmp.Dispose();

}

else

{
context.Response.Write("No image found.");
context.Response.End(Q);

}

}

Note that the server-side page performs two different tasks indeed. First, it writes copyright
text on the image canvas; next, it converts whatever the original format was to JPEG:

Bitmap AddCopyright(String file, String msg)
{
// Load the file and create the graphics
var bmp = new Bitmap(file);
var g = Graphics.FromImage(bmp);

// Define text alignment
var strFmt = new StringFormat();
strFmt.Alignment = StringAlignment.Center;

// Create brushes for the bottom writing

// (green text on black background)

var btmForeColor = new SolidBrush(Color.PaleGreen);
var btmBackColor = new SolidBrush(Color.Black);

}

Chapter 4 HTTP Handlers, Modules, and Routing

// To calculate writing coordinates, obtain the size of the
// text given the font typeface and size

var btmFont = new Font("Verdana", 7);

var textSize = g.MeasureString(msg, btmFont);

// Calculate the output rectangle and fill
float x = (bmp.Width-textSize.Width-3);
float y (bmp.Height-textSize.Height-3);
float w = (x + textSize.Width);

float h = (y + textSize.Height);

var textArea = new RectangleF(x, y, w, h);
g.FillRectangle(btmBackColor, textArea);

// Draw the text and free resources
g.DrawString(msg, btmFont, btmForeColor, textArea);
btmForeColor.Dispose();

btmBackColor.Dispose();

btmFont.Dispose();

g.Dispose();

return bmp;

Figure 4-6 shows the results.

 [&] httou//iocalhostsiso0/copyrightasp = | 5 [4| % |[© 8ing

i Favorites | o5

J (@ nttp://localhost51800/ copyright.aspx

PROGRAMMING ASP.NET 4

‘7| G- ~ [s v Pagev Safety~ Tooks~ @+ =

AT

. | G

Done

€D Internet | Protected Mode: On 45 v ®w0% v

FIGURE 4-6 A server-resident image has been modified before being displayed.

139

140

Part| The ASP.NET Runtime Environment

Note that the additional text is part of the image the user downloads on her client browser.
If the user saves the picture by using the Save Picture As menu from the browser, the text (in
this case, the copyright note) is saved along with the image.

Important All examples demonstrating programmatic manipulation of images take advantage
of the classes in the System.Drawing assembly. The use of this assembly is not recommended in
ASP.NET and is explicitly not supported in ASP.NET Web services. (See http://msdn.microsoft.com/
en-us/library/system.drawing.aspx.) This fact simply means that you are advised not to use classes
in System.Drawing because Microsoft can't guarantee it is always safe to use them in all possible
scenarios. If your code is currently using System.Drawing—the GDI+ subsystem—and it works
just fine, you're probably OK. In any case, if you use GDI+ classes and encounter a malfunction,
Microsoft will not assist you. Forewarned is forearmed.

You might be better off using an alternative to GDI+, especially for new applications. Which
one? For both speed and reliability, you can consider the WPF Imaging API. Here’s an interesting
post that shows how to use Windows Presentation Foundation (WPF) for resizing images: http.//
weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx.

Controlling Images via an HTTP Handler

What if the user requests the JPG file directly from the address bar? And what if the image
is linked by another Web site or referenced in a blog post? By default, the original image is
served without any further modification. Why is this so?

For performance reasons, IIS serves static files, such as JPG images, directly without involving
any external module, including the ASP.NET runtime. In this way, the HTTP handler that does
the trick of adding a copyright note is therefore blissfully ignored when the request is made
via the address bar or a hyperlink. What can you do about it?

In IS 6, you must register the JPG extension as an ASP.NET extension for a particular
application using IIS Manager. In this case, each request for JPG resources is forwarded to
your application and resolved through the HTTP handler.

In IS 7, things are even simpler for developers. All you have to do is add the following lines to
the application’s web.config file:

<system.webServer>
<handlers>
<add name="Jpeg"
preCondition="1integratedMode"
verb="*"
path="*.jpg"
type="DynImageHandler, AspNetGallery.Extensions" />
</handlers>
</system.webServer>

http://msdn.microsoft.com/
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx
http://weblogs.asp.net/bleroy/archive/2010/01/21/server-side-resizing-with-wpf-now-with-jpg.aspx

Chapter 4 HTTP Handlers, Modules, and Routing 141

You might want to add the same setting also under <httpHandlers>, which will be read in
cases where IIS 7.x is configured in classic mode:

<httpHandlers>
<add verb="*" path="*.jpg" type="DynImageHandler, AspNetGallery.Extensions"/>
</httpHandlers>

This is yet another benefit of the unified runtime pipeline we experience when the ASP.NET
application runs under IIS 7 integrated mode.

Note An HTTP handler that needs to access session-state values must implement the
IRequiresSessionState interface. Like INamingContainer, it's a marker interface and requires no
method implementation. Note that the /RequiresSessionState interface indicates that the HTTP
handler requires read and write access to the session state. If read-only access is needed, use the
IReadOnlySessionState interface instead.

Advanced HTTP Handler Programming

HTTP handlers are not a tool for everybody. They serve a very neat purpose: changing the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on runtime conditions or to apply any form of additional logic to
the retrieval of traditional resources such as pages and images. Finally, you can use HTTP
handlers to serve certain pages or resources in an asynchronous manner.

For HTTP handlers, the registration step is key. Registration enables ASP.NET to know about
your handler and its purpose. Registration is required for two practical reasons. First, it serves
to ensure that IS forwards the call to the correct ASP.NET application. Second, it serves to
instruct your ASP.NET application on the class to load to handle the request. As mentioned,
you can use handlers to override the processing of existing resources (for example,
hello.aspx) or to introduce new functionalities (for example, folder.axd). In both cases, you're
invoking a resource whose extension is already known to IIS—the .axd extension is registered
in the 1IS metabase when you install ASP.NET. In both cases, though, you need to modify the
web.config file of the application to let the application know about the handler.

By using the ASHX extension and programming model for handlers, you can also save
yourself the web.config update and deploy a new HTTP handler by simply copying a new file
in a new or existing application’s folder.

Deploying Handlers as ASHX Resources

An alternative way to define an HTTP handler is through an .ashx file. The file contains a
special directive, named @WebHandler, that expresses the association between the HTTP

142

WV

Part| The ASP.NET Runtime Environment

handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Language="C#" Class="AspNetGallery.Handlers.MyHandler" %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need of updating the web.config file. Here's a sample .ashx file. As you can see, it is the
plain class file plus the special @WebHandler directive:

<%@ WebHandler Language="C#" Class="MyHandler" %>
using System.Web;
public class MyHandler : IHttpHandler {

pubTlic void ProcessRequest (HttpContext context) {
context.Response.ContentType = "text/plain”;
context.Response.Write("Hello World");

}

pubTlic bool IsReusable {
get {
return false;

3
}

Note that the source code of the class can either be specified inline or loaded from any of the
assemblies referenced by the application. When .ashx resources are used to implement an
HTTP handler, you just deploy the source file and you're done. Just as for XML Web services,
the source file is loaded and compiled only on demand. Because ASP.NET adds a special en-
try to the IIS metabase for .ashx resources, you don't even need to enter changes to the Web
server configuration.

Resources with an .ashx extension are handled by an HTTP handler class named
SimpleHandleFactory. Note that SimpleHandleFactory is actually an HTTP handler factory
class, not a simple HTTP handler class. We'll discuss handler factories in a moment.

The SimpleHandleFactory class looks for the @WebHandler directive at the beginning of the
file. The @WebHandler directive tells the handler factory the name of the HTTP handler class
to instantiate when the source code has been compiled.

Important You can build HTTP handlers both as regular class files compiled to an assembly and
via .ashx resources. There's no significant difference between the two approaches except that
.ashx resources, like ordinary ASP.NET pages, will be compiled on the fly upon the first request.

Chapter 4 HTTP Handlers, Modules, and Routing 143

Prevent Access to Forbidden Resources

If your Web application manages resources of a type that you don't want to make publicly
available over the Web, you must instruct IIS not to display those files. A possible way to
accomplish this consists of forwarding the request to aspnet_isapi and then binding the
extension to one of the built-in handlers—the HttpForbiddenHandler class:

ngn

<add verb= path="*.xyz" type="System.Web.HttpForbiddenHandler" />

Any attempt to access an .xyz resource results in an error message being displayed. The same
trick can also be applied for individual resources served by your application. If you need to
deploy, say, a text file but do not want to take the risk that somebody can get to it, add the
following:

<add verb="*" path="yourFile.txt" type="System.Web.HttpForbiddenHandler" />

Should It Be Reusable or Not?

In a conventional HTTP handler, the ProcessRequest method takes the lion's share of

the overall set of functionality. The second member of the IHttpHandler interface—the
IsReusable property—is used only in particular circumstances. If you set the IsReusable
property to return true, the handler is not unloaded from memory after use and is repeat-
edly used. Put another way, the Boolean value returned by IsReusable indicates whether the
handler object can be pooled.

Frankly, most of the time it doesn't really matter what you return—be it true or false. If you
set the property to return false, you require that a new object be allocated for each request.
The simple allocation of an object is not a particularly expensive operation. However, the
initialization of the handler might be costly. In this case, by making the handler reusable, you
save much of the overhead. If the handler doesn't hold any state, there's no reason for not
making it reusable.

In summary, I'd say that IsReusable should be always set to true, except when you have
instance properties to deal with or properties that might cause trouble if used in a concur-
rent environment. If you have no initialization tasks, it doesn’t really matter whether it re-
turns true or false. As a margin note, the System.Web.Ul.Page class—the most popular HTTP
handler ever—sets its IsReusable property to false.

The key point to determine is the following: Who's really using IsReusable and, subsequently,
who really cares about its value?

Once the HTTP runtime knows the HTTP handler class to serve a given request, it simply
instantiates it—no matter what. So when is the IsReusable property of a given handler
taken into account? Only if you use an HTTP handler factory—that is, a piece of code that
dynamically decides which handler should be used for a given request. An HTTP handler

144

Part| The ASP.NET Runtime Environment

factory can query a handler to determine whether the same instance can be used to service
multiple requests and thus optionally create and maintain a pool of handlers.

ASP.NET pages and ASHX resources are served through factories. However, none of these
factories ever checks IsReusable. Of all the built-in handler factories in the whole ASP.NET
platform, very few check the IsReusable property of related handlers. So what's the bottom
line?

As long as you're creating HTTP handlers for AXD, ASHX, or perhaps ASPX resources, be
aware that the IsReusable property is blissfully ignored. Do not waste your time trying to
figure out the optimal configuration. Instead, if you're creating an HTTP handler factory to
serve a set of resources, whether or not to implement a pool of handlers is up to you and
IsReusable is the perfect tool for the job.

But when should you employ an HTTP handler factory? You should do it in all situations in
which the HTTP handler class for a request is not uniquely identified. For example, for ASPX
pages, you don't know in advance which HTTP handler type you have to use. The type might
not even exist (in which case, you compile it on the fly). The HTTP handler factory is used
whenever you need to apply some logic to decide which handler is the right one to use. In
other words, you need an HTTP handler factory when declarative binding between endpoints
and classes is not enough.

HTTP Handler Factories

An HTTP request can be directly associated with an HTTP handler or with an HTTP handler
factory object. An HTTP handler factory is a class that implements the /HttpHandlerFactory
interface and is in charge of returning the actual HTTP handler to use to serve the request.
The SimpleHandlerFactory class provides a good example of how a factory works. The factory
is mapped to requests directed at .ashx resources. When such a request comes in, the factory
determines the actual handler to use by looking at the @WebHandler directive in the source
file.

In the .NET Framework, HTTP handler factories are used to perform some preliminary tasks
on the requested resource prior to passing it on to the handler. Another good example of a
handler factory object is an internal class named PageHandlerFactory, which is in charge of
serving .aspx pages. In this case, the factory handler figures out the name of the handler to
use and, if possible, loads it up from an existing assembly.

HTTP handler factories are classes that implement a couple of methods on the
IHttpHandlerFactory interface—GetHandler and ReleaseHandler, as shown in Table 4-5.

Chapter 4 HTTP Handlers, Modules, and Routing 145

TABLE 4-5 Members of the IHttpHandlerFactory Interface

Method Description
GetHandler Returns an instance of an HTTP handler to serve the request.
ReleaseHandler Takes an existing HTTP handler instance and frees it up or pools it.

The GetHandler method has the following signature:

public virtual IHttpHandler GetHandler(
HttpContext context,
String requestType,
String url,
String pathTranslated);

The requestType argument is a string that evaluates to GET or POST—the HTTP verb of the
request. The last two arguments represent the raw URL of the request and the physical path
behind it. The ReleaseHandler method is a mandatory override for any class that implements
IHttpHandlerFactory; in most cases, it will just have an empty body.

The following listing shows a sample HTTP handler factory that returns different handlers
based on the HTTP verb (GET or POST) used for the request:

class MyHandlerFactory : IHttpHandlerFactory

{
pubTlic IHttpHandler GetHandler(HttpContext context,
String requestType, String url, String pathTranslated)
{
// Feel free to create a pool of HTTP handlers here
if(context.Request.RequestType.ToLower() == "get")
return (IHttpHandler) new MyGetHandler();
else if(context.Request.RequestType.ToLower() == "post")
return (IHttpHandler) new MyPostHandler();
return null;
}
public void ReleaseHandler(IHttpHandler handler)
{
// Nothing to do
}
}

When you use an HTTP handler factory, it's the factory (not the handler) that you want to
register in the ASP.NET configuration file. If you register the handler, it will always be used to
serve requests. If you opt for a factory, you have a chance to decide dynamically and based
on runtime conditions which handler is more appropriate for a certain request. In doing so,
you can use the IsReusable property of handlers to implement a pool.

146

Part| The ASP.NET Runtime Environment

Asynchronous Handlers

An asynchronous HTTP handler is a class that implements the IHttpAsyncHandler interface.
The system initiates the call by invoking the BeginProcessRequest method. Next, when the
method ends, a callback function is automatically invoked to terminate the call. In the .NET
Framework, the sole HttpApplication class implements the asynchronous interface. The
members of the IHttpAsyncHandler interface are shown in Table 4-6.

TABLE 4-6 Members of the IHttpAsyncHandler Interface
Method Description

BeginProcessRequest Initiates an asynchronous call to the specified HTTP handler

EndProcessRequest Terminates the asynchronous call

The signature of the BeginProcessRequest method is as follows:

TIAsyncResult BeginProcessRequest(
HttpContext context,
AsyncCallback cb,
Object extraData);

The context argument provides references to intrinsic server objects used to service

HTTP requests. The second parameter is the AsyncCallback object to invoke when the
asynchronous method call is complete. The third parameter is a generic cargo variable that
contains any data you might want to pass to the handler.

Note An AsyncCallback object is a delegate that defines the logic needed to finish processing
the asynchronous operation. A delegate is a class that holds a reference to a method. A
delegate class has a fixed signature, and it can hold references only to methods that match that
signature. A delegate is equivalent to a type-safe function pointer or a callback. As a result,

an AsyncCallback object is just the code that executes when the asynchronous handler has
completed its job.

The AsyncCallback delegate has the following signature:
public delegate void AsyncCallback(IAsyncResult ar);

It uses the IAsyncResult interface to obtain the status of the asynchronous opera-

tion. To illustrate the plumbing of asynchronous handlers, I'll show you what the HTTP
runtime does when it deals with asynchronous handlers. The HTTP runtime invokes the
BeginProcessRequest method as illustrated here:

// Sets an internal member of the HttpContext class with
// the current instance of the asynchronous handler
context.AsyncAppHandler = asyncHandler;

// Invokes the BeginProcessRequest method on the asynchronous HTTP handler
asyncHandler.BeginProcessRequest(context, OnCompletionCallback, context);

Chapter 4 HTTP Handlers, Modules, and Routing 147

The context argument is the current instance of the HttpContext class and represents

the context of the request. A reference to the HTTP context is also passed as the cus-

tom data sent to the handler to process the request. The extraData parameter in the
BeginProcessRequest signature is used to represent the status of the asynchronous operation.
The BeginProcessRequest method returns an object of type HttpAsyncResult—a class that
implements the /AsyncResult interface. The IAsyncResult interface contains a property named
AsyncState that is set with the extraData value—in this case, the HTTP context.

The OnCompletionCallback method is an internal method. It gets automatically triggered
when the asynchronous processing of the request terminates. The following listing illustrates
the pseudocode of the HttpRuntime private method:

// The method must have the signature of an AsyncCallback delegate
private void OnHandlerCompletion(IAsyncResult ar)
{
// The ar parameter is an instance of HttpAsyncResult
HttpContext context = (HttpContext) ar.AsyncState;

// Retrieves the instance of the asynchronous HTTP handler
// and completes the request

IHttpAsyncHandler asyncHandler = context.AsyncAppHandler;
asyncHandler.EndProcessRequest(ar);

// Finalizes the request as usual

3

The completion handler retrieves the HTTP context of the request through the AsyncState
property of the IAsyncResult object it gets from the system. As mentioned, the actual
object passed is an instance of the HttpAsyncResult class—in any case, it is the return value
of the BeginProcessRequest method. The completion routine extracts the reference to the
asynchronous handler from the context and issues a call to the EndProcessRequest method:

void EndProcessRequest(IAsyncResult result);

The EndProcessRequest method takes the IAsyncResult object returned by the call to
BeginProcessRequest. As implemented in the HttpApplication class, the EndProcessRequest
method does nothing special and is limited to throwing an exception if an error occurred.

Implementing Asynchronous Handlers

Asynchronous handlers essentially serve one particular scenario—a scenario in which the
generation of the markup is subject to lengthy operations, such as time-consuming database
stored procedures or calls to Web services. In these situations, the ASP.NET thread in charge
of the request is stuck waiting for the operation to complete. Because threads are valuable
resources, lengthy tasks that keep threads occupied for too long are potentially the perfect
scalability killer. However, asynchronous handlers are here to help.

148

Part| The ASP.NET Runtime Environment

The idea is that the request begins on a thread-pool thread, but that thread is released as
soon as the operation begins. In BeginProcessRequest, you typically create your own thread
and start the lengthy operation. BeginProcessRequest doesn't wait for the operation to
complete; therefore, the thread is returned to the pool immediately.

There are a lot of tricky details that this bird's-eye description just omitted. In the first place,
you should strive to avoid a proliferation of threads. Ideally, you should use a custom thread
pool. Furthermore, you must figure out a way to signal when the lengthy operation has
terminated. This typically entails creating a custom class that implements /AsyncResult and
returning it from BeginProcessRequest. This class embeds a synchronization object—typically
a ManualResetEvent object—that the custom thread carrying the work will signal upon
completion.

In the end, building asynchronous handlers is definitely tricky and not for novice developers.
Very likely, you are more interested in having asynchronous pages than in generic
asynchronous HTTP handlers. With asynchronous pages, the “lengthy task” is merely the
ProcessRequest method of the Page class. (Obviously, you configure the page to execute
asynchronously only if the page contains code that starts I/0-bound and potentially lengthy
operations.)

ASP.NET offers ad hoc support for building asynchronous pages more easily and more
comfortably than through HTTP handlers.

Caution I've seen several ASP.NET developers use an .aspx page to serve markup other than
HTML markup. This is not a good idea. An .aspx resource is served by quite a rich and sophis-
ticated HTTP handler—the System.Web.UI.Page class. The ProcessRequest method of this class
entirely provides for the page life cycle as we know it—/nit, Load, and PreRender events, as well
as rendering stage, view state, and postback management. Nothing of the kind is really required
if you only need to retrieve and return, say, the bytes of an image. HTTP handlers are an excellent
way to speed up particular requests. HTTP handlers are also a quick way to serve AJAX requests
without writing (and spinning up) the whole machinery of Windows Communication Foundation
(WCF) services. At the very end of the day, an HTTP handler is an endpoint and can be used to
serve data to AJAX requests. In this regard, the difference between an HTTP handler and a WCF
service is that the HTTP handler doesn’t have a free serialization engine for input and output
values.

Chapter 4 HTTP Handlers, Modules, and Routing 149

Writing HTTP Modules

So you've learned that any incoming requests for ASP.NET resources are handed over to
the worker process for the actual processing. The worker process is distinct from the Web
server executable so that even if one ASP.NET application crashes, it doesn't bring down the
whole server.

On the way to the final HTTP handler, the request passes through a pipeline of special
runtime modules—HTTP modules. An HTTP module is a .NET Framework class that imple-
ments the /HttpModule interface. The HTTP modules that filter the raw data within the
request are configured on a per-application basis within the web.config file. All ASP.NET
applications, though, inherit a bunch of system HTTP modules configured in the global
web.config file. Applications hosted under IS 7.x integrated mode can configure HTTP
modules that run at the IIS level for any requests that comes in, not just for ASP.NET-related
resources.

An HTTP module can pre-process and post-process a request, and it intercepts and handles
system events as well as events raised by other modules.

The IHttpModule Interface

The IHttpModule interface defines only two methods: Init and Dispose. The Init method
initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

The IHttpModule methods have the following signatures:

void Init(HttpApplication app);
void Dispose();

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also fea-
tures a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 4-7 lists the events that HTTP modules can listen to and handle.

150

Part |

The ASP.NET Runtime Environment

TABLE 4-7 HttpApplication Events in Order of Appearance

Event
BeginRequest

Description

Occurs as soon as the HTTP pipeline begins to process the request.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of the user.

AuthorizeRequest, Occurs when a security module has verified user authorization.
PostAuthorizeRequest
ResolveRequestCache, Occurs when the ASP.NET runtime resolves the request through the

PostResolveRequestCache

output cache.

MapRequestHandler,
PostMapRequestHandler

Occurs when the HTTP handler to serve the request has been found. /t
is fired only to applications running in classic mode or under IIS 6.

AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request acquires
the state information associated with the request.

PreRequestHandlerExecute

Occurs just before the HTTP handler of choice begins to work.

PostRequestHandlerExecute

Occurs when the HTTP handler of choice finishes execution. The
response text has been generated at this point.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information associated with
the current request.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the current
request in the output cache to be used to serve subsequent requests.

LogRequest, Occurs when the ASP.NET runtime is ready to log the results of the

PostLogRequest request. Logging is guaranteed to execute even if errors occur. It is fired
only to applications running under 1IS 7 integrated mode.

EndRequest Occurs as the last event in the HTTP pipeline chain of execution.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent.

The PreSendRequestHeaders event informs the HttpApplication object in charge of the
request that HTTP headers are about to be sent. The PreSendRequestContent event tells the
HttpApplication object in charge of the request that the response body is about to be sent.
Both these events normally fire after EndRequest, but not always. For example, if buffering

is turned off, the event gets fired as soon as some content is going to be sent to the client.
Speaking of nondeterministic application events, it must be said that a third nondeterministic

event is, of course, Error.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the /Init method. You can write handlers for such events in the global.asax file
of the application. You can also catch these events from within a custom HTTP module.

Chapter 4 HTTP Handlers, Modules, and Routing 151
A Custom HTTP Module

Let's come to grips with HTTP modules by writing a relatively simple custom module named
Marker that adds a signature at the beginning and end of each page served by the applica-
tion. The following code outlines the class we need to write:

using System;
using System.Web;

namespace AspNetGallery.Extensions.Modules

{
pubTlic class MarkerModule : IHttpModule
{
pubTlic void Init(HttpApplication app)
{
// Register for pipeline events
}
pubTlic void Dispose()
{
// Nothing to do here
}
}
}

The Init method is invoked by the HttpApplication class to load the module. In the Init
method, you normally don't need to do more than simply register your own event handlers.
The Dispose method is, more often than not, empty. The heart of the HTTP module is really
in the event handlers you define.

Wiring Up Events

The sample Marker module registers a couple of pipeline events. They are BeginRequest
and EndRequest. BeginRequest is the first event that hits the HTTP application object when
the request begins processing. EndRequest is the event that signals the request is going to
be terminated, and it's your last chance to intervene. By handling these two events, you
can write custom text to the output stream before and after the regular HTTP handler—the
Page-derived class.

The following listing shows the implementation of the /nit and Dispose methods for the
sample module:

public void Init(HttpApplication app)

{
// Register for pipeline events
app.BeginRequest += OnBeginRequest;
app.EndRequest += EndRequest;

}

public void Dispose()
{
}

152 Part| The ASP.NET Runtime Environment

The BeginRequest and EndRequest event handlers have a similar structure. They obtain a
reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(Object sender, EventArgs e)
{

var app (HttpApplication) sender;

var ctx = app.Context;

// More code here

// Add custom header to the HTTP response
ctx.Response.AppendHeader("Author", "DinoE");

// PageHeaderText is a constant string defined elsewhere
ctx.Response.Write(PageHeaderText);

public void OnEndRequest(Object sender, EventArgs e)
{

// Get access to the HTTP context

var app = (HttpApplication) sender;

var ctx = app.Context;

// More code here

// Append some custom text
// PageFooterText is a constant string defined elsewhere
ctx.Response.Write(PageFooterText);

}

OnBeginRequest writes standard page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in

Figure 4-7.
/& Marker in action - Windows Internet Explorer EI@
@I\:j v |g, http://localh... v| & | "¢| X | |b Bing R~

f\? Favorites i,};

(& Marker in action & B - = Qé; v Page~ 7

You must register to continue enjoy this Web site! Click here.

This is a test page

Courtesy of Programming Microsoft ASP.NET 4

& Internet | Protected Mode: On fy v H100% v

FIGURE 4-7 The Marker HTTP module adds a header and footer to each page within the application.

Chapter 4 HTTP Handlers, Modules, and Routing 153

Registering with the Configuration File

You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. This name is
used to select the module within the HttpApplication's Modules collection. If the module fires
custom events, this name is also used as the prefix for building automatic event handlers in
the global.asax file:

<system.web>
<httpModules>
<add name="Marker"
type="MarkerModule, AspNetGallery.Extensions" />
</httpModules>
</system.web>

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can remove a system module and replace it with your own that
provides a similar functionality. In this case, in the application’s web.config file you use the
<remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

Note HTTP modules are loaded and initialized only once, at the startup of the application.
Unlike HTTP handlers, they apply to any requests. So when you plan to create a new HTTP mod-
ule, you should first wonder whether its functionality should span all possible requests in the
application. Is it possible to choose which requests an HTTP module should process? The Init
method is called only once in the application’s lifetime, but the handlers you register are called
once for each request. So to operate only on certain pages, you can do as follows:

public void OnBeginRequest(object sender, EventArgs e)

{
HttpApplication app = (HttpApplication) sender;
HttpContext ctx = app.Context;
if (!ShouldHook(ctx))
return;
}

OnBeginRequest is your handler for the BeginRequest event. The ShouldHook helper function
returns a Boolean value. It is passed the context of the request—that is, any information that is
available on the request. You can code it to check the URL as well as any HTTP content type and
headers.

154

Part| The ASP.NET Runtime Environment

Accessing Other HTTP Modules

The sample just discussed demonstrates how to wire up pipeline events—that is, events
fired by the HttpApplication object. But what about events fired by other modules? The
HttpApplication object provides a property named Modules that gets the collection of
modules for the current application.

The Modules property is of type HttpModuleCollection and contains the names of

the modules for the application. The collection class inherits from the abstract class
NameObjectCollectionBase, which is a collection of pairs made of a string and an object.
The string indicates the public name of the module; the object is the actual instance of the
module. To access the module that handles the session state, you need code like this:

var sessionModule = app.Modules["Session"];
sessionModule.Start += OnSessionStart;

As mentioned, you can also handle events raised by HTTP modules within the global.asax file
and use the ModuleName_EventName convention to name the event handlers. The name of
the module is just one of the settings you need to define when registering an HTTP module.

Examining a Real-World HTTP Module

The previous example gave us the gist of an HTTP module component. It was a simple (and

kind of pointless) example, but it was useful to demonstrate what you can do with HTTP
modules in a real application. First and foremost, not all applications need custom HTTP
modules. ASP.NET comes with a bunch of built-in modules, which are listed in Table 4-8.

TABLE 4-8 Native HTTP Modules

Event

AnonymousldentificationModule

Description
Manages anonymous identifiers for the ASP.NET application

DefaultAuthenticationModule

Ensures that the User object is always bound to some
identity

FileAuthorizationModule

Verifies that the user has permission to access the given file.

FormsAuthenticationModule

Manages Forms authentication

OutputCacheModule Implements output page caching

ProfileModule Implements the data retrieval for profile data
RoleManagerModule Manages the retrieval of role information

ScriptModule Manages script requests placed through ASP.NET AJAX

SessionStateModule

Manages session state

UrlAuthorizationModule

Verifies that the user has permission to access the given URL

UrlRoutingModule

Implements URL routing

WindowsAuthenticationModule

Manages Windows authentication

Chapter 4 HTTP Handlers, Modules, and Routing 155

All these HTTP modules perform a particular system-level operation and can be customized
by application-specific code. Because an HTTP module works on any incoming request, it
usually doesn't perform application-specific tasks. From an application perspective, an HTTP
module is helpful when you need to apply filters on all requests for profiling, debugging, or
functional reasons.

Let's dissect one of the system-provided HTTP modules, which will also slowly move us
toward the next topic of this chapter. Enter the URL-routing HTTP module.

The UrlRoutingModule Class

In ASP.NET 3.5 Service Pack 1, Microsoft introduced a new and more effective API for
URL rewriting. Because of its capabilities, the new API got a better name—URL routing.
URL routing is built on top of the URL rewriting API, but it offers a richer and higher level
programming model. (I'll get to URL rewriting and URL routing in a moment.)

The URL routing engine is a system-provided HTTP module that wires up the
PostResolveRequestCache event. In a nutshell, the HTTP module matches the requested URL
to one of the user-defined rewriting rules (known as routes) and finds the HTTP handler that
is due to serve that route. If any HTTP handler is found, it becomes the actual handler for the
current request. Here's the signature of the module class:

public class UrlRoutingModule : IHttpModule
{
public virtual void PostResolveRequestCache(HttpContextBase context)

{
3

void IHttpModule.Dispose()
{

}

void IHttpModule.Init(HttpApplication application)
{

}
}

The class implements the /HttpModule interface implicitly, and in its initialization phase it
registers a handler for the system’s PostResolveRequestCache event.

The PostResolveRequestCache Event

The PostResolveRequestCache event fires right after the runtime environment (IIS or ASP.
NET, depending on the IIS working mode) has determined whether the response for the cur-
rent request can be served from the output cache or not. If the response is already cached,

156

Part| The ASP.NET Runtime Environment

there’s no need to process the request and, subsequently, no need to analyze the content
of the URL. Any system events that follow PostResolveRequestCache are part of the request
processing cycle; therefore, hooking up PostResolveRequestCache is the optimal moment for
taking control of requests that require some work on the server.

The first task accomplished by the HTTP module consists of grabbing any route data
contained in the URL of the current request. The module matches the URL to one of the reg-
istered routes and figures out the handler for the route.

The route handler is not the HTTP handler yet. It is simply the object responsible for handling
the route. The primary task of a route handler, however, is returning the HTTP handler to
serve the request.

In the end, HTTP modules are extremely powerful tools that give you control over every little
step taken by the system to process a request. For the same reason, however, HTTP modules
are delicate tools—every time you write one, it will be invoked for each and every request.
An HTTP module is hardly a tool for a specific application (with due exceptions), but it is
often a formidable tool for implementing cross-cutting, system-level features.

URL Routing

The whole ASP.NET platform originally developed around the idea of serving requests for
physical pages. Look at the following URL:

http://northwind.com/news.aspx?id=1234

It turns out that most URLs used within an ASP.NET application are made of two parts: the
path to the physical Web page that contains the logic to apply, and some data stuffed in the
query string to provide parameters. In the URL just shown, the news.aspx page incorporates
the logic required to retrieve and display the data; the ID for the specific news to retrieve is
provided, instead, via a parameter on the query string.

This is the essence of the Page Controller pattern for Web applications. The request targets a
page whose logic and graphical layout are saved to disk. This approach has worked for a few
years and still works today. The content of the news is displayed correctly, and everybody is
generally happy. In addition, you have just one page to maintain, and you still have a way to
identify a particular piece of news via the URL.

A possible drawback of this approach is that the real intent of the page might not be clear to
users. And, more importantly, search engines usually assign higher ranks to terms contained
in the URL. Therefore, an expressive URL provides search engines with an effective set of
keywords that describe the page. To fix this, you need to make the entire URL friendlier and
more readable. But you don't want to add new Web pages to the application or a bunch

http://northwind.com/news.aspx?id=1234

Chapter 4 HTTP Handlers, Modules, and Routing 157

of made-to-measure HTTP handlers. Ideally, you should try to transform the request in a
command sent to the server rather than having it be simply the virtual file path name of the
page to display.

Note The advent of Content Management Systems (CMS) raised the need to have friendlier
URLs. A CMS is an application not necessarily written for a single user and that likely manages
several pages created using semi-automatic algorithms. For these tools, resorting to pages
with an algorithmically editable URL was a great help. But, alas, it was not a great help for users
and search engines. This is where the need arises to expose user-friendly URLs while managing
cryptic URLs internally. A URL rewriter APl attempts to bridge precisely this gap.

The URL Routing Engine

To provide the ability to always expose friendly URLs to users, ASP.NET has supported a
feature called URL rewriting since its inception. At its core, URL rewriting consists of an
HTTP module (or a global.asax event handler) that hooks up a given request, parses its
original URL, and instructs the HTTP runtime environment to serve a “possibly related but
different” URL.

URL rewriting is a powerful feature; however, it's not free of issues. For this reason, Microsoft
more recently introduced a new API in ASP.NET. Although it's based on the same underlying
URL rewriting, the API offers a higher level of programmability and more features overall—
and the URL routing engine in particular.

Originally devised for ASP.NET MVC, URL routing gives you total freedom to organize the
layout of the URL recognized by your application. In a way, the URL becomes a command for
the Web application; the application is the only entity put in charge of parsing and validat-
ing the syntax of the command. The URL engine is the system-provided component that
validates the URL. The URL routing engine is general enough to be usable in both ASP.NET
MVC and ASP.NET Web Forms; in fact, it was taken out of the ASP.NET MVC framework and
incorporated in the general ASP.NET system.web assembly a while ago.

URL routing differs in ASP.NET MVC and ASP.NET Web Forms only with regard to how you
express the final destination of the request. You use a controller-action pair in ASP.NET MVC;
you use an ASPX path in ASP.NET Web Forms.

Original URL Rewriting API

URL rewriting helps you in two ways. It makes it possible for you to use a generic front-end
page such as news.aspx and then redirect to a specific page whose actual URL is read from a
database or any other container. In addition, it also enables you to request user-friendly URLs
to be programmatically mapped to less intuitive, but easier to manage, URLs.

158

Part| The ASP.NET Runtime Environment

Here's a quick example of how you can rewrite the requested URL as another one:

protected void Application_BeginRequest(object sender, EventArgs e)
{

// Get the current request context
var context = HttpContext.Current;

// Get the URL to the handler that will physically handle the request
var newURL = ParseOriginalUrl(context);

// Overwrite the target URL of the current request
context.RewritePath(newURL);
}

The RewritePath method of HttpContext lets you change the URL of the current request on
the fly, thus performing a sort of internal redirect. As a result, the user is provided the con-
tent generated for the URL you set through RewritePath. At the same time, the URL shown in
the address bar remains as the originally requested one.

In a nutshell, URL rewriting exists to let you decouple the URL from the physical Web form
that serves the requests.

Note The change of the final URL takes place on the server and, more importantly, within the
context of the same call. RewritePath should be used carefully and mainly from within the
global.asax file. In Web Forms, for example, if you use RewritePath in the context of a postback
event, you can experience some view-state problems.

One drawback of the URL rewriting APl is that as the API changes the target URL of the
request, any postbacks are directed to the rewritten URL. For example, if you rewrite
news.aspx?id=1234 to 1234.aspx, any postbacks from 1234.aspx are targeted to the same
1234.aspx instead of to the original URL.

This might or might not be a problem for you and, for sure, it doesn't break any page
behavior. However, the original URL has just been fully replaced while you likely want to use
the same, original URL as the front end. If this is the case (and most of the time, this is exactly
the case), URL rewriting just created a new problem.

In addition, the URL rewriting logic is intrinsically monodirectional because it doesn’t offer
any built-in mechanism to go from the original URL to the rewritten URL and then back.

URL Patterns and Routes

The URL routing module is a system component that intercepts any request and attempts to
match the URL to a predefined pattern. All requested URLs that match a given pattern are
processed in a distinct way; typically, they are rewritten to other URLs.

The URL patterns that you define are known as routes.

Chapter 4 HTTP Handlers, Modules, and Routing 159

A route contains placeholders that can be filled up with values extracted from the URL. Often
referred to as a route parameter, a placeholder is a name enclosed in curly brackets { }. You
can have multiple placeholders in a route as long as they are separated by a constant or
delimiter. The forward slash (/) character acts as a delimiter between the various parts of the
route. Here's a sample route:

Category/{action}/{categoryName}

URLs that match the preceding route begin with the word “Category” followed by two
segments. The first segment will be mapped to the action route parameter; the second
segment will be mapped to the categoryName route parameter. As you might have guessed,
action and categoryName are just arbitrary names for parameters. A URL that matches the
preceding route is the following:

/Category/Edit/Beverages

The route is nothing more than a pattern and is not associated with any logic of its own.
Invoked by the routing module, the component that ultimately decides how to rewrite the
matching URL is another one entirely. Precisely, it is the route handler.

Technically speaking, a route handler is a class that implements the /RouteHandler interface.
The interface is defined as shown here:

public interface IRouteHandler

{
IHttpHandler GetHttpHandler(RequestContext requestContext);
}

In its GetHttpHandler method, a route handler typically looks at route parameters to figure
out if any of the information available needs to be passed down to the HTTP handler (for
example, an ASP.NET page) that will handle the request. If this is the case, the route handler
adds this information to the /tems collection of the HTTP context. Finally, the route handler
obtains an instance of a class that implements the /HttpHandler interface and returns that.

For Web Forms requests, the route handler—an instance of the PageRouteHandler class—
resorts to the ASP.NET build manager to identify the dynamic class for the requested page
resource and creates the handler on the fly.

Important The big difference between plain URL rewriting and ASP.NET routing is that with
ASP.NET routing, the URL is not changed when the system begins processing the request.
Instead, it's changed later in the life cycle. In this way, the runtime environment can perform
most of its usual tasks on the original URL, which is an approach that maintains a consistent and
robust solution. In addition, a late intervention on the URL also gives developers a big chance to
extract values from the URL and the request context. In this way, the routing mechanism can be
driven by a set of rewriting rules or patterns. If the original URL matches a particular pattern, you
rewrite it to the associated URL. URL patterns are an external resource and are kept in one place,
which makes the solution more maintainable overall.

160

Part| The ASP.NET Runtime Environment

Routing in Web Forms

To introduce URL routing in your Web Forms application, you start by defining routes. Routes
go in the global.asax file to be processed at the very beginning of the application. To define
a route, you create an instance of the Route class by specifying the URL pattern, the handler,
and optionally a name for the route. However, you typically use helper methods that save
you a lot of details and never expose you directly to the API of the Route class. The next
section shows some code that registers routes.

Note The vast majority of examples that illustrate routing in both ASP.NET MVC and Web Forms
explicitly register routes from within global.asax. Loading route information from an external file
is not be a bad idea, though, and will make your application a bit more resilient to changes.

Defining Routes for Specific Pages

In Application_Start, you invoke a helper method inside of which new routes are created and
added to a static route collection object. Here's a sample global.asax class:

public class Global : System.Web.HttpApplication

{
void Application_Start(object sender, EventArgs e)
{
RegisterRoutes(RouteTable.Routes);
}
public static void RegisterRoutes(RouteCollection routes)
{
routes.MapPageRoute("Category",
"Category/{action}/{categoryName}",
"~/categories.aspx",
true,
new RouteValueDictionary
{
{ "categoryName", "beverages" },
{ "action", "edit" }
b
}
}

All routes for the application are stored in a global container: the static Routes property
of the RouteTable class. A reference to this property is passed to the helper RegisterRoutes
method invoked upon application start.

The structure of the code you just saw is optimized for testability; nothing prevents you from
stuffing all the code in the body of Application_Start.

Chapter 4 HTTP Handlers, Modules, and Routing 161

The MapPageRoute method is a helper method that creates a Route object and adds it to the
Routes collection. Here's a glimpse of its internal implementation:

public Route MapPageRoute(String routeName,
String routeUrl,
String physicalFile,
Boolean checkPhysicalUrlAccess,
RouteValueDictionary defaults,
RouteValueDictionary constraints,
RouteValueDictionary dataTokens)

if (routeUrl == null)
{

throw new ArgumentNullException("routeUr1");

3

// Create the new route
var route = new Route(routeUrl,
defaults, constraints, dataTokens,
new PageRouteHandler(physicalFile, checkPhysicalUrlAccess));

// Add the new route to the global collection
this.Add(routeName, route);
return route;

}

The MapPageRoute method offers a simplified interface for creating a Route object. In
particular, it requires you to specify the name of the route, the URL pattern for the route, and
the physical ASP.NET Web Forms page the URL will map to. In addition, you can specify a
Boolean flag to enforce the application of current authorization rules for the actual page. For
example, imagine that the user requests a URL such as customers/edit/alfki. Imagine also that
such a URL is mapped to customers.aspx and that this page is restricted to the admin role
only. If the aforementioned Boolean argument is false, all users are allowed to view the page
behind the URL. If the Boolean value is true, only admins will be allowed.

Finally, the MapPageRoute method can accept three dictionaries: the default values for URL
parameters, additional constraints on the URL parameters, plus custom data values to pass
on to the route handler.

In the previous example, we aren't using constraints and data tokens. Instead, we are specify-
ing default values for the categoryName and action parameters. As a result, an incoming URL
such as /category will be automatically resolved as if it were /category/edit/beverages.

Programmatic Access to Route Values

The MapPageRoute method just configures routes recognized by the application. Its job
ends with the startup of the application. The URL routing HTTP module then kicks in for each
request and attempts to match the request URL to any of the defined routes.

162

Part| The ASP.NET Runtime Environment

Routes are processed in the order in which they have been added to the Routes collection,
and the search stops at the first match. For this reason, it is extremely important that you list
your routes in decreasing order of importance—stricter rules must go first.

Beyond the order of appearance, other factors affect the process of matching URLs to routes.
One is the set of default values that you might have provided for a route. Default values are
simply values that are automatically assigned to defined placeholders in case the URL doesn't
provide specific values. Consider the following two routes:

{Orders}/{Year}/{Month}
{Orders}/{Year}

If you assign the first route’s default values for both {Year} and {Month}, the second route will
never be evaluated because, thanks to the default values, the first route is always a match
regardless of whether the URL specifies a year and a month.

The URL-routing HTTP module also uses constraints (which I'll say more about in a moment)
to determine whether a URL matches a given route. If a match is finally found, the routing
module gets the HTTP handler from the route handler and maps it to the HTTP context of
the request.

Given the previously defined route, any matching requests are mapped to the categories.aspx
page. How can this page know about the route parameters? How can this page know about
the action requested or the category name? There's no need for the page to parse (again)
the URL. Route parameters are available through a new property on the Page class—the
RouteData property.

RouteData is a property of type RouteData and features the members listed in Table 4-9.

TABLE 4-9 Members of the RouteData Class
Member Description

DataTokens List of additional custom values that are passed to the route handler

GetRequiredString Method that takes the name of a route parameter and returns its value

Route Returns the current Route object
RouteHandler Returns the handler for the current route
Values Returns the dictionary of route parameter values

The following code snippet shows how you retrieve parameters in Page_Load:

protected void Page_Load(object sender, EventArgs e)

{

var action = RouteData.GetRequiredString("action™);

Chapter 4 HTTP Handlers, Modules, and Routing 163

The only difference between using GetRequiredString and accessing the Values dictionary
is that GetRequiredString throws if the requested value is not found. In addition,
GetRequiredString uses protected access to the collection via TryGetValue instead of a
direct reading.

Structure of Routes
A route is characterized by the five properties listed in Table 4-10.

TABLE 4-10 Properties of the Route Class

Property Description
Constraints List of additional constraints the URL should fulfill to match the route.
DataTokens List of additional custom values that are passed to the route handler.

These values, however, are not used to determine whether the route
matches a URL pattern.

Defaults List of default values to be used for route parameters.

RouteHandler The object responsible for retrieving the HTTP handler to serve the
request.

Url The URL pattern for the route.

Constraints, DataTokens, and Defaults are all properties of type RouteValueDictionary. In spite
of the fancy name, the RouteValueDictionary type is a plain <String, Object> dictionary.

Most of the time, the pattern defined by the route is sufficient to decide whether a given
URL matches or not. However, this is not always the case. Consider, for example, the situation
in which you are defining a route for recognizing requests for product details. You want to
make sure of the following two aspects.

First, make sure the incoming URL is of the type http://server/{category}/{productid}, where
{category} identifies the category of the product and {productld} indicates the ID of the
product to retrieve.

Second, you also want to be sure that no invalid product ID is processed. You probably don't
want to trigger a database call right from the URL routing module, but at the very least, you

want to rule out as early as possible any requests that propose a product ID in an incompat-

ible format. For example, if product IDs are numeric, you want to rule out anything passed in
as a product ID that is alphanumeric.

http://server/

164 Part| The ASP.NET Runtime Environment

Regular expressions are a simple way to filter requests to see if any segment of the URL
is acceptable. Here's a sample route that keeps URLs with a string product ID off the
application:

routes.MapPageRoute(
"ProductInfo",
"Category/{category}/{productId}/{Tocale}",
"~/categories.aspx",
true,
new { category = "Beverages", Tocale="en-us" },
new { productId = @"\d{8}",

locale = ""[a-z]{2}-[a-Zz]{2}" }
);

The sixth parameter to the MapPageRoute method is a dictionary object that sets regular
expressions for productld and locale. In particular, the product ID must be a numeric
sequence of exactly eight digits, whereas the locale must be a pair of two-letter strings
separated by a dash. The filter doesn't ensure that all invalid product IDs and locale codes are
stopped at the gate, but at least it cuts off a good deal of work. An invalid URL is presented
as an HTTP 404 failure and is subject to application-specific handling of HTTP errors.

More in general, a route constraint is a condition that a given URL parameter must fulfill
to make the URL match the route. A constraint is defined via either regular expressions or
objects that implement the /RouteConstraint interface.

Preventing Routing for Defined URLs

The ASP.NET URL routing module gives you maximum freedom to keep certain URLs off the
routing mechanism. You can prevent the routing system from handling certain URLs in two
steps. First, you define a pattern for those URLs and save it to a route. Second, you link that
route to a special route handler—the StopRoutingHandler class.

Any request that belongs to a route managed by a StopRoutingHandler object is processed
as a plain ASP.NET Web Forms endpoint. The following code instructs the routing system to
ignore any .axd requests:

// In global.asax.cs
protected void Application_Start(Object sender, EventArgs e)
{

RegisterRoutes(RouteTable.Routes);

}

public static void RegisterRoutes(RouteCollection routes)

{

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

Chapter 4 HTTP Handlers, Modules, and Routing 165

All that IgnoreRoute does is associate a StopRoutingHandler route handler to the route built
around the specified URL pattern, thus preventing all matching URLs from being processed.

A little explanation is required for the {*pathinfo} placeholder in the URL. The token pathinfo
simply represents a placeholder for any content following the .axd URL. The asterisk (*),
though, indicates that the last parameter should match the rest of the URL. In other words,
anything that follows the .axd extension goes into the pathinfo parameter. Such parameters
are referred to as catch-all parameters.

Note Earlier in this chapter, | presented HTTP handlers as a way to define your own commands
for the application through customized URLs. So what'’s the difference between HTTP handlers
and URL routing? In ASP.NET, HTTP handlers remain the only way to process requests; URL rout-
ing is an intermediate layer that pre-processes requests and determines the HTTP handler for
them. In doing so, the routing module decides whether the URL meets the expectations of the
application or not. In a nutshell, URL routing offers a more flexible and extensible API; if you just
need one specially formatted URL, though, a direct HTTP handler is probably a simpler choice.

Summary

HTTP handlers and HTTP modules are the building blocks of the ASP.NET platform. ASP.NET
includes several predefined handlers and HTTP modules, but developers can write handlers
and modules of their own to perform a variety of tasks. HTTP handlers, in particular, are
faster than ordinary Web pages and can be used in all circumstances in which you don't need
state maintenance and postback events. To generate images dynamically on the server, for
example, an HTTP handler is more efficient than a page.

Everything that occurs under the hood of the ASP.NET runtime environment occurs because
of HTTP handlers. When you invoke a Web page or an ASP.NET Web service method, an
appropriate HTTP handler gets into the game and serves your request.

HTTP modules are good at performing a number of low-level tasks for which tight
interaction and integration with the request/response mechanism is a critical factor. Modules
are sort of interceptors that you can place along an HTTP packet's path, from the Web server
to the ASP.NET runtime and back. Modules have read and write capabilities, and they can
filter and modify the contents of both inbound and outbound requests.

In ASP.NET 4, a special HTTP module has been introduced to simplify the management of
application URLs and make the whole process more powerful. The URL routing HTTP module
offers a programmer-friendly API to define URL patterns, and it automatically blocks calls

166 Part| The ASP.NET Runtime Environment
for nonmatching URLs and redirects matching URLs to specific pages. It's not much different
from old-fashioned URL rewriting, but it offers a greater level of control to the programmer.

With this chapter, our exploration of the ASP.NET and IIS runtime environment terminates.
With the next chapter, we'll begin a tour of the ASP.NET page-related features.

Programming Microsoft® ASP.NET 4

Part Il

ASP.NET Pages and
Server Controls

In this part:

Chapter 5: Anatomy of an ASPNETPage iiiiiiinnnnan, 169
Chapter 6: ASP.NET Core Server Controls...............coiviiiinien... 217
Chapter 7: Working withthe Page........... it 269
Chapter 8: Page Composition and Usability................... 319
Chapter 9: ASP.NET Input Forms.ttt 365
Chapter 10: Data Binding.c.iiiiiiin i i 411
Chapter 11: The ListView Controlottt 471
Chapter 12: Custom Controlsottt it 513

167

Chapter 5

Anatomy of an ASP.NET Page

The wise are instructed by reason;, ordinary minds by experience; the stupid, by
necessity; and brutes by instinct.

—Cicero

ASP.NET pages are dynamically compiled on demand when first requested in the context of

a Web application. Dynamic compilation is not specific to ASP.NET pages alone (.aspx files);

it also occurs with services (.svc and asmx files), Web user controls (.ascx files), HTTP handlers
(-ashx files), and a few more ASP.NET application files such as the global.asax file. A pipeline of
run-time modules takes care of the incoming HTTP packet and makes it evolve from a simple
protocol-specific payload up to the rank of a server-side ASP.NET object—whether it's an
instance of a class derived from the system'’s Page class or something else.

The ASP.NET HTTP runtime processes the page object and causes it to generate the markup
to insert in the response. The generation of the response is marked by several events handled
by user code and collectively known as the page life cycle.

In this chapter, we'll review how an HTTP request for an .aspx resource is mapped to a page
object, the programming interface of the Page class, and how to control the generation of
the markup by handling events of the page life cycle.

Note By default in release mode, application pages are compiled in batch mode, meaning that
ASP.NET attempts to stuff as many uncompiled pages as possible into a single assembly. The
attributes maxBatchSize and maxBatchGeneratedFileSize in the <compilation> section let you
limit the number of pages packaged in a single assembly and the overall size of the assembly. By
default, you will have no more than 1000 pages per batched compilation and no assembly larger
than 1 MB. In general, you don't want users to wait too long when a large number of pages are
compiled the first time. At the same time, you don’t want to load a huge assembly in memory to
serve only a small page, or to start compilation for each and every page. The maxBatchSize and
maxBatchGeneratedFileSize attributes help you find a good balance between first-hit delay and
memory usage.

169

170

Part Il ASP.NET Pages and Server Controls

Invoking a Page

Let's start by examining in detail how the .aspx page is converted into a class and then
compiled into an assembly. Generating an assembly for a particular .aspx resource is a
two-step process. First, the source code of the resource file is parsed and a corresponding
class is created that inherits either from Page or another class that, in turn, inherits from Page.
Second, the dynamically generated class is compiled into an assembly and cached in an
ASP.NET-specific temporary directory.

The compiled page remains in use as long as no changes occur to the linked .aspx source
file or the whole application is restarted. Any changes to the linked .aspx file invalidate the
current page-specific assembly and force the HTTP runtime to create a new assembly on the
next request for the page.

Note Editing files such as web.config and global.asax causes the whole application to restart. In
this case, all the pages will be recompiled as soon as each page is requested. The same happens
if a new assembly is copied or replaced in the application’s Bin folder.

The Runtime Machinery

Most of the requests that hit Internet Information Services (lIS) are forwarded to a particular
run-time module for actual processing. The only exception to this model is made for static
resources (for example, images) that IIS can quickly serve on its own. A module that can
handle Web resources within IIS is known as an ISAPI extension and can be made of man-
aged or unmanaged code. The worker process that serves the Web application in charge of
the request loads the pinpointed module and commands it through a contracted program-
ming interface.

For example, old-fashioned ASP pages are processed by an ISAPI extension named asp.dll
whereas files with an .aspx extension—classic Web Forms pages—are assigned to an ISAPI
extension named aspnet_isapi.dll, as shown in Figure 5-1. Extension-less requests like those
managed by an ASP.NET MVC application are intercepted at the gate and redirected to
completely distinct runtime machinery. (At least this is what happens under IIS 7 in integrated
mode. In older configurations, you still need to register a specific extension for the requests
to be correctly handled by IIS.)

Chapter 5 Anatomy of an ASP.NET Page 171

&% Internet Information Services (IS) Manager (=5 ECH =7
@CJ [@ » MY-LAPTOP » Stes » SmartUp » |88 < @
File View Help

Connections Edit Script Map 7

@ Handler Mappings

<

495 MV-LAPTOP (My-Laptop\Dir}
1} Application Poals

3 stes Example: *.bas, wsvc.axd

> Atp Group by: State M Executable:

4 Defautt Web Site Name . CAWindows\Microsoft. NET\Framewerk\v4.0.30319\aspnet_isapi.dl E]
> [7] aspnet_client - -
+ & ClubManager HitpRemotingHandlerFactory-soap-1SAPL 4/
» % Smartl HitpRemotingHandlerFactory-soap-1SAPL 4/

» € EasyCourt MveHttpHandler PageHandlerFactory-ISAPI-4.0 32bit

> &9 Smart-Up OPTIONSVerbHandler

» &9 ScorciaCrapi PageHandlerFactory-Integrated

(T

Request path:

Use this feature to specify the resources, suc *.aspx
responses for specific request types.

PageHandlerFactory-ISAPI-2.0

PageHandlerFactory-1SAP1-4.0 32bit
PageHandlerFactory-ISAPI-4.0_64bit

rules-Integrated-4.0
rules-ISAPI-4.0_32bit
rules-ISAPI-4.0_64bit “rules Enabled
ScriptHandlerFactory *asmx Enabled
ScriptHandlerFactoryAppServices *_AppServ... Enabled
ScriptHandlerFactoryAppServices-Integrated-4.0 *_AppServ... Enabled
ScriptResource ScriptReso... Enabled -
< i | »
| | [E]Festures View | % Content View

Configuration: ‘Smart-Up' web.config

4

FIGURE 5-1 Setting the handler for resources with an .aspx extension.

Resource Mappings

IS stores the list of recognized resources in the 1IS metabase. Depending on the version of IIS
you are using, the metabase might be a hidden component or a plain configuration file that
an administrator can freely edit by hand. Regardless of the internal implementation, the IIS
manager tool provides a user interface to edit the content of the metabase.

Upon installation, ASP.NET modifies the 1IS metabase to make sure that aspnet_isapi.dil can
handle some typical ASP.NET resources. Table 5-1 lists some of these resources.

TABLE 5-1 IS Application Mappings for aspnet_isapi.d|

Extension Resource Type

.asax ASP.NET application files. Note, though, that any .asax file other than global.asax is
ignored. The mapping is there only to ensure that global.asax can't be requested directly.

.ascx ASP.NET user control files.

.ashx HTTP handlers—namely, managed modules that interact with the low-level request and
response services of IIS.

.asmx Files that represent the endpoint of old-fashioned .NET Web services.

.aspx Files that represent ASP.NET pages.

.axd Extension that identifies internal HTTP handlers used to implement system features such
as application-level tracing (trace.axd) or script injection (webresource.axd).

.sve

Files that represent the endpoint of a Windows Communication Foundation (WCF)
service.

172

Part Il ASP.NET Pages and Server Controls

In addition, the aspnet_isapi.dll extension handles other typical Microsoft Visual Studio
extensions such as .cs, .csproj, .vb, .vbproj, .config, and .resx.

As mentioned in Chapter 2, “ASP.NET and IIS,” the exact behavior of the ASP.NET ISAPI
extension depends on the process model selected for the application—integrated pipe-
line (the default in 1IS 7 and superior) or classic pipeline. Regardless of the model, at the
end of the processing pipeline the originally requested URL that refers to an .aspx resource
is mapped to, and served through, an instance of a class that represents an ASP.NET Web
Forms page. The base class is the System.Web.UI.Page class.

Representing the Requested Page

The aforementioned Page class is only the base class. The actual class being used by the
[IS worker process is a dynamically created derived class. So the ASP.NET HTTP runtime
environment first determines the name of the class that will be used to serve the request.
A particular naming convention links the URL of the page to the name of the class. If the
requested page is, say, default.aspx, the associated class turns out to be ASP.default_aspx.
The transformation rule applies a fixed ASP namespace and replaces any dot () with an
underscore (_). If the URL contains a directory name, any slashes are also replaced with an
underscore.

If no class exists with the specified name in any of the assemblies currently loaded in the
AppDomain, the HTTP runtime orders that the class be created and compiled on the fly. This
step is often referred to as the dynamic compilation of ASP.NET pages.

The source code for the new class is created by parsing the source code of the .aspx resource,
and it's temporarily saved in the ASP.NET temporary folder. The parser attempts to create

a class with an initializer method able to create instances of any referenced server controls
found in the ASPX markup. A referenced server control results from tags explicitly decorated
with the runat=server attribute and from contiguous literals, including blanks and carriage
returns. For example, consider the following short piece of markup:

<html>
<body>
<asp:button runat="server" ID="Buttonl" text="Click" />
</body>
</html1>

When parsed, it sparks three distinct server control instances: two literal controls and a
Button control. The first literal comprehends the text “<html><body>" plus any blanks and
carriage returns the editor has put in. The second literal includes "</body></html>".

Chapter 5 Anatomy of an ASP.NET Page 173

Next, the Page-derived class is compiled and loaded in memory to serve the request. When
a new request for the same page arrives, the class is ready and no compile step will ever take
place. (The class will be re-created and recompiled only if the source code of the .aspx source
changes at some point.)

The ASP.default_aspx class inherits from Page or, more likely, from a class that in turn
inherits from Page. More precisely, the base class for ASP.default_aspx will be a combina-
tion of the code-behind, partial class you created through Visual Studio and a second partial
class dynamically arranged by the ASP.NET HTTP runtime. The second, implicit partial class
contains the declaration of protected properties for any explicitly referenced server controls.
This second partial class is the key that allows you to write the following code successfully:

// No member named Buttonl has ever been explicitly declared in any code-behind
// class. It is silently added at compile time through a partial class.
Buttonl.Text = ...;

Partial classes are a hot feature of .NET compilers. When partially declared, a class has its
source code split over multiple source files, each of which appears to contain an ordinary
class definition from beginning to end. The keyword partial, though, informs the compiler
that the class declaration being processed is incomplete. To get full and complete source
code, the compiler must look into other files specified on the command line.

Partial Classes in ASP.NET Projects

Partial classes are a compiler feature originally designed to overcome the brittleness of
tool-generated code back in Visual Studio 2003 projects. Ideal for team development, partial
classes simplify coding and avoid manual file synchronization in all situations in which many
authors work on distinct segments of the class logical class.

Generally, partial classes are a source-level, assembly-limited, non-object-oriented way to
extend the behavior of a class. A number of advantages are derived from intensive use of
partial classes. As mentioned, you can have multiple teams at work on the same component
at the same time. In addition, you have a neat and elegant way to add functionality to a class
incrementally. In the end, this is just what the ASP.NET runtime does.

The ASPX markup defines server controls that will be handled by the code in the code-
behind class. For this model to work, the code-behind class needs to incorporate references
to these server controls as internal members—typically, protected members. In Visual Studio,
the code-behind class is a partial class that just lacks members’ declaration. Missing declara-
tions are incrementally added at run time via a second partial class created by the ASP.NET
HTTP runtime. The compiler of choice (C#, Microsoft Visual Basic .NET, or whatever) will then
merge the two partial classes to create the real parent of the dynamically created page class.

174

Part Il ASP.NET Pages and Server Controls

Processing the Request

So to serve a request for a page named default.aspx, the ASP.NET runtime gets or creates a
reference to a class named ASP.default_aspx. Next, the HTTP runtime environment invokes
the class through the methods of a well-known interface—/HttpHandler. The root Page class
implements this interface, which includes a couple of members: the ProcessRequest method
and the Boolean IsReusable property. After the HTTP runtime has obtained an instance of the
class that represents the requested resource, invoking the ProcessRequest method—a public
method—gives birth to the process that culminates in the generation of the final response
for the browser. As mentioned, the steps and events that execute and trigger out of the call
to ProcessRequest are collectively known as the page life cycle.

Although serving pages is the ultimate goal of the ASP.NET runtime, the way in which the
resultant markup code is generated is much more sophisticated than in other platforms and
involves many objects. The IIS worker process passes any incoming HTTP requests to the
so-called HTTP pipeline. The HTTP pipeline is a fully extensible chain of managed objects
that works according to the classic concept of a pipeline. All these objects form what is often
referred to as the ASP.NET HTTP runtime environment.

This ASP.NET-specific pipeline is integrated with the IIS pipeline in place for any requests
when the Web application is configured to work in IIS 7 Integrated mode. Otherwise, IIS
and ASP.NET use distinct pipelines—an unmanaged pipeline for IIS and a managed pipeline
for ASP.NET.

A page request passes through a pipeline of objects that process the original HTTP payload
and, at the end of the chain, produce some markup code for the browser. The entry point in
this pipeline is the HttpRuntime class.

The HttpRuntime Class

The ASP.NET worker process activates the HTTP pipeline in the beginning by creating a new
instance of the HttpRuntime class and then calling its ProcessRequest method for each incom-
ing request. For the sake of clarity, note that despite the name, HttpRuntime.ProcessRequest
has nothing to do with the /HttpHandler interface.

The HttpRuntime class contains a lot of private and internal methods and only three public
static methods: Close, ProcessRequest, and UnloadAppDomain, as detailed in Table 5-2.

Chapter 5 Anatomy of an ASP.NET Page 175

TABLE 5-2 Public Methods in the HttpRuntime Class
Method Description

Close Removes all items from the ASP.NET cache, and terminates the Web
application. This method should be used only when your code implements its
own hosting environment. There is no need to call this method in the course of
normal ASP.NET request processing.

ProcessRequest Drives all ASP.NET Web processing execution.

UnloadAppDomain Terminates the current ASP.NET application. The application restarts the next
time a request is received for it.

Note that all the methods shown in Table 5-2 have limited applicability in user applications.
In particular, you're not supposed to use ProcessRequest in your own code, whereas Close
is useful only if you're hosting ASP.NET in a custom application. Of the three methods in
Table 5-2, only UnloadAppDomain can be considered for use if, under certain run-time
conditions, you realize you need to restart the application. (See the sidebar “What Causes
Application Restarts?” later in this chapter.)

Upon creation, the HttpRuntime object initializes a number of internal objects that will

help carry out the page request. Helper objects include the cache manager and the file
system monitor used to detect changes in the files that form the application. When the
ProcessRequest method is called, the HttpRuntime object starts working to serve a page

to the browser. It creates a new empty context for the request and initializes a specialized
text writer object in which the markup code will be accumulated. A context is given by an
instance of the HttpContext class, which encapsulates all HTTP-specific information about the
request.

After that, the HttpRuntime object uses the context information to either locate or create a
Web application object capable of handling the request. A Web application is searched using
the virtual directory information contained in the URL. The object used to find or create

a new Web application is HttpApplicationFactory—an internal-use object responsible for
returning a valid object capable of handling the request.

Before we get to discover more about the various components of the HTTP pipeline, a look
at Figure 5-2 is in order.

176 Part Il ASP.NET Pages and Server Controls

[default.aspx } l

ASP.NET Work Process — AppDomain

HTTP
Cache Context

ﬂ .I HttpRuntime

Initializes the ASPNET cache and HTTP context

. . Based on the URL,
HttpApplicationFactory | creates/selects the application
object to serve the request

L. Determines the type of the
HttpApplication request and invokes the proper
handler factory

Determines the page class
PageHandlerFactory required to serve the request
and creates it if it doesn't exist

ASPdefault_aspx

IHttpHandler

HttpRuntime invokes ProcessRequest
on ASPdefault_aspx

FIGURE 5-2 The HTTP pipeline processing for a page.

The Application Factory

During the lifetime of the application, the HttpApplicationFactory object maintains a pool
of HttpApplication objects to serve incoming HTTP requests. When invoked, the application
factory object verifies that an AppDomain exists for the virtual folder the request targets.

If the application is already running, the factory picks an HttpApplication out of the pool

of available objects and passes it the request. A new HttpApplication object is created if an
existing object is not available.

If the virtual folder has not yet been called for the first time, a new HttpApplication object
for the virtual folder is created in a new AppDomain. In this case, the creation of an
HttpApplication object entails the compilation of the global.asax application file, if one is

Chapter 5 Anatomy of an ASP.NET Page 177

present, and the creation of the assembly that represents the actual page requested. This
event is actually equivalent to the start of the application. An HttpApplication object is used
to process a single page request at a time; multiple objects are used to serve simultaneous
requests.

The HttpApplication Object

HttpApplication is the base class that represents a running ASP.NET application. A derived
HTTP application class is dynamically generated by parsing the contents of the global.asax
file, if any is present. If global.asax is available, the application class is built and named after
it: ASP.global_asax. Otherwise, the base HttpApplication class is used.

An instance of an HttpApplication-derived class is responsible for managing the entire
lifetime of the request it is assigned to. The same instance can be reused only after the
request has been completed. The HttpApplication maintains a list of HTTP module objects
that can filter and even modify the content of the request. Registered modules are called
during various moments of the elaboration as the request passes through the pipeline.

The HttpApplication object determines the type of object that represents the resource

being requested—typically, an ASP.NET page, a Web service, or perhaps a user control.
HttpApplication then uses the proper handler factory to get an object that represents the
requested resource. The factory either instantiates the class for the requested resource from
an existing assembly or dynamically creates the assembly and then an instance of the class.
A handler factory object is a class that implements the IHttpHandlerFactory interface and is
responsible for returning an instance of a managed class that can handle the HTTP request—
an HTTP handler. An ASP.NET page is simply a handler object—that is, an instance of a class
that implements the /HttpHandler interface.

Let's see what happens when the resource requested is a page.

The Page Factory

When the HttpApplication object in charge of the request has figured out the proper handler,
it creates an instance of the handler factory object. For a request that targets a page, the
factory is a class named PageHandlerFactory. To find the appropriate handler, HttpApplication
uses the information in the <httpHandlers> section of the configuration file as a complement
to the information stored in the IIS handler mappings list, as shown in Figure 5-3.

178 Part Il ASP.NET Pages and Server Controls

& Internet Information Services (IS) Manager o e]

@@ [€) mv-LapTop » |58 <t @ -

File View Help
Gé' Handler Mappings ,

? Add Managed Handler...
185 MV-LAPTOP (My-Laptop\Din| |\ . yric¢ovurato specify the resources, such as DLLs and managed code, that handle sEdEEziliE .
&2 Application Pools responses for specific request types. Add \ cript Map...
> [&] Sites e ; Add Module Mapping...
P = oo P— I Edit Festure Permissions...
View Drdered List...

HitpRemotingHandlerFactory-rem-Integrated ~ “.rem Ensbled S
HittpRemotingHandlerFactory-rem-Integrated-4.0 ".rem Enabled L A
HittpRemotingHandlerF actory-rem-ISAPI-2.0 “rem Enabled Oninelele
HitpRemotingHandlerFactory-rem-ISAPI-4.0 32bit “.rem Ensbled
HitpRemotingHandllerFactory-rem-ISAPI-4.0 64bit “.rem Ensbled
HitpRemotingHandlerFactory-soap-Integrated “.soap Ensbled [
HitpRemotingHandlerFactory-soap-Integrated-40 ".soap Ensbled
HitpRemotingHandlerFactory-soap-ISAPI-2.0 “s0p Erabled |
HitpRemotingHandlerFactory-soap-ISAPI-4.0 32.. “.soap Ensbled |
HitpRemotingHandlerFactory-soap-ISAPI-4.0 64... “.soap Ensbled
DPTIONSVerbHandler - Enabled | |
PageHandlerFactory-Integrated “.aspx Ensbled
PageHandlerFactory-Integrated-4.0 “.aspx Ensbled
PageHandlerFactory-ISAPI-2.0 “.aspx Ensbled
PageHandlerFactory-ISAPI-4.0 32bit “.aspx Ensbled
PageHandlerFactory-ISAPI-4.0 64bit “.aspx Ensbled
rules-Integrated-4.0 “rules Ensbled
rules-ISAPI-4.0 32bit “rules Ensbled
rules-ISAPI-4.0 64bit “rules Ensbled
ScriptHandlerFactoryAppServices-Integrated-40 * AppService.axd Ensbled
ScriptResourcelntegrated-4.0 ScriptResourcesxd Ensbled z
O i | v

] | [E]Features View I Content View

Configuration: 'localhost’ applicationHost.config €

FIGURE 5-3 The HTTP pipeline processing for a page.

Bear in mind that handler factory objects do not compile the requested resource each time
it is invoked. The compiled code is stored in an ASP.NET temporary directory on the Web
server and used until the corresponding resource file is modified.

So the page handler factory creates an instance of an object that represents the particular
page requested. As mentioned, the actual object inherits from the System.Web.Ul.Page class,
which in turn implements the IHttpHandler interface. The page object is returned to the
application factory, which passes that back to the HttpRuntime object. The final step accom-
plished by the ASP.NET runtime is calling the IHttpHandler's ProcessRequest method on the
page object. This call causes the page to execute the user-defined code and generate the
markup for the browser.

In Chapter 17, "ASP.NET State Management,” we'll return to the initialization of an ASP.NET
application, the contents of global.asax, and the information stuffed into the HTTP context—
a container object, created by the HttpRuntime class, that is populated, passed along the
pipeline, and finally bound to the page handler.

Chapter 5 Anatomy of an ASP.NET Page 179

What Causes Application Restarts?

There are a few reasons why an ASP.NET application can be restarted. For the most
part, an application is restarted to ensure that latent bugs or memory leaks don't affect
the overall behavior of the application in the long run. Another reason is that too many
changes dynamically made to deployed ASPX pages might have caused too large a
number of assemblies (typically, one per page) to be loaded in memory.

Note that any applications that consume more than a certain share of virtual memory
are automatically killed and restarted by IIS. In IIS 7, you can even configure a periodic
recycle to ensure that your application is always lean, mean, and in good shape.

Furthermore, the hosting environment (IIS or ASP.NET, depending on the configuration)
implements a good deal of checks and automatically restarts an application if any the
following scenarios occur:

B The maximum limit of dynamic page compilations is reached. This limit is
configurable through the web.config file.

B The physical path of the Web application has changed, or any directory under
the Web application folder is renamed.

B Changes occurred in global.asax, machine.config, or web.config in the
application root, or in the Bin directory or any of its subdirectories.

B Changes occurred in the code-access security policy file, if one exists.

B Too many files are changed in one of the content directories. (Typically, this
happen:s if files are generated on the fly when requested.)

B You modified some of the properties for the application pool hosting the Web
application.

In addition to all this, in ASP.NET an application can be restarted programmatically by
calling HttpRuntime.UnloadAppDomain.

The Processing Directives of a Page

Processing directives configure the run-time environment that will execute the page. In
ASP.NET, directives can be located anywhere in the page, although it's a good and common
practice to place them at the beginning of the file. In addition, the name of a directive is case
insensitive and the values of directive attributes don't need to be quoted. The most impor-
tant and most frequently used directive in ASP.NET is @Page. The complete list of ASP.NET
directives is shown in Table 5-3.

180 Part Il ASP.NET Pages and Server Controls

TABLE 5-3 Directives Supported by ASP.NET Pages

Directive Description

@ Assembly Links an assembly to the current page or user control.

@ Control Defines control-specific attributes that guide the behavior of the control
compiler.

@ Implements Indicates that the page, or the user control, implements a specified .NET
Framework interface.

@ Import Indicates a namespace to import into a page or user control.

@ Master Identifies an ASP.NET master page. (See Chapter 8, “Page Composition and
Usability.”)

@ MasterType Provides a way to create a strongly typed reference to the ASP.NET master
page when the master page is accessed from the Master property. (See
Chapter 8.

@ OutputCache Controls the output caching policies of a page or user control. (See
Chapter 18, "ASP.NET Caching.")

@ Page Defines page-specific attributes that guide the behavior of the page
compiler and the language parser that will preprocess the page.

@ PreviousPageType Provides a way to get strong typing against the previous page, as accessed
through the PreviousPage property.

@ Reference Links a page or user control to the current page or user control.

@ Register Creates a custom tag in the page or the control. The new tag (prefix and
name) is associated with the namespace and the code of a user-defined
control.

With the exception of @Page, @PreviousPageType, @Master, @MasterType, and @Control,
all directives can be used both within a page and a control declaration. @Page and @Control
are mutually exclusive. @Page can be used only in .aspx files, while the @Control directive
can be used only in user control .ascx files. @Master, in turn, is used to define a very special
type of page—the master page.

The syntax of a processing directive is unique and common to all supported types of
directives. Multiple attributes must be separated with blanks, and no blank can be placed
around the equal sign (=) that assigns a value to an attribute, as the following line of code
demonstrates:

<%@ Directive_Name attribute="value" [attribute="value"...] %>

Each directive has its own closed set of typed attributes. Assigning a value of the wrong type
to an attribute, or using a wrong attribute with a directive, results in a compilation error.

Chapter 5 Anatomy of an ASP.NET Page 181

Important The content of directive attributes is always rendered as plain text. However,
attributes are expected to contain values that can be rendered to a particular .NET Framework
type, specific to the attribute. When the ASP.NET page is parsed, all the directive attributes

are extracted and stored in a dictionary. The names and number of attributes must match the
expected schema for the directive. The string that expresses the value of an attribute is valid as
long as it can be converted into the expected type. For example, if the attribute is designed to
take a Boolean value, true and false are its only feasible values.

The @Page Directive

The @Page directive can be used only in .aspx pages and generates a compile error if used
with other types of ASP.NET files such as controls and Web services. Each .aspx file is allowed
to include at most one @Page directive. Although not strictly necessary from the syntax
point of view, the directive is realistically required by all pages of some complexity.

@Page features over 40 attributes that can be logically grouped in three categories:
compilation (defined in Table 5-4), overall page behavior (defined in Table 5-5), and page
output (defined in Table 5-6). Each ASP.NET page is compiled upon first request, and the
HTML actually served to the browser is generated by the methods of the dynamically
generated class. The attributes listed in Table 5-4 let you fine-tune parameters for the
compiler and choose the language to use.

TABLE 5-4 @Page Attributes for Page Compilation

Attribute Description

ClassName Specifies the name of the class that will be dynamically compiled when the
page is requested. It must be a class name without namespace information.

CodefFile Indicates the path to the code-behind class for the current page. The source
class file must be deployed to the Web server.

CodeBehind Attribute consumed by Visual Studio, indicates the path to the code-behind
class for the current page. The source class file will be compiled to a deployable
assembly.

CodefFileBaseClass ~ Specifies the type name of a base class for a page and its associated code-
behind class. The attribute is optional, but when it is used the CodeFile attribute
must also be present.

CompilationMode Indicates whether the page should be compiled at run time.

CompilerOptions A sequence of compiler command-line switches used to compile the page.

Debug A Boolean value that indicates whether the page should be compiled with
debug symbols.

Explicit A Boolean value that determines whether the page is compiled with the Visual
Basic Option Explicit mode set to On. Option Explicit forces the programmer to
explicitly declare all variables. The attribute is ignored if the page language is
not Visual Basic .NET.

182

Part Il ASP.NET Pages and Server Controls

Attribute Description

Inherits Defines the base class for the page to inherit. It can be any class derived from
the Page class.

Language Indicates the language to use when compiling inline code blocks (<% ... %>)

and all the code that appears in the page <script> section. Supported languag-
es include Visual Basic .NET, C#, JScript .NET, and J#. If not otherwise specified,
the language defaults to Visual Basic .NET.

LinePragmas

Indicates whether the run time should generate line pragmas in the source
code to mark specific locations in the file for the sake of debugging tools.

MasterPageFile

Indicates the master page for the current page.

Src

Indicates the source file that contains the implementation of the base class
specified with Inherits. The attribute is not used by Visual Studio and other
Rapid Application Development (RAD) designers.

Strict

A Boolean value that determines whether the page is compiled with the Visual
Basic Option Strict mode set to On. When this attribute is enabled, Option Strict
permits only type-safe conversions and prohibits implicit conversions in which
loss of data is possible. (In this case, the behavior is identical to that of C#) The
attribute is ignored if the page language is not Visual Basic .NET.

Trace

A Boolean value that indicates whether tracing is enabled. If tracing is enabled,
extra information is appended to the page’s output. The default is false.

TraceMode

Indicates how trace messages are to be displayed for the page when tracing is
enabled. Feasible values are SortByTime and SortByCategory. The default, when
tracing is enabled, is SortByTime.

WarningLevel

Indicates the compiler warning level at which you want the compiler to abort
compilation for the page. Possible values are 0 through 4.

Attributes listed in Table 5-5 allow you to control to some extent the overall behavior of the
page and the supported range of features. For example, you can set a custom error page,
disable session state, and control the transactional behavior of the page.

Note The schema of attributes supported by @Page is not as strict as for other directives. In
particular, any public properties defined on the page class can be listed as an attribute, and
initialized, in a @Page directive.

TABLE 5-5 @Page Attributes for Page Behavior

Attribute
AspCompat

Description

A Boolean attribute that, when set to true, allows the page to
be executed on a single-threaded apartment (STA) thread. The
setting allows the page to call COM+ 1.0 components and com-
ponents developed with Microsoft Visual Basic 6.0 that require
access to the unmanaged ASP built-in objects. (I'll return to this
topic in Chapter 16, "“The HTTP Request Context.”)

Async

If this attribute is set to true, the generated page class derives
from IHttpAsyncHandler rather than having IHttpHandler add
some built-in asynchronous capabilities to the page.

Attribute
AsyncTimeOut

Chapter 5 Anatomy of an ASP.NET Page 183

Description

Defines the timeout in seconds used when processing
asynchronous tasks. The default is 45 seconds.

AutoEventWireup

A Boolean attribute that indicates whether page events are
automatically enabled. It's set to true by default. Pages devel-
oped with Visual Studio .NET have this attribute set to false, and
page events for these pages are individually tied to handlers.

Buffer

A Boolean attribute that determines whether HTTP response
buffering is enabled. It's set to true by default.

Description

Provides a text description of the page. The ASP.NET page
parser ignores the attribute, which subsequently has only a
documentation purpose.

EnableEventValidation

A Boolean value that indicates whether the page will emit
a hidden field to cache available values for input fields that
support event data validation. It's set to true by default.

EnableSessionState

Defines how the page should treat session data. If this attribute
is set to true, the session state can be read and written to. If

it's set to false, session data is not available to the application.
Finally, if this attribute is set to ReadOnly, the session state can
be read but not changed.

EnableViewState

A Boolean value that indicates whether the page view state is
maintained across page requests. The view state is the page call
context—a collection of values that retain the state of the page
and are carried back and forth. View state is enabled by default.
(I'll cover this topic in Chapter 17.

"ASP.NET State Management.”)

EnableTheming

A Boolean value that indicates whether the page will support
themes for embedded controls. It's set to true by default.

EnableViewStateMac

A Boolean value that indicates ASP.NET should calculate a
machine-specific authentication code and append it to the view
state of the page (in addition to Base64 encoding). The Mac

in the attribute name stands for machine authentication check.
When the attribute is true, upon postbacks ASP.NET will check
the authentication code of the view state to make sure that it
hasn't been tampered with on the client.

ErrorPage

Defines the target URL to which users will be automatically
redirected in case of unhandled page exceptions.

MaintainScrollPositionOnPostback

A Boolean value that indicates whether to return the user to the
same position in the client browser after postback.

SmartNavigation

A Boolean value that indicates whether the page supports the
Microsoft Internet Explorer 5 or later smart navigation feature.
Smart navigation allows a page to be refreshed without losing
scroll position and element focus.

Theme, StylesheetTheme

Indicates the name of the theme (or style-sheet theme) selected
for the page.

184

Part Il ASP.NET Pages and Server Controls

Attribute Description

Transaction Indicates whether the page supports or requires transactions.
Feasible values are Disabled, NotSupported, Supported, Required,
and RequiresNew. Transaction support is disabled by default.

ValidateRequest A Boolean value that indicates whether request validation

should occur. If this attribute is set to true, ASP.NET checks all
input data against a hard-coded list of potentially dangerous
values. This functionality helps reduce the risk of cross-site
scripting attacks for pages. The value is true by default.

Attributes listed in Table 5-6 allow you to control the format of the output being generated
for the page. For example, you can set the content type of the page or localize the output to

the extent possible.

TABLE 5-6 @Page Directives for Page Output

Attribute
ClientTarget

Description

Indicates the target browser for which ASP.NET server controls should
render content.

ClientIDMode

Specifies the algorithm to use to generate client ID values for server
controls. This attribute requires ASP.NET 4.

CodePage

Indicates the code page value for the response. Set this attribute only
if you created the page using a code page other than the default code
page of the Web server on which the page will run. In this case, set the
attribute to the code page of your development machine. A code page
is a character set that includes numbers, punctuation marks, and other
glyphs. Code pages differ on a per-language basis.

ContentType

Defines the content type of the response as a standard MIME type.
Supports any valid HTTP content type string.

Culture

Indicates the culture setting for the page. Culture information includes
the writing and sorting system, calendar, and date and currency for-
mats. The attribute must be set to a non-neutral culture name, which
means it must contain both language and country/region information.
For example, en-US is a valid value, unlike en alone, which is considered
country/region neutral.

LCID

A 32-bit value that defines the locale identifier for the page. By default,
ASP.NET uses the locale of the Web server.

MetaDescription

Sets the "description” meta element for the page. The value set through
the @Page directive overrides any similar values you might have
specified as literal text in the markup. This attribute requires ASP.NET 4.

MetaKeywords

Sets the "keywords” meta element for the page. The value set through
the @Page directive overrides any similar values you might have speci-
fied as literal text in the markup. This attribute requires ASP.NET 4.

ResponseEncoding

Indicates the character encoding of the page. The value is used to set
the CharSet attribute on the content type HTTP header. Internally,
ASP.NET handles all strings as Unicode.

Chapter 5 Anatomy of an ASP.NET Page 185

Attribute Description

UlCulture Specifies the default culture name used by Resource Manager to look
up culture-specific resources at run time.

ViewStateEncryptionMode ~ Determines how and if the view state is encrypted. Feasible values are
Auto, Always, or Never. The default is Auto, meaning that view state will
be encrypted only if an individual control requests that.

ViewStateMode Determines the value for the page’s ViewStateMode property that
influences the way in which the page treats the view state of child
controls. (More details are available in Chapter 17.) This attribute
requires ASP.NET 4.

As you can see, many attributes discussed in Table 5-6 are concern with page localization.
Building multilanguage and international applications is a task that ASP.NET, and the .NET
Framework in general, greatly simplify.

The @Assembly Directive

The @Assembly directive adds an assembly to a collection of assembly names that are used
during the compilation of the ASP.NET page so that classes and interfaces in the assembly are
available for early binding to the code. You use the @Assembly directive when you want to
reference a given assembly only from a specific page.

Some assembilies are linked by default for any ASP.NET application. The complete list can be
found in the root web.config file of the Web server machine. The list is pretty long in

ASP.NET 4, but it no longer includes the System.Web.Mobile assembly that was there for older
versions of ASP.NET. The mobile assembly is now deprecated, but if you're trying to upgrade
an existing application to ASP.NET 4 that uses the assembly, you are required to add the
assembly explicitly via an @Assembly directive or via a custom <compilation> section in the
application.

Table 5-7 lists some of the assemblies that are automatically provided to the compiler for an
ASP.NET 4 application.

TABLE 5-7 Assemblies Linked by Default in ASP.NET 4

Assembly File Name Description

mscorlib Provides the core functionality of the .NET Framework,
including types, AppDomains, and run-time services

System.dll Provides another bunch of system services, including regular
expressions, compilation, native methods, file /0, and
networking

System.Configuration.dll Defines classes to read and write configuration data.

System.Core.dll Provides some other core functionality of the .NET Framework,

including LINQ-to-Objects, the time-zone API, and some
security and diagnostic classes

186

Part Il ASP.NET Pages and Server Controls

System.Data.dll

Defines data container and data access classes, including the
whole ADO.NET framework

System.Data.DataSetExtensions.dll

Defines additional functions built over the ADO.NET DataSet
object

System.Drawing.dll

Implements the GDI+ features

System.EnterpriseServices.dll

Provides the classes that allow for serviced components and
COM-+ interaction

System.Web.dll

Indicates the assembly implements the core ASP.NET services,
controls, and classes

System.Web.ApplicationServices.dll

Provides classes that enable you to access ASP.NET
authentication, roles, and profile functions via a bunch of
built-in WCF services

System.Web.DynamicData.dll

Provides classes behind the ASP.NET Dynamic Data framework

System.Web.Entity.dll

Contains the code for the EntityDataSource component that
supports Entity Framework

System.Web.Extensions.dll

Contains the code for AJAX extensions to ASP.NET

System.Web.Services.dll

Contains the core code that makes Web services run

System.Xml.dll

Implements the .NET Framework XML features

System.Xml.Ling.dll

Contains the code for the LINQ-to-XML parser

Note that you can modify, extend, or restrict the list of default assemblies by editing the
global settings in the root web.config file under

%Windows%\Microsoft.NET\Framework\v4.0.30319\Config

If you do so, changes will apply to all ASP.NET applications run on that Web server.
Alternatively, you can modify the assembly list on a per-application basis by editing the
<assemblies> section under <compilation> in the application’s specific web.config file. Note
also that the <compilation> section should be used only for global assembly cache (GAC)
resident assemblies, not for the private assemblies that you deploy to the Bin folder.

By default, the <compilation> section in the root web.config file contains the following entry:

<add assembly="#" />

It means that any assembly found in the binary path of the application should be treated as
if it were registered through the @Assembly directive. To prevent all assemblies found in the
Bin directory from being linked to the page, remove the entry from the root configuration
file. To link a needed assembly to the page, use the following syntax:

<%@ Assembly Name="AssembTyName" %>
<%@ Assembly Src="assembly_code.cs" %>

Chapter 5 Anatomy of an ASP.NET Page 187

The @Assembly directive supports two mutually exclusive attributes: Name and Src. Name
indicates the name of the assembly to link to the page. The name cannot include the path or
the extension. Src indicates the path to a source file to dynamically compile and link against
the page. The @Assembly directive can appear multiple times in the body of the page. In
fact, you need a new directive for each assembly to link. Name and Src cannot be used in the
same @Assembly directive, but multiple directives defined in the same page can use either.

Note In terms of performance, the difference between Name and Src is minimal, although
Name points to an existing and ready-to-load assembly. The source file referenced by Src

is compiled only the first time it is requested. The ASP.NET runtime maps a source file with

a dynamically compiled assembly and keeps using the compiled code until the original file
undergoes changes. This means that after the first application-level call, the impact on the page
performance is identical whether you use Name or Src.

Any assemblies you register through the @Assembly directive are used by the compiler at
compile time, which allows for early binding. After the compilation of the requested ASP.NET
file is complete, the assembly is loaded into the application domain, thus allowing late bind-
ing. In the end, any assemblies listed through the directive (implicitly through the root con-
figuration or explicitly through the application configuration) is loaded into the AppDomain
and referenced on demand.

Important Removing an assembly from the Visual Studio project doesn't help much to keep
the AppDomain lean and mean. To ensure you load all the assemblies you want and only the
ones you want, you should insert the following code in your configuration file:

<assemblies>
<clear />
<add assembly="..." />

<add assembly="*" />
</assemblies>

The <clear /> tag removes all default configurations; the subsequent tags add just the assemblies
your application needs. As you can verify for yourself, the default list will likely load assemblies
you don't need.

In debug mode, you can track the list of assemblies actually loaded in the AppDomain for the
site using the following code:

var assembliesl = Assembly.GetExecutingAssembly() .GetReferencedAssemblies();
var assemblies2 = AppDomain.CurrentDomain.GetAssemblies();

The size of the two arrays can vary quite a bit. The former counts just the dynamically refer-
enced assemblies at the current stage of execution. The latter counts the number of assemblies
physically loaded in the AppDomain (which can't be unloaded unless you recycle the application).

188 Part Il ASP.NET Pages and Server Controls

The @Import Directive

The @Import directive links the specified namespace to the page so that all the types defined
can be accessed from the page without specifying the fully qualified name. For example,

to create a new instance of the ADO.NET DataSet class, you either import the System.Data
namespace or specify the fully qualified class name whenever you need it, as in the following
code:

System.Data.DataSet ds = new System.Data.DataSet();

After you've imported the System.Data namespace into the page, you can use more natural
coding, as shown here:

DataSet ds = new DataSet();

The syntax of the @/mport directive is rather self-explanatory:

<%@ Import namespace="value" %>

@Import can be used as many times as needed in the body of the page. The @/mport
directive is the ASP.NET counterpart of the C# using statement and the Visual Basic .NET
Imports statement. Looking back at unmanaged C/C++, we could say the directive plays

a role nearly identical to the #include directive. For example, to be able to connect to a
Microsoft SQL Server database and grab some disconnected data, you need to import the
following two namespaces:

<%@ Import namespace="System.Data" %>
<%@ Import namespace="System.Data.SqlClient" %>

You need the System.Data namespace to work with the DataSet and DataTable classes,
and you need the System.Data.SqlClient namespace to prepare and issue the command. In
this case, you don’t need to link against additional assemblies because the System.Data.dll
assembly is linked by default.

Note @/mport helps the compiler only to resolve class names; it doesn’t automatically link
required assemblies. Using the @/mport directive allows you to use shorter class names, but as
long as the assembly that contains the class code is not properly referenced, the compiler will
generate a type error. In this case, using the fully qualified class name is of no help because the
compiler lacks the type definition. You might have noticed that, more often than not, assembly
and namespace names coincide. The latest version of Visual Studio (as well as some commercial
products such as JetBrains ReSharper) is able to detect when you lack a reference and offers
to import the namespace and reference the assembly with a single click. This is pure tooling
activity—namespaces and assemblies are totally different beasts.

Chapter 5 Anatomy of an ASP.NET Page 189

The @Implements Directive

The directive indicates that the current page implements the specified .NET Framework
interface. An interface is a set of signatures for a logically related group of functions. An
interface is a sort of contract that shows the component’s commitment to expose that group
of functions. Unlike abstract classes, an interface doesn't provide code or executable func-
tionality. When you implement an interface in an ASP.NET page, you declare any required
methods and properties within the <script> section. The syntax of the @/mplements directive
is as follows:

<%@ Implements interface="InterfaceName" %>

The @Implements directive can appear multiple times in the page if the page has to
implement multiple interfaces. Note that if you decide to put all the page logic in a separate
class file, you can't use the directive to implement interfaces. Instead, you implement the
interface in the code-behind class.

The @Reference Directive

The @Reference directive is used to establish a dynamic link between the current page and
the specified page or user control. This feature has significant implications for the way you
set up cross-page communication. It also lets you create strongly typed instances of user
controls. Let's review the syntax.

The directive can appear multiple times in the page. The directive features two mutually
exclusive attributes: Page and Control. Both attributes are expected to contain a path to a
source file:

<%@ Reference page="source_page" %>
<%@ Reference control="source_user_control" %>

The Page attribute points to an .aspx source file, whereas the Control attribute contains the
path of an .ascx user control. In both cases, the referenced source file will be dynamically
compiled into an assembly, thus making the classes defined in the source programmatically
available to the referencing page. When running, an ASP.NET page is an instance of a .NET
Framework class with a specific interface made of methods and properties. When the refer-
encing page executes, a referenced page becomes a class that represents the .aspx source file
and can be instantiated and programmed at will. For the directive to work, the referenced
page must belong to the same domain as the calling page. Cross-site calls are not allowed,
and both the Page and Control attributes expect to receive a relative virtual path.

190

Part Il ASP.NET Pages and Server Controls

Note Cross-page posting can be considered as an alternate approach to using the @Reference
directive. Cross-page posting is an ASP.NET feature through which you force an ASP.NET button
control to post the content of its parent form to a given target page. I'll demonstrate cross-page
posting in Chapter 9, “Input Forms.”

The Page Class

In the .NET Framework, the Page class provides the basic behavior for all objects that an
ASP.NET application builds by starting from .aspx files. Defined in the System.Web.U!
namespace, the class derives from TemplateControl and implements the /HttpHandler
interface:

public class Page : TemplateControl, IHttpHandler
{

3

In particular, TemplateControl is the abstract class that provides both ASP.NET pages and

user controls with a base set of functionality. At the upper level of the hierarchy, you find the
Control class. It defines the properties, methods, and events shared by all ASP.NET server-side
elements—pages, controls, and user controls.

Derived from a class—TemplateControl—that implements INamingContainer, the Page

class also serves as the naming container for all its constituent controls. In the .NET
Framework, the naming container for a control is the first parent control that implements the
INamingContainer interface. For any class that implements the naming container interface,
ASP.NET creates a new virtual namespace in which all child controls are guaranteed to have
unique names in the overall tree of controls. (This is a very important feature for iterative
data-bound controls, such as DataGrid, and for user controls.)

The Page class also implements the methods of the IHttpHandler interface, thus qualifying it
as the handler of a particular type of HTTP requests—those for .aspx files. The key element
of the IHttpHandler interface is the ProcessRequest method, which is the method the ASP.NET
runtime calls to start the page processing that will actually serve the request.

Note /NamingContainer is a marker interface that has no methods. Its presence alone, though,
forces the ASP.NET runtime to create an additional namespace for naming the child controls of
the page (or the control) that implements it. The Page class is the naming container of all the
page's controls, with the clear exception of those controls that implement the INamingContainer
interface themselves or are children of controls that implement the interface.

Chapter 5 Anatomy of an ASP.NET Page 191

Properties of the Page Class

The properties of the Page class can be classified in three distinct groups: intrinsic objects,
worker properties, and page-specific properties. The tables in the following sections
enumerate and describe them.

Intrinsic Objects

Table 5-8 lists all properties that return a helper object that is intrinsic to the page. In other
words, objects listed here are all essential parts of the infrastructure that allows for the page
execution.

TABLE 5-8 ASP.NET Intrinsic Objects in the Page Class

Property Description

Application Instance of the HttpApplicationState class; represents the state of the application.
It is functionally equivalent to the ASP intrinsic Application object.

Cache Instance of the Cache class; implements the cache for an ASP.NET applica-
tion. More efficient and powerful than Application, it supports item priority and
expiration.

Profile Instance of the ProfileCommon class; represents the user-specific set of data
associated with the request.

Request Instance of the HttpRequest class; represents the current HTTP request.

Response Instance of the HttpResponse class; sends HTTP response data to the client.

RouteData Instance of the RouteData class; groups information about the selected route (if

any) and its values and tokens. (Routing in Web Forms is covered in Chapter 4,
"xxx.") The object is supported only in ASP.NET 4.

Server Instance of the HttpServerUtility class; provides helper methods for processing
Web requests.

Session Instance of the HttpSessionState class; manages user-specific data.

Trace Instance of the TraceContext class; performs tracing on the page.

User An [Principal object that represents the user making the request.

I'll cover Request, Response, and Server in Chapter 16; Application and Session are covered
in Chapter 17; Cache will be the subject of Chapter 19. Finally, User and security will be the
subject of Chapter 19, "ASP.NET Security.”

Worker Properties

Table 5-9 details page properties that are both informative and provide the foundation
for functional capabilities. You can hardly write code in the page without most of these
properties.

Part Il ASP.NET Pages and Server Controls

TABLE 5-9 Worker Properties of the Page Class

Property Description

AutoPostBackControl Gets a reference to the control within the page that caused the postback
event.

ClientScript Gets a ClientScriptManager object that contains the client script used on
the page.

Controls Returns the collection of all the child controls contained in the current
page.

ErrorPage Gets or sets the error page to which the requesting browser is redirected
in case of an unhandled page exception.

Form Returns the current HtmlForm object for the page.

Header Returns a reference to the object that represents the page’s header. The
object implements /PageHeader.

IsAsync Indicates whether the page is being invoked through an asynchronous
handler.

IsCallback Indicates whether the page is being loaded in response to a client script
callback.

IsCrossPagePostBack Indicates whether the page is being loaded in response to a postback
made from within another page.

IsPostBack Indicates whether the page is being loaded in response to a client
postback or whether it is being loaded for the first time.

IsValid Indicates whether page validation succeeded.

Master Instance of the MasterPage class; represents the master page that
determines the appearance of the current page.

MasterPageFile Gets and sets the master file for the current page.

NamingContainer

Returns null.

Page Returns the current Page object.

PageAdapter Returns the adapter object for the current Page object.

Parent Returns null.

PreviousPage Returns the reference to the caller page in case of a cross-page postback.

TemplateSourceDirectory

Gets the virtual directory of the page.

Validators

Returns the collection of all validation controls contained in the page.

ViewStateUserKey

String property that represents a user-specific identifier used to hash
the view-state contents. This trick is a line of defense against one-click
attacks.

In the context of an ASP.NET application, the Page object is the root of the hierarchy. For
this reason, inherited properties such as NamingContainer and Parent always return null. The
Page property, on the other hand, returns an instance of the same object (this in C# and Me

in Visual Basic .NET).

The ViewStateUserKey property deserves a special mention. A common use for the user key
is to stuff user-specific information that is then used to hash the contents of the view state

Chapter 5 Anatomy of an ASP.NET Page 193

along with other information. A typical value for the ViewStateUserKey property is the name
of the authenticated user or the user’s session ID. This contrivance reinforces the security
level for the view state information and further lowers the likelihood of attacks. If you employ
a user-specific key, an attacker can't construct a valid view state for your user account unless
the attacker can also authenticate as you. With this configuration, you have another barrier
against one-click attacks. This technique, though, might not be effective for Web sites that
allow anonymous access, unless you have some other unique tracking device running.

Note that if you plan to set the ViewStateUserKey property, you must do that during
the Page_lInit event. If you attempt to do it later (for example, when Page_Load fires), an

exception will be thrown.

Context Properties

Table 5-10 lists properties that represent visual and nonvisual attributes of the page, such as
the URL's query string, the client target, the title, and the applied style sheet.

TABLE 5-10 Page-Specific Properties of the Page Class

Property Description

ClientID Always returns the empty string.

ClientiDMode Determines the algorithm to use to generate the ID of HTML
elements being output as part of a control’'s markup. This prop-
erty requires ASP.NET 4.

ClientQueryString Gets the query string portion of the requested URL.

ClientTarget Set to the empty string by default; allows you to specify the
type of browser the HTML should comply with. Setting this
property disables automatic detection of browser capabilities.

EnableViewState Indicates whether the page has to manage view-state data. You
can also enable or disable the view-state feature through the
EnableViewState attribute of the @Page directive.

EnableViewStateMac Indicates whether ASP.NET should calculate a machine-specific
authentication code and append it to the page view state.

EnableTheming Indicates whether the page supports themes.

ID Always returns the empty string.

MetaDescription Gets and sets the content of the description meta tag. This
property requires ASP.NET 4.

MetaKeywords Gets and sets the content of the keywords meta tag. This

property requires ASP.NET 4.

MaintainScrollPositionOnPostback

Indicates whether to return the user to the same position in the
client browser after postback.

SmartNavigation

Indicates whether smart navigation is enabled. Smart navigation
exploits a bunch of browser-specific capabilities to enhance the
user’s experience with the page.

194

Part Il ASP.NET Pages and Server Controls

Property Description

StyleSheetTheme Gets or sets the name of the style sheet applied to this page.

Theme Gets and sets the theme for the page. Note that themes can be
programmatically set only in the Prelnit event.

Title Gets or sets the title for the page.

TraceEnabled Toggles page tracing on and off.

TraceModeValue Gets or sets the trace mode.

UniquelD Always returns the empty string.

ViewStateEncryptionMode

Indicates if and how the view state should be encrypted.

ViewStateMode Enables the view state for an individual control even if the view
state is disabled for the page. This property requires ASP.NET 4.
Visible Indicates whether ASP.NET has to render the page. If you set

Visible to false, ASP.NET doesn’t generate any HTML code for
the page. When Visible is false, only the text explicitly written
using Response.Write hits the client.

The three ID properties (ID, ClientID, and UniquelD) always return the empty string from a
Page object. They make sense only for server controls.

Methods of the Page Class

The whole range of Page methods can be classified in a few categories based on the tasks
each method accomplishes. A few methods are involved with the generation of the markup
for the page; others are helper methods to build the page and manage the constituent
controls. Finally, a third group collects all the methods related to client-side scripting.

Rendering Methods

Table 5-11 details the methods that are directly or indirectly involved with the generation of

the markup code.

TABLE 5-11 Methods for Markup Generation

Method Description

DataBind Binds all the data-bound controls contained in the page to their
data sources. The DataBind method doesn’t generate code itself but
prepares the ground for the forthcoming rendering.

RenderControl Outputs the HTML text for the page, including tracing information if

tracing is enabled.

VerifyRenderinglnServerForm

Controls call this method when they render to ensure that they are
included in the body of a server form. The method does not return a
value, but it throws an exception in case of error.

Chapter 5 Anatomy of an ASP.NET Page 195

In an ASP.NET page, no control can be placed outside a <form> tag with the runat attribute
set to server. The VerifyRenderinginServerForm method is used by Web and HTML controls to
ensure that they are rendered correctly. In theory, custom controls should call this method
during the rendering phase. In many situations, the custom control embeds or derives an
existing Web or HTML control that will make the check itself.

Not directly exposed by the Page class, but strictly related to it, is the GetWebResourceUr!
method on the ClientScriptManager class. (You get a reference to the current client script
manager through the ClientScript property on Page.) When you develop a custom control,
you often need to embed static resources such as images or client script files. You can make
these files be separate downloads; however, even though it's effective, the solution looks
poor and inelegant. Visual Studio allows you to embed resources in the control assembly, but
how would you retrieve these resources programmatically and bind them to the control? For
example, to bind an assembly-stored image to an tag, you need a URL for the im-
age. The GetWebResourceUrl method returns a URL for the specified resource. The URL refers
to a new Web Resource service (webresource.axd) that retrieves and returns the requested
resource from an assembly.

// Bind the tag to the given GIF image in the control's assembly
img.ImageUrl = Page.GetWebResourceUrl(typeof(TheControl), GifName));

GetWebResourceUrl requires a Type object, which will be used to locate the assembly that
contains the resource. The assembly is identified with the assembly that contains the defini-
tion of the specified type in the current AppDomain. If you're writing a custom control, the
type will likely be the control’s type. As its second argument, the GetWebResourceUrl method
requires the name of the embedded resource. The returned URL takes the following form:

WebResource.axd?a=assembly&r=resourceName&t=timestamp

The timestamp value is the current timestamp of the assembly, and it is added to make the
browser download resources again if the assembly is modified.

Controls-Related Methods

Table 5-12 details a bunch of helper methods on the Page class architected to let you
manage and validate child controls and resolve URLs.

TABLE 5-12 Helper Methods of the Page Object
Method Description

Designerinitialize Initializes the instance of the Page class at design time, when the
page is being hosted by RAD designers such as Visual Studio.

FindControl Takes a control’s ID and searches for it in the page’s naming
container. The search doesn't dig out child controls that are naming
containers themselves.

196

Part Il ASP.NET Pages and Server Controls

Method Description

GetTypeHashCode Retrieves the hash code generated by ASP.xxx_aspx page objects at
run time. In the base Page class, the method implementation sim-
ply returns 0; significant numbers are returned by classes used for
actual pages.

GetValidators Returns a collection of control validators for a specified validation
group.

HasControls Determines whether the page contains any child controls.

LoadControl Compiles and loads a user control from an .ascx file, and returns
a Control object. If the user control supports caching, the object
returned is PartialCachingControl.

LoadTemplate Compiles and loads a user control from an .ascx file, and returns
it wrapped in an instance of an internal class that implements the
ITemplate interface. The internal class is named SimpleTemplate.

MapPath Retrieves the physical, fully qualified path that an absolute or
relative virtual path maps to.

ParseControl Parses a well-formed input string, and returns an instance of the

control that corresponds to the specified markup text. If the string
contains more controls, only the first is taken into account. The
runat attribute can be omitted. The method returns an object of
type Control and must be cast to a more specific type.

RegisterRequiresControlState

Registers a control as one that requires control state.

RegisterRequiresPostBack

Registers the specified control to receive a postback han-
dling notice, even if its ID doesn’t match any ID in the col-
lection of posted data. The control must implement the
IPostBackDataHandler interface.

RegisterRequiresRaiseEvent

Registers the specified control to handle an incoming postback
event. The control must implement the /PostBackEventHandler
interface.

RegisterViewStateHandler

Mostly for internal use, the method sets an internal flag that causes
the page view state to be persisted. If this method is not called in
the prerendering phase, no view state will ever be written. Typically,
only the HtmlForm server control for the page calls this method.
There's no need to call it from within user applications.

ResolveUrl Resolves a relative URL into an absolute URL based on the value of
the TemplateSourceDirectory property.
Validate Instructs any validation controls included in the page to validate

their assigned information. If defined in the page, the method
honors ASP.NET validation groups.

Chapter 5 Anatomy of an ASP.NET Page 197

The methods LoadControl and LoadTemplate share a common code infrastructure but return
different objects, as the following pseudocode shows:

public Control LoadControl(string virtualPath)

{
Control ascx = GetCompiledUserControlType(virtualPath);
ascx.InitializeAsUserControl();
return ascx;

}

public ITemplate LoadTemplate(string virtualPath)

{
Control ascx = GetCompiledUserControlType(virtualPath);
return new SimpleTemplate(ascx);

}

Both methods differ from the ParseControl method in that the latter never causes compila-
tion but simply parses the string and infers control information. The information is then used
to create and initialize a new instance of the control class. As mentioned, the runat attribute
is unnecessary in this context. In ASP.NET, the runat attribute is key, but in practice, it has no
other role than marking the surrounding markup text for parsing and instantiation. It does
not contain information useful to instantiate a control, and for this reason it can be omitted
from the strings you pass directly to ParseControl.

Script-Related Methods

Table 5-13 enumerates all the methods in the Page class related to HTML and script code to
be inserted in the client page.

TABLE 5-13 Script-Related Methods

Method Description

GetCallbackEventReference Obtains a reference to a client-side function that, when invoked,
initiates a client callback to server-side events.

GetPostBackClientEvent Calls into GetCallbackEventReference.

GetPostBackClientHyperlink Appends javascript: to the beginning of the return string received

from GetPostBackEventReference. For example:
Jjavascript:__doPostBack(‘CtlID","”)

GetPostBackEventReference Returns the prototype of the client-side script function that
causes, when invoked, a postback. It takes a Control and an
argument, and it returns a string like this:

__doPostBack('CtlID’,")

IsClientScriptBlockRegistered Determines whether the specified client script is registered with
the page. It's marked as obsolete.

IsStartupScriptRegistered Determines whether the specified client startup script is
registered with the page. It's marked as obsolete.

198

Part Il ASP.NET Pages and Server Controls

Method Description

RegisterArrayDeclaration Use this method to add an ECMAScript array to the client page.
This method accepts the name of the array and a string that will
be used verbatim as the body of the array. For example, if you
call the method with arguments such as theArray and “a’, 'b",
you get the following JavaScript code:
var theArray = new Array(‘a’, 'b’);
It's marked as obsolete.

RegisterClientScriptBlock An ASP.NET page uses this method to emit client-side script
blocks in the client page just after the opening tag of the HTML
<form> element. It's marked as obsolete.

RegisterHiddenField Use this method to automatically register a hidden field on the
page. It's marked as obsolete.

RegisterOnSubmitStatement Use this method to emit client script code that handles the client
OnSubmit event. The script should be a JavaScript function call to
client code registered elsewhere. It's marked as obsolete.

RegisterStartupScript An ASP.NET page uses this method to emit client-side script
blocks in the client page just before closing the HTML <form>
element. /t's marked as obsolete.

SetFocus Sets the browser focus to the specified control.

As you can see, some methods in Table 5-13, which are defined and usable in ASP.NET 1.x,
are marked as obsolete. In ASP.NET 4 applications, you should avoid calling them and resort
to methods with the same name exposed out of the ClientScript property.

// Avoid this in ASP.NET 4
Page.RegisterArrayDeclaration(...);

// Use this in ASP.NET 4
Page.ClientScript.RegisterArrayDeclaration(...);

The ClientScript property returns an instance of the ClientScriptManager class and represents
the central console for registering script code to be programmatically emitted within the

page.

Methods listed in Table 5-13 let you emit JavaScript code in the client page. When you use
any of these methods, you actually tell the page to insert that script code when the page is
rendered. So when any of these methods execute, the script-related information is simply

cached in internal structures and used later when the page object generates its HTML text.

Events of the Page Class

The Page class fires a few events that are notified during the page life cycle. As Table 5-14
shows, some events are orthogonal to the typical life cycle of a page (initialization, postback,

Chapter 5 Anatomy of an ASP.NET Page 199

and rendering phases) and are fired as extra-page situations evolve. Let’s briefly review the
events and then attack the topic with an in-depth discussion of the page life cycle.

TABLE 5-14 Events a Page Can Fire

Event Description

AbortTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction
when a transaction aborts

CommitTransaction Occurs for ASP.NET pages marked to participate in an automatic transaction
when a transaction commits

DataBinding Occurs when the DataBind method is called on the page to bind all the child
controls to their respective data sources

Disposed Occurs when the page is released from memory, which is the last stage of
the page life cycle

Error Occurs when an unhandled exception is thrown.

Init Occurs when the page is initialized, which is the first step in the page life

cycle

InitComplete

Occurs when all child controls and the page have been initialized

Load Occurs when the page loads up, after being initialized

LoadComplete Occurs when the loading of the page is completed and server events have
been raised

Prelnit Occurs just before the initialization phase of the page begins

PreLoad Occurs just before the loading phase of the page begins

PreRender Occurs when the page is about to render

PreRenderComplete Occurs just before the pre-rendering phase begins

SaveStateComplete Occurs when the view state of the page has been saved to the persistence
medium

Unload Occurs when the page is unloaded from memory but not yet disposed of

The Eventing Model

When a page is requested, its class and the server controls it contains are responsible for
executing the request and rendering HTML back to the client. The communication between
the client and the server is stateless and disconnected because it's based on the HTTP proto-
col. Real-world applications, though, need some state to be maintained between successive
calls made to the same page. With ASP, and with other server-side development platforms
such as Java Server Pages and PHP, the programmer is entirely responsible for persisting the
state. In contrast, ASP.NET provides a built-in infrastructure that saves and restores the state
of a page in a transparent manner. In this way, and in spite of the underlying stateless proto-
col, the client experience appears to be that of a continuously executing process. It's just an

illusion, though.

200

Part Il ASP.NET Pages and Server Controls

Introducing the View State

The illusion of continuity is created by the view state feature of ASP.NET pages and is based
on some assumptions about how the page is designed and works. Also, server-side Web
controls play a remarkable role. In brief, before rendering its contents to HTML, the page en-
codes and stuffs into a persistence medium (typically, a hidden field) all the state information
that the page itself and its constituent controls want to save. When the page posts back, the
state information is deserialized from the hidden field and used to initialize instances of the
server controls declared in the page layout.

The view state is specific to each instance of the page because it is embedded in the HTML.
The net effect of this is that controls are initialized with the same values they had the last
time the view state was created—that is, the last time the page was rendered to the cli-

ent. Furthermore, an additional step in the page life cycle merges the persisted state with
any updates introduced by client-side actions. When the page executes after a postback, it
finds a stateful and up-to-date context just as it is working over a continuous point-to-point
connection.

Two basic assumptions are made. The first assumption is that the page always posts to itself
and carries its state back and forth. The second assumption is that the server-side controls
have to be declared with the runat=server attribute to spring to life when the page posts
back.

The Single Form Model

ASP.NET pages are built to support exactly one server-side <form> tag. The form must
include all the controls you want to interact with on the server. Both the form and the
controls must be marked with the runat attribute; otherwise, they will be considered plain
text to be output verbatim.

A server-side form is an instance of the HtmlForm class. The HtmlForm class does not ex-
pose any property equivalent to the Action property of the HTML <form> tag. The reason is
that an ASP.NET page always posts to itself. Unlike the Action property, other common form
properties such as Method and Target are fully supported.

Valid ASP.NET pages are also those that have no server-side forms and those that run HTML
forms—a <form> tag without the runat attribute. In an ASP.NET page, you can also have
both HTML and server forms. In no case, though, can you have more than one <form> tag
with the runat attribute set to server. HTML forms work as usual and let you post to any page
in the application. The drawback is that in this case no state will be automatically restored. In
other words, the ASP.NET Web Forms model works only if you use exactly one server <form>
element. We'll return to this topic in Chapter 9.

Chapter 5 Anatomy of an ASP.NET Page 201
Asynchronous Pages

ASP.NET pages are served by an HTTP handler like an instance of the Page class. Each request
takes up a thread in the ASP.NET thread pool and releases it only when the request com-
pletes. What if a frequently requested page starts an external and particularly lengthy task?
The risk is that the ASP.NET process is idle but has no free threads in the pool to serve incom-
ing requests for other pages. This happens mostly because HTTP handlers, including page
classes, work synchronously. To alleviate this issue, ASP.NET has supported asynchronous
handlers since version 1.0 through the IHTTPAsyncHandler interface. Starting with

ASP.NET 2.0, creating asynchronous pages was made easier thanks to specific support from
the framework.

Two aspects characterize an asynchronous ASP.NET page: a tailor-made attribute on the
@Page directive, and one or more tasks registered for asynchronous execution. The asyn-
chronous task can be registered in either of two ways. You can define a Begin/End pair of
asynchronous handlers for the PreRenderComplete event or create a PageAsyncTask object to
represent an asynchronous task. This is generally done in the Page_Load event, but any time
is fine provided that it happens before the PreRender event fires.

In both cases, the asynchronous task is started automatically when the page has progressed
to a well-known point. Let’s dig out more details.

Note An ASP.NET asynchronous page is still a class that derives from Page. There are no special
base classes to inherit for building asynchronous pages.

The Async Attribute

The new Async attribute on the @Page directive accepts a Boolean value to enable or disable
asynchronous processing. The default value is false.

<%@ Page Async="true" ... %>

The Async attribute is merely a message for the page parser. When used, the page parser
implements the /HttpAsyncHandler interface in the dynamically generated class for the
.aspx resource. The Async attribute enables the page to register asynchronous handlers for
the PreRenderComplete event. No additional code is executed at run time as a result of the
attribute.

Let's consider a request for a TestAsync.aspx page marked with the Async directive attribute.
The dynamically created class, named ASP.TestAsync_aspx, is declared as follows:

public class TestAsync_aspx : TestAsync, IHttpHandler, IHttpAsyncHandler
{

3

202

Part Il ASP.NET Pages and Server Controls

TestAsync is the code file class and inherits from Page or a class that in turn inherits from
Page. IHttpAsyncHandler is the canonical interface that has been used for serving resources
asynchronously since ASP.NET 1.0.

The AddOnPreRenderCompleteAsync Method

The AddOnPreRenderCompleteAsync method adds an asynchronous event handler for the
page's PreRenderComplete event. An asynchronous event handler consists of a Begin/End pair
of event handler methods, as shown here:

AddOnPreRenderCompleteAsync (
new BeginEventHandler(BeginTask),
new EndEventHandler(EndTask)

);

The call can be simplified as follows:

AddOnPreRenderCompleteAsync(BeginTask, EndTask);

BeginEventHandler and EndEventHandler are delegates defined as follows:

IAsyncResult BeginEventHandTer(
object sender,
EventArgs e,
AsyncCallback cb,
object state)

void EndEventHandler(
IAsyncResult ar)

In the code file, you place a call to AddOnPreRenderCompleteAsync as soon as you can, and
always earlier than the PreRender event can occur. A good place is usually the Page_Load
event. Next, you define the two asynchronous event handlers.

The Begin handler is responsible for starting any operation you fear can block the underlying
thread for too long. The handler is expected to return an /AsyncResult object to describe the
state of the asynchronous task. When the lengthy task has completed, the End handler final-
izes the original request and updates the page's user interface and controls. Note that you
don’t necessarily have to create your own object that implements the /AsyncResult interface.
In most cases, in fact, to start lengthy operations you just use built-in classes that already
implement the asynchronous pattern and provide /IAsyncResult ready-made objects.

The page progresses up to entering the PreRenderComplete stage. You have a pair of asyn-
chronous event handlers defined here. The page executes the Begin event, starts the lengthy
operation, and is then suspended until the operation terminates. When the work has been
completed, the HTTP runtime processes the request again. This time, though, the request
processing begins at a later stage than usual. In particular, it begins exactly where it left
off—that is, from the PreRenderComplete stage. The End event executes, and the page finally

WV

Chapter 5 Anatomy of an ASP.NET Page 203

completes the rest of its life cycle, including view-state storage, markup generation, and
unloading.

Important The Begin and End event handlers are called at different times and generally on
different pooled threads. In between the two methods calls, the lengthy operation takes place.
From the ASP.NET runtime perspective, the Begin and End events are similar to serving distinct
requests for the same page. It's as if an asynchronous request is split in two distinct steps: a Begin
step and End step. Each request is always served by a pooled thread. Typically, the Begin and

End steps are served by threads picked up from the ASP.NET thread pool. The lengthy operation,
instead, is not managed by ASP.NET directly and doesn’t involve any of the pooled threads. The
lengthy operation is typically served by a thread selected from the operating system completion
thread pool.

The Significance of PreRenderComplete

So an asynchronous page executes up until the PreRenderComplete stage is reached and
then blocks while waiting for the requested operation to complete asynchronously. When the
operation is finally accomplished, the page execution resumes from the PreRenderComplete
stage. A good question to ask would be the following: “Why PreRenderComplete?” What
makes PreRenderComplete such a special event?

By design, in ASP.NET there’s a single unwind point for asynchronous operations (also
familiarly known as the async point). This point is located between the PreRender and
PreRenderComplete events. When the page receives the PreRender event, the async point
hasn't been reached yet. When the page receives PreRenderComplete, the async point has
passed.

Building a Sample Asynchronous Page

Let's roll a first asynchronous test page to download and process some RSS feeds. The page
markup is quite simple indeed:

<%@ Page Async="true" Language="C#" AutoEventWireup="true"
CodeFile="TestAsync.aspx.cs" Inherits="TestAsync" %>
<html>
<body>
<form id="forml" runat="server">
<% = RssData %>
</form>
</body>
</htm1>

204 Part Il ASP.NET Pages and Server Controls

The code file is shown next, and it attempts to download the RSS feed from my personal
blog:

public partial class TestAsync : System.Web.UI.Page

{
const String RSSFEED = "http://weblogs.asp.net/despos/rss.aspx";
private WebRequest req;

public String RssData { get; set; }

void Page_Load (Object sender, EventArgs e)
{

AddOnPreRenderCompleteAsync(BeginTask, EndTask);
}

TIAsyncResult BeginTask(Object sender,
EventArgs e, AsyncCallback cb, Object state)
{
// Trace
Trace.Warn("Begin async: Thread=" +
Thread.CurrentThread.ManagedThreadId.ToString());

// Prepare to make a Web request for the RSS feed
req = WebRequest.Create(RSSFEED);

// Begin the operation and return an IAsyncResult object

return req.BeginGetResponse(cb, state);

void EndTask(IAsyncResult ar)
{
// This code will be called on a(nother) pooled thread

using (var response = req.EndGetResponse(ar))

{
String text;
using (var reader = new StreamReader(response.GetResponseStream()))
{
text = reader.ReadToEnd();
}
// Process the RSS data
rssData = ProcessFeed(text);
}
// Trace

Trace.Warn("End async: Thread=" +
Thread.CurrentThread.ManagedThreadId.ToString();

// The page 1is updated using an ASP-style code block in the ASPX
// source that displays the contents of the rssData variable

http://weblogs.asp.net/despos/rss.aspx

Chapter 5 Anatomy of an ASP.NET Page 205

String ProcessFeed(String feed)

{
// Build the page output from the XML input

}

As you can see, such an asynchronous page differs from a standard one only for the
aforementioned elements—the Async directive attribute and the pair of asynchronous event
handlers. Figure 5-4 shows the sample page in action.

‘& nttp://localhost51800/asyncblog.aspx - Windows Internet Explorer
@O - |g, hitp://localhost:51800/: v| 23} ‘ ‘f| X ‘ |b Bing

i Favorites | o5
| @ nttpi/localhost 51800/asyncblog... \7| far - ~ [@ v Page~ Safetyv Took+ @~

PROGRAMMING ASP.NET 4

Demos The Book The Class

NET ARCHITECTONICS
Dino Esposito on software design, .NET architecture, Web, cloud and Energynet

+ Programming MVC?2 is out with code on Sat, 12 Jun 2010 07:59:00 GMT

- Crushed by complexity—me too, and for a long time on Thu, 12 Nov 2009 15:37:00 GMT
+ ASP.NET MVC is MUCH better than MS seems to think on Wed, 11 Nov 2009 05:08:00 GMT |=
- The dead-end of Web Forms on Thu, 01 Oct 2009 14:01:00 GMT

« Silverlight Coding Contest on Thu, 02 Jul 2009 15:30:00 GMT

- DataForm Control in Silverlight 3 on Thu, 02 Jul 2009 15:25:00 GMT

+ ASP.NET 4.0: more control on viewstate management on Sat, 13 Jun 2009 20:04:00 GMT
- Give a chance to prediction on Thu, 21 May 2009 08:04:00 GMT

= Testability vs. Testing on Wed, 13 May 2009 09:26:00 GMT

- Things to say on Sun, 03 May 2009 07:33:.00 GMT

= AJAX Architectures Condensed on Fri, 17 Apr 2009 14:40:00 GMT

- Alovely couple (of architecture books) on Thu, 16 Apr 2009 18:15:00 GMT

* Web Forms vs. ASP.NET MVC on Sat, 11 Apr 2009 11:03:00 GMT

- iBrii is gaining ground on Sat, 04 Apr 2009 20:19:00 GMT

« Native, Immigrant, or Practitioner? on Tue, 31 Mar 2009 06:48:00 GMT —

< i] +

+/ Trusted sites | Protected Mode: Off 45 v 0% v

FIGURE 5-4 A sample asynchronous page downloading links from a blog.

It would also be interesting to take a look at the messages traced by the page. Figure 5-5
provides visual clues of it. The Begin and End stages are served by different threads and take
place at different times.

Note the time elapsed between the Exit BeginTask and Enter EndTask stages. It is much

longer than intervals between any other two consecutive operations. It's in that interval that
the lengthy operation—in this case, downloading and processing the RSS feed—took place.
The interval also includes the time spent to pick up another thread from the pool to serve the
second part of the original request.

206

Part Il ASP.NET Pages and Server Controls

‘& nttp://localhost51800/asyncblog.aspx - Windows Internet Explorer E=x IR ==
& () = [E] mofocamostsizns +| &[4[x | sing £ |
i Favorites | 55

{& http://localhost:51800/asyncblog... X v B v 1 é% v Pagev Sefetyv Took~ @v

Request Details

Session Id: SykzcayhudcvkStk21djjbdu
Time of Request: 8§/18/2010 5:39:00 PM
Request Encoding: Unicode (UTF-8

Request Type:
Status Code:
Response Encoding:

Trace Information

Category Message From First(s) From Last(s)
aspx.page Begin Prelnit
@spx.page End Prelnit 0.00040454773243297 0.000405 E
aspx.page Begin Init 0.00042974447701357 0.000025
aspx.page End Init 0.000462406923692126 0.000033
aspx.page Begin InitComplete 0.00048013796617477 0.000018
@spx.page End InitComplete 0.000496469189514048 0.000016
aspx.page Begin PreLoad 0.000512333800472204 0.000016
@spx.page End PreLoad 0.000530064848954848 0.000018
aspx.page Begin Load 0.000546396072294126 0.000016
aspx.page End Load 0.000566926753063504 0.000021
aspx.page Begin LoadComplete 0.020218054494026 0.019651
@spx.page End LoadComplete 0.0202371853556521 0.000019
aspx.page Begin PreRender 0.0202539831853725 0.000017
@spx.page End PreRender 0.0203585030147438 0.000105
Begin async: Thread=60 0.0203818333337999 0.000023
End async: Thread=8 0.549003468751837 0.528622
aspx.page Begin PreRenderComplete 0.549076259347292 0.000073
@spx.page End PreRenderComplete 0.549101922698254 0.000026
aspx.page Begin SaveState 0.549535866632698 0.000434
@spx.page End SaveState 0.549925482960935 0.000390
aspx.page Begin SaveStateComplete 0.54995254613104 0.000027
@spx.page End SaveStateComplete 0.62351350872134 0.073561
aspx.page Begin Render 0.623570901306218 0.000057

spx.page End Render 0.624385129441276 0.000814

Done /' Trusted sites | Protected Mode: Off v H100%

FIGURE 5-5 The traced request details clearly show the two steps needed to process a request

asynchronously.

The RegisterAsyncTask Method

The AddOnPreRenderCompleteAsync method is not the only tool you have to register an
asynchronous task. The RegisterAsyncTask method is, in most cases, an even better solu-
tion. RegisterAsyncTask is a void method and accepts a PageAsyncTask object. As the name
suggests, the PageAsyncTask class represents a task to execute asynchronously.

The following code shows how to

rework the sample page that reads some RSS feed and

make it use the RegisterAsyncTask method:

void Page_Load (object sender, EventArgs e)
{

PageAsyncTask task = new PageAsyncTask(
new BeginEventHandler(BeginTask),
new EndEventHandler(EndTask),
null,
null);

RegisterAsyncTask(task);

Chapter 5 Anatomy of an ASP.NET Page 207

The constructor accepts up to five parameters, as shown in the following code:

pubTlic PageAsyncTask(
BeginEventHandler beginHandler,
EndEventHandler endHandler,
EndEventHandler timeoutHandler,
object state,
bool executeInParallel)

The beginHandler and endHandler parameters have the same prototype as the corresponding
handlers you use for the AddOnPreRenderCompleteAsync method. Compared to the
AddOnPreRenderCompleteAsync method, PageAsyncTask lets you specify a timeout function
and an optional flag to enable multiple registered tasks to execute in parallel.

The timeout delegate indicates the method that will get called if the task is not completed
within the asynchronous timeout interval. By default, an asynchronous task times out if it's
not completed within 45 seconds. You can indicate a different timeout in either the configu-
ration file or the @Page directive. Here's what you need if you opt for the web.config file:

<system.web>
<pages asyncTimeout="30" />
</system.web>

The @Page directive contains an integer AsyncTimeout attribute that you set to the desired
number of seconds.

Just as with the AddOnPreRenderCompleteAsync method, you can pass some state to the
delegates performing the task. The state parameter can be any object.

The execution of all tasks registered is automatically started by the Page class code just be-
fore the async point is reached. However, by placing a call to the ExecuteRegisteredAsyncTasks
method on the Page class, you can take control of this aspect.

Choosing the Right Approach

When should you use AddOnPreRenderCompleteAsync, and when is RegisterAsyncTask a
better option? Functionally speaking, the two approaches are nearly identical. In both cases,
the execution of the request is split in two parts: before and after the async point. So where's
the difference?

The first difference is logical. RegisterAsyncTask is an APl designed to run tasks
asynchronously from within a page—and not just asynchronous pages with
Async=true. AddOnPreRenderCompleteAsync is an API specifically designed for
asynchronous pages. That said, a couple of further differences exist.

One is that RegisterAsyncTask executes the End handler on a thread with a richer context
than AddOnPreRenderCompleteAsync. The thread context includes impersonation and

208

Part Il ASP.NET Pages and Server Controls

HTTP context information that is missing in the thread serving the End handler of a classic
asynchronous page. In addition, RegisterAsyncTask allows you to set a timeout to ensure that
any task doesn't run for more than a given number of seconds.

The other difference is that RegisterAsyncTask makes the implementation of multiple calls
to remote sources significantly easier. You can have parallel execution by simply setting a
Boolean flag, and you don't need to create and manage your own /AsyncResult object.

The bottom line is that you can use either approach for a single task, but you should opt for
RegisterAsyncTask when you have multiple tasks to execute simultaneously.

Async-Compliant Operations

Which required operations force, or at least strongly suggest, the adoption of an asynchro-
nous page? Any operation can be roughly labeled in either of two ways: CPU bound or 1/0
bound. CPU bound indicates an operation whose completion time is mostly determined by
the speed of the processor and amount of available memory. I/O bound indicates the oppo-
site situation, where the CPU mostly waits for other devices to terminate.

The need for asynchronous processing arises when an excessive amount of time is spent
getting data in and out of the computer in relation to the time spent processing it. In such
situations, the CPU is idle or underused and spends most of its time waiting for something to
happen. In particular, I/O-bound operations in the context of ASP.NET applications are even
more harmful because serving threads are blocked too, and the pool of serving threads is a
finite and critical resource. You get real performance advantages if you use the asynchronous
model on I/O-bound operations.

Typical examples of I/0-bound operations are all operations that require access to some sort
of remote resource or interaction with external hardware devices. Operations on non-local
databases and non-local Web service calls are the most common 1/0-bound operations for
which you should seriously consider building asynchronous pages.

Important Asynchronous operations exist to speed up lengthy operations, but the benefits
they provide are entirely enjoyed on the server side. There's no benefit for the end user in adopt-
ing asynchronous solutions. The “time to first byte” doesn't change for the user in a synchronous
or asynchronous scenario. Using AJAX solutions would give you at least the means to (easily)
display temporary messages to provide information about the progress. However, if it's not
coded asynchronously on the server, any lengthy operation that goes via AJAX is more harmful
for the system than a slow-but-asynchronous classic Web Forms page.

Chapter 5 Anatomy of an ASP.NET Page 209

The Page Life Cycle

A page instance is created on every request from the client, and its execution causes itself
and its contained controls to iterate through their life-cycle stages. Page execution begins
when the HTTP runtime invokes ProcessRequest, which kicks off the page and control life
cycles. The life cycle consists of a sequence of stages and steps. Some of these stages can be
controlled through user-code events; some require a method override. Some other stages—
or more exactly, substages—are just not public, are out of the developer's control, and are
mentioned here mostly for completeness.

The page life cycle is articulated in three main stages: setup, postback, and finalization. Each
stage might have one or more substages and is composed of one or more steps and points
where events are raised. The life cycle as described here includes all possible paths. Note that
there are modifications to the process depending upon cross-page posts, script callbacks,
and postbacks.

Page Setup

When the HTTP runtime instantiates the page class to serve the current request, the page
constructor builds a tree of controls. The tree of controls ties into the actual class that the
page parser created after looking at the ASPX source. Note that when the request processing
begins, all child controls and page intrinsics—such as HTTP context, request objects, and
response objects—are set.

The very first step in the page lifetime is determining why the run time is processing the page
request. There are various possible reasons: a normal request, postback, cross-page post-
back, or callback. The page object configures its internal state based on the actual reason,
and it prepares the collection of posted values (if any) based on the method of the request—
either GET or POST. After this first step, the page is ready to fire events to the user code.

The Prelnit Event

This event is the entry point in the page life cycle. When the event fires, no master page or
theme has been associated with the page as yet. Furthermore, the page scroll position has
been restored, posted data is available, and all page controls have been instantiated and
default to the properties values defined in the ASPX source. (Note that at this time controls
have no ID, unless it is explicitly set in the .aspx source.) Changing the master page or the
theme programmatically is possible only at this time. This event is available only on the page.
IsCallback, IsCrossPagePostback, and IsPostback are set at this time.

210 Part Il ASP.NET Pages and Server Controls

The Init Event

The master page, if one exists, and the theme have been set and can't be changed anymore.
The page processor—that is, the ProcessRequest method on the Page class—proceeds and
iterates over all child controls to give them a chance to initialize their state in a context-
sensitive way. All child controls have their On/nit method invoked recursively. For each control
in the control collection, the naming container and a specific ID are set, if not assigned in the
source.

The Init event reaches child controls first and the page later. At this stage, the page and
controls typically begin loading some parts of their state. At this time, the view state is not
restored yet.

The InitComplete Event

Introduced with ASP.NET 2.0, this page-only event signals the end of the initialization
substage. For a page, only one operation takes place in between the Init and InitComplete
events: tracking of view-state changes is turned on. Tracking view state is the operation
that ultimately enables controls to really persist in the storage medium any values that are
programmatically added to the ViewState collection. Simply put, for controls not tracking
their view state, any values added to their ViewState are lost across postbacks.

All controls turn on view-state tracking immediately after raising their Init event, and the
page is no exception. (After all, isn't the page just a control?)

W Important In light of the previous statement, note that any value written to the ViewState
collection before InitComplete won't be available on the next postback.

View-State Restoration

If the page is being processed because of a postback—that is, if the IsPostBack property is
true—the contents of the __VIEWSTATE hidden field is restored. The __VIEWSTATE hidden
field is where the view state of all controls is persisted at the end of a request. The overall
view state of the page is a sort of call context and contains the state of each constituent
control the last time the page was served to the browser.

At this stage, each control is given a chance to update its current state to make it identical to
what it was on last request. There's no event to wire up to handle the view-state restoration.
If something needs be customized here, you have to resort to overriding the LoadViewState

method, defined as protected and virtual on the Control class.

Chapter 5 Anatomy of an ASP.NET Page 211

Processing Posted Data

All the client data packed in the HTTP request—that is, the contents of all input fields defined
with the <form> tag—are processed at this time. Posted data usually takes the following
form:

TextBoxl=text&DropDownListl=selectedItem&Buttonl=Submit

It's an &-separated string of name/value pairs. These values are loaded into an internal-use
collection. The page processor attempts to find a match between names in the posted col-
lection and ID of controls in the page. Whenever a match is found, the processor checks
whether the server control implements the /PostBackDataHandler interface. If it does, the
methods of the interface are invoked to give the control a chance to refresh its state in light
of the posted data. In particular, the page processor invokes the LoadPostData method on
the interface. If the method returns true—that is, the state has been updated—the control is
added to a separate collection to receive further attention later.

If a posted name doesn't match any server controls, it is left over and temporarily parked in a
separate collection, ready for a second try later.

Note As mentioned, during the processing of posted data, posted names are matched against
the ID of controls in the page. Which ID? Is it the ClientID property, or rather, is it the UniquelD
property? Posted names are matched against the unique ID of page controls. Client IDs are
irrelevant in this instance because they are not posted back to the server.

The Preload Event

The PreLoad event merely indicates that the page has terminated the system-level
initialization phase and is going to enter the phase that gives user code in the page a chance
to further configure the page for execution and rendering. This event is raised only for pages.

The Load Event

The Load event is raised for the page first and then recursively for all child controls. At this
time, controls in the page tree are created and their state fully reflects both the previous
state and any data posted from the client. The page is ready to execute any initialization
code related to the logic and behavior of the page. At this time, access to control properties
and view state is absolutely safe.

Handling Dynamically Created Controls

When all controls in the page have been given a chance to complete their initialization
before display, the page processor makes a second try on posted values that haven't been
matched to existing controls. The behavior described earlier in the "Processing Posted Data”

212

Part Il ASP.NET Pages and Server Controls

section is repeated on the name/value pairs that were left over previously. This apparently
weird approach addresses a specific scenario—the use of dynamically created controls.

Imagine adding a control to the page tree dynamically—for example, in response to a certain
user action. As mentioned, the page is rebuilt from scratch after each postback, so any in-
formation about the dynamically created control is lost. On the other hand, when the page’s
form is submitted, the dynamic control there is filled with legal and valid information that is
regularly posted. By design, there can't be any server control to match the ID of the dynamic
control the first time posted data is processed. However, the ASP.NET framework recognizes
that some controls could be created in the Load event. For this reason, it makes sense to give
it a second try to see whether a match is possible after the user code has run for a while.

If the dynamic control has been re-created in the Load event, a match is now possible and
the control can refresh its state with posted data.

Handling the Postback

The postback mechanism is the heart of ASP.NET programming. It consists of posting form
data to the same page using the view state to restore the call context—that is, the same state
of controls existing when the posting page was last generated on the server.

After the page has been initialized and posted values have been taken into account, it's

about time that some server-side events occur. There are two main types of events. The first
type of event signals that certain controls had the state changed over the postback. The sec-
ond type of event executes server code in response to the client action that caused the post.

Detecting Control State Changes

The whole ASP.NET machinery works around an implicit assumption: there must be a one-to-
one correspondence between some HTML input tags that operate in the browser and some
other ASP.NET controls that live and thrive in the Web server. The canonical example of this
correspondence is between <input type="text”> and TextBox controls. To be more technically
precise, the link is given by a common ID name. When the user types some new text into an
input element and then posts it, the corresponding TextBox control—that is, a server control
with the same ID as the input tag—is called to handle the posted value. | described this step
in the “Processing Posted Data” section earlier in the chapter.

For all controls that had the LoadPostData method return true, it's now time to execute the
second method of the /PostBackDataHandler interface: the RaisePostDataChangedEvent
method. The method signals the control to notify the ASP.NET application that the state of
the control has changed. The implementation of the method is up to each control. However,
most controls do the same thing: raise a server event and give page authors a way to kick

Chapter 5 Anatomy of an ASP.NET Page 213

in and execute code to handle the situation. For example, if the Text property of a TextBox
changes over a postback, the TextBox raises the TextChanged event to the host page.

Executing the Server-Side Postback Event

Any page postback starts with some client action that intends to trigger a server-side action.
For example, clicking a client button posts the current contents of the displayed form to

the server, thus requiring some action and a new, refreshed page output. The client button
control—typically, a hyperlink or a submit button—is associated with a server control that
implements the /PostBackEventHandler interface.

The page processor looks at the posted data and determines the control that caused the
postback. If this control implements the /PostBackEventHandler interface, the processor
invokes the RaisePostBackEvent method. The implementation of this method is left to the
control and can vary quite a bit, at least in theory. In practice, though, any posting con-
trol raises a server event letting page authors write code in response to the postback. For
example, the Button control raises the onclick event.

There are two ways a page can post back to the server—by using a submit button (that is,
<input type="submit”>) or through script. A submit HTML button is generated through the
Button server control. The LinkButton control, along with a few other postback controls, in-
serts some script code in the client page to bind an HTML event (for example, onclick) to the
form'’s submit method in the browser's HTML object model. We'll return to this topic in the
next chapter.

Note The UseSubmitBehavior property exists on the Button class to let page developers control
the client behavior of the corresponding HTML element as far as form submission is concerned.
By default, a Button control behaves like a submit button. By setting UseSubmitBehavior to

false, you change the output to <input type="button”>, but at the same time the onclick prop-
erty of the client element is bound to predefined script code that just posts back. In the end,

the output of a Button control remains a piece of markup that ultimately posts back; through
UseSubmitBehavior, you can gain some more control over that.

The LoadComplete Event

The page-only LoadComplete event signals the end of the page-preparation phase. Note that
no child controls will ever receive this event. After firing LoadComplete, the page enters its
rendering stage.

214 Part Il ASP.NET Pages and Server Controls
Page Finalization

After handling the postback event, the page is ready for generating the output for the
browser. The rendering stage is divided in two parts: pre-rendering and markup generation.
The pre-rendering substage is in turn characterized by two events for pre-processing and
post-processing.

The PreRender Event

By handling this event, pages and controls can perform any updates before the output

is rendered. The PreRender event fires for the page first and then recursively for all con-
trols. Note that at this time the page ensures that all child controls are created. This step is
important, especially for composite controls.

The PreRenderComplete Event

Because the PreRender event is recursively fired for all child controls, there's no way for the
page author to know when the pre-rendering phase has been completed. For this reason,
ASP.NET supports an extra event raised only for the page. This event is PreRenderComplete.

The SaveStateComplete Event

The next step before each control is rendered out to generate the markup for the page

is saving the current state of the page to the view-state storage medium. Note that every
action taken after this point that modifies the state could affect the rendering, but it is not
persisted and won't be retrieved on the next postback. Saving the page state is a recur-

sive process in which the page processor walks its way through the whole page tree, call-

ing the SaveViewState method on constituent controls and the page itself. SaveViewState

is a protected and virtual (that is, overridable) method that is responsible for persisting the
content of the ViewState dictionary for the current control. (We'll come back to the ViewState
dictionary in Chapter 19.)

ASP.NET server controls can provide a second type of state, known as a “control state.” A
control state is a sort of private view state that is not subject to the application’s control. In
other words, the control state of a control can't be programmatically disabled, as is the case
with the view state. The control state is persisted at this time, too. Control state is another
state storage mechanism whose contents are maintained across page postbacks much like
the view state, but the purpose of the control state is to maintain necessary information for
a control to function properly. That is, state behavior property data for a control should be
kept in the control state, while user interface property data (such as the control’s contents)
should be kept in the view state.

The SaveStateComplete event occurs when the state of controls on the page have been
completely saved to the persistence medium.

Chapter 5 Anatomy of an ASP.NET Page 215

Note The view state of the page and all individual controls is accumulated in a unique
memory structure and then persisted to storage medium. By default, the persistence medium
is a hidden field named __VIEWSTATE. Serialization to, and deserialization from, the per-
sistence medium is handled through a couple of overridable methods on the Page class:
SavePageStateToPersistenceMedium and LoadPageStateFromPersistenceMedium. For example, by
overriding these two methods you can persist the page state in a server-side database or in the
session state, dramatically reducing the size of the page served to the user. Hold on, though. This
option is not free of issues, and we'll talk more about it in Chapter 19.

Generating the Markup

The generation of the markup for the browser is obtained by calling each constituent control
to render its own markup, which will be accumulated in a buffer. Several overridable methods
allow control developers to intervene in various steps during the markup generation—begin

tag, body, and end tag. No user event is associated with the rendering phase.

The Unload Event

The rendering phase is followed by a recursive call that raises the Unload event for each
control, and finally for the page itself. The Unload event exists to perform any final clean-
up before the page object is released. Typical operations are closing files and database
connections.

Note that the unload notification arrives when the page or the control is being unloaded but
has not been disposed of yet. Overriding the Dispose method of the Page class—or more
simply, handling the page’s Disposed event—provides the last possibility for the actual page
to perform final clean up before it is released from memory. The page processor frees the
page object by calling the method Dispose. This occurs immediately after the recursive call to
the handlers of the Unload event has completed.

Summary

ASP.NET is a complex technology built on top of a substantially thick—and, fortunately,

solid and stable—Web infrastructure. To provide highly improved performance and a richer
programming toolset, ASP.NET builds a desktop-like abstraction model, but it still has to rely
on HTTP and HTML to hit the target and meet end-user expectations.

It is exactly this thick abstraction layer that has been responsible for the success of Web
Forms for years, but it's being questioned these days as ASP.NET MVC gains acceptance
and prime-time use. A thick abstraction layer makes programming quicker and easier, but it
necessarily takes some control away from developers. This is not necessarily a problem, but
its impact depends on the particular scenario you are considering.

216

Part Il ASP.NET Pages and Server Controls

There are two relevant aspects in the ASP.NET Web Forms model: the process model and

the page object model. Each request of a URL that ends with .aspx is assigned to an applica-
tion object working within the CLR hosted by the worker process. The request results in a
dynamically compiled class that is then instantiated and put to work. The Page class is the
base class for all ASP.NET pages. An instance of this class runs behind any URL that ends with
.aspx. In most cases, you won't just build your ASP.NET pages from the Page class directly,
but you'll rely on derived classes that contain event handlers and helper methods, at the very
minimum. These classes are known as code-behind classes.

The class that represents the page in action implements the ASP.NET eventing model based
on two pillars: the single form model (page reentrancy) and server controls. The page life
cycle, fully described in this chapter, details the various stages (and related substages) a page
passes through on the way to generate the markup for the browser. A deep understand-

ing of the page life cycle and eventing model is key to diagnosing possible problems and
implementing advanced features quickly and efficiently.

In this chapter, | mentioned controls several times. Server controls are components that get
input from the user, process the input, and output a response as HTML. In the next chapter,
we'll explore the internal architecture of server controls and other working aspects of Web
Forms pages.

Chapter 6

ASP.NET Core Server Controls

“Everything happens to everybody sooner or later if there is time enough.”

—George Bernard Shaw

ASP.NET Web Forms pages are typically made of a markup template—the ASPX file—and a
back-end class—the code-behind class. In the ASPX template, you find literal text mixed with
special markup tags (featuring the runat attribute) that identify server controls. In the code-
behind class, you insert some request-processing logic—mostly presentation logic. So what's
the role of server controls?

Server controls are components with a declarative and programming interface used to
generate a specific piece of HTML markup based on the request and associated presenta-
tion logic. As you saw in Chapter 5, “Anatomy of an ASP.NET Page,” anything you place in
the ASPX template is mapped to a server control. The ASP.NET runtime then combines the
output of all controls and serves the client an HTML response to display in a browser. The
programming richness of ASP.NET springs from the wide library of server controls that covers
the basic tasks of HTML interaction—for example, collecting text through input tags—as
well as more advanced functionalities such as calendaring, menus, tree views, and grid-based
data display.

There are two main families of server controls: HTML server controls and Web server controls.
HTML server controls are implemented through server-side classes whose programming
interface faithfully represents the standard set of attributes for the corresponding HTML

tag. Web controls, in turn, are a more abstract library of controls in which adherence of the
proposed APl to HTML syntax is much less strict. As a result, Web and HTML controls share

a large common subset of functionalities and, in spite of a few exceptions, we could say that
Web controls, functionally speaking, are a superset of HTML controls. Web controls also
feature a richer development environment with a larger set of methods, properties, and
events, and they participate more actively in the page life cycle.

Let's start looking at the generalities of ASP.NET server controls.

217

218 Part Il ASP.NET Pages and Server Controls

Generalities of ASP.NET Server Controls

All ASP.NET server controls, including HTML and Web controls plus any custom controls you
create or download, descend from the Control class. Defined in the System.Web.UI namespace,
the class is also the foundation for all ASP.NET pages. The Control class is declared as follows:

public class Control : IComponent, IDisposable, IParserAccessor,
IUr1ResolutionService, IDataBindingsAccessor,
IControlBuilderAccessor, IControlDesignerAccessor,
IExpressionsAccessor

The IComponent interface defines the way in which the control interacts with the other
components running in the common language runtime (CLR), whereas IDisposable
implements the common pattern for releasing managed objects deterministically. Table 6-1
explains the role of the other interfaces that the Control class implements.

TABLE 6-1 Interfaces Implemented by the Control Class

Interface Goal

IControlBuilderAccessor Internal-use interface; provides members to support the page parser
in building a control and the child controls it contains

IControlDesignerAccessor Internal-use interface; provides members to make the control interact
with the designer

IDataBindingsAccessor Makes the control capable of supporting data-binding expressions at
design time

IExpressionsAccessor Internal use interface; defines the properties a class must implement

to support collections of expressions

IParserAccessor Enables the control to work as the container of child controls and to
be notified when a block of child markup is parsed

IUrIResolutionService Provides members to resolve relative URLs both at run time and
design time

The IDataBindingsAccessor interface defines a read-only collection—the DataBindings
property—that contains all the data bindings for the controls available to Rapid Application
Development (RAD) designers such as Microsoft Visual Studio. Note that the collection

of data bindings exists only at design time and, as such, is useful only if you write a RAD
designer for the control.

Properties of the Control Class

The properties of the Control class have no user interface—specific features. The class, in fact,
represents the minimum set of functionalities expected from a server control. The list of
properties for the Control class is shown in Table 6-2.

Chapter 6 ASP.NET Core Server Controls 219

TABLE 6-2 Properties Common to All Server Controls

Property

AppRelativeTemplateSourceDirectory

Description

Gets or sets the application-relative virtual directory of the
page (or user control) that contains the control.

BindingContainer

Gets the control that represents the logical parent of the
current control as far as data binding is concerned.

ClientID

Gets the ID assigned to the control in the HTML page. In
ASP.NET 4, the composition of the string can be very differ-
ent depending on the value of the ClientIDMode property.

ClientiIDMode

Indicates the algorithm being used to determine the ID of
HTML elements being created for the output of the control.
This property requires ASP.NET 4.

Controls

Gets a collection filled with references to all the child
controls.

DataltemContainer

Gets a reference to the naming container if the naming
container implements the /DataltemContainer interface. This
property requires ASP.NET 4.

DataKeysContainer

Gets a reference to the naming container if the naming
container implements the /DataKeysControl interface. This
property requires ASP.NET 4.

EnableTheming

Indicates whether themes apply to the control.

EnableViewState

Gets or sets whether the control should persist its view
state—and the view state of any child controls across multi-
ple requests—to the configured medium (for example, HTML
hidden field, session state, and server-side databases or files).

ID

Gets or sets the name that will be used to programmatically
identify the control in the page.

NamingContainer

Gets a reference to the control’s naming container.

The naming container for a given control is the parent
control above it in the hierarchy that implements the
INamingContainer interface. If no such control exists, the
naming container is the host page.

Page Gets a reference to the Page instance that contains the
control.
Parent Gets a reference to the parent of the control in the page

hierarchy.

RenderingCompatibility

Indicates the version of ASP.NET that the rendered HTML of
the control will be compatible with. This property requires
ASP.NET 4.

Site Gets information about the container that hosts the current
control when rendered on a design surface. For example, you
use this property to access the Visual Studio designer when
the control is being composed in a Web form.

SkinlD Gets or sets the name of the skin to apply to the control.

A skin is a particular subset of attributes in a theme.

220

WV

Part Il ASP.NET Pages and Server Controls

Property Description

TemplateControl Gets a reference to the template that contains the current
control.

TemplateSourceDirectory Gets the virtual directory of the host page.

UniquelD Gets a hierarchically qualified ID for the control.

ViewStateMode Indicates how to treat the view state for the control

regardless of the settings defined at the page level. This
property requires ASP.NET 4.

Visible Gets or sets whether ASP.NET has to render the control.

The Control class is the ideal base class for new controls that have no user interface and don't
require ASP.NET-based style information.

Important Asyou can see in the preceding table, ASP.NET 4 still supports themes and skins.
These are features through which you can style server controls using a fluent, .NET-based API.
Allin all, an ASP.NET theme is a superset of a cascading style sheet (CSS) and ultimately works
by applying CSS styles to HTML elements being output by controls. Introduced with great pomp
and ceremony, ASP.NET themes are today commonly deprecated in favor of plain HTML-level
CSS styles.

Identifying a Server Control

A server control usually generates a piece of HTML markup. The root HTML element in the
markup is always given a unique client-side ID. In ASP.NET 4, the client ID of a control can be
generated in a number of different ways that I'll cover in a moment.

In older versions, the client ID is always generated from the value of the UniquelD property—
the truly server-side identifier that ASP.NET generates for each control. In versions of ASP.NET
prior to version 4, the content of the Client/D property differs from UniquelD simply in that
all occurrences of the dollar symbol ($), if any, are replaced with the underscore (_). Note that
dollar symbols in the UniquelD string are possible only if the control belongs to a naming
container different from the page.

In turn, ASP.NET generates the value for the UniquelD property based on the value of the
ID property that the programmer indicates. If no /D has been specified, ASP.NET autogen-
erates a name such as _ctlX, where X is a progressive 0-based index. If the control’s naming
container is the host page, UniquelD simply takes the value of ID. Otherwise, the value of ID
is prefixed with the string representing the naming container and the result is assigned to
UniquelD.

What if the returned markup contains multiple elements that need a client ID? The author of
the control is responsible for ensuring that any required ID is available and unique. The need
for multiple IDs arises when multiple individual controls are aggregated in a hierarchy. Since

Chapter 6 ASP.NET Core Server Controls 221

its first version, ASP.NET has implemented a built-in algorithm that prevents name conflicts
on hierarchies of controls. As an example, think of a DataGrid control where the first cell of
each column contains a text box. In your server template for the grid, you put a TextBox con-
trol with a given ID. However, that ID is going to be repeated for each row added to the grid.

An ASP.NET control that can contain child controls and is at risk of having conflicting IDs
should be created as a naming container—that is, it should implement the INamingContainer
(marker) interface. A naming container has an effect on the default algorithm used for ID
generation.

Note A naming container is primarily a control that acts as a container for other controls. In
doing so, the naming container generates a sort of virtual namespace so that ASP.NET roots the
actual ID of contained controls in the ID of the naming container.

To fully understand the role and importance of naming containers, consider the following
example. Imagine you have a composite control, such as a user control, that includes a child
control like a button. Entirely wrapped by the user control, the button is not directly accessible
by the page code and can't be given a distinct and per-instance ID. In the end, the ID of the
button is hard-coded in the outermost control that creates it.

What happens when two or more instances of the composite control are placed on a page? Are
you going to have two button child controls with the same ID? This is exactly what will happen
unless you configure the composite control to be a naming container. A naming container is
taken seriously by ASP.NET when it generates IDs automatically to avoid conflicts.

To see the ASP.NET ID autogeneration mechanism in action, consider the following code
fragment. It features an ASP.NET Repeater control—a data-bound control whose content
consists of repeating the item template for each object in a bound collection. (Data binding
is the topic of Chapter 10, “Data Binding.")

<asp:Repeater runat="server" ID="Repeaterl">
<ItemTemplate>

<%# DataBinder.Eval(Container.Dataltem, "CustomerID") %>
</1i>
</ItemTemplate>
</asp:Repeater>

You populate the Repeater control using the following sample code:

protected void Page_Load(object sender, EventArgs e)

{

// Load some data into the Repeater
var customerIds = new Object[] {

new { CustomerID = "ALFKI" },
new { CustomerID = "ANATR" },
new { CustomerID = "BOTTM" }

222

Part Il ASP.NET Pages and Server Controls

Repeaterl.DataSource = customerIds;
Repeaterl.DataBind(Q);
}

The Repeater then produces the HTML markup shown here:

ALFKI</11i>
ANATR</1i>
BOTTM</1i>

The 's ID is simply emitted as is for each data bound item. As a result, the page DOM
will contain multiple elements with the same ID. This conflict violates the HTML standard but
doesn't prevent a successful page display. However, it will make it hard to script ele-
ments if you need to.

In this example, though, the Repeater control doesn't embed any other ASP.NET control. As a
further step, let's try adding some server controls, instead, in the repeatable template:

<asp:Repeater runat="server" ID="Repeater2">
<ItemTemplate>
<asp:Label runat="server" ID="Element">
<%# DataBinder.Eval(Container.Dataltem, "CustomerID") %>
</asp:Label></1i>
</ItemTemplate>
</asp:Repeater>

Bound to the same data source as in the previous example, the Repeater control for any ver-
sion of ASP.NET older than version 4 produces a slightly different markup:

ALFKI</1i>
<Tli>ANATR</1i>
BOTTM</Ti>

Note that if the ASPX markup is hosted by the content placeholder of a master page, the
composed ID will be longer because it will be prefixed by the ID of the placeholder too:

ct100_MainContentPlaceholder_Repeater2_ct100_Element

In the client page, each tag now has its own unique ID, and client scripting is much
easier. Now if you want to, say, render in blue and bold the element that contains
ALFKI, you can add the following script. (The script assumes the jQuery library is being used.
I'll cover the jQuery library in Chapter 21, “jQuery.”)

Chapter 6 ASP.NET Core Server Controls 223

<script type="text/javascript">
$(document) .ready(function (O {
var alfki = $("#ct100_MainContentPlaceholder_Repeater2_ct100_Element™);
alfki.css("color"”, "blue").css("font-weight", "bold");

I3H
</script>

This wouldn't be too bad except that you need to figure out yourself what the actual ID of a
bound element is going to be. The autogenerated ID ensures that each ID is unique, but the
actual name is not always predictable.

Until ASP.NET 4, you had no way to change the naming algorithm. In ASP.NET 4, you can
choose from a few options.

Client ID Modes

The default algorithm entails that the name of each repeated element be scoped into the
naming container. This explains the first token of Repeaterl. Note also that controls that are
not assigned an explicit ID are given a system-provided progressive ct/XX string. In the previ-
ous example, each bound element is wrapped in an implicitly created Repeaterltem control
with a ctIXX ID. This explains the progressive ct/XX token. Finally, the common name of the
element is appended. Note that what makes two IDs unique is just the presence of implic-
itly named controls such as the Repeateritem. In ASP.NET, any data-bound, template-based
control follows a similar schema.

As mentioned, in ASP.NET 4 the base Control class features the ClientIDMode property. The
property is declared to be of type ClientIDMode—an enumerated type. Table 6-3 lists the
feasible values for the property.

TABLE 6-3 Values in the ClientiIDMode Enumeration

Value Description

AutolD The control generates its child IDs using the legacy algorithm used by previous
versions of ASP.NET.

Inherit The control doesn’t define its own policy for ID generation. The control inherits any

policy valid on its parent. This is the default option for individual controls.

Predictable Any ID is generated by simply concatenating the IDs of parent elements. This is the
default option for pages and automatically propagates to controls unless you make
some changes to the code.

Static No mangled ID is generated; the assigned ID is emitted in the markup as is.

The value for the ClientIDMode property can be set at various levels: for individual controls,
or for all controls in the page via the @Page directive. Finally, you can even set your

224

Part Il ASP.NET Pages and Server Controls

preference for all pages in the application by storing the setting in the <pages> section of
the web.config file:

<pages ClientIDMode="Predictable">

</pages>

When the Static option is selected, ASP.NET doesn’t apply any name mangling to the original
ID. The ID is emitted without concatenating the IDs of parent naming containers. In the case
of repeated templates, however, you end up having multiple IDs in the client page. As men-

tioned, this violates the HTML standard, but it won't generate any run-time error in most

browsers. The Static option is not a good one to use with iterative, data-bound controls such
as GridView, ListView, and list controls.

On the other hand, the Static option is useful when you write user controls devoid of
data-bound child controls. Because a user control can be located on different pages and in
different container controls, the default algorithm for IDs will generate different IDs each
time. Clearly, this makes it quite difficult for you to write client script for embedded elements.
Although you can work out some tricks and solve the issue, the Static client ID mode makes it
more direct and simpler to do so.

A more interesting scenario is when you set the ClientIDMode property to Predictable. In this
case, ASP.NET still guarantees that unique IDs are generated but it uses a different algorithm.
How is this new algorithm different from the legacy one that was the only option up to
ASP.NET 3.5?

The legacy algorithm that generates the client ID of a control is generated by concatenating
the ID values of each parent naming container with the ID of the control. Each segment is
separated by an underscore character (_). With the Predictable option, the client ID of a con-
trol is generated by concatenating the value of the Client/D property of the parent naming
container with the ID of the control. Because only the innermost parent naming container is
considered, the algorithm won't ensure uniqueness in the case of data-bound controls that
generate multiple rows. If the control also features the ClientIDRowSuffix property, that value
is added at the end; otherwise, a progressive number is appended. The ClientIDRowSuffix
property is part of the new interface IDataKeysControl.

When Predictable is used, the markup you get for the Repeater shown earlier takes the
following form:

<1li>ALFKI</11i>
<1li>ANATR</11i>
BOTTM</11i>

Chapter 6 ASP.NET Core Server Controls 225

If the Repeater control is being used within a master page, the ID of the content placeholder
will prefix the ID—something like this:

MainContentPlaceholder_Repeater2_Element_0

The key difference between the two algorithms is all in the trailing token, which is now easy
to guess and script and still guarantees uniqueness. The Predictable mode represents the
default behavior you get for ASP.NET 4 applications. This is a potentially breaking change.
If you have an ASP.NET 3.5 piece of code written to take advantage of the old-fashioned
syntax of autogenerated IDs (mostly client script code), well, that code might fail after the
application is recompiled to ASP.NET 4.

Important Many of the posts and articles you can find list Auto/D as the default setting for
pages. This is not the case with the released version of ASP.NET 4, as you can read here:
http://msdn.microsoft.com/en-us/library/950xf363(v=VS.100).aspx. You can also verify that on
your own, going step by step through the Repeater example presented earlier.

The Predictable algorithm allows you some degree of further control over the generated ID,
at least for controls that implement /DataKeysControl.

public interface IDataKeysControl
{
String[] ClientIDRowSuffix { get; }
DataKeyArray ClientIDRowSuffixDataKeys { get; }
}

In ASP.NET 4, only two controls natively implement this interface: GridView and ListView.
Similar view controls, such as FormView and DetailsView controls, do not support the
ClientIDRowSuffix property because they are not expected to display multiple rows.

Let's consider a GridView control with a templated column:

<asp:GridView runat="server" ID="GridViewl" AutoGenerateColumns="false">
<Columns>
<asp:TemplateField>
<ItemTemplate>
<asp:Label runat="server" ID="Element" Text='<%# Eval("CustomerID") %>' />
</ItemTemplate>
</asp:TemplateField>
</CoTlumns>
</asp:GridView>

With the default settings, the Predictable algorithm produces the following IDs for the
elements via the Label control:

GridViewl_Element_0

http://msdn.microsoft.com/en-us/library/950xf363

226

Part Il ASP.NET Pages and Server Controls

Try setting the ClientIDRowSuffix to a property name like the one shown here.
<asp:GridView runat="server" ID="GridViewl" ClientIDRowSuffix="customerID">
The GridView will emit the following markup:

<table id="MainContent_GridView2">
<tr>
<th scope="col"> </th>
</tr><tr>
<td>
ALFKI
</td>
</tr><tr>
<td>
ANATR
</td>
</tr><tr>
<td>
BOTTM
</td>
</tr>
</table>

The property is an array of strings; if it's set declaratively, you use a comma-separated string
to list multiple properties whose values you want to retrieve in the ID. Note also that setting a
parent to Static and then setting child elements to Predictable will start the naming container
at the parent level, which is handy for always giving sections of pages unique IDs.

Note The ClientiIDRowSuffix property is not supported by the Repeater and DatalList controls
even though the control might output multiple rows. For any list controls, you have only the
progressive number to distinguish between repeated templates. This was done essentially to
discourage use of these controls, because they are considered deprecated in ASP.NET 4.

ASP.NET Control Containers

Naming containers are not the only type of container object available in ASP.NET. Another
one is the binding container exposed through the BindingContainer property.

The binding container indicates which control in the page hierarchy represents the parent
of a control as far as data binding is concerned. In other words, the binding container is the
control that receives bound data from the host (typically, the page) and that passes it down
to child controls.

As you can easily imagine, binding and naming containers often coincide. The only exception
is when the control is part of a template. In that case, the NamingContainer property

Chapter 6 ASP.NET Core Server Controls 227

is generally set to the physical parent of the control, namely a control in the template.
BindingContainer, instead, will point to the control that defines the template.

ASP.NET 4 introduced two additional special containers: data item and data keys containers.
These containers are exposed through the DataltemContainer and DataKeysContainer
properties. These containers don't introduce a new point in the ASP.NET control architecture.
They simply identify some capabilities in an existing naming container. The capabilities are
summarized by the /DataltemContainer and IDataKeysControl interfaces.

View State of Controls

The view state has been one of the most controversial features of ASP.NET since the advent
of the platform. Too many developers are still convinced that the view state is a waste of
bandwidth and an unacceptable burden for each and every ASP.NET page. Nearly the same
set of developers eagerly welcomed ASP.NET MVC because of its complete absence of view
state.

The view state is strictly functional for the Web Forms model because it caches some of the
content for the controls in the page. Next, the ASP.NET infrastructure takes care of reading
that information to restore the last known good state for each control within the page.

Since the beginning, the view state was designed with a hierarchical structure—if it is
enabled for the parent, it is enabled also for the children. To keep the size of the view state
under control, you might decide to disable the view state only on certain controls. The
property EnableViewState seems to be just the perfect tool for the job.

Unfortunately, the capabilities of the EnableViewState property have been exaggerated in the
past years. The strictly hierarchical nature of the view state requires that if the view state is
enabled on the parent control, it won't be disabled on any of its child controls—regardless of
the value assigned to EnableViewState on child controls. This issue has been fixed with
ASP.NET 4, but for the sake of thousands of existing applications the fix comes through a
new, dangerously similar property: the ViewStateMode property.

In summary, if the view state is enabled on the page (which is the default setting), you have
no means to keep the state of individual controls off the storage. To gain some control over
it in ASP.NET 3.5, you need to disable the view state at the page level and then re-enable it
where needed. However, you should be aware that any container control that has the view
state enabled will inevitably push its setting down to the list of its children.

Imagine you have a page with three hundred controls and need view state disabled only on
three of them. Until ASP.NET 4, you had to disable the view state on the page first and then
re-enable it for the 297 controls where you want to keep it. That's too much work, isn't it?

228

Part Il ASP.NET Pages and Server Controls

The ViewStateMode property allows for the enabling and disabling of the view state on any
controls in the direct way that always seemed natural. The property accepts values from the
following enumeration:

public enum ViewStateMode

{
Inherit,
Enabled,
Disabled

3

Enabled and Disabled mean the view state is enabled or disabled for the specific control—no
matter what. Inherit means the control inherits any settings defined on its parent. This is the
default setting.

Note To better understand the intricacy of the view state issue in earlier versions of ASP.NET,
consider the following fact. Any ASP.NET control has a protected Boolean property named
IsViewStateEnabled. As you can figure out, this property indicates whether view state is working
or not for the control. Because of the weird behavior of EnableViewState, it might paradoxically
occur that for the same control to have the property IsViewStateEnabled set to true and the
property EnableViewState set to false! Specifically, this happens when you try to programmati-
cally disable the view state for a control whose parent (for example, the page) has the view state
enabled.

Visibility of a Server Control

If you set Visible to false, ASP.NET doesn't generate any markup code for the control.
However, having Visible set to false doesn't really mean that no path in the control’s code can
output text. The control is still an active object that exposes methods and handles events. If
a method, or an event handler, sends text directly to the output console through Response.
Write, this text will be displayed to the user anyway. A control with the Visible attribute set to
false is still part of the page and maintains its position in the control tree.

Methods of the Control Class
The methods of the Control class are listed and described in Table 6-4.

TABLE 6-4 Public Methods of a Server Control

Method Description

ApplyStyleSheetSkin Applies the properties defined in the page style sheet to the control.
The skin properties used depend on the Skin/D property.

DataBind Fires the OnDataBinding event and then invokes the DataBind method

on all child controls.

Chapter 6 ASP.NET Core Server Controls 229

Method Description

Dispose Gives the control a chance to perform clean-up tasks before it gets
released from memory.

Focus Sets the input focus to the control.

FindControl Looks for the specified control in the collection of child controls. Child
controls not in the Controls collection of the current controls—that is,
not direct children—are not retrieved.

GetRouteUr! Gets the URL that corresponds to a set of route parameters. This method
requires ASP.NET 4.

GetUniquelDRelativeTo Returns the prefixed portion of the UniquelD property of the specified
control.

HasControls Indicates whether the control contains any child controls.

RenderControl Generates the HTML output for the control.

ResolveClientUr! Use this method to return a URL suitable for use by the client to access
resources on the Web server, such as image files, links to additional
pages, and so on. It can return a relative path. The method is sealed and
can't be overridden in derived classes.

ResolveUrl Resolves a relative URL to an absolute URL based on the value passed to

the TemplateSourceDirectory property.

SetRenderMethodDelegate

Internal use method, assigns a delegate to render the control and its
content into the parent control.

Each control can have child controls. All children are stored in the Controls collection, an
object of type ControlCollection. This collection class has a few peculiarities. In particular, it
post-processes controls that are added to, and removed from, the collection. When a control
is added, its view state is restored if needed and view state tracking is turned on. When a
control is removed, the Unload event is fired.

Events of the Control Class

The Control class also defines a set of base events that all server controls in the .NET

Framework support.

TABLE 6-5 Events of a Server Control

Event Description

DataBinding Occurs when the DataBind method is called on a control and the control is binding
to a data source

Disposed Occurs when a control is released from memory—the last stage in the control life
cycle

Init Occurs when the control is initialized—the first step in the life cycle

Load Occurs when the control is loaded into the page; occurs after Init

PreRender Occurs when the control is about to render its content

Unload Occurs when the control is unloaded from memory

230

Part Il ASP.NET Pages and Server Controls

All server controls are rendered to HTML using the RenderControl method and, when this
happens, the PreRender event is fired.

Other Features

Server controls also support some features that are especially related to the returned mark-
up. In the beginning of the ASP.NET era, the focus was primarily on building pages quickly.
Nobody really cared much about the emitted markup and its compliance with standards. The
relevance of this aspect changed significantly over the years—by the way, ASP.NET is now 10
years old. Semantic markup, control over HTML, XHTML compliance, and browser-sensitive
rendering are hot topics today. Let’s see how ASP.NET controls address them.

Adaptive Rendering

ASP.NET controls are like HTML factories that accept external parameters and produce
chunks of markup. As a developer, you can select and filter any parameters being assigned
to control properties. As a developer, though, you can hardly control what the component
does to generate the markup. The bad effect is that you end up with an HTML markup that
might work differently on different browsers and different browser configurations. When this
happens, though, the worst thing is that you have no way to fix it—the HTML is out of your
reach. Before ASP.NET 4, adaptive rendering was the common way to address this problem.

Adaptive rendering is the process that enables controls to generate different markup for
individual browsers. This result is obtained by delegating the generation of the markup to

an external component—the adapter. When each control is about to render, it figures out its
current adapter and hands the request over to that adapter. Nicely enough, a control adapter
is a configurable component that you can declaratively unplug in any application to roll your
own.

The selected adapter depends on the current browser. The adapter for a control is resolved
by looking at the browser capabilities as configured in the ASP.NET browser database. If

the browser record includes an adapter class for a given control, the class is instantiated

and used. Otherwise, the default adapter for the control is used, which is an instance of the
ControlAdapter class. The ControlAdapter class is a generic adapter and simply generates the
markup for a control by calling the rendering methods on the control itself.

Note The ASP.NET database used for storing browser information is not a real database. It is,
instead, a list of text files with a .browser extension located under the ASP.NET installation folder
on the Web server. The exact path is the following:

%WINDOWS%\M1icrosoft.NET\Framework\[version]\CONFIG\Browsers

The data located in this folder is used to return browser capabilities.

Chapter 6 ASP.NET Core Server Controls 231

A control holds a reference to the mapped adapter instance through the (protected) Adapter
property. Each control has an associated adapter unless it is a composite control that defers
to its child controls for rendering.

All ASP.NET controls have an entry point into the rendering engine in the Render method.
Here's the method's signature:

protected virtual void Render(HtmlTextWriter writer)

{
3

The Render method ends up calling into an internal method whose implementation is nearly
identical to the following pseudocode:

void RenderControlInternal(HtmlTextWriter writer, ControlAdapter adapter)

{
if (adapter != null)

{
adapter.BeginRender(writer);
adapter.Render(writer);
adapter.EndRender(writer);

}

else

{
this.Render(writer);

}

}

As you can see, if defined, a control adapter is used to generate the markup for the control.
The adapter can be declaratively specified and is an external component that can be made to
measure for your needs. Using an adapter to alter the markup of a given class of controls is
an unobtrusive option that doesn't require any changes to existing pages using the control. It
only requires you to add a browser definition file.

Browser definition files have a .browser extension and contain definitions that apply to a
specific browser. At run time, ASP.NET determines the browser being used, uses the configu-
ration file to determine the capabilities of the browser, and based on that figures out how
to render markup to that browser. Here's a snippet that illustrates how to register a control
adapter for the Menu for whatever browsers the user will employ:

<browsers>
<browser refID="Default">
<controlAdapters>
<adapter controlType="System.Web.UI.WebControls.Menu"
adapterType="Core35.MenuAdapter" />

<controlAdapters>
</browser>
</browsers>

232

Part Il ASP.NET Pages and Server Controls

Saved to a.browser file, the preceding snippet is deployed to the App_Browsers folder of an
ASP.NET application.

An adapter class looks like the following class:

public class MenuAdapter :
System.Web.UI.WebControls.Adapters.MenuAdapter
{

}

The class commonly overrides methods such as Init, RenderBeginTag, RenderEndTag, and
RenderContents.

To write an adapter effectively, though, you must reasonably know a lot of details about
the internal workings of the control you're hooking up. For more information on the archi-
tecture of control adapters, you might want to take a look at http://msdn2.microsoft.com/
en-us/library/67276kc5.aspx.

This is only half the problem, however.

Getting CSS-Friendly HTML

The markup that too many ASP.NET server controls return makes excessive use of <table>
tags (often nested) and inline style properties. Subsequently, ASP.NET controls make lim-
ited use of CSS styling. It might be easier and quicker, sure, but it's probably a shortsighted
approach.

Based on community feedback, the ASP.NET team first released a free toolkit to enable a few
built-in controls to output CSS-friendly markup where the <table> tag is not used or used
less and in accordance with XHTML rules. The CSS Control Adapter Toolkit (CSSCAT) can be
downloaded from http.//www.asp.net/cssadapters. It comes with full source code and a per-
missions license that allows for unlimited further customization of the code. CSSCAT is built
atop the control adapter architecture of ASP.NET.

CSSCAT defines CSS-friendly adapters for the following controls: Menu, TreeView, DetailsView,
FormView, Datalist, GridView, PasswordRecovery, ChangePassword, Login, LoginStatus, and
CreateUserWizard. By using the source code of CSSCAT as a starting point, you can develop
new adapters for other controls. For more information on the CSSCAT logic and internal
architecture, pay a visit to http.//www.asp.net/cssadapters/whitepaper.aspx.

ASP.NET 4 supports two rendering mechanisms: legacy and CSS-friendly. You

control the rendering mechanism for all pages in the application using the
controlRenderingCompatibilityVersion attribute added to the <pages> section in the
configuration schema. You can set the attribute with one of the following two strings:
“3.5" or "4.0".

http://msdn2.microsoft.com/
http://www.asp.net/cssadapters
http://www.asp.net/cssadapters/whitepaper.aspx

Chapter 6 ASP.NET Core Server Controls 233
<pages controlRenderingCompatibilityVersion="3.5" ...>
</pa§é;>
If you set it to “3.5", rendering will occur as in older versions of ASP.NET. If you set it to "4.0",
a number of controls (Menu, GridView, Image) will automatically render out cleaner and

much more CSS-friendly HTML. It's still not perfect, but it's definitely a much better option,
especially if you consider that all you need to do is add a line to the configuration file.

In ASP.NET 4, the Control class (and subsequently the Page class) features a new property,
RenderingCompatibility, that informs you about the selected rendering machinery. It's key
to notice that although the RenderingCompatibility property has a setter method, that is re-
served for ASP.NET and using it programmatically doesn't necessarily result in visible effects.
In other words, the following code compiles but doesn’t produce any results:

// Default is 4.0
this.RenderingCompatibility = new Version(3, 5);

So for your own purposes, you should consider RenderingCompatibility to be a read-only
property and resort to the <pages> section to change the rendering algorithm for all
controls in all application pages. The default rendering version is 4.0 if you choose to create
an ASP.NET 4 application.

Let's see the most relevant example of CSS friendliness enforced in ASP.NET 4. Here's the
Menu control as it is being used in the sample ASP.NET project template:

<asp:Menu ID="NavigationMenu" runat="server"
CssClass="menu"
EnableViewState="false"
IncludeStyleBlock="false"
Orientation="Horizontal">
<Items>
<asp:MenuItem NavigateUrl="~/Default.aspx" Text="Home"/>
<asp:MenuItem NavigateUrl="~/About.aspx" Text="About"/>
</Items>
</asp:Menu>

This code in version 3.5 will produce the following markup:

<table id="NavigationMenu" class="menu NavigationMenu_2">
<tr>
<td onmouseover="Menu_HoverStatic(this)" onmouseout="Menu_Unhover(this)"
onkeyup="Menu_Key(this)" id="NavigationMenun0">
<table>
<tr>
<td style="white-space:nowrap;">
Home</td>
</tr>
</table>
</td>
<td style="width:3px;"></td>

234

Part Il ASP.NET Pages and Server Controls

<td onmouseover="Menu_HoverStatic(this)" onmouseout="Menu_Unhover(this)"
onkeyup="Menu_Key(this)" id="NavigationMenunl">
<table>
<tr>
<td style="white-space:nowrap;">
About</td>
</tr>
</table>
</td>
</tr>

</table>

As you can seg, it is table-based output where most inline style information has been
stripped off thanks to the IncludeStyleBlock property being set to false. Here's the markup
you get according to the 4.0 rendering procedure:

<ul class="levell">
<Tli>Home</1i>
<Tli>About</1i>

The visual output is not the same as shown in Figure 6-1. To achieve a given visual result with
the 3.5 rendering approach, you must add style information to the control declaration; in 4.0,
you just edit at the CSS level.

PROGRAMMING ASP.NET 4 PROGRAMMING ASP.NET 4
Home

FIGURE 6-1 Menu rendering according to version 3.5 (left) and 4.0 (right).

In ASP.NET 4, a bunch of other controls feature additional properties to let developers gain
more control over the structure of the returned markup. For example, some view controls
(for example, FormView and Login) stop rendering inside of a table if you set the property
RenderOuterTable to false. Likewise, validation controls and the Image control stop render-
ing inline style blocks. Finally, list controls such as the CheckBoxList control have additional
options for the repeat layout to emit plain ordered or unordered HTML lists.

Browser-Sensitive Rendering

In ASP.NET 4, as well as in older versions, you can declaratively assign a browser-specific
value to a given control property. Here's a quick example:

<asp:Button ID="Buttonl" runat="server" Text="I'm a Button"
ie:Text="IE Button"
mozilla:Text="Firefox Button" />

The Text property of the button will contain “IE button” if the page is viewed through
Internet Explorer and “Firefox button” if the page goes through Firefox. If another browser is

Chapter 6 ASP.NET Core Server Controls 235

used, the value of the unprefixed Text attribute is used. All properties you can insert in a tag
declaration can be flagged with a browser ID. Each supported browser has a unique ID. As in
the preceding code, ie is for Internet Explorer and mozilla is for Firefox. Unique IDs exist for
various versions of Netscape browsers and mobile devices. Browser IDs are interspersed in
.browser files, which you can find at this path:

%windows%\Microsoft.NET\Framework\[version]\CONFIG\Browsers

Themeable Controls

In ASP.NET jargon, a theme is a named collection of property settings that can be applied

to controls to make them look consistent across pages. You can apply theme settings to an
entire Web site, to a page and its controls, or to an individual control. A theme is identified
by name and consists of CSS files, images, and control skins. A control skin is a text file that
contains predefined values for some control properties. Applied together, these settings con-
tribute to change the look and feel of the control and give the whole site a consistent (and,
you hope, appealing) user interface. In addition, because themes are a sort of monolithic
attribute, you can easily export that look from one application to the next. With themes en-
abled, if the developer adds, say, a DataGrid control to a page, the control is rendered with
the default appearance defined in the currently selected theme.

Server controls can dynamically accept or deny theming through a Boolean property named
EnableTheming, which is set to true by default. As a general rule, themes affect only prop-
erties that relate to the control’s appearance. Properties that explicitly specify a behavior

or imply an action should not be made themeable. Each control has the power to state
which properties are themeable and which are not. This happens at compile time through
attributes—in particular, the Themeable attribute. I'll return to themes in Chapter 8, “Page
Composition and Usability.”

W Important Although fully supported and functional, themes are kind of deprecated in today’s
ASP.NET development, superseded by plain CSS classes and CSS-friendly development.

HTML Controls

HTML server controls look like plain HTML tags, only with an extra runat=server attribute.
The additional runat attribute makes a huge difference, however. In ASP.NET, by simply add-
ing the runat attribute, you can bring to life otherwise dead HTML text and transform it into
a living instance of a server-side component. After it's transformed into a server object, the
original HTML tag can be configured programmatically using an object-oriented approach.

236

Part Il ASP.NET Pages and Server Controls

By design, HTML controls expose a set of methods and properties that carefully reflect the
HTML syntax. For example, to set the default text of an input form field, you use a property
named Value instead of the more expressive Text. The name of the server control is deter-
mined by the value of the ID attribute. The following code snippet shows how to define a
server-side input tag named /lastName:

<input runat="server" id="TastName" type="text" />

In the example, the tag declaration does not include an explicit value for the Value attribute.
You can also set it programmatically as follows:

void Page_Load(object sender, EventArgs e)
{

TlastName.Value = "Esposito";

3

After being processed by the ASP.NET runtime, the preceding declaration generates the
following HTML code, which is forwarded to the browser:

<input name="myName" id="myName" type="text" value="Esposito" />

Notice that a server-side ID attribute expands to a pair of HTML attributes: Name and ID. The
W3C HTML specification says that the attribute name is used for posting forms to the server;
the id attribute is used, instead, for client-side purposes. In no way does this mean that on
the server Name and ID can be interchangeably used to name the server instance of the
control. The name of the server control instance is given by ID. If you specify both Name and
ID on a server-side tag, the value assigned to Name will be silently overridden.

Generalities of HTML Controls

The .NET Framework provides predefined server controls for commonly used HTML elements
such as <form>, <input>, and <select>, as well as for tables, images, and hyperlinks. All the
predefined HTML server controls inherit from the same base class—the HtmlIControl class. In
addition, each control then provides its own set of specific properties and its own events.

Controls typically supply properties that allow you to manipulate the HTML attributes pro-
grammatically from within server code. HTML controls integrate well with data binding and
the ASP.NET state maintenance, and they also provide full support for postback events and
client scripting. For example, for a button that gets clicked, you can have some JavaScript
code running on the client responding to the onclick event as well as some code that handles
the event on the server if the page posts back as the result of that event.

Chapter 6 ASP.NET Core Server Controls 237

HTML controls are defined in the System.Web.UIl.HtmIControls namespace. Most, but

not all, HTML tags have a direct control counterpart in the ASP.NET framework. HTML
elements that don't map to a made-to-measure server control are rendered through the
HtmlGenericControl class and have attributes set using generic collections rather than direct
properties. Generic controls include <iframe>, <hr>, , and <body>. In general, you
should bear in mind that every element that can appear in an HTML page can be marked as
runat="server” and programmed and styled on the server.

The HtmIControl Base Class

The HtmlControl class inherits from Control and defines the methods, properties, and events
common to all HTML controls. Actually, many properties and all methods and events are
simply inherited from the base class. Table 6-6 shows the list of properties specific to HTML
controls.

TABLE 6-6 Specific Properties of an HTML Control

Property Description

Attributes Gets a collection object representing all the attributes set on the control with the
corresponding value

Disabled Gets or sets a Boolean value, which indicates whether the HTML control is disabled

Style Gets a collection object representing all CSS properties applied to the control

TagName Gets the name of the HTML tag behind the control

A disabled HTML server control is visible and always gets generated as HTML code. If the
Disabled property is set to true, the disabled HTML attribute is inserted in the HTML out-
put for the control. As mentioned earlier, if the Visible property is set to false, HTML is not
generated for the control.

Working with HTML Attributes

Individual HTML controls feature more properties than just those listed in Table 6-6.
Properties of HTML server controls map to HTML attributes, and the values assigned to the
properties are replicated in the HTML output. For controls that don't have an HTML direct
counterpart, the Attributes collection is used to set attributes on the resulting HTML tag.
This collection can also be used to set properties not mapped by the control’s interface
and, if needed, to define custom HTML attributes. Any content of the Attributes collection is
managed as a string.

238

Part Il ASP.NET Pages and Server Controls

Given the following HTML code snippet, let's see how to programmatically set some
attributes on the <body> tag:

<script type="text/javascript">
function Init() {

alert("Hello world");
}

</script>

<script runat=server language="C#">

void Page_Load(object sender, EventArgs e) {
theBody.Attributes["onload"] = "Init()";

}

</script>

<html>
<body runat="server" id="theBody">
</body>
</htm1>

You bind a JavaScript script to the onload attribute of the <body> tag. The resulting HTML
code that the browser displays is as follows:

<script type="text/javascript">

function Init() {
alert("Hello™);

}

</script>

<html>
<body id="theBody" onload="Init()">
</body>
</htm1>

The Attributes property is rendered through a special type of class named AttributeCollection.
In spite of the name, the content of the class is not directly enumerable using the for...each
statement because the IEnumerable interface is not supported. The AttributeCollection class
provides ad hoc methods to render attributes of a text writer object and to add and remove
elements. Interestingly, if you add an attribute named Style, the class is smart enough to
reroute the assigned content to the Style collection.

Note In the previous example, the server-side code used to add the onload attribute to the
body element has been written through a server <script> tag for simplicity. You achieve the
same results by moving the content of the server <script> tag to the code-behind class of
the page.

Chapter 6 ASP.NET Core Server Controls 239

Hierarchy of HTML Controls

Most HTML controls can be grouped into two main categories: container and input controls.
A few controls, though, cannot be easily catalogued in either of the two groups. They are
Htmllmage, HtmlLink, HtmIMeta, and HtmlITitle, and they are the ASP.NET counterpart of the
, <link>, <meta>, and <title> tags. Figure 6-2 shows the tree of HTML controls.

—| HtmlControl I

| HtmllnputControl | | HtmlContainerControl | Htmllmage
| [HtmiLink
HtmlInputButton HtmlAnchor HtmITitle
HtmlInputCheckBox HtmlIForm HtmIMeta
HtmlInputFile HtmlSelect
HtmlInputimage HtmIButton
HtmlInputHidden HtmlTable
HtmlInputRadioButton HtmlTableRow
HtmlInputText HtmlTableCell
HtmlInputReset HtmlTextArea
HtmlInputSubmit HtmlGenericControl
HtmlInputPassword HtmlHead

FIGURE 6-2 Grouping HTML controls by category.

The input controls category includes all possible variations of the <input> tag, from submit
buttons to check boxes and from text fields to radio buttons. The container controls category
lists anchors, tables, forms, and in general, all HTML tags that might contain child elements.

HTML Container Controls

The base class for container controls is the Html/ContainerControl class, which descends
directly from HtmlControl. The HTML elements addressed by this tag are elements that must
have a closing tag—that is, forms, selection boxes, and tables, as well as anchors and text
areas. Compared to the HtmlControl class, a container control features a couple of additional
string properties: InnerHtml and InnerText.

Both properties manipulate the reading and writing of literal content found between the
opening and closing tags of the element. Note that you cannot get the inner content of
a control if the content includes server controls. InnerHtm/ and InnerText work only in the

240

Part Il ASP.NET Pages and Server Controls

presence of all literal content. The tag itself is not considered for the output. Unlike InnerText,
though, InnerHtml lets you work with HTML rich text and doesn’t automatically encode and
decode text. In other words, InnerText retrieves and sets the content of the tag as plain text,
whereas InnerHtml retrieves and sets the same content but in HTML format.

Table 6-7 lists the HTML container controls defined in ASP.NET.

TABLE 6-7 HTML Container Controls

Class Description

HtmlAnchor Represents an HTML anchor—specifically, the <a> tag.
HtmlButton Represents the HTML <button> tag.

HtmlForm Represents the <form> tag, but can be used only as a container of

interactive server controls on a Web page. It cannot really be used to
create HTML forms that are programmable on the server.

HtmlGenericControl Represents an HTML tag for which the .NET Framework does not provide
a direct class. Sample tags include , <hr>, and <iframe>. You pro-
gram these controls by using the Attributes collection and set attributes

indirectly.

HtmlHead Represents the <head> tag, and allows you to control meta tags, the style
sheet, and the page title programmatically.

HtmlSelect Represents the <select> tag—that is, an HTML selection box.

HtmlTable Represents an HTML table—specifically, the <table> tag.

HtmITableCell Represents the <td> HTML tag—that is, a cell in a table.

HtmlITableRow Represents the <tr> HTML tag—that is, a row in a table.

HtmlTextArea Represents a multiline text box, and maps the <textarea> HTML tag.

Note that the Htm/Button control is different than HtmlInputButton, which represents

the button variation of the <input> tag. The HtmlButton control represents the HTML
4.0-specific <button> tag. I'll say more about buttons in the next section while discussing
the Web controls.

Server-side forms play a key role in the economy of ASP.NET applications because they are
the means for implementing postbacks and guaranteeing state maintenance. For this reason,
the HtmlForm control is not simply a form element you can program on the server. In partic-
ular, the HtmlForm hides the Action property and cannot be used to post content to a page
different than the content that generated the HTML for the browser. I'll cover HTML forms in
great detail in Chapter 9, "Input Forms.”

Chapter 6 ASP.NET Core Server Controls 241

Managing Header Information

An instance of the Htm/Head control is automatically created if the page contains a <head>
tag marked with the attribute runat=server. Note that this setting is the default when you
add a new page to a Visual Studio ASP.NET project, as shown in the following snippet:

<head runat="server">
<title> </title>

</head>
The header of the page is returned through the new Header property of the Page class.

The property returns null if the <head> tag is missing, or if it is present but lacks the runat
attribute.

The HtmlHead control exposes three string properties: Description, Keywords, and Title.
Description and Keywords contain meta information about the page. These properties are
the actual storage for the content of the Page properties MetaDescription and MetaKeywords
that have just been added in ASP.NET 4 to help the rank of your pages in search engine
listings.

The Title property is used to retrieve and set the title of the page:
Header.Title = "This is the title";

Note that this property returns the correct page title only if the <title> tag is correctly placed
within the <head> tag. Some browsers, in fact, are quite forgiving on this point and allow de-
velopers to define the title outside the header. To manipulate the <title> tag independently
from the header, use the HtmlTitle control and mark the <title> tag with the runat attribute.

Finally, HtmIHead features a StyleSheet property of type IStyleSheet. The actual class that
implements the interface is internal and named StyleSheetinternal. All this class does is let
you create CSS style information programmatically. Note that the StyleSheet property is not a
programmatic way to link a URL to an external CSS file. It is, instead, an API for you to create
an ASP.NET-specific Style object that is then translated into a CSS block within the page.
Here's an example:

protected void Page_Load(object sender, EventArgs e)
{
var myAreaStyle = new Style {ForeColor = Color.Blue, BackColor = Color.LightGray};

// Add the style to the header of the current page
Page.Header.StyleSheet.CreateStyleRule(myAreaStyle, null, "DIV#MyArea");

242 Part Il ASP.NET Pages and Server Controls

The resulting page header looks like this:

<head>
<title></title>
<style type="text/css">
DIV#MyArea { color:Blue;background-color:LightGrey; }
</style>
</head>

The RegisterStyle method allows registered page-wide Style objects to be merged
programmatically with the style object of individual server controls. You register a new
control-focused style as shown here:

var TabelStyle = new Style { ... };
Page.Header.StyleSheet.RegisterStyle(labelStyle, null);

// Right after registering the style, you apply it to or merge it with multiple controls
Labell.ApplyStyle(labelStyle);
Label2.MergeStyle(labelStyle);

Suppose now your page includes the following controls:

<asp:Label runat="server" ID="Labell" Text="Hello, world" />

<asp:Label runat="server" ID="Label2" CssClass="bold" Text="Hello, world (merged)" />

Here's the markup generated for the two Label controls:

Hello, world

Hello, world

The class attribute of the first control is set to an autogenerated CSS class; the class attribute
of the second control is the result of merging the current style with the new one.

Linking External CSS Files

To link an external style sheet file, you use the following code:

var Tink = new HtmlLink {Href = "~/StyleSheet.css"};
Tink.Attributes.Add("rel", "stylesheet");
Tink.Attributes.Add("type", "text/css");
Page.Header.Controls.Add(1ink);

The HtmlLink control represents an individual </ink> element. The </ink> tag can appear
only in the <head> section of a document, although it can appear any number of times.

Chapter 6 ASP.NET Core Server Controls 243

Managing Meta Information

The HtmIMeta control is a helper object to allow programmatic control over the HTML
<meta> element. Located within the <head> section, a <meta> tag contains some meta
information about the rendered page. A <meta> element is characterized by a name and an
associated value. You use Name property to specify the metadata property name, and the
Content property to specify the associated value:

// Meta information providing some clue to search engines
var metal = new HtmlMeta
{
Name = "keywords",
Content = "Key terms that describe your page"
};
Page.Header.Controls.Add(metal);

You can use the Scheme property to define some content for the scheme attribute of the
HTML <meta> tag to provide additional information to user agents on how to interpret the
meta information.

Finally, you use the HttpEquiv property instead of Name when you need to assign a value to
the http-equiv attribute of the resulting HTML <meta> element.

Important If your <head> section contains code blocks, you are not allowed to enter changes
to its structure, such as adding new controls for <meta> and <link> tags. If you do so, you'll get
a run-time exception. A common reason to have code blocks in a server-side <head> tag is to
resolve script URLs. Here's a common example:

<head runat="server">
<script src="<%= ResolveUrl1("~/Scripts/jquery-1.4.2.min.js") %>"
type="text/javascript'"></script>
</head>

This code just prevents you from programmatically adding new controls to the Header object.
The workaround simply consists of moving the script tag away from the <head> block. A good
place to move it could be the bottom of the page, which also would deliver better rendering
performance for the page. The browser usually stops rendering when it encounters a <script>
tag and resumes after the script is downloaded. By placing all the <script> tags at the bottom
of the body, your page starts doing some graphic work sooner (at least if it is linked to large
script files).

Navigating to a URL

The HtmlAnchor class is the programmatic way of accessing and configuring the <a> tag.
With respect to the other container controls, the HtmlAnchor class provides a few extra
properties, such as HRef, Name, Target, and Title. The HRef property sets the target of the
hyperlink and can be used to navigate to the specified location. The Name property names a

244

Part Il ASP.NET Pages and Server Controls

section in the ASP.NET page that can be reached from anywhere on the same page through
#-prefixed HRefs. The following code demonstrates a bookmarked anchor named Morelnfo:

This anchor can be reached using the following hyperlink:

Get More Info

The Target property identifies the target window or the frame where the linked URL will be
loaded. Common values for Target are _self, _top, _blank, and _parent, as well as any other
name that refers to a page-specific frame. Although the feature is mostly browser depen-
dent, you should always consider these special names as lowercase. Finally, the Title property
contains the text that virtually all browsers display as a ToolTip when the mouse hovers over
the anchor’s area.

Handling Events on the Server

In addition to being used for navigating to a different page, the anchor control—as well
as the HtmlButton control—can be used to post back the page. Key to this behavior is the
ServerClick event, which lets you define the name of the method that will handle, on the
server, the event generated when the user clicks the control. The following code demon-
strates an anchor in which the click event is handled on both the client and server:

Click

The onclick attribute defines the client-side event handler written using JavaScript; the
onserverclick attribute refers to the server-side code that will run after the page posts back.
Of course, if both event handlers are specified, the client-side handler executes first before
the postback occurs.

The HtmlSelect Control

The HtmliSelect control represents a list of options from which you choose one or more. You
control the appearance and behavior of the control by setting the Size and Multiple proper-
ties. The Size property specifies the number of rows to be displayed by the control, whereas
the Multiple property indicates whether more than one item can be selected in the control.
Internal items are grouped in the /tems collection, and each element is represented by a
Listltem object. Interestingly, the List/tem class is not defined in the Htm/Controls namespace
but lives instead in the WebControls namespace. To specify the text for each selectable item,
you can either set the Text property of the Listltem or simply define a series of <option> tags
within the opening and closing tags of the <select> element.

Chapter 6 ASP.NET Core Server Controls 245

By default, the HtmlSelect control shows up as a drop-down list. However, if multiple
selections are allowed or the height is set to more than one row, the control is displayed as a
list box. The index of the selected item in a single-selection control is returned through the
SelectedIndex property. If the multiple selection is enabled, you just loop through the /tems
collection and check the Selected property on individual list items.

The HtmlSelect control supports data binding through additional properties. The DataSource
property lets you set the data source, which can be any .NET object that implements the
IEnumerable interface. If the data source contains multiple bindable tables (for example, a
DataSet object), by using the DataMember property you can choose a particular one. Finally,
the DataTextField and DataValueField properties are used to bind the list item’s Text and
Value properties to columns in the data source. (I'll cover data binding in Chapter 10.)

The HtmlTextArea Control

The HtmlTextArea control corresponds to the <textarea> HTML element and allows you to
programmatically create and configure a multiline text box. The HtmlTextArea class provides
the Rows and Cols properties to control the number of rows and columns of the text box. The
Value property can be used to assign some text to display in the control area.

The HtmlTextArea class also provides a ServerChange event that fires during a postback
and allows you to validate on the server the data contained in the control. Note that the
HtmliTextArea control does not fire the event itself and does not directly cause the page to
post back. Rather, when the page posts back in response to a click on a link or submit but-
ton, the HtmlTextArea control intervenes in the server-side chain of events and gives the
programmer a chance to run some code if the internal content of the control is changed
between two successive postbacks.

All ASP.NET controls that, like HtmlTextArea, implement the /PostBackDataHandler inter-
face can invoke user-defined code when the control’s internal state changes. As discussed

in Chapter 5, controls can fire custom events by overriding the RaisePostDataChangedEvent
method on the aforementioned interface. The following pseudocode shows what happens in
the method’s implementation of Html/TextArea:

void System.Web.UI.IPostBackDataHandler.RaisePostDataChangedEvent()

{
this.OnServerChange(EventArgs.Empty);

}

Finally, note that the control raises the event only if the state has changed between two
successive posts. To determine whether that has happened, the control needs to track the
content it had the time before. This value can be stored only in the view state. Of course, the
ServerChange even won't fire if you disable the view state for the host page or the control.

246

Part Il ASP.NET Pages and Server Controls

HTML Input Controls

In HTML, the <input> element has several variations and can be used to provide a submit
button as well as a check box or text box. In ASP.NET, each possible instance of the <input>
element is mapped to a specific class. All input classes derive from the HtmlInputControl
class. HtmllnputControl is the abstract class that defines the common programming interface
for all input controls. The class inherits from HtmIControl and simply adds three custom
properties—Name, Type, and Value—to the inherited interface.

The Name property returns the name assigned to the control. In ASP.NET, this property

is peculiar because, although it's marked as read/write, it actually works as a read-only
property. The get accessor returns the control’s UniquelD property, while the set accessor is
just void. As a result, whatever value you assign to the property, either programmatically or
declaratively, is just ignored and no exception or compile error is ever thrown.

The Type property mirrors the type attribute of the HTML input elements. The property is
read-only. Finally, the Value property is read/write and represents the content of the input

field.

Table 6-8 lists the HTML input controls defined in ASP.NET.

TABLE 6-8 HTML Input Controls

Class Description

HtmlInputButton Represents the various flavors of a command button supported by HTML.
Feasible values for the Type attribute are button, submit, and reset.

HtmlInputCheckBox Represents an HTML check box—that is, the <input> tag with a type
equal to checkbox.

HtmlInputFile Represents the file uploader—that is, the <input> tag with a type equal
to file.

HtmlInputHidden Represents a hidden buffer of text data—that is, the <input> tag with a
type equal to hidden.

Htmllnputimage Represents a graphic button—that is, the <input> tag with a type equal
to image. Note that this tag is supported by all browsers.

HtmlinputPassword Represents a protected text field—that is, the <input> tag with a type of
password.

HtmlinputRadioButton Represents a radio button—that is, the <input> tag with a type equal to
radio.

HtmlInputReset Represents a reset command button.

HtmlInputSubmit

Represents a submit command button.

HtmlInputText

Represents a text field—that is, the <input> tag with a type of either
password or text.

Chapter 6 ASP.NET Core Server Controls 247

The hidden and text input controls are nearly identical, and the contents of both are posted
back. Essentially, they differ only in that hidden fields are not displayed and, subsequently,
they don't provide some Ul-related properties such as MaxLength and Size.

Command Buttons

The HtmlinputButton class is the most flexible button class in the .NET Framework. It differs
from the HtmlButton class in that it renders through the <input> tag rather than the Internet
Explorer—specific <button> tag. This fact ensures for the control much wider support from
browsers.

The HTML input button controls support the ServerClick event, which allows you to set the
code to run on the server after the button is clicked. Note that if you set the button type
to Button and the ServerClick event handler is specified, the control automatically adds the
postback script code to the onclick HTML attribute. In this way, any click causes the page to
post back and the code to execute. Let’s consider the following ASP.NET code:

<input runat="server" type="button" id="btn" value="Click"
onserverclick="buttonClicked" />

The corresponding HTML code is as follows:

<input language="javascript" onclick="__doPostBack('btn',"")"
name="btn"
type="button"
value="Click" />

The client-side __doPostBack script function is the standard piece of code generated by
ASP.NET to implement the postback. If the button type is set to Submit—that is, a value that
would always cause a postback—no client-side script code is generated and the onclick at-
tribute is not set.

In ASP.NET 2.0 and newer versions, more specific controls have been added to render submit
and reset buttons. The controls are HtmlInputSubmit and HtmlInputReset.

Note The Htmlinputimage control supports a nearly identical pattern for handling server-side
events and validation. The HtmlInputimage control features a few more properties specific to
the image it shows. In particular, you can set the alternate text for the image, the border, and
the alignment with respect to the rest of the page. The ServerClick event handler has a slightly
different form and looks like the following:

void ImageClickEventHandler(object sender, ImageClickEventArgs e);

When an image button is clicked, the coordinates of the click are determined by using the X and
Y properties of the ImageClickEventArgs data structure.

248 Part Il ASP.NET Pages and Server Controls

Controlling Validation

The HtmlInputButton class, as well as the HtmIButton class, support a Boolean property
named CausesValidation. The property indicates whether the content of the input fields
should be validated when the button is clicked. By default, the property is set to true,
meaning the validation always takes place. We'll examine data validation in Chapter 9. For
now, it suffices to say, you can programmatically enable or disable the validation step by
using the CausesValidation property.

Typically, you might want to disable validation if the button that has been clicked doesn’t
perform a concrete operation but simply clears the user interface or cancels an ongoing
operation. By design, in fact, server-side page validation takes place just before the
ServerClick event handler is executed. Setting the CausesValidation property to false is the
only means you have to prevent an unnecessary validation.

Detecting State Changes of Controls

Earlier in this chapter, while discussing the features of the HtmlITextArea control, we ran into
the ServerChange event and described it as the mechanism to detect and validate changes
in the control’s state between two successive postbacks. The ServerChange event is not an
exclusive feature of the HtmlTextArea control; it's also supported by other input controls,
such as HtmlInputCheckBox, HtmlInputRadioButton, HtmlinputHidden, and HtmlInputText.
Let's look at an example in which you use the ServerChange event to detect which elements
have been checked since the last time the control was processed on the server.

You build a page with a list of check boxes and a button to let the user post back to the
server when finished. Notice, in fact, that neither the HtmlInputCheckBox control, nor any
other input control except buttons, post back to the server when clicked. For this reason,
you must provide another control on the Web page that supports posting to the server—for
example, an HtmlButton or HtmlInputButton control. The following code implements the
page shown in Figure 6-3:

<%@ Page Language="C#" %>
<html>
<script runat="server">
public void DetectChange(object sender, EventArgs e) {
var cb = (HtmlInputCheckBox) sender;
Labell.Text += "Control " + cb.UniqueID + " changed
";
}

</script>

<body>
<form runat="server">

<input runat="server" type="checkbox" id="one"
OnServerChange="DetectChange" />One

<input runat="server" type="checkbox" id="two"
OnServerChange="DetectChange" />Two

<input runat="server" type="checkbox" id="three"
OnServerChange="DetectChange" />Three

Chapter 6 ASP.NET Core Server Controls 249

<input runat="server" type="submit" value="Submit" />
<hr />
<asp:Label runat="server" ID="Labell" />

</form>

</body>

</htm1>

(& Server changes - Windows Internet Explorer =R =
@O « [&] nttp//iocathost1990/se + | & [44] x | [Bing o ~|

i Favorites | o5
{@ Server changes - v [de v Pagev Safetyv Tools~ @~

PROGRAMMING ASP.NET 4

Home About

m

CLICK BUTTONS AND SUBMIT YOUR CHANGES. SEE WHAT HAPPENS ...
M one

Two

D three

Control ctl00$MainContent$one changed
Control ctl00SMainContent§two changed

« i | v

«/ Trusted sites | Protected Mode: Off v B100% -

FIGURE 6-3 The ServerChange event fires only if the status of the control has changed since the last time the
control was processed on the server.

The ServerChange event is fired only if the state of the control results changed after two
postbacks. To get the first screen shot, you select the element and then submit. Next, if you
submit again without selecting or deselecting anything, you get the second screen shot.

As mentioned in Chapter 5, when you implement the /PostBackDataHandler interface, each
server control gets a chance to update its current state with data posted by the client.

Uploading Files

The HtmlInputFile control is the HTML tool for uploading files from a browser to the Web
server. To take advantage of the HtmlInputFile control, you should first ensure that the server
form’s Enctype property is set to multipart/form-data. However, starting with ASP.NET 2.0,
the proper EncType is automatically set, care of the HtmlinputFile control, before the control’s
markup is rendered. The enctype attribute in the code shown next is therefore unnecessary:

<form runat="server" enctype="multipart/form-data">

<input runat="server" type="file" id="uplLoader" >

<input runat="server" type="submit" value="Upload..." />
</form>

The way in which the HtmlinputFile control is rendered to HTML is browser-specific, but it
normally consists of a text box and a Browse button. The user selects a file from the local
machine and then clicks the button to submit the page to the server. When this occurs, the
browser uploads the selected file to the server, as shown in Figure 6-4.

250 Part Il ASP.NET Pages and Server Controls

g File uplead (HTML control) - Windows Internet Explorer E
& () = [El humifocah.. ~[&[4[x|l sing P -

i Favorites | 95
{& File upload (HTML cont... o ~ [@ v Page~ Safety~ Tools~

PROGRAMMING ASP.NET 4

Home About

SELECT A FILE TO UPLOAD:

File to upload

D:\Links.txt m

THE UPLOAD PATH DOESN'T EXIST: CA\TEMP\UPLOADED FILES\

«]] '

«/ Trusted sites | Protected Mode: Off 3 v ®100% -

FIGURE 6-4 A new file has been uploaded to the Web server and copied to the destination folder.

Note Prior to ASP.NET, a server-side process—the posting acceptor—was required to run in
the background to handle multipart/form-data submissions. In ASP.NET, the role of the posting
acceptor is no longer necessary because it is carried out by the ASP.NET runtime itself.

On the server, the file is parked into an object of type HttpPostedFile and stays there until
explicitly processed—for example, saved to disk or to a database. The HttpPostedFile object
provides properties and methods to get information on an individual file and to read and
save the file. The following code shows how to save a posted file to a particular folder to disk:

<%@ Page Tanguage="C#" %>
<%@ Import Namespace="System.IO0" %>

<script runat="server">
void UploadButton_Click(object sender, EventArgs e)
{
// *** ASSUME THE PATH EXISTS ***
string savePath = @"c:\temp\uploaded files\";
if (!Directory.Exists(savePath)) {
const String msg = "<hl>The upload path doesn't exist: {0}</h1>";
UpTloadStatusLabel.InnerHtm]l = String.Format(msg, savePath);
return;

}

// Verify that a file has been posted

if (FileUploadl.PostedFile != null)

{
// Save the uploaded file to the specified path
var fileName = Path.GetFileName(FileUploadl.Value);
savePath += fileName;
FileUpToadl.PostedFile.SaveAs(savePath);

Chapter 6 ASP.NET Core Server Controls 251

// Notify the user of the name the file was saved under.

UploadStatusLabel.InnerText = "File saved as: " + savePath;
}
else
{
// Notify the user that a file was not uploaded.
UpTloadStatusLabel.InnerText = "No file specified.";
}
}
</script>
<html1>

<head runat="server">
<title>File Upload</title>
</head>
<body>
<form runat="server">
<h3>Select a file to upload:</h3>
<hr />
File to upload

<input type="file" id="FileUploadl" runat="server" />

<input runat="server" id="UploadButton" type="submit"
value="Upload" onserverclick="UploadButton_Click" />
<hr />

</form>
</body>
</htm1>

You can also use the InputStream property of the HttpPostedFile object to read the posted
data before persisting or processing. The HttpInputFile control also allows you to restrict the
file types that can be uploaded to the server. You do this by setting the Accept property with
a comma-separated list of MIME types.

Caution When you use the SaveAs method, you should pay attention to specify the full path
to the output file. If a relative path is provided, ASP.NET attempts to place the file in the system
directory. This practice can result in an “access denied” error. Furthermore, make sure to provide
write permission for the account used by ASP.NET for the directory where you want to store

the file.

ASP.NET exercises some control of the amount of data being uploaded. The
maxRequestLength attribute in the <httpRuntime> section of the configuration file sets the
maximum allowable file size. An error is generated in the browser when the file exceeds the
specified size—4 MB by default. Uploading large files might also generate another run-time
error as a result of an excessive consumption of system memory. Finally, in a hosting scenario
if you still experience problems regardless of the settings in your configuration, check out the
maximum upload size on your Web server.

252

Part Il ASP.NET Pages and Server Controls

The HtmlImage Control

The Htmlimage class is the ASP.NET counterpart of the tag. You can use it to configure
on the server the display of an image. Possible parameters you can set are the size of the
image, the border, and the alternate text. An instance of HtmlImage is created only when the
runat attribute is added to the tag. If you simply need to display an image within a
page, and the image is not dynamically determined or configured, there is no need to resort
to the Htmllmage control, which would add unnecessary overhead to the page.

The following code snippet shows how to configure a server-side tag called to display
an image whose name is determined based on run-time conditions:

theImg.Width = 100;
theImg.Height = 100;
theImg.Src = GetImageUrl(Request); // assume GetImageUrl is a method of yours

The Htmllmage control should be used to programmatically manipulate the image to change
the source file, the width and height, or the alignment of the image relative to other page
elements. The majority of properties of the Htmllmage control are implemented as strings,
including Src—the URL of the image—and Align. Feasible values of Align are only a small set
of words such as left, right, top, and so forth. These words would have been more appropri-
ately grouped in a custom enumerated type, thus providing for a strongly typed program-
ming model. If you think so, too, you just got the gist of the difference between HTML and
Web server controls! HTML controls just mirror HTML tags; Web controls attempt to provide
a more consistent and effective programming interface by exploiting the characteristics of
the .NET Framework.

Literal Controls

Literal controls are a special type of server control that ASP.NET creates and uses when-
ever it encounters plain text that doesn't require server-side processing. In general,
everything that appears in the context of an ASP.NET page is treated like a control. If

a tag includes the runat="server” attribute, ASP.NET creates an instance of a specific
class; otherwise, if no runat attribute has been specified, the text is compiled into a
LiteralControl object. Literal controls are simple text holders that are added to and
removed from pages using the same programming interface defined for other server
controls.

Note that a literal control is created for each sequence of characters placed between
two successive server controls, including carriage returns. Using a new line to separate
distinct server controls and increase code readability actually affects the number of
server controls being created to serve the page. Writing the page as a single string
without carriage returns produces the smallest number of server controls.

Chapter 6 ASP.NET Core Server Controls 253

Web Controls

Web controls are defined in the System.Web.Ul.WebControls namespace and represent an
alternative approach to HTML server controls. Like HTML controls, Web controls are server-
side components that spring to life thanks to the runat="server” attribute. Unlike HTML
controls, Web controls provide a programming interface that refactors the classic set of
HTML attributes and events. For this reason, Web controls sometimes appear to be more
consistent and abstract in the API design and richer in functionality, but they still gener-
ate valid markup. When hosted in .aspx pages, Web controls are characterized by the asp
namespace prefix.

To a large degree, Web controls and HTML controls overlap and generate almost the same
markup, although they do it through different programming interfaces. For example, the
Web controls namespace defines the TextBox control and makes it available through the
<asp:textbox> tag; similarly, the HTML controls namespace provides the HtmlInputText
control and declares it using the <input> tag. Using either is mostly a matter of preference;
only in a few cases will you run into slight functionality differences.

Generalities of Web Controls

The WebControl class is the base class from which all Web controls inherit. WebControl
inherits from Control. The class defines several properties and methods that are shared, but
not necessarily implemented, by derived controls. Most properties and methods are related
to the look and feel of the controls (font, style, colors, CSS) and are subject to browser and
HTML versions. For example, although all Web controls provide the ability to define a border,
not all underlying HTML tags actually support a border.

Properties of Web Controls

Table 6-9 lists the properties available on the WebControl class.

TABLE 6-9 Specific Properties of Web Controls

Property Description

AccessKey Gets or sets the letter to press (together with Alt) to quickly set focus to
the control in a Web form. It's supported on Internet Explorer 4.0 and
newer.

Attributes Gets the collection of attributes that do not correspond to properties

on the control. Attributes set in this way will be rendered as HTML at-
tributes in the resulting page.

BackColor Gets or sets the background color of the Web control.
BorderColor Gets or sets the border color of the Web control.
BorderStyle Gets or sets the border style of the Web control.

BorderWidth Gets or sets the border width of the Web control.

254

Part Il ASP.NET Pages and Server Controls

Property Description

ControlStyle Gets the style of the Web server control. The style is an object of type
Style.

ControlStyleCreated Gets a value that indicates whether a Style object has been created for
the ControlStyle property.

CssClass Get or sets the name of the cascading style sheet (CSS) class to be
associated with the control.

DisabledCssClass Get or sets the name of the cascading style sheet (CSS) class to be
associated with the control when in a disabled state.

Enabled Gets or sets whether the control is enabled.

Font Gets the font properties associated with the Web control.

ForeColor Gets or sets the foreground color of the Web control mostly used to
draw text.

Height Gets or sets the height of the control. The height is expressed as a

member of type Unit.

Style Gets a CssStyleCollection collection object made of all the attributes
assigned to the outer tag of the Web control.

SupportDisabledAttribute Returns true for the WebControl base class.

TabIndex Gets or sets the tab index of the control.

ToolTip Gets or sets the text displayed when the mouse pointer hovers over the
control.

Width Gets or sets the width of the control. The width is expressed as a

member of type Unit.

The ControlStyle and ControlStyleCreated properties are used primarily by control developers,
while the Style property is what application developers typically use to set CSS attributes on
the outer tag of the control. The Style property is implemented using an instance of the class
CssStyleCollection. The CssStyleCollection class is a simple collection of strings like those you
assign to the HTML style attribute.

Styling Web Controls

The ControlStyle property evaluates to an object of type Style—a class that encapsulates

the appearance properties of the control. The Style class groups together some of the
properties that were shown in Table 6-9, and it works as the repository of the graphical and
cosmetic attributes that characterize all Web controls. The grouped properties are BackColor,
BorderColor, BorderStyle, BorderWidth, CssClass, Font, ForeColor, Height, and Width. All prop-
erties of the Style class are strongly typed. The properties just mentioned are not persisted
to the view state individually, but they benefit from the serialization machinery supported by
the Style object.

Chapter 6 ASP.NET Core Server Controls 255

It should be clear by now that the Style class is quite different from the Style property, whose
type is CssStyleCollection. Note that style values set through the Style property are not
automatically reflected by the (strongly typed) values in the Style object. For example, you
can set the CSS border-style through the Style property, but that value won't be reflected by
the value of the BorderStyle property.

// Set the border color through a CSS attribute
MyControl.Style["border"] = "solid 1lpx black";

// Set the border color through an ASP.NET style property
MyControl.BorderColor = Color.Red;

So what happens if you run the preceding code snippet? Which setting would win? When a
control is going to render, the contents of both the ControlStyle and Style properties are ren-
dered to HTML style attributes. The ControlStyle property is processed first, so in the case of
overlapping settings the value stuffed in Style, which is processed later, ultimately wins.

Managing the Style of Web Controls

The style properties of a Web control can be programmatically manipulated to some extent.
For example, in the Style class, you can count on a CopyFrom method to duplicate the object
and on the MergeWith method to combine two style objects.

currentStyle.MergeStyle(newStyle);

The MergeWith method joins the properties of both objects. In doing so, it does not replace
any property that is already set in the base object but limits itself to defining uninitialized
properties. Finally, the Reset method clears all current attributes in the various properties of
the style object.

Note [already mentioned this point a few times, but the best practice today is having

ASP.NET controls emit style-ignorant markup. The emitted markup then will be decorated at will
and made as colorful and attractive as it needs to be by using external CSS classes. In light of this,
all of the control style features of ASP.NET lose much of their original appeal.

Methods of Web Controls

The WebControl class supports a few additional methods that are not part of the base Control/
class. These methods are listed in Table 6-10.

256

Part Il ASP.NET Pages and Server Controls

TABLE 6-10 Specific Methods of Web Controls
Method Description

ApplyStyle Copies any nonempty elements of the specified style object to the control.
Existing style properties are overwritten.

CopyBaseAttributes Imports from the specified Web control the properties AccessKey, Enabled,
ToolTip, Tabindex, and Attributes. Basically, it copies all the properties not
encapsulated in the Style object.

MergeStyle Like ApplyStyle, copies any nonempty elements of the specified style to the
control. Existing style properties are not overwritten, though.

RenderBeginTag Renders the HTML opening tag of the control into the specified writer. The
method is called right before the control’s RenderControl method.

RenderEndTag Renders the HTML closing tag of the control into the specified writer. The
method is called right after the control’s RenderControl method.

All these methods are rarely of interest to application developers. They are mostly designed
to support control developers.

Core Web Controls

The set of Web controls can be divided into various categories according to the provided
functionality—input and button controls, validators, data-bound controls, security-related
controls, grid and view controls, plus a few miscellaneous controls that provide ad hoc func-
tions and are as common on the Web as they are hard to catalogue (for example, calendar,
ad rotator, and so forth).

In this chapter, we're focused on covering the most common and essential Web controls,
such as the controls for capturing the user’s input and posting data to the server. Table 6-11
details the core server controls of ASP.NET. (Other more advanced controls will be covered
later when discussing input forms and data binding.)

TABLE 6-11 Core Web Controls

Control Description

Button Implements a push button through the <input> tag.

CheckBox Implements a check box through the <input> tag.

FileUpload Allows users to select a file to upload to the server.

HiddenField Implements a hidden field.

HyperLink Implements an anchor <a> tag, and lets you specify either the location to jump
to or the script code to execute.

Image Implements a picture box through the tag.

ImageButton Displays an image and responds to mouse clicks on the image like a real
button.

ImageMap Displays an image and optionally defines clickable hot spots on it.

Chapter 6 ASP.NET Core Server Controls 257

Control Description

Label Represents a static, nonclickable piece of text. It's implemented through the
 tag.

LinkButton Implements an anchor <a> tag that uses only the ASP.NET postback

mechanism to post back. It is a special type of hyperlink where the programmer
can't directly set the target URL.

Localize Reserves a location on a Web page for you to display localized text.
MultiView Represents a control that acts as a container for a group of child View controls.
Panel Implements an HTML container using the <div> block element. In ASP.NET 2.0,

the container supports scrolling. Note that in down-level browsers the control
renders out as a <table>.

RadioButton Implements a single radio button through the <input> tag.

Table Implements the outer table container. It's equivalent to the HTML <table>
element.

TableCell A table cell; it's equivalent to the HTML <td> element.

TableRow A table row; it's equivalent to the HTML <tr> element.

TextBox Implements a text box using the <input> or <textarea> tag as appropriate and

according to the requested text mode. It can work in single-line, multiline, or
password mode.

View Acts as a container for a group of controls. A View control must always be
contained within a MultiView control.

Most controls in Table 6-11 look like HTML controls. Compared to HTML controls, their
programming model is certainly richer and more abstract, but in the end it still generates
valid markup. If a given feature can't be obtained with raw HTML, there’s no way a custom
Web control can provide it. No matter how complex the programming model is, all Web
controls must produce valid HTML for both up-level and down-level browsers.

Button Controls

In ASP.NET, controls that provide button functions are characterized by the /ButtonControl
interface. Core controls that implement the interface are Button, ImageButton, and
LinkButton. In general, by implementing /ButtonControl any custom control can act like a
button on a form. Table 6-12 details the /ButtonControl interface.

TABLE 6-12 The IButtonControl Interface

Name Description

CausesValidation Boolean value, indicates whether validation is performed when the control
is clicked.

CommandArgument Gets or sets an optional parameter passed to the button's Command event

along with the associated CommandName.

CommandName Gets or sets the command name associated with the button that is passed
to the Command event.

258

Part Il ASP.NET Pages and Server Controls

Name Description

PostBackUrl Indicates the URL that will handle the postback triggered through the
button control. This feature is known as cross-page postback.

Text Gets or sets the caption of the button.

ValidationGroup Gets or sets the name of the validation group that the button belongs to.

In addition to the properties defined by the /ButtonControl interface, the Button class fea-
tures two properties for handling the steps following the user’s clicking. The properties are
OnClientClick and UseSubmitBehavior. The former lets you define the name of the JavaScript
function to run when the client-side onclick event is fired. The following two statements are
perfectly legal and equivalent:

Buttonl.OnClientClick = "ShowMessage()";
Buttonl.Attributes["onclick"] = "ShowMessage()";

The OnClientClick property is also available on LinkButton and ImageButton controls.

By default, the Button class is rendered through an <input type=submit> tag. In this way, it
takes advantage of the browser’s submit mechanism to post back. The UseSubmitBehavior
property allows you to change the default behavior. Set the UseSubmitBehavior property
to false and the control will render out through an <input type=button> tag. Also in this
case, though, the Button control remains a postback button. When UseSubmitBehavior is
false, the control's onclick client event handler is bound to a piece of JavaScript code

(the __doPostBack function) that provides the ASP.NET postback mechanism just like for
LinkButton or ImageButton controls.

Important Buttons are not the only controls that can trigger a postback. Text boxes and check
boxes (plus a few more data-bound list controls, which you'll see in Chapter 10) also can start

a postback if their AutoPostBack property is set to true. (Note that the default setting is false.)
When this happens, the control wires up to a client-side event—onchange for text boxes, and
onclick for check boxes—and initiates a postback operation via script. In light of this, virtually any
control can be modified to post back.

HyperLinks

The HyperLink control creates a link to another Web page and is typically displayed through
the text stored in the Text property. Alternatively, the hyperlink can be displayed as an image;
in this case, the URL of the image is stored in the ImageUrl property. Note that if both the
Text and ImageUrl properties are set, the ImageUr| property takes precedence. In this case,
the content of the Text property is displayed as a ToolTip when the mouse hovers over the
control’s area.

Chapter 6 ASP.NET Core Server Controls 259

The NavigateUrl property indicates the URL the hyperlink is pointing to. The Target property
is the name of the window or frame that will contain the output of the target URL.

Images and Image Buttons

The Image control displays an image on the Web page. The path to the image is set through
the ImageUrl property. Image URLs can be either relative or absolute, with most program-
mers showing a clear preference for relative URLs because they make a Web site inherently
easier to move. You can also specify alternate text to display when the image is not available
or when the browser doesn't render the image for some reason. The property to use in this
case is AlternateText. The image alignment with respect to other elements on the page is set
by using the ImageAlign property. Feasible values are taken from the homonymous enum
type (for example: ImageAlign.Left, ImageAlign.Middle, and so forth).

The Image control is not a clickable component and is simply limited to displaying an image.
If you need to capture mouse clicks on the image, use the ImageButton control instead.

The ImageButton class descends from Image and extends it with a couple of events—Click
and Command—that are raised when the control is clicked. The OnClick event handler pro-
vides you with an ImageClickEventArgs data structure that contains information about the
coordinates for the location at which the image is clicked.

The OnCommand event handler makes the ImageButton control behave like a command
button. A command button has an associated name that you can control through the
CommandName property. If you have multiple ImageButton controls on the same page, the
command name allows you to specify which one is actually clicked. The CommandArgument
property can be used to pass additional information about the command and the control.

Finally, the ImageMap control deserves a few words. In its simplest and most commonly used
form, the control displays an image on a page. However, when a hot-spot region defined
within the control is clicked, the control either generates a postback to the server or navi-
gates to a specified URL. The hot spot is a clickable region within the displayed image. The
hot spot is implemented with a class that inherits from the HotSpot class. There are three
predefined types of hot spots: polygons, circles, and rectangles.

Check Boxes and Radio Buttons

Check boxes and radio buttons are implemented through the <input> tag and with the type
attribute set to checkbox or radio. Unlike the HTML control versions, the Web control versions
of check boxes and radio buttons let you specify the associated text as a property. The HTML
elements and corresponding HTML controls lack an attribute whose content becomes the

260

Part Il ASP.NET Pages and Server Controls

text near the check box or radio button. In HTML, to make the text near the check box or
radio button clickable, you have to resort to the </abel> tag with the for attribute:

<input type="checkbox" id="ct1" />
<label for="ct1">Check me</Tabel>

Neither the HtmlInputCheckBox nor the HtmlInputRadioButton control adds a label, which
leaves you responsible for doing that. The counterparts to these Web controls, on the other
hand, are not bound to the HTML syntax and do precisely that—they automatically add

a Text property, which results in an appropriate </abel> tag. For example, consider the
following ASP.NET code:

<asp:checkbox runat="server" id="ctl" text="Check me" />
It results in the following HTML code:

<input type="checkbox" id="ct1" />
<label for="ct1">Check me</label>

Text Controls

The fastest way to insert text in a Web page is through literals—that is, static text inserted
directly in the ASPX source. This text will still be compiled to a control but, at least, the
number of dynamically created literal controls is the minimum possible because any
sequence of consecutive characters are grouped into a single literal. If you need to identify
and manipulate particular strings of text programmatically, you can resort to a Literal control
or, better yet, to the richer Label control. Modifiable text requires a TextBox.

Over the years, ASP.NET text controls went through a number of minor changes but
preserved core functionalities. In particular, | want to mention that the TextBox class
implements two interfaces as a way to logically group its capabilities. Frankly, this aspect is
not that relevant for the ASP.NET developer seeking coding tips and tricks. It makes a good
statement, however, about the design of the control and, all in all, represents a good exam-
ple of programming to learn from and reuse in our own classes. (This is related to one of the
core design principle I'll cover in Chapter 13, “Principles of Software Design"—the Interface
Segregation Principle.)

The two interfaces implemented by TextBox classes are ITextControl and /EditableTextControl.
The former includes the sole Text property and is implemented by Literal, Label, TextBox, and
list controls. The latter interface defines the TextChanged event and is specific to TextBox
and list controls.

Speaking of text controls, it is also worth mentioning an accessibility feature of the Label
control—the AssociatedControllD property. The property takes the ID of a control in the
page—typically, an input control such as a TextBox—that you want to associate with the
label. AssociatedControllD changes the way the Label control renders out. It is a tag

Chapter 6 ASP.NET Core Server Controls 261

if no associated control is specified; it is a </abel> tag otherwise. Let's consider the following
example:

<asp:Label ID="Labell" runat="server" Text="Sample text" />
<asp:TextBox ID="TextBox1l" runat="server" />

As is, it generates the following markup:

Sample text
<input name="TextBox1l" type="text" id="TextBoxl1l" />

If you set the label's AssociatedControllD property to TextBox1, the markup changes as
shown here:

<label for="TextBox1l" id="Labell">Sample text</label>
<input name="TextBox1l" type="text" id="TextBoxl1l" />

The run-time behavior changes a bit because now any click on the label text will be extended
to the associated control. For example, clicking on the label will move the input focus to a
text box, or it will select or deselect a check box.

Hidden Fields and File Upload

If you're looking for a more comfortable programming interface to create hidden fields and
upload files, two Web controls might help. The HiddenField and FileUpload controls add

no new functionality to the ASP.NET programmer’s bag, but they have been added to the
toolbox for completeness. A hidden field can be created in two other ways that work with
ASP.NET 1.x too. For example, you can use the RegisterHiddenField method on the Page class:

// Works in ASP.NET 1.x but is obsolete starting with 2.0
RegisterHiddenField("HiddenFieldl", "Great book!");

Note that the RegisterHiddenField method has been flagged as obsolete as of ASP.NET 4.
The recommended code analogous to the previous snippet is shown next:

// Recommended code
ClientScriptManager.RegisterHiddenField("HiddenFieldl", "Great book!");

In addition, to create a hidden field you can resort to the HTML markup, adding a runat
attribute if you need to set the value programmatically:

<input runat="server" id="HiddenFieldl" type="hidden" value="..." />

Analogous considerations can be made for the FileUpload control, which provides the same
capabilities as the HtmlInputFile control that we discussed earlier. In this case, though, the
programming interface is slightly different and perhaps more intuitive. The HasFile property
and SaveAs method hide any reference to the object that represents the posted file. Likewise,

262

Part Il ASP.NET Pages and Server Controls

the FileName property provides a more immediate name for the name of the posted file. The
code to upload a file can be rewritten as follows:

if (FileUploadl.HasFile)

{
// Get the name of the file to upload.
var fileName = FileUploadl.FileName;
var targetPath = GetSavePath(fileName); // a function of yours...
FileUpTloadl.SaveAs(targetPath);
}

Whether you use FileUpload or HtmlInputFile is mostly a matter of preference.

Miscellaneous Web Controls

The WebControls namespace also includes a few controls that provide useful functionality
that is common in Web applications. In particular, we'll examine the AdRotator control, which
works like an advertisement banner, and the Calendar control, which is a flexible and highly
interactive control used to specify a date.

The AdRotator Control

Abstractly speaking, the AdRotator control displays an automatically sized image button and
updates both the image and the URL each time the page refreshes. The image to display and
other information is read from an XML file written according to a specific schema. More con-
cretely, you use the AdRotator control to create an advertisement banner on a Web Forms
page. The control actually inserts an image and hyperlink in the page and makes them point
to the advertisement page selected. The image is sized by the browser to the dimensions of
the AdRotator control, regardless of its actual size. The following code shows a typical XML
advertisement file:

<Advertisements>

<Ad>
<ImageUr1>6235.gif</ImageUrl>
<NavigateUrT>www.microsoft.com/MSPress/books/6235.asp</NavigateUrl>
<AlternateText>Introducing ASP.NET AJAX</AlternateText>
<Impressions>50</Impressions>

</Ad>

<Ad>
<ImageUr1>5727.gif</ImageUrl>
<NavigateUrT>www.microsoft.com/MSPress/books/5727.asp</NavigateUrl>
<ATternateText>Programming ASP.NET Applications</AlternateText>
<Impressions>50</Impressions>

</Ad>

</Advertisements>

http://www.microsoft.com/MSPress/books/6235.asp</NavigateUrl
http://www.microsoft.com/MSPress/books/5727.asp</NavigateUrl

Chapter 6 ASP.NET Core Server Controls 263

The <Advertisement> root node contains multiple <Ad> elements, one for each image to
show. The advertisement file must reside in the same application as the AdRotator control.
The syntax of the AdRotator control is as follows:

<%@ Page Language="C#" %>
<html1>
<head><title>Ad Rotators</title></head>
<body>
<form runat="server">
<h1l>Dino Esposito's Books</hl>
<asp:AdRotator runat="server" id="bookRotator"
AdvertisementFile="MyBooks.xml" />
</form>
</body>
</html>

In the XML advertisement file, you use the </ImageUr/> node to indicate the image to load
and the <NavigateUrl> node to specify where to go in case of a click. The <AlternateText>
node indicates the alternate text to use if the image is unavailable, whereas </Impressions>
indicates how often an image should be displayed in relation to other images in the ad-
vertisement file. Finally, each image can also be associated with a keyword through the
<Keyword> node. Of all the elements, only <ImageUr/> is required.

Once per roundtrip, the AdRotator control fires the server-side AdCreated event. The

event occurs before the page is rendered. The event handler receives an argument of

type AdCreatedEventArgs, which contains information about the image, a navigation URL,
alternate text, and any custom properties associated with the advertisement. The AdCreated
event can be used to programmatically select the image to show. The XML schema of the
advertisement is not fixed and can be extended with custom elements. All nonstandard
elements associated with the selected advertisement will be passed to the AdCreated event
handler stuffed in the AdProperties dictionary member of the AdCreatedEventArgs class.

Note The AdRotator control can also get its advertisement feed through an XML or relational
data source. Image and navigation URLs, as well as the alternate text, can be read from fields
belonging to the data source. The control cannot be bound to more than one data source at a
time. If more than one property—AdvertisementFile, DataSourcelD, or DataSource—is set, an
exception will be thrown.

The Calendar Control

The Calendar control (shown in Figure 6-5) displays a one-month calendar and allows you
to choose dates and navigate backward and forward through the months of the year. The
control is highly customizable both for appearance and functionality. For example, by setting

264

Part Il ASP.NET Pages and Server Controls

the SelectionMode property, you can decide what the user can select—that is, whether a
single date, week, or month can be selected.

<asp:calendar runat="server" id="hireDate"
SelectedDate="2010-08-21" VisibleDate="2010-08-21" />

(€ Calendar - Windows Interet Explorer =N ECR =<
QQ |g, hitp://localh... v|] ‘ ‘1»| x \ |b Bing

i Favorites | 5
@ Calendar [=7

PROGRAMMING ASP.NET 4

Home About

P —— v

J/ Trusted sites | Protected Mode: Off #3 ~ ®100% ~

FIGURE 6-5 The Calendar control in action.

The VisibleDate property sets a date that must be visible in the calendar, while SelectedDate
sets with a different style the date that is rendered as selected. The control also fires three ad
hoc events: DayRender, SelectionChanged, and VisibleMonthChanged. The DayRender event
signals that the control has just created a new day cell. You can hook the event if you think
you need to customize the cell output. The SelectionChanged event fires when the selected
date changes, while VisibleMonthChanged is raised whenever the user moves to another
month using the control's selector buttons.

The Calendar control originates a roundtrip for each selection you make. Although it is cool
and powerful on its own, for better performance you might also want to provide a plain text
box for manually typing dates.

The Xml Control

The Xml control, defined by the <asp:Xml> tag, is used to inject the content of an XML
document directly into an ASP.NET page. The control can display the source XML as-is or as
the results of an XSL transformation (XSLT). The Xm/ control is a sort of declarative counter-
part for the Xs/Transform class, and it can make use of the .NET Framework XSLT transform
class internally.

You use the Xm/ control when you need to embed XML documents in a Web page. For
example, the control is extremely handy when you need to create XML data islands for the

Chapter 6 ASP.NET Core Server Controls 265

client to consume. The control lets you specify a document to work with and, optionally, a
transformation to apply. The XML document can be specified in a variety of formats—an
XML document object model, string, or file name. The XSLT transformation can be defined
through either an already configured instance of the .NET Framework Xs/Transform class or a
file name.

<asp:xml runat="server"
documentsource="document.xml"
transformsource="transform.xs1" />

If you're going to apply some transformation to the XML data, you can also embed it inline
between the opening and closing tags of the control. The control also makes it easier to ac-
complish a common task: apply browser-dependent transformations to portions of the page
expressed in an XML meta language. In this case, you exploit the programming interface of
the control as follows:

<asp:xml runat="server" id="theXml" documentsource="document.xml" />

In the Page_Load event, you just check the browser capabilities and decide which
transformation should be applied:

void Page_Load(object sender, EventArgs e)

{
if (IsInternetExplorer(Request.Browser))
theXml.TransformSource = "ie5.xs1";
else
theXml.TransformSource = "downlevel.xs1";
}

The PlaceHolder Control

The PlaceHolder control is one of the few controls in the WebControls namespace that isn't
derived from the WebControl class. It inherits from Control and is used only as a container
for other controls in the page. The PlaceHolder control does not produce visible output of
its own and is limited to containing child controls dynamically added through the Controls
collection. The following code shows how to embed a placeholder control in a Web page:

<asp:placeholder runat="server" id="theToolbar" />

After you have a placeholder, you can add controls to it. As mentioned, the placeholder does
not add extra functionality, but it provides for grouping and easy and direct identification of
a group of related controls. The following code demonstrates how to create a new button
and add it to an existing placeholder:

Button btn = new Button();
btn.Text = "Click me";
theToolbar.Controls.Add(btn);

266

Part Il ASP.NET Pages and Server Controls

The PlaceHolder control reserves a location in the control tree and can be extremely
helpful in identifying specific areas of the page to customize and extend by adding controls
programmatically.

Important Note that each control dynamically added to the Controls collection of a parent
control is not restored on postback. If the control generates some input elements on the client,
the client data is regularly posted but there will be no server-side control to handle that. To avoid
this, you must “remember” that you created a certain control dynamically and re-create it while
the page loads on postbacks. To remember that a certain control was added to a parent, you can
create a custom entry in the view state or use a hidden field.

View Controls

ASP.NET provides two related controls to create a group of interchangeable panels of child
controls. The MultiView control defines a group of views, each represented with an instance
of the View class. Only one view is active at a time and rendered to the client. The View
control can't be used as a standalone component and can be placed only inside a MultiView
control. Here's an example:

<asp:MultiView runat="server" id="Tables">
<asp:View runat="server" id="Employees'">

</asp:View>
<asp:View runat="server" id="Products">
</asp:View>
<asp:View runat="server" id="Customers">
</asp:View>
</asp:MultiView>
You change the active view through postback events when the user clicks buttons or

links embedded in the current view. To indicate the new view, you can either set the
ActiveViewlIndex property or pass the view object to the SetActiveView method.

Figure 6-6 shows a sample page in action. You select the page from the drop-down list and
refresh the view:

void Page_Load(object sender, EventArgs e)

{
// Views is an auto-postback drop-down Tist
Tables.ActiveViewIndex = AvailableViews.SelectedIndex;

}

The combination of View and MultiView controls lends itself very well to implementing
wizards. In fact, the new ASP.NET Wizard control uses a MultiView control internally. We'll
cover the Wizard control in Chapter 8.

Chapter 6 ASP.NET Core Server Controls 267

‘€ Multiple Views - Windows Internet Explorer E@
() = [E] humifocah... ~[&[4 | x |l sing P~
7 Favorites | 55
& Multiple Views o v [s v Pagew Safety~

PROGRAMMING ASP.NET 4

Home About

SELECT A VIEW

Emp\uyessE

EMPLOYEES
< i | »
/' Trusted sites | Protected Mode: Off fa v ®100% -

FIGURE 6-6 A multiview control in action.

ASP.NET Miscellaneous Controls and the AJAX Revolution

This book is designed to be a reference for ASP.NET developers. The book is designed
to stay mostly idle on the desk and be used when you get in trouble and can’t move
further without a clear and deep understanding of a given ASP.NET feature. So this
book puts more effort into explaining the underpinnings and architecture of ASP.NET
components rather than trying to solve common problems by illustrating relatively
common techniques. On the other hand, with Google you can navigate through zillions
of blogs and can address your technical urgency effectively in a relatively quick time.
With specialized sites such as StackOverflow (http.//www.stackoverflow.com), you can
likely just type in your question and find exactly the answer you were looking for.

So how does this relate to miscellaneous ASP.NET controls?

While planning this ASP.NET 4 programming book, | debated for long time whether
to include this chapter. Why? Because | was supposed to discuss relevant things about
most of the Web and HTML controls. But most of these controls are losing importance
in modern Web applications.

The Calendar control you find in ASP.NET is fairly useless at this stage of Web
development. If you need to let the user pick a date, you use a script-based, date-picker
extension for a text box. If you need a real calendar to lock dates, either you resort to
richer script-based solutions or you derive your own calendar from the base one. Most

http://www.stackoverflow.com

268 Part Il ASP.NET Pages and Server Controls

of the same things can be said for the View and MultiView controls. The underlying
idea they represent is more valid than ever, but the postback-based implementation
is not. You want to use AJAX scripts to switch between views and tabs. Wrapping a
MultiView control in an updatable panel can do the trick of refreshing views with lim-
ited impact on the user. But the direction seems to be another—using script libraries
such as jQuery Ul. And such libraries have nothing to do with controls like MultiView.

Finally, let's discuss the AdRotator control. The importance of such a component is a
no-brainer. Everybody wants to have ads on their site. But ads must not be bound to
postbacks in AJAX-intensive sites. The AdRotator control can be revamped with partial
rendering and updatable panels, but more often than not you resort to richer forms of
display based on Silverlight or Flash.

In summary, more than five years after the “official discovery” of the AJAX paradigm,
we realize that Web programming is changing, and so is ASP.NET. ASP.NET Web Forms
is still valid and can still help in writing a lot of successful code. But some of its core
components and ideas are becoming obsolete every day. Be aware of this when you
pick up a book or, more importantly, when you write your code. ASP.NET MVC is a new
paradigm that seems closer to the current needs of developers. For more information,
check out my book Programming ASP.NET MVC (Microsoft Press, 2010).

Summary

In ASP.NET pages, server controls are vital components and transform the programming
model of ASP.NET from a mere factory of HTML strings to a more modern and effective
component-based model. ASP.NET features a long list of control classes. Looking at the
namespaces involved, you should conclude that only two families of controls exist: HTML and
Web controls. Controls in the former group simply mirror the set of elements in the HTML
syntax. Each constituent control has as many properties as there are attributes in the corre-
sponding HTML tag. Names and behavior have been kept as faithful to the originals as pos-
sible. The ultimate goal of the designers of HTML controls is to make the transition from ASP
to ASP.NET as seamless as possible—just add runat="server” and refresh the page.

The overall design of Web controls is more abstract and much less tied to HTML. In general,
Web controls do not promote a strict one-to-one correspondence between controls and
HTML tags. However, the capabilities of Web and HTML controls overlap. All ASP.NET server
controls render in HTML, but Web controls render to a more complex HTML representation
than HTML controls.

In the next chapter, we'll touch on programming issues that relate to authoring an ASP.NET
page—error handling, localization, and personalization.

Chapter 7

Working with the Page

“Divide and rule, a sound motto. Unite and lead, a better one.”
—Wolfgang Goethe

Authoring an ASP.NET page is not simply a matter of putting together a well-organized
hierarchy of server controls, literals, and JavaScript script blocks. That's definitely a
fundamental step, but it's only the first step. First and foremost, a Web page is part of
the presentation layer of a Web application. This means that the page is responsible for
coordinating some user interface tasks aimed at providing end users with key information
regarding bad requests and run-time anomalies, localized messages, and preferences.

Momentarily leaving aside any discussion on possible best practices for layering an ASP.NET
Web Forms application, let’s examine some aspects related to ancillary page development
tasks. Tasks covered in this chapter relate to error handling, error pages, tracing, localization,
and personalization, as well as effective techniques to add script files and style the content
of ages.

I'll return to layers and design principles in Chapter 13, “Principles of Software Design.”

Dealing with Errors in ASP.NET Pages

Any ASP.NET application can incur various types of errors. There are configuration errors
caused by some invalid syntax or structure in one of the application’s web.config files and
parser errors that occur when the syntax on a page is malformed. In addition, you can run
into run-time errors that show up during the page’s execution. Finally, there are errors de-
tected by the ASP.NET runtime infrastructure that have to do with bad requests or incorrect
parameters.

Parser errors (both in configuration and markup) show up as soon as you start a debugging
session, and their fix is immediate and part of the development process. What about other
types of errors?

269

270

Part Il ASP.NET Pages and Server Controls

To prevent critical parts of your code from throwing exceptions at run time, you can resort
to plain exception-handling practices as recommended by the Microsoft .NET Framework
guidelines. To trap errors resulting from bad requests, invalid routing, or HTTP failures, you
can take advantage of some of ASP.NET-specific facilities for page error handling.

Let's attack the topic with a quick overview of exception handling as it happens in .NET.

Basics of Exception Handling

Just like other .NET applications, ASP.NET applications can take advantage of common
language runtime (CLR) exceptions to catch and handle run-time errors that occur in the
code. As a reminder, it's worth mentioning here that in .NET development CLR exceptions are
the recommended way of handling errors—they are the rule, not the exception!

Exceptions, though, should be taken just for what the name suggests—that is, events in the
life of the application raised when something happens that violates an assumption.

Exceptions should not be used to control the normal flow of the program. If there is a way to
detect possible inconsistent situations, by all means use that other method (mostly, condi-
tional statements), and use exceptions as the last resort. The latest version of Microsoft Visual
Studio 2010 (as well as many commercial products that assist you in development, such as
JetBrains ReSharper and Telerik JustCode, to name a couple) offers coding tips and reminds
you to check for possible null reference exceptions. That's a huge help, isn't it?

Although exceptions are the official tool to handle errors in .NET applications, they're not
free and should not be overused. Running any piece of code in a try/catch block will cost you
at least a little in terms of performance. Protection against possible run-time failure is a sort
of insurance, and you have to pay for that no matter what happens.

Exceptions in Action

To execute a piece of code with the certainty that any (or just some) exceptions it might raise
will be caught, you use the following code:

try
{

// Your regular code here

}

catch

{

// Your recovery code for all exceptions

Chapter 7 Working with the Page 271

The sample code snippet can have a number of variations and extensions. You can add a
finally block, which will finalize the operation and run regardless of whether the execution
flow went through the try or the catch block. The snippet shown will catch any exceptions.
Because of its extreme generality, you might need to lose some valuable information about
what has happened. A better approach consists of listing one or more catch blocks, each
trying to cache a specific exception:

try
{
// Your regular code here
}
catch(Nul1ReferenceException nullReferenceException)
{
// Your recovery code for the exception
}
catch(ArgumentException argumentException)
{
// Your recovery code for the exception
}
finally
{
// Finalize here but DON'T throw exceptions from here
}

Exceptions will be listed from the most specific to the least specific. From a catch block, you
are allowed to swallow the exception so that other topmost modules will never know about
it. Alternatively, you can handle the situation gracefully and recover. Finally, you can do
some work and then re-throw the same exception or arrange a new one with some extra or
modified information in it.

The catch block is fairly expensive if your code gets into it. Therefore, you should use the
catch block judiciously—only when really needed and without overcatching.

Guidelines for Exception Handling

When writing a module (including ASP.NET pages), you should never throw an exception
as an instance of the System.Exception class. It is strictly recommended that you try to use
built-in exception types such as InvalidOperationException, NullReferenceException, and
ArgumentNullException whenever these types apply. You should resist the temptation of
having your very own exceptions all the way through, although for program errors you
should consider defining your own exceptions.

272

Part Il ASP.NET Pages and Server Controls

In general, you should be very specific with exceptions. ArgumentNullException is more
specific than ArgumentException. An exception comes with a message, and the message must
be targeted to developers and, ideally, localized.

Swallowing an exception is possible and supported, but you should consider that in this case
some modules might never know what went wrong. This approach might not be accept-
able in some cases, so use it with extreme care. In general, don't be afraid to let exceptions
propagate up the call stack.

When using exceptions, pay a lot of attention to cleanup code. The finally block serves
exactly the purpose of ensuring that any cleanup code is always executed. Alternatively, when
the cleanup code sees an object that implements IDisposable, you can resort to the using
statement:

using(var someObject = new SomeDisposableObject())
{

// Code at risk of exceptions
}

If placed in a finally block, the cleanup code is always executed. This is an important
guarantee because if an unexpected exception is thrown, you might lose your cleanup code.

Finally, here are a few recommendations for situation in which you get to write your own
exception classes. For a long time, Microsoft said you should derive your exception classes
from System.ApplicationException. More recently, there’s been a complete turnaround on this
point: the new directive says the opposite. You should ignore ApplicationException and derive
your exception classes from Exception or other more specific built-in classes. And don't forget
to make your exception classes serializable.

Basics of Page Error Handling

When an exception occurs in an ASP.NET application, the CLR tries to find a block of code
willing to catch it. Exceptions walk their way up the stack until the root of the current applica-
tion is reached. If no proper handler shows up along the way, the exception gains the rank of
unhandled exception and causes the CLR to throw a system-level exception.

At this point, ASP.NET users are shown a standard error page that some developers familiarly
call the YSOD (yellow screen of death), which is a spinoff of the just as illustrious BSOD (blue
screen of death) that we all have come to know after years of experience with the Microsoft
Windows operating system. An unhandled exception originates an error and stops the
application.

As a developer, how should you deal with unhandled exceptions in ASP.NET applications?

Chapter 7 Working with the Page 273
Default Error Pages

When an unrecoverable error occurs in an ASP.NET page, users always receive a page that,
more or less nicely, informs them that something went wrong at a certain point. ASP.NET

catches any unhandled exception and transforms it into a page for the user, as shown in
Figure 7-1.

(€ The method or operation is not implemented. - Windows Internet Explorer =N ECR =<
@Q v [&] nttp//iocainostszss ~ | & [+4] x | [5ing o |

3 Favorites | 9%

(@& The method or operation is not... 5~ B v) dm v Pagev Safetyv Tookw @~

Server Error in /' Application.

The method or operation is not implemented.

Description: An unhandied exception occurred during the execution of the current web request. Please review the
stack trace for more information about the error and where it originated in the code.

Exception Details: System NotimplementadException: The method or operation is not implemented.

Source Error:

Line 8: protected void Buttonl_Click(Object sender, EventArgs e) L

Line 9: i

Line 10: throw new NotImplementedException();

Line 11: 1

Line 12: 1

Source File: D:\Wy D P.NET 4\Solar\ y pects\ErrorPages\Ysod.aspxcs Line: 10

Stack Trace:

< il | v
Dene /' Trusted sites | Protected Mode: Off 3 v ®100% -

FIGURE 7-1 The error page generated by an unhandled exception (for the local user).

As you can guess from looking at the screen shot, the sample page contains a button whose
click handler is bound to the following code:

protected void Buttonl Click(Object sender, EventArgs e)
{
throw new NotImplementedException();

}

More than the code itself, which is fairly trivial, the most interesting part of the story is how

ASP.NET handles the exception and the machinery that ultimately produces the markup of
Figure 7-1.

First and foremost, the typical error page differs for local and remote users.

By default, local users—namely, any user accessing the application through the local host—
receive the page shown in Figure 7-1. The page includes the call stack—the chain of method
calls leading up to the exception—and a brief description of the error. Additional source
code information is added if the page runs in debug mode. For security reasons, remote
users receive a less detailed page, like the one shown in Figure 7-2.

274

Part Il ASP.NET Pages and Server Controls

‘€ Runtime Error - Windows Internet Explorer =N ECR =<
@Q v [&] nttp//iocainostszss ~ | & [+4] x | [5ing o |
i Favorites | 5

@ Runtime Error 5~ B v) dm v Pagev Safetyv Tookw @~

Server Error in /' Application.

Runtime Error

Description: An appication error occurred on the server. The current custom error settings for this application
prevent the details of the appiication error from being viewed.

m

Details: To enable the details of this specific error message to be viewable on the local server machine, please
create a <customErrors> tag within a "web.config” configuration file located in the root directory of the current web
application. This <customErrors» tag should then have its “mode” attribute set to “RemoteOnly”. To enable the details to
be viewable on remote machines, please set “mode” to "0fF"

<1-- Web.Config Configuration File --»

<configurations b
<system.web>
<customErrors mode="RemoteOnly” />
</system, web>
</configuration>

Notes: The current error page you are seeing can be replaced by a custom error page by modifying the
“defaultRedirect” attribute of the appiication’s <customErrors> configuration tag to point to a custom error page URL. -

Done /' Trusted sites | Protected Mode: Off 3 ov EH100% v

FIGURE 7-2 The page does not provide information about the error.

ASP.NET provides a couple of global interception points for you to handle errors program-
matically, at either the page level or the application level. The Page base class exposes an
Error event, which you can override in your pages to catch any unhandled exceptions raised
during the execution of the page. Likewise, an Error event exists on the HttpApplication class,
too, to catch any unhandled exception thrown within the application.

Page-Level Error Handling

To catch any unhandled exceptions wandering around a particular page, you define a
handler for the Error event. Here's an example:

protected void Page_Error(Object sender, EventArgs e)
{

// Capture the error

var exception = Server.GetLastError();

// Resolve the error page based on the exception that occurred

// and redirect to the appropriate page

if (exception is NotImplementedException)
Server.Transfer("/ErrorPages/NotImplErrorPage.aspx");

else

Server.Transfer("/ErrorPages/GenericErrorPage.aspx");

// Clear the error
Server.ClearError();

3

You know about the raised exception through the GetLastError method of the Server object.
In the Error handler, you can transfer control to a particular page and show a personalized

Chapter 7 Working with the Page 275

and exception-specific message to the user. The control is transferred to the error page,
and the URL in the address bar of the browser doesn’t change. If you use Server.Transfer
to pass control, the exception information is maintained and the error page itself can call
into GetLastError and display more detailed information. Finally, after the exception is fully
handled, you clear the error by calling ClearError.

Using Server.Transfer instead of Response.Redirect is also relevant from a Search-Engine
Optimization (SEO) perspective because it performs a server-side redirect that is “invisible” to
client applications, including Web browsers and, more importantly, Web spiders.

Important When displaying error messages, pay attention not to hand out sensitive
information that a malicious user might use against your system. Sensitive data includes user
names, file system paths, connection strings, and password-related information. You can make
error pages smart enough to determine whether the user is local or whether a custom header is
defined, and to display more details that can be helpful to diagnose errors:

if (Request.UserHostAddress == "127.0.0.1") {

}

You can also use the Request.Headers collection to check for custom headers added only by a
particular Web server machine. To add a custom header, you open the Properties dialog box of
the application’s Internet Information Services (11S) virtual folder and click the HTTP Headers tab.

Global Error Handling

A page Error handler catches only errors that occur within a particular page. This means that
each page that requires error handling must point to a common piece of code or define its
own handler. Such a fine-grained approach is not desirable when you want to share the same
generic error handler for all the pages that make up the application. In this case, you can
create a global error handler at the application level that catches all unhandled exceptions
and routes them to the specified error page.

The implementation is nearly identical to page-level error handlers except that you will

be handling the Error event on the HttpApplication object that represents your application.
To do that, you write code in the predefined Application_Error stub of the application’s
global.asax file:

void Application_Error(Object sender, EventArgs e)

{
}

You could do something useful in this event handler, such as sending an e-mail to the
site administrator or writing to the Windows event log to say that the page failed to
execute properly. ASP.NET provides a set of classes in the System.Net.Mail namespace for
just this purpose.

Part Il ASP.NET Pages and Server Controls

void Application_Error(Object sender, EventArgs e)

{
// Code that runs when an unhandled error occurs
var exception = Server.GetlLastError();
if (exception == null)
return;
var mail = new MajlMessage { From = new MailAddress("automated@contoso.com") };
mail.To.Add(new MailAddress("administrator@contoso.com™));
mail.Subject = "Site Error at " + DateTime.Now;
mail.Body = "Error Description: " + exception.Message;
var server = new SmtpClient {Host = "your.smtp.server"};
server.Send(mail);
// Clear the error
Server.ClearError(Q);
}

If the SMTP server requires authentication, you need to provide your credentials through the
Credentials property of the SmtpClient class. Figure 7-3 shows the e-mail message being sent.

I‘/E:'l)\ H9 Ua9e s Site error ® 8/22/2010 9:22:53 PM - Message (Plain Text) - =] x
Message (7]
n . X —
) }J .%' x L3 Move to Folder % & Sate Lists - Eg i » 34 Find ,g'”
A - [Create Rule] L Related ~ =
Reply Reply Forward | Delete i Block NotJunk | Categorize Follow Mark as Sendto
to All 2] Other Adtions = || sender — ~ Up~ Unread | W& Select~ || OneNote
Respond Adtions Junk E-mail E] Options E] Find OneNote
From: automated@conteso.com Sent: Sun §/22/2010 9:23 PM
To: administrator @contoso. com
Cc
Subject: Site error @ 8/22/2010 9:22:53 PM
-
Error Description: Exception of type 'System.Web.HttpUnhandledException' was throuwn. E|
-

FIGURE 7-3 The e-mail message being sent when an error is handled globally.

As Figure 7-3 shows, the exception reported mentions a generic HTTP unhandled exception.
Note that GetLastError returns the real exception in the context of Page_Error, but not later in
the context of Application_Error. In the application context, the exception caught is a generic

HTTP exception that wraps the original exception internally. To retrieve the real exception,
you must go through the InnerException property, as shown here:

void Application_Error(Object sender, EventArgs e)

{

// This 1is a generic HTTP failure exception
var exception = Server.GetLastError(Q);
if (exception == null)

return;

// Put your hands on the original exception
var originalException = exception.InnerException;

mailto:automated@contoso.com
mailto:administrator@contoso.com

Chapter 7 Working with the Page 277

Essentially, when ASP.NET detects an internal application error—like it is an exception being
thrown by one of the pages—it configures itself for an HTTP 500 response. The ASP.NET
error-handling mechanism captures HTTP 500 errors but not other HTTP errors, such as 404.
Errors other than HTTP 500 are handled by the Web server, and all that you can do is config-
ure the ASP.NET error-handling machinery (and to some extent the routing mechanism too)
to redirect automatically where you like. No full control over 404 and other HTTP errors is
possible in ASP.NET Web Forms.

Note What takes precedence if you have an application-level error handler and a page-level
handler? The page handler runs first, followed by the application handler. For this reason, if you
have both handlers, you should avoid calling Server.ClearError in the page handler so that you do
not compromise any of the following steps.

Logging Exceptions

In addition or in alternative to sending an e-mail message, you can decide to write an entry
to the Windows event log when an exception is caught. Here's the code:

void Application_Error(Object sender, EventArgs e)

{
// Obtain the URL of the request
var url = Request.Path;

// Obtain the Exception object describing the error
var exception = Server.GetLastError();

// Build the message --> [Error occurred. XXX at url]
var text = new StringBuilder("Error occurred. ");
text.Append(error.Message) ;

text.Append(" at ");

text.Append(url);

// Write to the Event Log

var log = new EventLog(Q);

log.Source = "Your Log";

Tog.WriteEntry(text.ToString(), EventlLogEntryType.Error);
}

The Event Log Source must exist prior to its use in an ASP.NET application—in this case, in the
Application_Error method in global.asax. Typical ASP.NET account credentials are established
such that the ASP.NET account does not have Event Log source creation rights. You'll need to
make sure the log is created first on each Web server your code will execute within prior to
actually running your Web application.

278 Part Il ASP.NET Pages and Server Controls

Robust Error Handling

A good strategy for robust and effective ASP.NET error handling is based on the following
three guidelines:

B Anticipate problems by wrapping all blocks of code that might fail in try/catch/finally
blocks. This alone doesn’t guarantee that no exceptions will ever show up, but at least
you'll correctly handle the most common ones.

B Don't leave any exceptions unhandled. By following this guideline, even if you did not
anticipate a problem, at least users won't see an exception page. You can do this both
at the page and application levels. Needless to say, an application-level error handler
takes precedence over page-level handlers. At the least, exceptions that are handled
at the application level should be logged to feed reports and help the team to under-
stand what went wrong and whether some bugs exist that need to be fixed.

B Make sure that error pages don't give away any sensitive information. If necessary,
distinguish between local and remote users and show detailed messages only to the
former. A local user is defined as the user that accesses the application from the Web
server machine.

Outlined in this way, error handling is mostly a matter of writing the right code in the right
place. However, ASP.NET provides developers with a built-in mechanism to automatically
redirect users to error-specific pages. This mechanism is entirely declarative and can be
controlled through the web.config file.

Mapping Errors to Pages

ASP.NET developers can also benefit from a declarative API to gain some control over the
page being served to users after an unhandled exception. Such a declarative API relies on the
information stored in the <customErrors> section of the application’s web.config file.

The <customErrors> Section

You turn on custom error messages for an ASP.NET application by acting on the
<customErrors> section. Here's an example:

<configuration>
<system.web>

<customErrors mode="RemoteOnly" />
</system.web>
</configuration>

The mode attribute specifies whether custom error pages are enabled, disabled, or
shown only to remote clients. The attribute is required. When the mode attribute is set to

Chapter 7 Working with the Page 279

RemoteOnly (the default setting), remote users receive a generic error page that informs
them that something went wrong on the server. (See Figure 7-2.) Local users, on the other
hand, receive pages that show lots of details about the ASP.NET error. (See Figure 7-1.)

The error-handling policy can be changed at will. In particular, ASP.NET can be instructed
to display detailed pages to both local and remote users. To activate this functionality, you
change the value of the mode attribute to Off. For obvious security reasons, Off should
not be used in production environments—it might reveal critical information to potential
attackers.

Using Custom Error Pages

Overall, whatever your choice is for the mode attribute, all users have a good chance to be
served a rather inexpressive and uninformative error page. To display a more professional,
friendly, and apologetic page that has a look and feel consistent with the site, you set
web.config as follows. Figure 7-4 gives an idea of the results you can get.

<configuration>
<system.web>
<customErrors mode="0On"
defaultRedirect="/GenericErrorPage.aspx" />
</system.web>

</configuration>
& nitp:// 285, g i age.aspx - Windows Int... | = || B |5
() = [E] humifocah... ~[&[4 | x |l sing P~
s Favorites | 95
| @ nttp://ocalnostsass /.. - v [b v Pagew Safety~

PROGRAMMING ASP.NET 4

Home About

Sorry, an unrecoverable error occurred

and we're still investigating the reasons.

We profusely apologize for any inconvenience this may cause.
Please, try again in a few minutes.

Home

« i] v

«/ Trusted sites | Protected Mode: Off v B100% -

FIGURE 7-4 A more friendly error page.

Whatever the error is, ASP.NET now redirects the user to the GenericErrorPage.aspx page,
whose contents and layout are completely under your control. This look is obtained by
adding an optional attribute such as defaultRedirect, which indicates the error page to use to
notify users. If mode is set to On, the default redirect takes on the standard error pages for

280

Part Il ASP.NET Pages and Server Controls

all local and remote users. If mode is set to RemoteOnly, remote users will receive the custom
error page while local users (typically, the developers) still receive the default page with the
ASP.NET error information.

In most cases, the custom error page is made of plain HTML so that no error can recursively
be raised. However, should the error page, in turn, originate another error, the default
generic page of ASP.NET will be shown.

Note When a default redirect is used, the browser receives an HTTP 302 status code and is
invited to issue a new request to the specified error page. This fact has a key consequence: any
information about the original exception is lost and GetLastError, which is called from within the
custom error page, returns null.

Handling Common HTTP Errors

A generic error page invoked for each unhandled exception can hardly be context-
sensitive—especially if you consider that there’s no immediate way for the page author to
access the original exception. We'll return to this point in a moment.

In addition to redirecting users to a common page for all errors, ASP.NET enables you to
customize pages to show when certain HTTP errors occur. The mapping between error pages
and specific HTTP status codes is defined in the web.config file. The <customErrors> section
supports an inner <error> tag, which you can use to associate HTTP status codes with custom
error pages.

<configuration>
<system.web>
<customErrors mode="On" defaultRedirect="/GenericErrorPage.aspx">
<error statusCode="404" redirect="/ErrorPages/Error404.aspx" />
<error statusCode="401" redirect="/ErrorPages/Error40l.aspx" />

</customErrors>
</system.web>
</configuration>

The <error> element indicates the page to redirect the user to when the specified HTTP error
occurs. The attribute statusCode denotes the HTTP error. Figure 7-5 shows what happens
when the user mistypes the name of the URL and the error HTTP 404 (resource not found) is
generated.

Chapter 7 Working with the Page 281

g Page not found - Windows Internet Explorer \E’

@O = [&] htto://localhost8285/ErrorPages/Error04 asptasperrorpath=/missing.asy + | & | 44 | X | [t Bing £ -

s Favorites | 95

| @ Page not found

| - v [dm v Pagev Safety~v Tools~ @~

PROGRAMMING ASP.NET 4

Home About

'WE'RE SORRY, THERE IS NO WEB PAGE MATCHING YOUR REQUEST.

It's possible you typed the address incorrectly, or that the page no longer exists. In this case, we profusely apologize for the

inconvenience and for any damage this may cause.

Error code: 404
Error path: /missing.aspx

As an option, we've provided a list of pages below that might have the information you're looking for.

< [| b

«/ Trusted sites | Protected Mode: Off 3 v ®100% -

Done

FIGURE 7-5 A custom page for the popular HTTP 404 error.

When invoked by the ASP.NET infrastructure, pages are passed the URL that caused the
error on the query string. The following code shows the code-behind of a sample HTTP 404

error page:

public partial class Error404 : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
var errPath = "<i>No error path information is available.</i>";
var o = Request.QueryString["AspxErrorPath"];
if (o != null)
errPath = o;
// Update the UI
ErrorPath.InnerHtm]l = errPath;
}
}

If you have custom error handling and a global application handler in place, you should not
clear server errors. The sequence in which handlers are invoked is this: page, application,
ASP.NET runtime with configured redirects.

Important In light of some security vulnerabilities discovered recently, returning a different
output for different HTTP errors might help attackers to find out valuable information about the
system. For this reason, it is recommended that you set a default redirect page and avoid adding
error-specific pages.

282

Part Il ASP.NET Pages and Server Controls

Getting Information About the Exception

As mentioned, when you configure ASP.NET to redirect to a particular set of error pages, you
lose any information about the internal exception that might have caused the error. Needless
to say, no internal exception is involved in an HTTP 404 or HTTP 302 error. Unhandled
exceptions are the typical cause of HTTP 500 internal errors. How do you make the page
show context-sensitive information, at least to local users?

You get access to the exception in the Error event both at the page and application levels.
One thing you can do is this: write a page-level error handler, capture the exception, and
store the exception (or only the properties you're interested in) to the session state. The
default redirect will then retrieve any context information from the session state.

protected void Page_Error(object sender, EventArgs e)

{
// Captures the error and stores exception data
var exception = Server.GetLastError(Q);

// Distinguish Tocal and remote users
if (Request.UserHostAddress == "127.0.0.1")
Session["LastErrorMessage"] = exception.Message;
else
Session["LastErrorMessage"] = "Internal error.";

// Clear the error (if required)
Server.ClearError();

3

The preceding code checks the host address and stores exception-related information
(limited to the message for simplicity) only for local users. The following code should be
added to the Page_Load method of the page that handles the HTTP 500 error:

var msg = "No additional information available.";
var extraInfo = Session["LastErrorMessage"];
if (extraInfo != null)

msg = (string) extralnfo;
Session["LastErrorMessage"] = null;

// Update the UI here
ExtraInfo.InnerHtm]l = msg;

Writing context-sensitive error pages requires a page-level Error handler to cache the original
exception. This means that you should write the same handler for every page that requires
context-sensitive errors. You can either resort to a global error handler or write a new
Page-derived class that incorporates the default Error handler. All the pages that require that
functionality will derive their code file from this class instead of Page.

Chapter 7 Working with the Page 283

Error Reporting

Let's put it down this way: fatal exceptions in software applications just happen. What do you
do when such exceptions happen? Having some good exception-handling code is essential,
but how would you collect any information related to the exception to study the case
thoroughly?

Trapping and recovering from exceptions is only the first step, and it is largely insufficient in
most cases. You need to figure out the section of the site that the user was visiting. You need
to grab state information and the values currently stored in critical variables. Furthermore,
you need to measure the frequency of the error to arrange a plan for bug fixing and
maintenance. In a way, error reporting is the dark side of exception handling.

Features of an Error Reporting System

An effective error reporting system grabs error information and offers to report that in a
variety of ways and stores. As you've seen, exceptions handled at the application level (that
would otherwise go unhandled) should be logged and administrators should be notified.

What kind of information should be added to the log? At a minimum, the list includes
values of local variables, the current call stack, and perhaps a screen shot of the failure. Is it
sufficient to notify the webmaster of the failure? Although a notification is not a bad thing,
an effective error reporting system reports exceptions to a centralized repository that is
remotely accessible and groups them in some way—for example, by type.

Error Reporting Tools

Is such an error reporting system something you build from scratch once and adapt to any
applications you write? Or is it an external framework you just plug into your solution?

In ASP.NET, there's just one way to capture fatal exceptions—writing a handler for the
Application_Error event. This can be done in two ways, however.

You can write code directly in the application’s global.asax file, or you can plug a
made-to-measure HTTP module into the web.config file. The HTTP module would register its
own handler for the Error application event. The two solutions are functionally equivalent,
but the one based on the HTTP module can be enabled, disabled, and modified without
recompiling the application. It is, in a way, less obtrusive. In the handler, you can log the
exception the way you want—for example, by writing to the system's Event Log or by add-
ing a record to some database. Information stored in a database requires that you have
some infrastructure on your end, but it provides great flexibility because the content can

be extracted and manipulated to create reports and statistics. Obviously, processing the
uploaded logs is up to you.

284 Part Il ASP.NET Pages and Server Controls

A tool that is popular among ASP.NET developers is Error Logging Modules And Handlers
(ELMAH). ELMAH is essentially made of an HTTP module that, once configured, intercepts
the Error event at the application level and logs it according to the configuration to a
number of back-end repositories. ELMAH comes out of an open-source project
(http://code.google.com/p/elmah) and includes a number of extensions, mostly in the area

of repositories. ELMAH offers some nice facilities, such as a Web page to view all recorded
exceptions and drill down into each of them. Any error reporting system specifically designed
for ASP.NET can't be, architecturally speaking, much different from ELMAH.

Note You might want to take a look at some commercial products that offer a reporting
mechanism for ASP.NET applications. One of these products is Red Gate's SmartAssembly
(http://www.red-gate.com/products/smartassembly/error_reporting.htm). Although it's not
specifically designed for ASP.NET, the tool can be easily adapted to add reporting capabilities
to ASP.NET applications. Essentially, it takes an existing assembly and parses its compiled code
adding try/catch blocks that log any possible exceptions and upload the complete information
to a given Web site. The tool also has a desktop front end to help you navigate through logged
exceptions.

Self-Logging Exceptions

Another handmade solution consists of employing custom exception classes that derive
from a user-defined class endowed with the ability to log automatically. In this way, at the
cost of using custom exceptions everywhere, you can log any exceptions you're interested in
regardless of whether the exception is fatal or not.

Debugging Options

Debugging an ASP.NET page is possible only if the page is compiled in debug mode.
An assembly compiled in debug mode incorporates additional information for a
debugger tool to step through the code. You can enable debug mode on individual
pages as well as for all the pages in a given application. The <compilation> section in
the web.config file controls this setting. In particular, you set the Debug attribute to true
to enable debug activity for all pages in the application. The default is false. Note that
Visual Studio, however, does this automatically if you just try to debug the application.
To enable debugging for a single page, you add the Debug attribute to the @Page
directive:

<% @Page Debug="true" %>

ASP.NET compiles the contents of any .aspx resource before execution. The contents
of the .aspx resource is parsed to obtain a C# (or Microsoft Visual Basic .NET) class
file, which is then handed out to the language compiler. When a page is flagged with

http://code.google.com/p/elmah
http://www.red-gate.com/products/smartassembly/error_reporting.htm

Chapter 7 Working with the Page 285

the Debug attribute, ASP.NET doesn’t delete the temporary class file used to gen-
erate the page assembly. This file is available on the Web server for you to peruse
and investigate. The file is located under the Windows folder at the following path:
Microsoft. NET\Framework\[version]\Temporary ASP.NET Files.

Debug mode is important for testing applications and diagnosing their problems.
Note, though, that running applications in debug mode has a significant performance
overhead. You should make sure that an application has debugging disabled before
deploying it on a production server. In ASP.NET 4 and Visual Studio 2010,

web.config transformations make these and other changes quite easy to achieve. In
Chapter 2, "ASP.NET and IIS,” you saw how to remove the Debug attribute with a
web.config transformation.

Page Personalization

ASP.NET pages do not necessarily require a rich set of personalization features. However, if
you can build an effective personalization layer into your Web application, final pages will be
friendlier, more functional, and more appealing to use. For some applications (such as portals
and shopping centers), though, personalization is crucial. For others, it is mostly a way to im-
prove visual appearance. In ASP.NET, personalization is offered through the user profile API.

ASP.NET personalization is designed for persistent storage of structured data using a friendly
and type-safe API. Loading and saving personalized data is completely transparent to end
users and doesn't even require the page author to know much about the internal plumbing.

Creating the User Profile

A user profile is a plain .NET class that exposes a bunch of properties. The class can be
defined in two possible ways depending on the model of Web application you are building
within Visual Studio.

If your project is a Web site project, you define the user profile model declaratively through
attributes in the web.config file. At run time, the ASP.NET build machinery will group these
properties into a dynamically generated class. When the application runs and a page is
displayed, ASP.NET dynamically creates a profile object that contains, properly typed, the
properties you have defined in the data model. The object is then added to the current
HttpContext object and is available to pages through the Profile property.

286 Part Il ASP.NET Pages and Server Controls

For a Web Application Project (WAP), instead, a bit more work is required on your part, and
type-safety comes at the cost of writing the user profile class manually. You don't use the
Profile property directly from the HttpContext object but, at the end of the day, the work
being done underneath is not different. The only difference is in who actually writes the
code—you in a WAP scenario, or the ASP.NET runtime in a Web site project.

Any profile data is persisted on a per-user basis and is permanently stored until someone
with administrative privileges deletes it. The data storage is far away from the user and, to
some extent, also hidden from the programmers. The user doesn’t need to know how and
where the data is stored; the programmer simply needs to indicate what type of profile
provider she wants to use. The profile provider determines the database to use—typically, a
Microsoft SQL Server database, but custom providers and custom data storage models can
also be used.

Note In ASP.NET, the default profile provider is based on SQL Express, a lightweight version
of SQL Server. The default physical storage medium is a local file named aspnetdb.mdf, which is
commonly located in the App_Data folder of the Web application. You can rename and move the
file as you wish. If you change its schema, though, you have to employ an ad hoc provider that
understands the new schema. Because it is an MDF file, you can also host the database in a full
edition of SQL Server on the host machine.

Definition of the Data Model in a Web Site Project

Let's begin our exploration of the profile APl focusing on the tasks required in a Web site
project. The profile APl was originally introduced in ASP.NET 2.0 along with the Web site
model at a time in which the popularity of the WAP model was in a downturn and everybody
seemed to want to get rid of it. That sentiment was only a flash in the pan, however. The WAP
model soon regained its prominent position in the minds of developers, and today Visual
Studio 2010 offers two models to choose from. The choice is not painless when it comes

to the profile API. I'll present the profile API from the perspective of a Web site application
first—because it's likely you might have heard of it already. Next, I'll point out differences
related to WAP projects.

To use the ASP.NET profile API, you first decide on the structure of the data model you

want to use. Then you attach the data model to the page through the configuration file. The
layout of the user profile is defined in the web.config file and consists of a list of properties
that can take any of the .NET CLR types. The data model is a block of XML data that describes
properties and related .NET Framework types.

The simplest way to add properties to the profile storage medium is through name/value
pairs. You define each pair by adding a new property tag to the <properties> section of the
configuration file. The <properties> section is itself part of the larger <profile> section, which

Chapter 7 Working with the Page 287

also includes provider information. The <profile> section is located under <system.web>.
Here's an example of a user profile section:

<profile>
<properties>
<add name="UseEuroMetricSystem" type="Boolean" />
<add name="TemperatureSystem" type="String" />
</properties>

</properties>

All the properties defined through an <add> tag become members of the dynamically
created class and are then exposed as part of the HTTP context of each page. The type
attribute indicates the type of the property. If no type information is set, the type defaults to
System.String. Any valid CLR type is acceptable.

So in the preceding code snippet, we're defining a profile class made of two properties. The
profile pseudoclass we have in mind looks like the one shown here:

class PseudoProfile

{
public Boolean UseEuroMetricSystem {get; set;}
public String TemperatureSystem {get; set;}

}

Table 7-1 lists the valid attributes for the <add> element. Only name is mandatory.

TABLE 7-1 Attributes of the <add> Element

Attribute Description

allowAnonymous Allows storing values for anonymous users. It is false by default.
customProviderData Contains specific data to feed a custom profile provider, if any.
defaultValue Indicates the default value of the property.

name Name of the property.

provider Name of the provider to use to read and write the property.

readOnly Specifies whether the property value is read-only. It is false by default.
serializeAs Indicates how to serialize the value of the property. Possible values are Xmi,

Binary, String, and ProviderSpecific.

type The .NET Framework type of the property. It is a string object by default.

The User Profile Class Representation

There's no class like PseudoProfile anywhere in the application’s AppDomain; yet the declared
data model is dynamically compiled to a class for strongly typed programmatic access. The

288

Part Il ASP.NET Pages and Server Controls

following code snippet gives you a much clearer idea of the class being generated by
ASP.NET out of the profile’s data model:

using System;
using System.Web;
using System.Web.Profile;

public class ProfileCommon : System.Web.Profile.ProfileBase

{
pubTlic virtual bool UseEuroMetricSystem {
get {
return ((bool) (this.GetPropertyValue("UseEuroMetricSystem")));
}
set {
this.SetPropertyValue("UseEuroMetricSystem", value);
}
}
public virtual string TempSystem {
get {
return ((string) (this.GetPropertyValue("TempSystem")));
}
set {
this.SetPropertyValue("TempSystem", value);
}
}
public virtual ProfileCommon GetProfile(string username) {
return ((ProfileCommon) (ProfileBase.Create(username)));
}
}

This code is an excerpt from the real source code created by ASP.NET while compiling the
content of the web.config file's <profile> section.

An instance of this class is associated with the Profile property of the HTTP context class and
is accessed programmatically as follows:

// Use the UseEuroMetricSystem property to determine how to render the page
if (HttpContext.Profile.UseEuroMetricSystem)
{

3

There’s a tight relationship between user accounts and profile information. We'll investigate
this in a moment—for now, you need to take note of this because anonymous users are
supported as well.

Chapter 7 Working with the Page 289

Note You can retrieve the hidden source code of the profile class (and other internal files) in the
Temporary ASP.NET Files folder. The profile class in particular is located in a file named according
to the pattern App_Code.xxx.N.cs, where xxx is a system-generated hash code and N is a 0-based
index. Note that the path of the Temporary ASP.NET Files folder is different if you're using IIS or
the embedded Visual Studio Web server. If you're using IIS, the path is

%Windows%\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files
Otherwise, the path is
C:\Users\...\AppData\Local\Temp\Temporary ASP.NET Files

You can programmatically find out the real path being used by reading the value of the following
expression:

HttpRuntime.CodegenDir

You can do that by placing a breakpoint somewhere in the page startup code and evaluating the
expression in a Visual Studio QuickWatch window.

Using Collection Types

In the previous example, we worked with single, scalar values. However, the personalization
engine fully supports more advanced scenarios, such as using collections or custom types.
Let's tackle collections first. The following code demonstrates a Locations property that is a
collection of strings:

<properties>
<add name="Locations"
type="System.Collections.Specialized.StringCollection" />
</properties>

Nonscalar values such as collections and arrays must be serialized to fit in a data storage
medium. The serializeAs attribute simply specifies how. As mentioned, acceptable values

are String, Xml, Binary, and ProviderSpecific. If the serializeAs attribute is not present in the
<properties> definition, the String type is assumed. A collection is normally serialized as XML
orin a binary format.

Using Custom Types

You can use a custom type with the ASP.NET personalization layer as long as you mark it as a
serializable type. You simply author a class and compile it down to an assembly. The name of
the assembly is added to the type information for the profile property:

<properties>
<add name="ShoppingCart"
type="My.Namespace.DataContainer, MyAssembly"
serializeAs="Binary" />
</properties>

290

Part Il ASP.NET Pages and Server Controls

The assembly that contains the custom type must be available to the ASP.NET application.
You obtain this custom type by placing the assembly in the application’s Bin directory or by
registering it within the global assembly cache (GAC).

Grouping Properties

The <properties> section can also accept the <group> element. The <group> element allows
you to group a few related properties as if they are properties of an intermediate object. The
following code snippet shows an example of grouping:

<properties>

<group name="Metrics">
<add name="Speed" type="string" defaultValue="mph" />
<add name="Temperature" type="string" defaultValue="F" />
</group>
</properties>

Two properties have been declared children of the Metrics group. This means that from now
on any access to Speed or Temperature passes through the Metrics name, as shown here:

var windSpeedDisplayText = String.Format("{0} {1}",
windSpeed, Profile.Metrics.Speed);

The System.Web.Ul.Page class doesn't feature any Profile property. However, in a Web site
project, the build machinery of ASP.NET generates an extra partial class where the Profile
property is defined to just return HttpContext.Current.Profile.

Note Default values are not saved to the persistence layer. Properties declared with a default
value make their debut in the storage medium only when the application assigns them a value
different from the default one.

Definition of the Data Model in a WAP Project

In a WAP project, you can choose between a weakly typed and strongly typed approach. The
simplest approach (but most effective as well?) is the weak typing approach. In this case, you
do exactly the same as you would do in a Web site project. The only difference is that you
have no Profile property on the Page class and no dynamically built profile class.

As you saw earlier, however, a profile class is not a plain old CLR class—it is expected, instead,
to inherit from System.Web.Profile.ProfileBase. The parent class features two generic methods
to read and write properties: GetPropertyValue and SetPropertyValue. This is the real code
that ultimately retrieves and stores the values from and to storage. The following code works
like a champ in a WAP project:

HttpContext.Current.Profile.GetPropertyValue("UseEuroMetricSystem");

Chapter 7 Working with the Page 291

The drawback is that GetPropertyValue is designed to return an Object type. To get a Boolean
or a String, you need to cast. The autogenerated profile class you would get in a Web site
project just saves you from manually writing a few cast instructions. Here are the steps to
take to define a strongly typed profile data model in a WAP project.

The idea is that you define your own strongly typed class and then attach its reference to
the <profile> section of the web.config file. In this way, the profile built-in machinery will still
be able to do its load-and-save work into the underlying base profile class—the ProfileBase
class—and your wrapper will deliver you the pleasure of strongly typed programming.

<profile inherits="YourApp.UserProfile">

</p;é%11e>

Here's a possible implementation for the handmade YourApp.UserProfile wrapper class:
namespace YourApp {

public class UserProfile : ProfileBase

{
public static UserProfile GetUserProfile()
{
var user = Membership.GetUser();
// Anonymous user?
if (user == null)
return GetUserProfile(""); // throw if anonymous access is not permitted
return GetUserProfile(user.UserName);
}
public static UserProfile GetUserProfile(String username)
{
var profileFromStorage = Create(username);
return profileFromStorage as UserProfile;
}

[SettingsAllowAnonymous (true)]
public Boolean UseEuroMetricSystem

{
get { return (Boolean)
HttpContext.Current.Profile.GetPropertyValue("UseEuroMetricSystem"); }
set { HttpContext.Current.Profile.SetPropertyValue("UseEuroMetricSystem", value); }
}

[SettingsATlowAnonymous (true)]
pubTlic String TempSystem
{
get
{
var current = (String)
HttpContext.Current.Profile.GetPropertyValue("TempSystem");

292

Part Il ASP.NET Pages and Server Controls

if (String.IsNul10rEmpty(current))
return "F";
return (String) current;

}
set { HttpContext.Current.Profile.SetPropertyValue("TempSystem", value); }

3
3

The UserProfile class you see is configured to support both authenticated and anonymous
access. If you want to enable it only for authenticated users, throw an exception if no user is
found and remove the turn to make the argument of the SettingsAllowAnonymous attribute
false. (Or remove the attribute altogether.)

To access properties from within the code, you proceed as follows:

var profile = Your.UserProfile.GetUserProfile();
if (profile.UseEuroMetricSystem)
speedFormat = "{0} kmh";

You invoke the static GetUserProfile method on your wrapper class and get an instance of
your own profile class fed by the underlying ASP.NET profile API. The Create method that
GetUserProfile uses internally is part of the profile API, and specifically it is the part that
communicates with the storage layer.

Interacting with the Page

To enable or disable profile support, you set the enabled attribute of the <profile> element in
the web.config file. If the property is true (the default), personalization features are enabled
for all pages. If personalization is disabled, the Profile property on the HTTP context object
isn't available to pages.

Creating the Profile Database

As mentioned earlier, profile support works strictly on a per-user basis and is permanently
stored in a configured repository. Enabling the feature simply turns any functionality on,

but it doesn't create the needed infrastructure for user membership and data storage. If you
intend to use made-to-measure storage (for example, a non-SQL Server database or a SQL
Server database with a custom schema of tables), creating any infrastructure is entirely up to
you. If you're OK with the default table and structure, you resort to a free tool integrated in
Visual Studio.

ASP.NET 4 (as well as earlier versions) comes with an administrative tool—the ASP.NET Web
Site Administration Tool (WSAT)—that is fully integrated in Visual Studio. You invoke the tool
by choosing the ASP.NET Configuration item from the Build menu. (See Figure 7-6.)

Chapter 7 Working with the Page 293

(€ ASP.Net Web Application Administration - Windows Internet Bxplorer =N ECR =<
@O - |g, http://localhost13813/asp.netwebadminfiles/default.aspx v‘] |"}‘ x | \b Bing » -
i Favorites | o5
. »
(& ASP.Net Web Application Administration B~ v (2] deh - Pagev Safety~ Tooks~ @~

ASP Web Site Administration Tool o do Luse this tool? (7) B8

J Home H Security ” Application H Provider |

Welcome to the Web Site Administration Tool

Application:/
Current User Name:MY-LAPTOP\DINOE

m

Enables you to set up and edit users, roles, and access permissions for your site.

Security Existing users: 3
Application Enables you to manage your application's configuration settings.

Configuration
provider Confiquration ;r;:bles you to specify where and how to store administration data used by your Web

«/ Trusted sites | Protected Mode: Off 3 v ®100% -

FIGURE 7-6 The ASP.NET Web Site Administration Tool.

You can use this tool to create a default database to store profile data. The default database
is a SQL Server file named aspnetdb.mdf, which is located in the App_Data special folder of
the ASP.NET application. A proper connection string is added to the configuration file to be
consumed by various ASP.NET provider-based frameworks. By default, the application will
use it as a plain file through SQL Server Express. However, if you decide to host it in a full
installation of SQL Server, all you need to do is update the connection string in the
web.config file of your application.

The tables and schema of the database are fixed. Note that the same database—the
aspnetdb.mdf file—contains tables to hold user profiles and also membership and role
information. The use of a membership database with users and roles is important because
personalization is designed to be user-specific and because a user ID—either a local
Windows account or an application-specific logon—is necessary to index data.

Profile data has no predefined duration and is permanently stored. It is up to the Web site
administrator to delete the information when convenient.

As mentioned, WSAT is not necessarily the way to go; it's just one option for setting up

the profile infrastructure. For example, if you're using a custom provider, the setup of your
application is responsible for preparing any required storage infrastructure—be it a SQL
Server table, an Oracle database, or whatever else. We'll cover the setup of profile providers
in the next section.

294

Part Il ASP.NET Pages and Server Controls

Note At this point, many developers start thinking that they probably don't want to be bound
to aspnetdb.mdf because it's a general purpose tool or because it's too generic of a repository for
their data. So, many developers decide to plan to build a tailor-made custom provider and run
their own solution.

Building custom providers is doable and fully supported by the framework. However, make sure
that building such a provider doesn’t turn out to be simply an extra (and avoidable) pain in the
proverbial neck. The aspnetdb.mdf solution is effective and free, and it provides zero cost of
ownership. After you have hosted it in a SQL Server installation, you have the full power of man-
agement tools at your disposal. And, by the way, although you can reasonably consider renaming
the database on a per-application basis, the database (and the related ASP.NET API) is designed
to support multiple applications. In other words, you can even have a single instance of aspnetdb
also in a hosting scenario.

Personally, | don't mind using aspnetdb when | need profile support. Membership and role
management, though, might be a different story.

Working with Anonymous Users

Although user profiles are designed primarily for authenticated users, anonymous users can
also store profile data. In this case, though, a few extra requirements must be fulfilled. In par-
ticular, you have to turn on the anonymousldentification feature, which is disabled by default:

<anonymousIdentification enabled="true" />

The purpose of anonymous user identification is to assign a unique identity to users who are
not authenticated and recognize and treat all of them as an additional registered user.

Note Anonymous identification in no way affects the identity of the account that is processing
the request. Nor does it affect any other aspects of security and user authentication. Anonymous
identification is simply a way to give a “regular” ID to unauthenticated users so that they can be
tracked as authenticated, “regular” users.

In addition, to support anonymous identification you must mark properties in the data
model with the special Boolean attribute named allowAnonymous. Properties not marked
with the attribute are not made available to anonymous users.

<anonymousIdentification enabled="true" />
<profile enabled="true">
<properties>
<add name="UseEuroMetricSystem" type="Boolean"
defaultValue="false" allowAnonymous="true" />
<add name="TempSystem" type="String"
defaultValue="F" />
<add name="Locations"
type="System.Collections.Specialized.StringCollection" />
</properties>
</profile>

Chapter 7 Working with the Page 295

In the preceding code snippet, anonymous users can pick up the European metrics but
cannot modify the way in which temperatures are displayed nor add their favorite locations.

Accessing Profile Properties

In a Web site project, the Page object features an extra Profile property added by the system
via a partial class during the dynamic compilation step. Before the request begins its process-
ing cycle, the Profile property of the page is set with an instance of the profile class created
out of the content in the web.config file.

When the page first loads, profile properties are set to their default values (if any) or they
are empty objects. They are never null. When custom or collection types are used to define
properties, assigning default values might be hard. The code just shown defines a string
collection object—the property Locations—but giving that a default value expressed as a
string is not supported. At run time, though, the Locations property won't be null—it will
equal an empty collection. So how can you manage default values for these properties?

Properties that don't have a default value can be initialized in the Page_Load event when the
page is not posting back. Here’s how you can do that:

if (!IsPostBack)

{
// Add some cities to the Locations property
if (Profile.Locations.Count == 0) {
Profile.Locations.Add("London™);
Profile.Locations.Add("Amsterdam™);
}
}

In a Web site project, the personalization data of a page is all set when the Page_Init event
fires. However, when the Page_Prelnit event arrives, no operation has been accomplished yet
on the page, not even the loading of personalization data.

In a WAP project, if you opt for a strongly typed approach, you have no way to assign a
default value to properties. The only workaround, obviously, is dealing with defaults right in
the getter method of each property. Here's an example:

[SettingsATlowAnonymous(true)]
public String TempSystem
{
get
{
var current = (String) HttpContext.Current.Profile.GetPropertyValue("TempSystem");
if (String.IsNul1OrEmpty(current))
return "F";
return (String) current;
}
set { HttpContext.Current.Profile.SetPropertyValue("TempSystem", value); }

296

Part Il ASP.NET Pages and Server Controls

In a Web site project, the personalization data of a page is available only on demand—
precisely, the first time you access the profile object.

Let’s consider some sample code that illustrates the power of the user profile API.

Note The personalization data of a page is all set when the Page_Init event fires. However, when
the Page_Prelnit event arrives, no operation has been accomplished yet on the page, not even
the loading of personalization data.

User Profiles in Action

Suppose you have a page that displays information according to user preferences. You
should use the user profile API only to store preferences, not to store sensitive data. Losing
the profile information should never cause the user any loss of money or serious inconve-
nience. Here's the code you might have at the startup of the page request. The page first
grabs in some way some weather-related information and then displays it as configured by
the user:

protected void Page_Load(Object sender, EventArgs e)
{
if (!IsPostBack)
{
var info = GrabWeatherInfo();
DisplayData(info);

}

private static WeatherInfo GrabWeatherInfo()
{

}

private void DisplayData(WeatherInfo info)
{
// Type-safe solution for Web Application projects
// (reusing the YourApp.UserProfile wrapper class discussed earlier)

// Get profile information from the underlying repository
var profile = YourApp.UserProfile.GetUserProfile();

// Metric system
var speedFormat = "{0} mph";
if (profile.UseEuroMetricSystem)
speedFormat = "{0} kmh";
var speedText = String.Format(speedFormat, info.WindSpeed);

Chapter 7 Working with the Page 297

// Temperature

var tempText = String.Format("{0} {1}", info.Temperature, profile.TempSystem);
TbTWindSpeed.Text = speedText;

Tb1Temperature.Text = tempText;

// The sample page also displays a panel for users to change settings.
// Display current settings through the edit panel as well.
chkEuroMetric.Checked = profile.UseEuroMetricSystem;
rd1TempSystem.SelectedIndex = (profile.TempSystem == "F" ? 0 : 1);

}

The output of the page can change depending on the settings entered by individual users.
Figure 7-7 shows what the same page might look like for distinct users.

(& User profile - Windows Internet Explorer

@O = |g, http://localhost:12863/profile.aspx v| = \ ‘r| X Hb Bing £ -]
< Favorites | 95
@ User profile ‘_ - v [& v Pagev Safetyv Tooksv @

PROGRAMMING ASP NET 4 Welcome American! [Log Out]

Home About

THIS PAGE PROVIDES SOME (RANDOM) WEATHER INFORMATION.

Wind speed at your current location 61 mph
Current temperature 20F

n

‘Change Your Settings

Metric System [Fluse the European metrics

@F
Temperature System
©c

Done /" Trusted sites | Protected Mode: Off 5+ ®100% ~
/& User profile - Windows Intemet Explorer ===
@O = [&] htto://localhost 12863 profile.aspx -[&[4]x | ang 2
< Favorites | 95

@ User profile] fi v B -0 & v Pagev Sefetyr Tooks~ @~

PROGRAMM!NG ASP.N ET 4 Welcome European! [Log Out] ||

THIS PAGE PROVIDES SOME (RANDOM) WEATHER INFORMATION.

m

Wind speed at your current location 66 kmh
Current temperature 21C

Change Your Settings

Metric System [Use the European metrics

Temperature System

@c

Done /" Trusted sites | Protected Mode: Off 5+ ®100% ~

FIGURE 7-7 Different settings for different users.

298

Part Il ASP.NET Pages and Server Controls

If anonymous access is permitted, any unauthenticated user is treated as the same one—
meaning that all anonymous users share the same settings and any can change in the
settings of one user affects all the others. (Most of the time, though, sites where profiles are
fundamental just don't allow anonymous access.)

How do you change settings? Here's the code you can associate with the Save button you see
in Figure 7-7:

protected void Buttonl Click(Object sender, EventArgs e)

{
// Retrieve and update the profile for the current user
var profile = YourApp.UserProfile.GetUserProfile();
profile.UseEuroMetricSystem = chkEuroMetric.Checked;
profile.TempSystem = rd1TempSystem.SelectedItem.Value;

// Persist settings for the current user
profile.Save(Q);

// Refresh the page to ensure changes are immediately visible
Response.Redirect("/profile.aspx");

}

The Redirect call is not strictly required; however, if it's omitted, it won't give the user an
immediate experience based on the changes entered. If you omit the redirect, the changes
(which are stored in the repository, anyway) will be visible only upon the next request.

Personalization Events

As mentioned, the personalization data is added to the HTTP context of a request before the
request begins its processing route. But which system component is in charge of loading per-
sonalization data? ASP.NET employs an HTTP module for this purpose named ProfileModule.

The module attaches itself to a couple of HTTP events and gets involved after a request has
been authorized and when the request is about to end. If the personalization feature is off,
the module returns immediately. Otherwise, it fires the Personalize event to the application
and then loads personalization data from the current user profile. When the Personalize
event fires, the personalization data hasn't been loaded yet. Handlers for events fired by an
HTTP module must be written to the global.asax file.

void Profile_Personalize(object sender, ProfileEventArgs e)
{

ProfileCommon profile = null;

// Exit if it is the anonymous user
if (User == null) return;

// Determine the profile based on the role. The profile database
// contains a specific entry for a given role.

Chapter 7 Working with the Page 299

if (User.IsInRole("Administrators"))

profile = (ProfileCommon) ProfileBase.Create("Administrator™);
else if (User.IsInRole("Users™))

profile = (ProfileCommon) ProfileBase.Create("User");
else if (User.IsInRole("Guests"))

profile = (ProfileCommon) ProfileBase.Create("Guest");

// Make the HTTP profile module use THIS profile object
if (profile != null)
e.Profile = profile;
}
}

The personalization layer is not necessarily there for the end user’s amusement. You should
look at it as a general-purpose tool to carry user-specific information. User-specific informa-
tion, though, indicates information that applies to the user, not necessarily information en-
tered by the user.

The personalization layer employs the identity of the current user as an index to retrieve the
proper set of data, but what about roles? What if you have hundreds of users with different
names but who share the same set of profile data (such as menu items, links, and Ul set-
tings)? Maintaining hundreds of nearly identical database entries is out of the question. But
the standard profile engine doesn’t know how to handle roles. That's why you sometimes
need to handle the Personalize event or perhaps roll your own profile provider.

The code shown previously overrides the process that creates the user profile object and
ensures that the returned object is filled with user-specific information accessed through the
user role. The static method Create on the ProfileBase class takes the user name and creates
an instance of the profile object specific to that user. ProfileCommon is the common name of
the dynamically created class that contains the user profile.

The handler of the Personalize event receives data through the ProfileEventArgs class. The
class has a read-write member named Profile. When the event handler returns, the profile
HTTP module checks this member. If it is null, the module proceeds as usual and creates
a profile object based on the user’s identity. If not, it simply binds the current value of the
Profile member as the profile object of the page.

Migrating Anonymous Data

As mentioned, anonymous users can store and retrieve settings that are persisted using an
anonymous unique ID. However, if at a certain point a hitherto anonymous user decides to
create an account with the Web site, you might need to migrate to her account all the set-
tings that she made as an anonymous user. This migration doesn't occur automatically.

When a user who has been using your application anonymously logs in, the personaliza-
tion module fires an event—MigrateAnonymous. Properly handled, this global event allows

300

Part Il ASP.NET Pages and Server Controls

you to import anonymous settings into the profile of an authenticated user. The following
pseudocode demonstrates how to handle the migration of an anonymous profile:

void Profile_MigrateAnonymous(object sender, ProfileMigrateEventArgs e)

{

// Load the profile of the anonymous user
ProfileCommon anonProfile;
anonProfile = Profile.GetProfile(e.AnonymousId);

// Migrate the properties to the new profile
Profile.UseEuroMetricSystem = anonProfile.UseEuroMetricSystem;

}

You get the profile for the anonymous user and extract the value of any property you want
to import. Next you copy the value to the profile of the currently logged-on user.

Profile Providers

In ASP.NET, the profile APl is composed of two distinct elements: the access layer and the
storage layer.

The access layer provides a strongly typed model to get and set property values and also
manages user identities. It guarantees that the data is retrieved and stored on behalf of the
currently logged-on user.

The second element of the profile system is data storage. The system uses ad hoc providers
to perform any tasks involved with the storage and retrieval of values. ASP.NET comes with

a profile provider that uses SQL Server Express as the data engine. If necessary, you can also
write custom providers. The profile provider writes profile data into the storage medium of

choice and is responsible for the final schema of the data.

Important In ASP.NET, a provider is defined as a pluggable component that extends or replaces
some system functionality. The profile provider is just one implementation of the ASP.NET
provider model. Other examples of providers are the membership provider and role manager
provider, both of which will be discussed later in the book. At its core, the provider infrastruc-
ture allows customers to change the underlying implementation of some out-of-the-box system
functionalities while keeping the top-level interface intact. Providers are relatively simple com-
ponents with as few methods and properties as possible. Only one instance of the provider exists
per application domain.

Configuring Profile Providers

All features, such as user profiling, that have providers should have a default provider.
Normally, the default provider is indicated via a defaultProvider attribute in the section of the

Chapter 7 Working with the Page 301

configuration file that describes the specific feature. By default, if a preferred provider is not
specified, the first item in the collection is considered the default.

The default profile provider is named AspNetSqlProfileProvider and uses SQL Server Express
for data storage. Providers are registered in the <providers> section of the configuration file
under the main node <profile>, as shown here:

<profile>
<providers>
<add name="AspNetSqlProfileProvider"
connectionStringName="LocalSqlServer" applicationName="/"
type="System.Web.Profile.SqlProfileProvider" />
</providers>
</profile>

The <add> nodes within the <providers> section list all the currently registered providers.
The previous code is an excerpt from the machine.config file. Attributes such as name and
type are common to all types of providers. Other properties are part of the provider's specific
configuration mechanism. Tightly connected with this custom interface is the set of extra
properties—in this case, connectionStringName and description. The description attribute is
simply text that describes what the provider does.

The connectionStringName attribute defines the information needed to set up a connec-
tion with the underlying database engine of choice. However, instead of being a plain
connection string, the attribute contains the name of a previously registered connection
string. For example, LocalSqlServer is certainly not the connection string to use for a local
or remote connection to an instance of SQL Server. Instead, it is the name of an entry in the
new <connectionStrings> section of the configuration file. That entry contains any concrete
information needed to connect to the database.

The LocalSqlServer connection string placeholder is defined in machine.config as follows:

<connectionStrings>
<add name="LocalSqlServer"
connectionString="data source=.\SQLEXPRESS;
Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;
User Instance=true"
providerName="System.Data.SqlClient" />
</connectionStrings>

As you can see, the connection string refers to an instance of SQL Server named SQLEXPRESS
and attaches to the aspnetdb.mdf database located in the application’s data directory—the
App_Data folder.

302

Part Il ASP.NET Pages and Server Controls

Structure of AspNetDb.mdf

As a developer, you don’'t need to know much about the layout of the table and the logic
that governs it; instead, you're responsible for ensuring that any needed infrastructure is
created. To do so, you use the Build|ASP.NET Configuration menu item in Visual Studio to
start the ASP.NET site administration tool. A view of the tables in the database is shown in
Figure 7-8.

Server Explorer > = X
RN |
4 [}J Data Connections
4 [l aspnetdb.mdf
» [Database Diagrams
4 |3 Tables
» [aspnet_Applications
» [aspnet_Membership
b [aspnet_Paths
» [aspnet_PersonalizationAllUsers
» [aspnet_PersonalizationPerUser
4 [aspnet_Profile
=] Userd
=] PropertyNames
=] PropertyValuesString
(=] PropertyValuesBinary
5] LastUpdatedDate
» [aspnet_Roles
» [aspnet_SchemaVersions
b [aspnet_Users
» [aspnet_UsersInRoles
» [aspnet_ WebEvent Events
> [Views
» [Stored Procedures
» [Functions
> [Synonyms
> [Types
> [Assemblies
b [my-laptop.EasyCourt.dbo
b [l my-laptop.NewTestDb.dbo
v [l my-laptop.Northwind.dbo
> 24 Servers

i)
o
8
i
~
3

FIGURE 7-8 A view of the interior of the AspNetDb database and the profile table.

Note that the AspNetDb database isn't specific to the personalization infrastructure. As you
can see in the figure, it groups all provider-related tables, including those for membership,
roles, and users. The internal structure of each database is specific to the mission of the
underlying provider.

Custom Profile Providers

The SQL Server profile provider is good at building new applications and is useful for profile
data that is inherently tabular. In many cases, though, you won't start an ASP.NET applica-
tion from scratch, but you will instead migrate an existing application. You often already
have data to integrate with the ASP.NET profile layer. If this data doesn't get along with the
relational model, or if it is already stored in a storage medium other than SQL Server, you
can write a custom profile provider. An old but still helpful link is the following: http://msdn.
microsoft.com/msdnmag/issues/07/03/ASPNETZ2/default.aspx.

Profile providers push the idea that existing data stores can be integrated with the
personalization engine using a thin layer of code. This layer of code abstracts the physical

http://msdn

Chapter 7 Working with the Page 303

characteristics of the data store and exposes its content through a common set of methods
and properties. A custom personalization provider is a class that inherits ProfileProvider.

Finally, note that a custom provider doesn’t necessarily have to be bound to all profile
properties. You can also use the default provider for some properties and a custom provider
for others. Here's how you specify the provider for a property using the declarative approach:

<properties>
<add name="BackColor" type="string" provider="MyProvider" />

</properties>

In the preceding code, the BackColor property is read and written through the MyProvider
provider. If you are in WAP, instead, and wrote your profile wrapper class, you resort to the
ProfileProvider attribute:

[ProfileProvider("MyProvider")]
public String BackColor
{
get { ... }
set { ... }
}

Obviously, the provider name must correspond to one of the entries in the <providers>
section.

Page Localization

The whole theme of localization is nothing new in the .NET Framework, and ASP.NET is no
exception. You have had tools to write culture-specific pages since the very first version of
ASP.NET. In addition, these tools didn't change significantly with the stream of versions, and
today they form a rather stable API.

Localization is not a hard feature to build and doesn’t touch any staggering peaks of
technical difficulty. A successfully localizable application just requires planning, develop-
ment care, and constant small-scale refactoring. Frankly, localization is not for just any (Web)
application either. In this regard, | consider localization as an all-or-nothing feature of a Web
project: either localization is a requirement or it is not. If it is a requirement, every little piece
of Ul (text, layout, CSS, script, and images) must be architected and implemented to be easily
replaceable and configurable. Otherwise, | just don't care about localization and stuff literals
in the page layouts.

Considering localization from the perspective of an entire application with a not-so-short
expectation of life, there are three aspects of it that need to be addressed: how to make
resources localizable, how to add support for a new culture, and how to use (or whether to
use) databases as a storage place for localized information. Let's review the techniques that
allow you to keep resources easily localizable.

304

Part Il ASP.NET Pages and Server Controls

Making Resources Localizable

A localizable ASP.NET Web Form uses resources instead of hard-coded text to flesh out the
user interface. In this context, a resource is meant to be an item of stored text associated with
a public name and typically compiled into its own assembly. A resource assembly is a stan-
dard class library that contains one or more RESX files. A RESX file is an XML document that
contains resource names and content. Visual Studio provides a typical dialog box to add such
a new item to the project. (See Figure 7-9.)

Add New Item - MyResources =
Installed Templates Sort by: [Search Installed Templates 2|

4 Visual C ltems © Type: Visual C¥ltems
Code
Data
General
Web
Windows Forms
WPF
Reparting
Workflow

tangible T4 Editor

Icon File Visual C# tems
Afilefor storing resources
Installer Class Visual C# Items

Preprocessed Text Templ...Visual C# ltems

Resources File Visual C# ltems

i) [) QL) (B D

Settings File Visual C# ltems
Online Templates

Text File Visual C2 ltems | =

Texd Template Visual C# ltems

Windows Script Host Visual C# Items

[:b i

Windowe Sandice Vicnal C2 Bame

Name: Literals.resx

Add Cancel

FIGURE 7-9 Adding a new resource item to the ASP.NET project.

You always use the resource name to refer to its content from within application pages. After
a resource assembly is linked to the application, the ASP.NET runtime selects the correct
value at run time according to the user’s language and culture.

Note Instead of creating and maintaining a resource assembly, you can simply create an
App_GlobalResources folder under the site root and place there any resource RESX files you might
need. Such files are compiled into resource assemblies on demand care of the ASP.NET runtime.
A possible drawback is that the RESX files are deployed as source code to the site.

Global and Local Resources

The ASP.NET documentation distinguishes between global and local resources. Global
resources are available to any pages in the application; local resources, instead, are specific to
a single page or the pages located in a given directory hierarchy. In terms of syntax, global
and local resources are the same thing—a RESX file. Local resources must be deployed to an
App_LocalResources folder. You can have only one global resource folder in a site; instead,
you can have multiple local resource folders, one for each section of the site you want to

Chapter 7 Working with the Page

restrict resources to. In Figure 7-10, you can see a local resource folder under the Private
folder that affects only the pages defined inside the Private folder and its child folders.

4 _5& Localized
=d| Properties
3] References
- [Account
_5 App_GlobalResources
4 | Private
4 |7 App_LocalResources
2 Personal.resx
] Fun.aspx
] Love.aspx
] Money.aspx
> [Scripts
> [Styles
] About.aspx
. | Default.aspx
»] Global.asax
] Site.Master
5 Web.config

FIGURE 7-10 Global and local resource folders.

In a local resource folder, you can have resource files with folder-level visibility (such as
personal.resx in Figure 7-10) as well as page-specific resource files. In this case, a simple
naming convention binds the file to the page. If the page is named sample.aspx, its
corresponding resource file will be sample.aspx.resx.

305

Global and local resource files can happily coexist in the same application. Finding the right

balance between what's global and what's local is ultimately up to you. Overall, the best

approach seems to be having multiple resource files—either local or global. You might start

with a local resource file for each page, and then merge strings and other resources into a

global resource file as you find them referenced from multiple pages.

Important From what | have learned on the battlefield, having a single global file to hold all
localizable resources turns into a not-so-pleasant experience, even for a moderately complex

Web application. One issue is the size of the file, which grows significantly; another issue, which is
even more painful, is the possible concurrent editing that multiple developers might be doing on
the same file with the subsequent need for a continuous merge. However, | encourage you not to

overlook the naming issue.

When you have hundreds of strings that cover the entire application scope, how do you name
them? Many strings look the same or differ only in subtle points. Many strings are not entire
strings with some sensible meaning; they often are bits and pieces of some text to be completed
with dynamically generated content. And the concatenation might be different for various
languages.

Trust me: naming a few of them in the restricted context of only some pages is doable; handling
hundreds of them for the entire application is really painful.

306

Part Il ASP.NET Pages and Server Controls

Using Resources: Declarative vs. Programmatic

In ASP.NET Web Formes, a key decision to be made early is whether you want to insert
localizable text declaratively, programmatically, or both. Inserting localized text program-
matically means writing a method on each Page class that assigns ad hoc text before display.
This approach offers the maximum flexibility and allows you to retrieve localized text using
the API that best suits you. Here's some code to read the value of the resource item named
Welcome from a resource file named literals.resx:

MyResources.Literals.Welcome

MyResources is the default namespace of the assembly that contains the resource file. Literals
is the name of the file and the class name that ultimately exposes text items as public static
properties. Finally, Welcome is the name of the resource item. For this code to work, you
must ensure you create an assembly with a Literals.resx file whose access modifier in Visual
Studio is set to Public. Note that the default value is Internal, which will not make resource
items publicly available. (See Figure 7-11.)

Literals.resx > [IETISe
i Strings ~ _] Add Resource = % Remove Resource | -] = | Access Modifier

MName Value

L_WelcomeMessage Welcome to ASP.NET!

L_TolLearnMoreTip ASP.NET Website

L_YouCanFind You can also find
L_DocumentationAtMsdn documentation on ASP.NET at MSDN
L_DocumentationAtMsdnTip MSDN ASP.NET Docs

FIGURE 7-11 Editing a RESX document.

The preceding syntax is general enough to work with any RESX file, regardless of its local or
global status. This is also the natural way of localizing applications in ASP.NET MVC. However,
it doesn't get along very well with the ASP.NET server controls that populate Web Forms
pages. The point is that you can't use the preceding expression in a <%= ... %> code block in
all possible locations within a Web Forms page.

The following markup compiles just fine:

<h1><%= MyResources.Literals.BookTitle %> </h1>

Unfortunately, you can't embed the code block as the attribute of a server control. (This is
where the key difference between Web Forms and ASP.NET MVC arises.) The following code
won't even compile:

<asp:MenuItem NavigateUrl="~/Default.aspx" Text="<%= MyResources.Literals.Home %>"/>

The reason has to be found in the way in which a server control produces its own output.

Chapter 7 Working with the Page 307

In the end, for a Web Forms page the most convenient approach results from any of the
following:

B Design your own localization layer that each page passes through to have its text
localized. This layer is a sort of transformer that reads from localization storage and
replaces placeholder text. Your localization storage can be RESX file or, why not, your
own database table.

B Go with any shortcuts that Visual Studio and ASP.NET machinery might have released.
This includes a tailor-made syntax for local resources and a specific expression builder
for declaratively binding control attributes to localized text. However, the declara-
tive syntax for global resources requires the App_GlobalResources folder and direct
deployment of any RESX files.

Let's find out more about what's required to deal with globally defined resources.

Dealing with Global Resources

Using global resources programmatically entails writing for each page some code as shown
next. The code will be invoked just before display:

protected void LocalizeTextInPage()

{
// For each control you expect in the page, retrieve the Tocalized text
Labell.Text = MyResources.Literals.Welcome;
Label2.Text = HttpContext.GetGlobalResourceObject("globals.resx", "Description™);;
}

If your global resources are stored through plain RESX files, you can retrieve it using
either of the two expressions just shown. In addition to using the object expression that
navigates into the class hierarchy of the resource assembly, you can also employ the
GetGlobalResourceObject method of the HttpContext object. If the localized text resides
elsewhere, the API for retrieving it is up to you.

Alternatively, if you prefer to take the declarative route, use the object expression within
plain page markup and resort to the ASP.NET-specific $Resources expression builder for
control attributes. Here's an example:

<asp:Literal runat="server" Text="<% $Resources:Globals, WelcomeMessage %>" />

$Resources refers to an ASP.NET built-in expression builder. It accepts a parameter that is a
comma-separated string trailing the colon () symbol. The first token indicates the name of
the RESX file that is the source of the localized text. The second token indicates the name of
the resource item to read. There are no facilities to bind declaratively localized text stored
outside of RESX files.

308

Part Il ASP.NET Pages and Server Controls

Dealing with Local Resources

Local resources are strictly page-specific in the sense that if it's properly named after the
ASPX source file, the content of a resource file can be referenced using direct syntax from the
markup, as shown here:

<asp:Label runat="server" ID="Labell"
meta:resourcekey="Labell_ResourceID" />

The resourcekey meta attribute indicates that property values for the Labell control are to
be taken from a page-specific resource file. If the resource file for the page contains an entry
such as Labell_ResourcelD.Text, the Text property of Labell will be set to the stored value.
The same can be done for any other properties of the control.

Resources and Cultures

A RESX file is a plain XML document. How can you distinguish a RESX file that represents
French localized text from the RESX of German localized text? A RESX file name that doesn’t
include culture information is assumed to contain language-neutral text with no culture
defined.

To create a resource assembly for a specific culture—say, French—you need to name the
resource file as follows: sample.aspx.fr.resx. The fr string should be replaced with any other
equivalent string that identifies a culture, such as de for German or en for English.

When resources from multiple cultures are available in the AppDomain, the ASP.NET runtime
machinery detects the underlying culture and picks up the matching resource file. I'll return
in a moment at how to set and change the culture programmatically.

Setting the Current Culture in .NET Applications

In the .NET Framework, the culture is set on the current thread through the CurrentCulture
and CurrentUICulture properties. In general, both properties are necessary when you want
to support multiple languages in a page or view. In fact, the two properties refer to distinct
capabilities and have an impact on different areas of the user interface.

The CurrentCulture property affects the results of functions, such as the date, the number,
and currency formatting. The CurrentUICulture property, on the other hand, determines the
localized resource file from which page resources are loaded. The following code snippet
shows a possible way to arrange a unit test aimed at testing whether culture-specific items
are correctly retrieved. If you intend to test only whether resource files are being used as
expected, you can comment out the setting of CurrentCulture.

Chapter 7 Working with the Page 309

const String culture = "it-IT";

var cultureInfo = CultureInfo.CreateSpecificCulture(culture);
Thread.CurrentThread.CurrentCulture = culturelInfo;
Thread.CurrentThread.CurrentUICulture = cultureInfo;

Note that the two culture properties might or might not have the same value. For example,
you can switch the language of text and messages according to the browser’s configuration
while leaving globalization settings (such as dates and currency) constant.

Note Culture names are a combination of two pieces of information: the language and the
country/region that you intend to refer to. The two strings are combined with a dash symbol (-).
Often, but not necessarily, the two strings coincide. For example, it-IT means the Italian culture
for the country of Italy, whereas en-US indicates the English culture for the United States, which is
expected to be different from en-GB or en-SA.

Setting the Current Culture in ASP.NET Pages

If you're writing an ASP.NET Web Forms application, you don't need to deal with the Thread
class. In ASP.NET, you have culture properties ready-made on the Page class. They are string
properties named Culture and UlCulture.

The default value being assigned to both properties is auto, meaning that ASP.NET
automatically detects the browser's language for the thread in charge of the request. The
getter method of both properties is defined as shown here:

public String UICulture

{
get { return Thread.CurrentThread.CurrentUICulture.DisplayName; }

set { ... }
}

When the auto mode is on for the page culture, the end user is ultimately responsible for
determining the language of the pages. All the developers need to do is ensure that proper
resource files are available. If no suitable resource file is found for the detected culture,
ASP.NET will fall back to the neutral (default) culture.

Obviously, a specific culture can be enforced programmatically or declaratively. You can
employ a global setting for the culture by using the <globalization> section of the web.config
file:

<globalization uiculture="it-IT" culture="it-IT" / >

A global and fixed setting for culture, however, is hardly what you want most of the time.
Most of the time, instead, you want the ability to set the culture programmatically and the
ability to change it on the fly as the user clicks an icon or requests a culture-specific URL.

310

Part Il ASP.NET Pages and Server Controls

Changing Culture on the Fly

To change the culture programmatically, you need to satisfy two key requirements. First,
define how you'll be retrieving the culture to set. The culture can be a value you read from
some database table or perhaps from the ASP.NET cache. It can also be a value you retrieve
from the URL. Finally, it can even be a parameter you get via geo-location—that is, by
looking at the IP address the user is using for connecting.

After you have the culture ID to set, you have to set it by acting on the current thread, as
mentioned earlier. Note that the culture must be set for each request because each request
runs on its own thread.

If you intend to read and set the culture as part of the page initialization work, note that the
following code, which might appear obvious at first, just won't work:

void Page_Load(Object sender, EventArgs e)

{
Culture = "IT";
UICulture = "it-IT";
}

The Page_Load handler is fired too late to be effective. The recommended approach consists
of overriding the InitializeCulture method on the Page class:

protected override void InitializeCulture()

{
base.InitializeCulture();
Culture = "IT";
UICulture = "it-IT";

}

The setter method of both culture properties will then take care of setting culture
information on the current thread. Setting the thread directly does work, but it's unnecessary
to do so.

Changing the language on the fly as the user clicks on a link is a bit trickier. The idea is that
you override the InitializeCulture method so that the page reads the language to use from
global storage—for example, the ASP.NET Cache or Session.

protected override void InitializeCulture()
{

base.InitializeCulture();

UICulture = DeterminelLocaleToEnforce();

Chapter 7 Working with the Page 311

private String DeterminelLocaleToEnforce()

{
var language = Cache["Language"] as String;
if (String.IsNullOrEmpty(language))
language = "en-US";
return language;
}

When the user interacts with the user interface in the postback, you simply read the newly
selected language, update the storage, and then redirect to the same page for a refresh:

protected void Buttonl Click(Object sender, EventArgs e)

{
var TlanguageInfo = GetCurrentlLocale();
Cache["Language"] = languageInfo;
Response.Redirect("/private/moneyintl.aspx");
}
private String GetCurrentLocale()
{
return Languages.SelectedValue;
}

This is good enough if your user interface is limited to listing a few image buttons with flags.
If you want a drop-down list of languages to choose from, you also must take care of re-
indexing the list of items. This translates into some extra code in Page_Load.

protected void Page_Load(Object sender, EventArgs e)

{
if (!IsPostBack)
{
var languageCode = DeterminelLocaleToEnforce();
var item = Languages.Items.FindByValue(languageCode);
Languages.SelectedIndex = Languages.Items.IndexOf(item);
3
}

Nicely enough, implementing the same feature is much simpler in ASP.NET MVC, even
though ASP.NET MVC shares exactly the same run-time environment as ASP.NET Web Forms.
The postback model, which is great at many things, makes some other things a bit harder
than expected. In ASP.NET MVC, you can simply create your own action invoker and then, for
each and every controller method, you retrieve the language and set it to the current thread.
The action invoker is a way to intercept the execution of action methods in a rather unobtru-
sive way. In Web Forms, you can achieve the same result by using an HTTP module that kicks
in for every request, reads the currently set language, and sets the culture on the current
thread.

312 Part Il ASP.NET Pages and Server Controls

Note More and more Web sites check the location from where a user is connected and suggest
a language and a culture. This feature requires an API that looks up the IP address and maps that
to a country/region and then a culture. Some browsers (for example, Firefox 3.5, Safari, iPhone,
and Opera) have built-in geo-location capabilities that work according to the W3C API. (See
http://www.mozilla.com/firefox/geolocation.)

To support other browsers (including Internet Explorer), you can resort to third-party services
such as Google Gears. Google Gears is a plug-in that extends your browser in various ways, in-
cluding adding a geo-location API that returns the country/region of the user from the current
geographical location. Note that Google returns the ISO 3166 code of the country/region (for
example, GB for the United Kingdom) and its full name. From here, you have to determine the
language to use. The country/region code doesn’'t always match the language. For the United
Kingdom, the language is en. To install Google Gears, pay a visit to http://gears.google.com.

Adding Resources to Pages

An ASP.NET page is usually made of a bunch of auxiliary resources including script files,
cascading style sheets (CSS), and images. When the browser downloads a page, it usually
places a number of independent requests to the Web server and tracks when the docu-
ment is ready. The display of the document, however, might begin before the entire docu-
ment (and related links) has been downloaded. Developers of heavy pages made of several
resources (a few dozens is not unusual) resort to a number of techniques to optimize the
download experience of their pages. Let's review a few interesting techniques that simplify
the management of scripts, images, and other resources.

Using Script Files

The only HTML-supported way of linking script files to a page is via the <script> tag and

its src attribute. When a page has several scripts, the degree of parallelism at which the
browser can operate is dramatically lowered, as is the load time of the page. Typically, in fact,
browsers are idle while downloading a script code, regardless of the host name.

It turns out that managing scripts effectively, and sometimes refactoring the page to
maximize its download and rendering time, is a critical topic. Let’s see the most common
techniques to deal with script files.

Scripts at the Bottom of the Page

Because of the way in which browsers operate, moving all <script> tags at the bottom of the
page just before the </body> tag improves the download of the page. Unfortunately, this is
not always possible.

http://www.mozilla.com/firefox/geolocation
http://gears.google.com

Chapter 7 Working with the Page 313

Why do browsers stop any activity while downloading script code?

In general, the script being downloaded might contain some instructions, such as
document.write, that could modify the status of the current Document Object Model (DOM).
To avoid nasty situations that might derive from here, browsers download a script synchro-
nously and run it right after downloading. A script that contains document.write calls can
hardly be moved elsewhere without causing some damage.

Back with Internet Explorer 4, Microsoft introduced a little-known attribute for the <script>
tag—the defer attribute. Later incorporated in the HTML 4 specification, the defer attribute
was just meant to tell the browser whether or not loading the script can be deferred to the
end of the page processing. A script that specifies the defer attribute implicitly states it is

not doing any direct document writing. Using the defer attribute is not a standard technique
because of the non-uniform way in which browsers support it. For this reason, moving script
tags manually at the end is the most common trick to speed up pages. For more information
on the defer attribute, have a read of http://hacks.mozilla.org/2009/06/defer.

Note Two libraries are extremely popular as far as improving the script downloading is con-
cerned. One is LABjs (available at http://www.labjs.com), and the other is RequirelS (available
at http://www.requirejs.org). Both allow loading scripts (and other resources) in parallel, which
maintains possible (declared) dependencies between files.

Using a Content Delivery Network

Among other things, the download time also depends on the physical distance between the
client browser and the server expected to serve a given resource. For high-volume, interna-
tional sites, this can be a significant problem.

A content delivery network (CDN) is a third-party, geographically distributed server that
serves commonly accessed files from the nearest possible location. By using a CDN, you
guarantee the best service without the costs for your organization of setting up such a wide
network of servers.

For your code, the change is minimal—you just replace your local server URL with the CDN
URL and get the script from there. Here's how to link the ASP.NET AJAX library from the
Microsoft CDN:

<script type="text/javascript"
src="http://ajax.microsoft.com/ajax/4.0/MicrosoftAjax.js" />

Popular libraries such as jQuery and Microsoft ASP.NET AJAX are being offered through
Google and Microsoft CDN.

http://hacks.mozilla.org/2009/06/defer
http://www.labjs.com
http://www.requirejs.org
http://ajax.microsoft.com/ajax/4.0/MicrosoftAjax.js

314

Part Il ASP.NET Pages and Server Controls

Using a CDN is also beneficial because it increases the likelihood that the browser cache
already contains a resource that might have been referenced using the same URL by other
sites using the same CDN. The perfect example of a file that would greatly benefit users
when put on a CDN is the one mentioned a moment ago—the jQuery library. You won't
benefit much, on the other hand, from placing on a CDN files that only one application uses.

Reasons for Minifying a Script File

A golden rule of Web site performance optimization says that once you have minimized the
impact of static files (scripts, style sheets, and images), you're pretty much done. In addition
to the time and distance of the download, the size also matters—the smaller, the better.

You can use Gzip compression on the Web server to serve any resources quickly. Regular
pages, including ASP.NET pages, are often returned gzipped, but the same doesn't always
happen for other static resources such as scripts and style sheets. Images on the other side
are often already compressed (PNG, JPG, GIF), and any attempt to further compress them
results in waste of time rather than an improvement.

Beyond this, consider that script files are rich with white spaces and blanks. Simply removing
these characters can cut a significant percentage of software fat out of the file. This is just
what minifiers are for.

A minifier is a tool that parses a given script file and rewrites it in a way that is functionally
equivalent to the original but devoid of any unnecessary characters. The jQuery library is
commonly served in its minified form. A minified script file is nearly impossible to read or
understand for a human, so | don’t recommend using minified files during development.

Microsoft released a minifier tool; you can get it at http://aspnet.codeplex.com/releases/
view/40584. This tool can work on script and CSS files. Also, in addition to removing white
spaces and blanks, it safely attempts to reduce curly brackets and to make variable names
shorter.

Note You might want to look at build-time minifier tools such as Chirpy because having to
manually minify several files can be a bit of a pain. See http://chirpy.codeplex.com.

Localized Scripts

Like other Web resources, scripts can be subject to localization. At the very end of the day,
a script is a relatively long string of text, so there’s really nothing that prevents you from
embedding a script into the application resources along with a plain RESX file.

http://aspnet.codeplex.com/releases/
http://chirpy.codeplex.com

Chapter 7 Working with the Page 315

The method GetWebResourceUrl on the ClientScript property of the Page class can be used to
return the URL to any resource stored in a satellite (localized) assembly. In this way, you link
your scripts from the assembly, deploy the localized assembly, and you're done.

The only other alternative you have is maintaining different copies of the script and resolve
the name programmatically. In ASP.NET 4, the ScriptManager control can streamline this task
quite a bit. Here's how to use the script manager component:

<asp:ScriptManager ID="ScriptManagerl" runat="server" EnableScriptLocalization="true">
<Scripts>
<asp:ScriptReference Path="Person.js" ResourceUICultures="it-IT, de-DE" />
</Scripts>
</asp:ScriptManager>

When the property EnableScriptLocalization is true, the <Scripts> section lists all script files to
be downloaded that might be subject to localization. Localization consists of mangling the
provided name of the script in a way that incorporates culture information. For example, the
preceding code will emit the following markup if the Ul culture is set to Italian:

<script ... src="person.it-IT.js" />

The value of the page property UlCulture determines the culture code being used to mangle
the file name. When configuring the ScriptManager control, you indicate the supported cul-
tures through the ResourceUlCultures property on individual script references. If a related file
is missing, you'll get a 404 error for the request. Otherwise, the markup will be emitted to
target the language-neutral script file.

Using Cascading Style Sheets and Images

Cascading style sheets and images are the remaining two-thirds of the auxiliary static
resources around most Web pages. Some consolidated techniques also exist to minimize the
impact of these resources on your pages.

The first consideration to make is that the more requests you make, the more your users are
likely to wait to see the page. Aggregating multiple scripts in a single (but larger) file is rela-
tively easy and effective. It is doable for CSS files too; but with images? How can you combine
multiple images to be used in distinct areas of the page and then reference just the section
you need and where you need it?

Grouping Images into Sprites

To reduce the number of HTTP requests that a page requires in order to fetch all the images
it needs, you use sprites.

316

Part Il ASP.NET Pages and Server Controls

A sprite is a single image that results from the composition of multiple images that are stored
side by side, forming a grid of any size you like. You then link the image URL to any
tag where you need a section of it and use CSS styles to specify exactly which portion you
want in a given place. Here's an example:

You can even embed the reference to the image into the CSS as shown here:

<div class="UserInformation" />

The CSS class is defined as follows:

.UserInformation {
width:123px;
height:115px;
background-image:url(sprite.png);
background-position:-0px 0;

3

In other words, you pinpoint the fragment of the sprite you like using CSS attributes such as
background-position, background-image and, of course, width and height.

Microsoft is currently working on an extension to ASP.NET 4 that supports sprites. For more
information, check out http://aspnet.codeplex.com/releases/view/50140.

Note I/mage inlining is another potentially useful technique for dealing with images and static
resources more comfortably. Image inlining consists of streamlining a Base64-encoded version of
the image file into a CSS file or an HTML page. As of today, very few browsers support this tech-
nigue and, in addition, the Base64 encoding increases the size of individual images, making for a
large download.

External References vs. Inline Content

This is one of those evergreen questions that are revamped periodically in geek talks. Is it
better to embed script and style sheets (and to some extent images) into a page, or is it
preferable to keep several distinct references that the browser can deal with?

External references increase the number of HTTP requests being made, but they keep the
page size smaller (often significantly smaller) and, more importantly, can be cached by the
browser. Frankly, inline content is a great thing at development time where, instead, the
effects of browser caching can be quite annoying. For deployed sites, browser caching saves
you HTTP requests and is a feature that you can fine-tune when preparing the response for a
given page or resource.

http://aspnet.codeplex.com/releases/view/50140

Chapter 7 Working with the Page 317

As mentioned, just reducing the number of HTTP requests might not ensure optimal
performance. You should work in two directions and try to produce a magical mix of fewer
HTTP requests for not-so-large resources.

Note To measure the performance and quality of Web pages, you can use YSlow—a Firefox
add-on integrated with the Firebug Web development tool. (See http.//developeryahoo.com/
yslow.) Based on a set of commonly accepted best practices, the tool analyzes a Web page and
provides recommendations for improving the overall performance. As far as Internet Explorer
is concerned, Internet Explorer 9 comes with the IE9 Developer toolbar, which provides similar
capabilities.

Summary

In this chapter, we examined a few issues you might face when building pages and
interacting with them—errors, personalization, and resource handling.

Often, good programs do bad things and raise errors. In the Web world, handling errors is

a task architecturally left to the run-time environment that is running the application. The
ASP.NET runtime is capable of providing two types of error pages, both of which are not
very practical for serious and professional applications, although for different reasons. When
a user who is locally connected to the application does something that originates an error,
by default ASP.NET returns a “geek” page with the stack trace and the full transcript of the
exception that occurred. The remote user, on the other hand, receives a less compromis-

ing page, but certainly not a user-friendly one. Fortunately, though, the ASP.NET framework
is flexible enough to let you change the error pages, even to the point of distinguishing
between HTTP errors.

Personalization allows you to write pages that persist user preferences and parametric data
from a permanent medium in a totally automated way. As a programmer, you're in charge
of setting up the personalization infrastructure, but you need not know anything about the
internal details of storage. All you do is call a provider component using the methods of a
well-known interface.

Finally, modern Web pages are much more than just HTML markup. Script files, images, CSSs,
and literals need to be localized and effectively loaded. We examined a number of consoli-
dated and effective techniques to localize pages, optimize page rendering, and download
and minimize the impact of large and numerous scripts, style sheets and images.

In the next chapter, we'll take page authoring to the next level by exploring master pages
and wizards.

http://developer.yahoo.com/

Chapter 8
Page Composition and Usability

There is nothing like dream to create the future.

—Victor Hugo

It was only in the very early days of the Web that a Web site could be assembled by simply
grouping distinct pages under the same host. Today, it is necessary for all pages in a Web site
to define a common structure and share a common set of interface elements such as header,
footer, navigation bar, ad rotators, and search and login box.

Beyond having a similar-looking and consistent layout, Web pages in a site must be easy to
retrieve, understand, and navigate for users. In one word, Web pages must be enjoyable by
their target audience. Most Web sites exist for strong business reasons; failing on the com-
position or usability aspects of site planning and development is a mistake that can cost your
company much more than you might expect.

The challenge for a Web development platform is providing a technology that makes
composing rich and usable pages effective in the first place, but also quick and at least
relatively easy. This chapter is split into two parts, each providing a sort of checklist for the
two aspects I've emphasized so far: composition and usability.

In the composition section, I'll discuss master pages, cascading style sheets (CSS), and
ASP.NET themes. In the usability section, I'll touch on cross-browser rendering, site
navigation, and search-engine optimization.

Page Composition Checklist

A successful Web site results from the combined effect of well-organized content and HTML
appeal. You can't do without a strong visual idea of the site that contributes to spreading the
brand and making the site recognizable and, in some way, giving the site its own character.
Elaborating on a successful visual idea for a site is (fortunately?) beyond the reach of most
developers and definitely is a different job that requires a different set of skills.

Some point of contact between the design and development teams, however, has to be
found. When the underlying platform is going to be ASP.NET Web Forms, this point of con-
tact comes in the form of a master page template and one or more cascading style sheets.
Sometimes, the style of the site is represented through one or more ASP.NET themes. A
theme is a superset of a CSS and includes multiple cascading style sheets plus additional files.

Let's begin our exploration of site composition with an in-depth look at master pages.

319

320

Part Il ASP.NET Pages and Server Controls
Working with Master Pages

In ASP.NET, master pages provide the ability to define a common layout and have it reused
and shared across as many pages as you want throughout the site. Master pages improve the
maintainability of the site while reducing code duplication. ASP.NET master pages basically
benefits from the ASP.NET framework's ability to merge a super-template with user-defined
content replacements.

A master page is a distinct file referenced at the application level, as well as at the page level,
that contains the static layout of the page. The page layout consists of regions that each
“derived” page can customize. Such regions are referenced in the master page with a special
placeholder control. A derived page, also known as a content page, is simply a collection of
blocks the run time will use to fill the regions in the master.

The contents of a master page are merged into the content page, and they dynamically
produce a new page class that is served to the user upon request. The merge process takes
place at compile time and only once.

It might seem that the idea of master and content pages revolves around some sort of visual
inheritance such as the form inheritance feature you might experience in Windows Forms.
Abstractly speaking, the content page really looks like an inherited page that overrides some
virtual regions in the master. Although this is a possible high-level way of looking at things, it
is not how master and content pages work in practice.

Note In ASP.NET, a master page is not necessary for any page you add to the project. You can
certainly create plain Web pages that don't import any layout information from the outside. In
Microsoft Visual Studio, you are in fact given two options when you choose to add a new Web
page to the project—you can add it with or without a master page. In the economy of a real-
world site, though, using a master page (or even multiple master pages) is a necessity.

What's a Master Page, Anyway?

A master page is similar to an ordinary ASP.NET page except for the top @Master directive
and the presence of one or more ContentPlaceHolder server controls. In addition, a master
page doesn't derive from Page but has UserControl as its parent class. A ContentPlaceHolder
control defines a region in the master page that can be customized in a derived page.

A master page without content placeholders is technically correct and will be processed
correctly by the ASP.NET runtime. However, a placeholder-less master fails in its primary
goal—to be the super-template of multiple pages that look alike. A master page devoid of
placeholders works like an ordinary Web page but with the extra burden required to process
master pages.

Chapter 8 Page Composition and Usability 321

Here is a simple master page adapted from the master page of the Visual Studio 2010 sample
ASP.NET project:

<%@ Master Codebehind=.Site.master.cs. Inherits=.YourApp.SiteMaster. %>
<html1>
<head runat="server">
<title></title>
<1link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
<asp:ContentPlaceHolder ID="HeadContent" runat="server">
</asp:ContentPlaceHolder>
</head>
<body>
<form runat="server">
<div class="page">
<div class="header">
<div class="title"><hl> Programming ASP.NET 4 </hl></div>
<div class="ToginDisplay">

</div>
<div class="clear menu">
</div>
</div>
<div class="main">
<asp:ContentPlaceHolder ID="MainContent" runat="server"/>
</div>
<div class="clear"></div>
</div>
<div class="footer">

</div>
</form>
</body>
</htm1>

As you can see, the master page looks like a standard ASP.NET page. Aside from the
identifying @Master directive, the only key differences are ContentPlaceHolder controls. A
page bound to this master automatically picks up the layout and contents of the master and
can attach custom markup and server controls to each defined placeholder. The content
placeholder element is fully identified by its /D property and normally doesn't require other
attributes.

This is important to note because a content page is not allowed to include any content other
than the markup strictly required to fill up a specific content placeholder. I'll return to this
point in a moment.

The @M aster Directive

The @Master directive distinguishes master pages from content pages and allows the
ASP.NET runtime to properly handle each. A master page file is compiled to a class that
derives from the MasterPage class. The MasterPage class, in turn, inherits UserControl. So, at
the end of the day, a master page is treated as a special kind of ASP.NET user control.

322 Part Il ASP.NET Pages and Server Controls

The @Master directive supports quite a few attributes. For the most part, though, they are
the same attributes that we reviewed in Chapter 5, “Anatomy of an ASP.NET Page,” for the
@Page directive. Table 8-1 details the attributes that have a special meaning to master pages.

TABLE 8-1 Attributes of the @Master Directive
Attribute Description

ClassName Specifies the name for the class that will be created to render the master page.
This value can be any valid class name but should not include a namespace. By
default, the class name for a simple.master is ASP.simple_master.

CodeBehind Indicates the file that contains any source code associated with the master
page, and is used for a Web Application Project (WAP).
Note that the CodeBehind attribute is ignored by ASP.NET and simply exists to
help Visual Studio edit the file. You can remove it in production without losing
functionality.

CodeFile Indicates the file that contains any source code associated with the master
page, and is used for a Web site project.

Inherits Specifies a code-behind class for the master page to inherit. This can be any
class derived from MasterPage.

MasterPageFile Specifies the name of the master page file that this master refers to. A master
can refer to another master through the same mechanisms a page uses to
attach to a master. If this attribute is set, you will have nested masters.

The master page is associated with a code file that looks like the following:

public partial class SiteMaster: System.Web.UI.MasterPage

{
protected void Page_Load(Object sender, EventArgs e)
{
}

}

The @Master directive doesn't override attributes set at the @Page directive level. For
example, you can have the master set the language to Visual Basic and one of the content
pages can instead use C#. The language set at the master page level never influences the
choice of the language at the content page level.

Likewise, you can use other ASP.NET directives in a master page—for example, @/mport.
However, the scope of these directives is limited to the master file and does not extend to
child pages generated from the master.

The ContentPlaceHolder Container Control

The ContentPlaceHolder control acts as a container placed in a master page. It marks places
in the master where related pages can insert custom content. A content placeholder is
uniquely identified by an ID. Here's an example:

<asp:ContentPlaceHolder runat="server" ID="MainContent" />

Chapter 8 Page Composition and Usability 323

A content page is an ASP.NET page that contains only <asp:Content> server tags. This
element corresponds to an instance of the Content class that provides the actual content
for a particular placeholder in the master. The link between placeholders and content is
established through the ID of the placeholder. The content of a particular instance of the
Content server control is written to the placeholder whose ID matches the value of the
ContentPlaceHolderID property, as shown here:

<asp:Content runat="server" contentplaceholderID="MainContent">
</asp:Content>

In a master page, you define as many content placeholders as there are customizable regions
in the page. A content page doesn't have to fill all the placeholders defined in the bound
master. However, a content page can't do more than just fill placeholders defined in the
master.

Note A placeholder can't be bound to more than one content region in a single content page.
If you have multiple <asp:Content> server tags in a content page, each must point to a distinct
placeholder in the master.

Specifying Default Content

A content placeholder can be assigned default content that will show up if the content page
fails to provide a replacement. Each ContentPlaceHolder control in the master page can con-
tain default content. If a content page does not reference a given placeholder in the master,
the default content will be used. The following code snippet shows how to define default
content:

<asp:ContentPlaceHolder runat="server" ID="MainContent">
<!-- Use the following markup if no custom
content is provided by the content page -->

</asp:ContentPTaceHolder>

The default content is completely ignored if the content page populates the placeholder. The
default content is never merged with the custom markup provided by the content page.

Note A ContentPlaceHolder control can be used only in a master page. Content placeholders
are not valid on regular ASP.NET pages. If such a control is found in an ordinary Web page, a
parser error occurs.

Writing a Content Page

Once you have a master page, you think of your actual site pages in terms of a delta from
the master. The master defines the common parts of a certain group of pages and leaves

324

Part Il ASP.NET Pages and Server Controls

placeholders for customizable regions. Each content page, in turn, defines what the content
of each region has to be for a particular ASP.NET page. Figure 8-1 shows the first step you
take on the way to adding a content page to a Visual Studio project.

T
Add New ltem - Localized
Installed Templates | Search Installed Templates 2]
4 Visual C# B
Type: Visual C#
Code Visual C# ype: Visua
o A form for Web Applications that is built
ata _| froma Master Page
General 2| Web Form using Master Page VisualC# [
Web
Windows Forms Web User Control Visual C#
WPF
Reporting Ho] Class Visual C#
Silverlight =
Workflow E Master Page Visual C#
Online Templates
E Nested Master Page Visual C#
HTML Page Visual C#
(A2 shute shees Visnal g T
Name: WebFormi.aspx
Add Cancel

FIGURE 8-1 Adding a content page to a Visual Studio project.

The next step entails choosing a particular master page from within the folders of the current
project. Normally, master pages are located in the root folder that defines their scope. If you
have only one master page, it is usually located in the root of the site.

The Content Control

The key part of a content page is the Content control—a mere container for other controls.
The Content control is used only in conjunction with a corresponding ContentPlaceHolder
and is not a standalone control. The master file that we considered earlier defines a single
placeholder named PageBody. This placeholder represents the body of the page and is
placed right below an HTML table that provides the page’s header. Figure 8-2 shows a
sample content page based on the aforementioned master page.

Default.aspx > EIG cs Site.css Sits ste| -
Site.master|

PROGRAMMING ASP.NET 4

[LogIn]

Home About
(MainContent (Custom). 2|
|PAGE PERSONALIZATION

¢ Loading user settings

4

o Split | @ Source | [4][<asp:Content#BogyContent> | <h2> [

FIGURE 8-2 A preview of the content page in Visual Studio 2010.

Chapter 8 Page Composition and Usability 325

Let's take a look at the source code of the content page:

<%@ Page Title="Home Page"
Language="C#"
AutoEventWireup="true"
MasterPageFile="~/Site.master"
CodeBehind="Default.aspx.cs"
Inherits="UserProfileDemo._Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
<h2>
Page personalization
</h2>
<div>

<Tli>Loading user settings</1i>

</div>
</asp:Content>
The content page is the resource that users invoke through the browser. When the user
points her or his browser to this page, the output in Figure 8-3 is shown.

The replaceable part of the master is filled with the corresponding content section defined in
the derived pages.

& Home Page - Windows Internet Explorer

(I = [&) nrip/ocainost12863/ +[&[4[x|[o8ing

iy Favorites | 73

| @ vomepage B v B - @ v Pagev Sefetyr Tooksv @~

PROGRAMMING ASP.NET 4

Home About

PAGE PERSONALIZATION

« Loading user settings

+/" Trusted sites | Protected Mode: Off 45 v ®10% -

FIGURE 8-3 The sample page in action.

Content Pages and Auxiliary Content

A content page—that is, a page bound to a master—is a special breed of page in that it can
only contain <asp:Content> controls. A content page is not permitted to host server controls
outside of an <asp:Content> tag.

326

Part Il ASP.NET Pages and Server Controls

As a collection of <asp:Content> tags, a content page is not even allowed to include any
markup that specifies general information such as the title of the page, inline styles, and even
scripts.

You can declaratively set the title of a content page using the Title attribute of the @Page
directive as shown here:

<@Page MasterPageFile="site.master" Title="Hello, world" %>

However, there’s not much you can do to add styles and scripts in a content page unless the
master page provides for specific placeholders. You can add styles and scripts to a place-
holder if the placeholder’s position in the layout allows you to include them. Most of the
time, you create a placeholder within the <head> section and perhaps another at the bottom
of the page to allow for styles and scripts. The default master you get in sample Visual Studio
2010 projects has the following:

<html1>

<head runat="server">
<title></title>
<1link href="~/Styles/Site.css" rel="stylesheet" type="text/css" />
<asp:ContentPlaceHolder ID="HeadContent" runat="server">
</asp:ContentPlaceHolder>

</head>

<body>

</b;é;>
</html>
The HeadContent placeholder just exists so that content pages can fill it with any page head-
specific content such as script or styles. Likewise, you can create a script-only placeholder and

place it at the bottom of the page to improve the page's rendering speed, as discussed in
Chapter 7, “Working with the Page.”

Note, though, that a placeholder is just a container you can fill with whatever ends up
producing valid HTML markup. You have no way to restrict a placeholder to contain only
certain controls or certain fragments of HTML markup. Later in the chapter, I'll return to this
point, contrasting placeholders with master page properties.

For now let’s explore in a bit more detail the techniques to attach pages to masters.

Attaching Pages to a Master

So far, we have bound any content page to its master by using the MasterPageFile attribute
in the @Page directive. The MasterPageFile attribute indicates the path to the master page.
Page-level binding, however, is just one possibility—although it is the most common one.

You can also set the binding between the master and the content at the application or folder
level. Application-level binding means that you link all the pages of an application to the

Chapter 8 Page Composition and Usability 327

same master. You configure this behavior by setting the Master attribute in the <pages>
element of the principal web.config file:

<configuration>
<system.web>
<pages master="Site.master" />
</system.web>
</configuration>

If the same setting is expressed in a child web.config file—a web.config file stored in a site
subdirectory—all ASP.NET pages in the folder are bound to a specified master page.

Note that if you define binding at the application or folder level, all the Web pages in the
application (or the folder) must have Content controls mapped to one or more placeholders
in the master page. In other words, application-level binding prevents you from having (or
later adding) a page to the site that is not configured as a content page. Any classic ASP.NET
page in the application (or folder) that contains server controls will throw an exception.

Device-Specific Masters

Like all ASP.NET pages and controls, master pages can detect the capabilities of the underly-
ing browser and adapt their output to the specific device in use. ASP.NET makes choosing

a device-specific master easier than ever. If you want to control how certain pages of your
site appear on a particular browser, you can build them from a common master and design
the master to address the specific features of the browser. In other words, you can create
multiple versions of the same master, each targeting a different type of browser.

How do you associate a particular version of the master and a particular browser? In the
content page, you define multiple bindings using the same MasterPagefFile attribute, but you
prefix it with the identifier of the device. For example, suppose you want to provide ad hoc
support for Microsoft Internet Explorer and Firefox browsers and use a generic master for
any other browsers that users employ to visit the site. You use the following syntax:

<%@ Page masterpagefile="Site.master"
ie:masterpagefile="jeSite.master"
firefox:masterpagefile="ffSite.master" %>

The ieSite.master file will be used for Internet Explorer; the ffSite.master, on the other hand,
will be used if the browser is Firefox. In any other case, a device-independent master (site.
master) will be used. When the page runs, the ASP.NET runtime automatically determines
which browser or device the user is using and selects the corresponding master page, as
shown in Figure 8-4.

328

Part Il ASP.NET Pages and Server Controls

(&) Home Page - Morilla Firefox =N ECR =<
File Edit View History Bookmarks Tools Help

B A (L] nttp//localnost:3836/ v7 | [*- Googe P
|] Home Page [+ [~

Home About

PROGRAMMING ASP.NET 4 (FF-sPECIFIC)

This is a regular content page that picks browser-specific master pages.

< I

il » ||

Done

FIGURE 8-4 Browser-specific master pages.

The prefixes you can use to indicate a particular type of browser are those defined in the
ASP.NET configuration files for browsers. Table 8-2 lists the most commonly used IDs.

TABLE 8-2 ID of Most Common Browsers

Browser ID Browser Name

IE Any version of Internet Explorer
Netscape3 Netscape Navigator 3.x

Netscape4 Netscape Communicator 4.x
Netscape6to9 Any version of Netscape higher than 6.0
Firefox Firefox

Opera Opera

Up Openwave-powered devices
Blackberry BlackBerry browser

iPhone iPhone browser

Chrome Google Chrome

ieMobile Internet Explorer for mobile devices

Obviously, you can distinguish not just between up-level and down-level browsers, but you
can also distinguish between browsers and other devices, such as cellular phones and per-
sonal digital assistants (PDAs). If you use device-specific masters, you must also indicate a

device-independent master.

Note Browser information is stored in text files with a .browser extension located in the
Browsers folder under the ASP.NET installation path on the Web server. It's the same folder that
contains machine.config and WINDOWS%\Microsoft. NET\Framework\[version]\Config\Browsers.

Chapter 8 Page Composition and Usability 329

Processing Master and Content Pages

The use of master pages slightly changes how pages are processed and compiled. For one
thing, a page based on a master has a double dependency—on the .aspx source file (the
content page) and on the .master file (the master page). If either of these pages changes, the
dynamic page assembly will be re-created. Although the URL that users need is the URL of
the content page, the page served to the browser results from the master page being fleshed
out with any replacement information provided by the content page.

Compiling Master Pages

When the user requests an .aspx resource mapped to a content page—that is, a page that
references a master—the ASP.NET runtime begins its job by tracking the dependency be-
tween the source .aspx file and its master. This information is persisted in a local file created
in the ASP.NET temporary files folder. Next, the runtime parses the master page source code
and creates a Visual Basic or C# class, depending on the language set in the master page. The
class inherits MasterPage, or the master’s code file, and is then compiled to an assembly.

If multiple .master files are found in the same directory, they are all processed at the same
time. Thus a dynamic assembly is generated for any master files found, even if only one

of them is used by the ASP.NET page whose request triggered the compilation process.
Therefore, don't leave unused master files in your Web space—they will be compiled anyway.
Also note that the compilation tax is paid only the first time a content page is accessed within
the application. When a user accesses another page that requires the second master, the
response is faster because the previously compiled master is cached.

Serving the Page to Users

As mentioned, any ASP.NET page bound to a master page must have a certain structure—
no server controls or literal text are allowed outside the <asp:Content> tag. As a result, the
layout of the page looks like a plain collection of content elements, each bound to a par-
ticular placeholder in the master. The connection is established through the ID property. The
<asp:Content> element works like a control container, much like the Panel control of ASP.NET
or the HTML <div> tag. All the markup text is compiled to a template and associated with
the corresponding placeholder property on the master class.

The master page is a special kind of user control with some templated regions. It's not
coincidental, in fact, that the MasterPage class inherits from the UserControl class. After it is
instantiated as a user control, the master page is completed with templates generated from
the markup defined in the content page. Next, the resulting control is added to the con-
trol tree of the current page. No other controls are present in the final page except those
brought in by the master. Figure 8-5 shows the skeleton of the final page served to the user.

330 Part Il ASP.NET Pages and Server Controls

ContentPlaceHolder #1

Content #1

Markup
#
ContentPlaceHolder #2 Content #2
Master Page N Content Page
N
Content #1
Markup

Content #2

Served to the user

FIGURE 8-5 The structure of the final page in which the master page and the content page are merged.

Nested Master Pages

So far, we've seen a pretty simple relationship between a master page and a collection of
content pages. However, the topology of the relationship can be made as complex and
sophisticated as needed. A master can, in fact, be associated with another master and form
a hierarchical, nested structure. When nested masters are used, any child master is seen and
implemented as a plain content page in which extra ContentPlaceHolder controls are defined
for an extra level of content pages. Put another way, a child master is a kind of content page
that contains a combination of <asp:Content> and <asp:ContentPlaceHolder> elements. Like
any other content page, a child master points to a master page and provides content blocks
for its parent’s placeholders. At the same time, it makes available new placeholders for its

child pages.

Note There's no architectural limitation on the number of nesting levels you can implement
in your Web sites. Performance-wise, the depth of the nesting has a negligible impact on the
overall functionality and scalability of the solution. The final page served to the user is always
compiled on demand and never modified as long as dependent files are not touched.

Let’s expand on the previous example to add an intermediate master page. The root master
page is the Site.master file we met earlier. The root master defines the header, the footer,
and replaceable regions for the head and main content. Let's add an intermediate master
page to further structure the main content. The intermediate master page is named
MainContent.master.

Chapter 8 Page Composition and Usability 331

<%@ Master Language="C#"
AutoEventWireup="true"
MasterPageFile="~/Site.Master"
CodeBehind="MainContent.Master.cs"
Inherits="Masters.MainContentMaster" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="HeadContent" runat="server">
<!-- Won't be accessible from the final content page, anyway -->
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
<fieldset>
<legend>How MainContent.Master replaces MainContent</legend>
<h2>
<asp:Label runat="server" ID="MainContentTitle_Label">
What is this page for?
</asp:Label>
</h2>

<asp:ContentPlaceHolder ID="PageBody" runat="server" />
<asp:ContentPlaceHolder ID="ScriptContentBottom" runat="server" />
</fieldset>
</asp:Content>

As you can see, the master contains both a collection of <asp:Content> and
<asp:ContentPlaceHolder> tags. The top directive is that of a master, but it contains the
MasterPagefFile attribute, which typically characterizes a content page.

An intermediate master page is essentially a content page and must fulfill the rules of
content pages such as not having markup outside <asp:Content> controls. At the same time,
it is allowed to specify the @Master directive and host some additional (well, nested) content
placeholders.

Note that the final content page has access only to the placeholders of its immediate master.
The HeadContent placeholder defined on the root master can be filled up by the intermedi-
ate master, but not by the final content page.

The following code illustrates nesteddemo.aspx—a content page that builds on two masters:

<%@ Page Title="Nested master pages"
Language="C#"
AutoEventWireup="true"
CodeBehind="NestedDemo.aspx.cs"
MasterPageFile="~/MainContent.Master"
Inherits="Masters.NestedDemo" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="PageBody" runat="server">
<fieldset>
<legend>How NestedDemo.aspx replaces PageBody</Tegend>
<h2>[Your custom markup here]</h2>
</fieldset>
</asp:Content>

332 Part Il ASP.NET Pages and Server Controls

Figure 8-6 shows the results.

/& Nested master pages - Windows Intemet Explorer [E==(ESR =)
g@ = |a http://localhost:3836/NestedDema aspx -| & \ "‘ X ||lE> Bing & "
i Favorites | 7l

| @ Nested master pages |_| - < [@ ~ Page~ Safety~ Took~ @~

PROGRAMMING ASP.NET 4

Home About

How MainContent.Master replaces MainContent

WHAT IS THIS PAGE FOR?

How NestedDemo.aspx replaces PageBody

/" Trusted sites | Protected Mode: Off v ®R10% v

Done

FIGURE 8-6 The page results from the combination of two master pages.

At this point, if you create a new page from MainContent.Master you'll be able to add custom
content only below the label that says “What is this page for?". Everything else is fixed and
can't be changed from the content page. Nested masters are fully supported by Visual Studio
2010, which provides you with a visual experience, as shown in Figure 8-7.

NestedDemo.aspx % [l €l Default.aspx
MainContent.Maste]

PROGRAMMING ASP.NET 4

Home About

How MainContent.Master replaces MainContent

[PancBady (CustomilS PAGE FOR?

legend

How NestedDemo.aspx replaces PageBudﬁ

FIGURE 8-7 Nested masters in Visual Studio 2010.

What's the purpose of having nested master pages?

Whereas a master page helps share a common layout through multiple pages, nested
master pages simply give you more control over the structure of the final pages. Especially
in sites with hundreds of pages, a single layout is not realistic. More likely, you need a super-
template in which different areas are filled in a way for a bunch of pages and in another way

Chapter 8 Page Composition and Usability 333

for another bunch of pages. Each group of pages might be derived from an intermediate
master.

When you create a content placeholder in a master page, you are leaving to the content
page author full freedom to put in the placeholder wherever she wishes. Sometimes, instead,
you want pages to customize the content of certain areas but without altering the layout. In
Figure 8-6, the MainContent placeholder defined on the root master has been filled up as
follows. (I omitted the fieldset you see in Figure 8-6 for clarity.)

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
<h2>
<asp:Label runat="server" ID="MainContentTitle_Label">
What is this page for?
</asp:Label>
</h2>

<asp:ContentPlaceHolder ID="PageBody" runat="server" />
<asp:ContentPlaceHolder ID="ScriptContentBottom" runat="server" />
</asp:Content>

The markup consists of an H2 element plus a couple of placeholders. This means that as
the author of the master page, you always want a title string followed by the real con-
tent. However, the title string (the Label control in the code) is static. How can you make it
dynamically settable from content pages? Here's where master page properties fit in.

Programming the Master Page

You can use code in content pages to reference properties, methods, and controls in the
master page, with some restrictions. The rule for properties and methods is that you can ref-
erence them if they are declared as public members of the master page. This includes public
page-scope variables, public properties, and public methods.

Exposing Master Properties

To give an identity to a control in the master, you simply set the runat attribute and give

the control an ID. Can you then access the control from within a content page? Not directly.
The only way to access the master page object model is through the Master property. Note,
though, that the Master property of the Page class references the master page object for the
content page. This means that only public properties and methods defined on the master
page class are accessible.

The following code enhances the previous master page to make it expose the text of the
label as a public property:

public partial class MainContentMaster : MasterPage

{

protected void Page_Load(object sender, EventArgs e)

334

Part Il ASP.NET Pages and Server Controls

{
}
public String MainContentTitle
{
get { return MainContentTitle_Label.Text; }
set { MainContentTitle_Label.Text = value; }
}

3

The control’s protection level makes it inaccessible from the outside world, but the public
property MainContentTitle defined in the preceding code represents a public wrapper
around the Label’s Text property. In the end, the master page has an extra public property
through which programmers can set the page description.

Invoking Properties on the Master

The Master property is the only point of contact between the content page and its mas-
ter. The bad news is that the Master property is defined to be of type MasterPage; as such,
it doesn’'t know anything about any property or method definition specific to the master
you're really working with. In other words, the following code wouldn't compile because no
MainContentTitle property is defined on the MasterPage class:

public partial class NestedDemo : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
Master.MainContentTitle = "Nested demo";
}
}

What's the real type behind the Master property?

The Master property represents the master page object as compiled by the ASP.NET runtime
engine. This class follows the same naming convention as regular pages—ASP.XXX_master,
where XXX is the name of the master file. Developers can override the default class name

by setting the ClassName attribute on the @Master directive. The attribute lets you assign a
user-defined name to the master page class:

<%@ Master ... Classname="ContentMaster" %>

In light of this, you would need code like that shown here:

((ASP.ContentMaster)Master) .MainContentTitle = "Nested demo";

However, there are a couple of simpler alternatives—one for .NET 4 applications and one
that works regardless of the .NET Framework version you're using. If you compile your code
for the .NET Framework 4, you can take advantage of the dynamic keyword in C#.

Chapter 8 Page Composition and Usability 335

public partial class NestedDemo : Page

{
protected void Page_Load(Object sender, EventArgs e)
{
dynamic master = this.Master;
master.MainContentTitle = "Nested demo";
}
}

The dynamic keyword tells the compiler to suspend any further processing on the expres-
sion and just assume the syntax is fine. The compiler understands that the variable master

is of type dynamic, and that’s enough. For this type, then, the compiler actually emits some
code that at run time will try to resolve the expression through the services of the Dynamic
Language Runtime (DLR) component of the .NET Framework 4. The net effect is that if at run
time the actual object behind the master variable can successfully resolve a call to the speci-
fied property, the code works as expected; otherwise, an exception would be raised.

If you're not using .NET 4, however, you have another choice.

The @MasterType Directive

By adding the @MasterType directive in the content page, you can avoid all the casting just
shown. The @MasterType informs the compiler about the real type of the Master property.
The Master property is declared as the right type in the dynamically created page class, and
this allows you to write strongly typed code, as follows:

<%@ Page Title="Nested master pages"
MasterPageFile="~/MainContent.Master"
AutoEventWireup="true"
CodeBehind="NestedDemo.aspx.cs"
Inherits="Masters.NestedDemo" %>

<%@ MasterType VirtualPath="~/MainContent.Master" %>

In the code file, you can have the following statements:

protected void Page_Load(object sender, EventArgs e)

{

Master.MainContentTitle = "Nested demo";

}

The @MasterType directive supports two mutually exclusive attributes: VirtualPath and
TypeName. Both serve to identify the master class to use. The former does it by URL; the lat-
ter by type name. Figure 8-8 shows the effect of the directive on the code being created and
the nice work Visual Studio IntelliSense does around it.

336

Part Il ASP.NET Pages and Server Controls

NestedDemo.aspr.cs* X [T lVEaTEE Y MainContent.Master

“if Masters.NestedDemo ~| 7%Page |
Slusing System;
using System.Web.UI;

Sinamespace Masters

{

public partial class NestedDemo : Page

{
protected void Page_Load(0Object sender, Eventhrgs e)

{

//dynamic master = this.Master;

//master.MainContentTitle = "Nested demo";
Master.M
¥ J&g MainContentTitle Froperty string Masters MainCortertMaster.MainContent Title
} - MapPath
3 = Master

P MasterPageFile

A ClientiDMode

-y SetRenderMethodDelegate
=1 ViewStateMode

FIGURE 8-8 Effect of the @MasterType directive.

Changing the Master Page Dynamically

To associate an ASP.NET content page with a master page—keeping in mind that in no case
can you associate a classic ASP.NET page with a master—you use the MasterPagefFile at-
tribute of the @Page directive. MasterPagefFile, though, is also a read-write property on the
Page class that points to the name of the master page file. Can you dynamically select the
master page via code and based on run-time conditions?

Using a dynamically changing master page is definitely possible in ASP.NET and is suitable,
for example, for applications that can present themselves to users through different skins.
However, programmatically selecting the master page is not a task that you can accomplish
at any time. To be precise, you can set the MasterPageFile property only during the Prelnit
page event—that is, before the run time begins working on the request.

protected void Page_PreInit(object sender, EventArgs e)
{

MasterPageFile = "another.master";

3

If you try to set the MasterPageFile property in Init or Load event handlers, an exception is
raised.

Note The Master property represents the current instance of the master page object, is a
read-only property, and can't be set programmatically. The Master property is set by the run
time after loading the content of the file referenced by the MasterPageFile property.

Styling ASP.NET Pages

ASP.NET pages are mostly made of server controls, and server controls ultimately serve up
HTML markup. The client browser builds and displays HTML elements whose appearance
depends on the information stored in their style containers.

Chapter 8 Page Composition and Usability 337

It turns out that there are several places for you to add style information to control the look
and feel of the page. If you feel comfortable with server controls, you use ASP.NET themes.
If you need to exercise more control over the content actually sent to (and displayed by)
the browser, you can configure controls to emit CSS-friendly markup that can be styled
effectively from the client or through HTML literals right in the ASPX markup.

ASP.NET themes have been introduced with the intent of facilitating the task of styling server
controls with the same approach used by cascading style sheets at the HTML element level.
Themes were originally aimed at doing the same job of CSS but through a more specific
interface tailor-made for server controls. Through themes, you just declaratively define some
code to be run to dress the control in a given way. Basically, themes are a way to adapt the
CSS syntax to the syntax of server controls.

Boldly introduced as a way to supersede CSS styles, today ASP.NET themes are in a downturn,
if not explicitly deprecated. Why is this so? As | see things, the problem is not with themes
but with the overall perception of server controls in ASP.NET development. Themes are just
perfect—and more effective than CSS—if your language for expressing Web pages is largely
based on server controls. If you don't really feel the need to worry about what a server
control emits, themes are just the perfect tool for the job.

At the height of ASP.NET's success, the advent of AJAX silently started changing people’s
perspective of things and led to a complete turnaround in only a couple of years. In a way,
AJAX was the straw that broke the ASP.NET Web Forms abstraction model. With AJAX, you
need much more control over the markup—HTML elements and CSS styles. Subsequently,
many more developers are using server controls not as building blocks but rather as HTML
helper factories. In this context, themes are simply a cumbersome technology compared to
the flexibility and dynamism of CSS.

In any case, in this chapter you'll find a section dedicated to the syntax and semantics
of themes. CSS is a too large of a topic to be covered here. You can pick up one of the
several books available on CSS. If you're looking for an online reference, | recommend
http://www.w3schools.com/CSS/CSS_reference.asp.

Note Although themes are fully supported in ASP.NET 4, | currently see them mostly as a
feature for a suite of controls rather than pages and sites. And I'm probably not the only one
thinking this way. In the past couple of years, in fact, we've witnessed a significant technology
shift that resulted in server controls becoming more and more HTML and CSS friendly. This trend
is clearly visible in ASP.NET 4 (and future extensions are being currently planned). The percep-
tion is different—server controls must adapt their internal organization so that the output can be
styled via CSS. If you take this route, of course, you just don't need themes.

What's a Theme, Anyway?

A theme is a set of visual settings that can be applied to style the markup produced by
ASP.NET server controls. A theme is ultimately a collection of files—ASP.NET visual settings

http://www.w3schools.com/CSS/CSS_reference.asp

338

Part Il ASP.NET Pages and Server Controls

(known as skins), CSS, plus any auxiliary images. Once enabled, the theme determines the
appearance of all controls under its jurisdiction. Consider the following simple markup:

<asp:Calendar ID="Calendarl" runat="server" />

Without themes, the calendar will look gray, spare, and spartan. With a theme added, the
same markup renders a more colorful and appealing calendar. As you can see, a neat separa-
tion exists between the page contents and formatting rules. Look at Figure 8-9. Which do
you think is the unthemed calendar?

< August 2010 = = August 2010 =
Su Mo Tu We Th Fr Sa Sun Mon Tue Wed Thu Fri Sat
BSN s 27 23 29 20 NS 25 26 27 28 29 30 31
iz 2 4 5 & | F i 2 3 4 3 8 1
8| 9 10 11 12 13 |14 8§ & 10 11 12 13 14
15 15 17 18 19 20 |21 15 16 17 18 19 20 21
25 23 24 25 26 27 |28 22 23 24 35 % 271 2B
28 30 31 1 2 3 4

29 30 31 1 2 3 4
FIGURE 8-9 The same controls, with and without themes.

To fully understand ASP.NET themes, you must be familiar with a few terms, which are de-
tailed in Table 8-3.

TABLE 8-3 ASP.NET Themes Terminology

Term Definition

Skin A named set of properties and templates that can be applied to one or
more controls on a page. A skin is always associated with a specific control
type.

Style sheet A CSS or server-side style sheet file that can be used by pages on a site.

Style sheet theme A theme used to abstract control properties from controls. The application

of this theme means that the control can still override the theme.

Customization theme A theme used to abstract control properties from controls, but the theme
overrides the control and any style sheet theme.

Imagine you are creating a new Web site and would like it to be visually appealing from the
start. Instead of having to learn all the available style properties of each employed control,
you just use ASP.NET themes. Using a built-in theme in a page is as easy as setting a prop-
erty, as you'll see in a moment. With this change, pages automatically inherit a new, and
hopefully attractive, appearance. For example, if you add a Calendar control to a page, it
automatically renders with the default appearance defined in the theme.

Selecting a theme for one or more pages doesn't necessarily bind you to the settings of that
theme. Through the Visual Studio designer, you can review the pages and manually adjust
some styles in a control if you want to.

Chapter 8 Page Composition and Usability 339

Note The following convention holds true in this book and, in general, in related literature.
Unless otherwise suggested by the context, the word “theme” indicates a customization theme.
Customization themes and style sheet themes use the same source files. They differ only in how
the ASP.NET runtime applies them to a page. The same theme can be applied as a customization
theme or a style sheet theme at different times.

Structure of a Theme

Themes are expressed as the union of various files and folders living under a common root
directory. Themes can be global or local. Global themes are visible to all Web applications
installed on a server machine. Local themes are visible only to the application that defines
them. Global themes are contained in child directories located under the following path. The
name of the directory is the name of the theme.

%WINDOWS%\Microsoft.NET\Framework\ [version]\ASP.NETCTientFiles\Themes

Local themes are specialized folders that live under the App_Themes folder at the root of the
application. Figure 8-10 shows the content of a couple of themes in a Web application.

_:& ThemesDemo

> [=d| Properties

» [:3] References

- [Account
3 App_Data

4 |7 App_Themes

> [BlueOne
4 |_7 RedOne
> [Images
A default.css
& default.skin
> [Scripts
> [Styles
. [About.aspx
. | Default.aspx
»] Global.asax
»] Site.Master
. [ZZ] ThemedCalendar.aspx
» [Web.config

FIGURE 8-10 The App_Themes directory in a Web project.

As you can see, the theme in the figure consists of a .css file and a .skin file, plus a
subdirectory of images. Generally, themes can contain a mix of the following resources:

B CSS files Also known as style sheets, CSS files contain style definitions to be applied

to elements in an HTML document. Written according to a tailor-made syntax, CSS
styles define how elements are displayed and where they are positioned on your page.
The World Wide Web Consortium (W3C) maintains and constantly evolves CSS stan-
dards. Visit http.//www.w3.org for details on current CSS specifications. CSS files are
located in the root of the theme folder.

http://www.w3.org

340

Part Il ASP.NET Pages and Server Controls

B Skin files A skin file contains the theme-specific markup for a given set of controls. A
skin file is made of a sequence of control definitions that include predefined values for
most visual properties and supported templates. Each skin is control-specific and has a
unique name. You can define multiple skins for a given control. A skinned control has
the original markup written in the .aspx source file modified by the content of the skin.
The way the modification occurs depends on whether a customization theme or a style
sheet theme is used. Skin files are located in the root of the theme folder.

B Image files Feature-rich ASP.NET controls might require images. For example, a
pageable DataGrid control might want to use bitmaps for first or last pages that are
graphically compliant to the skin. Images that are part of a skin are typically located in
an Images directory under the theme folder. (You can change the name of the folder as
long as the name is correctly reflected by the skin's attributes.)

B Templates A control skin is not limited to graphical properties but extends to define
the layout of the control—for templated controls that support this capability. By stuff-
ing template definitions in a theme, you can alter the internal structure of a control
while leaving the programming interface and behavior intact. Templates are defined as
part of the control skin and persisted to skin files.

The content types just listed are not exhaustive, but they do cover the most commonly used
data you might want to store in a theme. You can have additional subdirectories filled with
any sort of data that makes sense to skinned controls. For example, imagine you have a cus-
tom control that displays its own user interface through the services of an external

ASP.NET user control (.ascx). Skinning this control entails, among other things, indicating the
URL to the user control. The user control becomes an effective part of the theme and must
be stored under the theme folder. Where exactly? That is up to you, but opting for a Controls
subdirectory doesn’t seem to be a bad idea.

Theming Pages and Controls

You can apply themes at various levels—application, folder, and individual pages. In addition,
within the same theme you can select different skins for the same type of control.

Setting a theme at the application level affects all the pages and controls in the application.
It's a feature you configure in the application’s web.config file:

<system.web>
<pages theme="BlueOne" />
</system.web>

The theme attribute sets a customization theme, while the styleSheetTheme attribute sets
a style sheet theme. Note that the case is important in the web.config's schema. Likewise, a
theme can be applied to all the pages found in a given folder and below that folder. To do
so, you create a new web.config file in an application’s directory and add the section just
shown to it. All the pages in that directory and below it will be themed accordingly. Finally,

Chapter 8 Page Composition and Usability 341

you can select the theme at the page level and have styles and skins applied only to that
page and all its controls.

To associate a theme with a page, you set the Theme or StyleSheetTheme attribute on the
@Page directive, and you're all set:

<% @Page Language="C#" Theme="BlueOne" %>
<% @Page Language="C#" StyleSheetTheme="BlueOne" %>

Also in this case, Theme sets a customization theme, whereas StyleSheetTheme indicates a
style sheet theme.

Bear in mind that the name of the selected theme must match the name of a subdirec-
tory under the App_Themes path or the name of a global theme. If a theme with a given
name exists both locally to the application and globally to the site, the local theme takes
precedence.

While we're speaking of precedence, note that themes have a hierarchical nature: directory-
level themes take precedence over application-level themes, and page-level themes override
any other themes defined around the application. This hierarchy is independent of which
attributes are used—Theme or StyleSheetTheme—to enable theming.

Note Setting both the Theme and StyleSheetTheme attributes is not prohibited, even though it
is not a recommended practice. There's a behavioral gap between the two forms of themes that
should make clear which one you need in any situation. However, if you set both attributes, con-
sider that both themes will be applied—first the style sheet theme and then the customization
theme. The results depend on the CSS cascading mechanism and, ultimately, are determined by
the CSS settings of each theme.

Applying Skins

A skin file looks like a regular ASP.NET page because it is populated by control declarations
and import directives. Each control declaration defines the default appearance of a particular
control. Consider the following excerpt from a skin file:

<!-- This is a possible skin for a Button control -->
<asp:Button runat="server"

BorderColor="darkgray"

Font-Bold="true"

BorderWidth="1px"

BorderStyle="outset"

ForeColor="DarkSTateGray"

BackColor="gainsboro" />

The net effect of the skin is that every Button control in a themed page will be rendered as
defined by the preceding markup. If the theme is applied as a style sheet, the settings just

342

Part Il ASP.NET Pages and Server Controls

shown will be overridable by the developer; if the theme is a customization theme, those set-
tings determine the final look and feel of the control. Properties that the theme leaves blank
are set according to the control’s defaults or the .aspx source.

Important Whatever theme you apply—customization or style sheet—control properties can
always be modified through code in page events such as /nit and Load.

A theme can contain multiple skins for a given control, each identified with a unique name—
the SkinID attribute. When the Skin/D attribute is set, the skin is said to be a named skin. A
theme can contain any number of named skins per control, but just one unnamed (default)
skin. You select the skin for a control in an ASP.NET themed page by setting the control’s
SkinID property. The value of the control’s Skin/D property should match an existing skin in
the current theme. If the page theme doesn’t include a skin that matches the Skin/D property,
the default skin for that control type is used. The following code shows two named skins for a
button within the same theme:

<!-- Place these two definitions in the same .skin file -->
<asp:button skinid="skinClassic" BackColor="gray" />
<asp:button skinid="skinTrendy" BackColor="1ightcyan" />

When you enable theming on a page, by default all controls in that page will be themed
except controls and individual control properties that explicitly disable theming.

Taking Control of Theming

The ASP.NET theming infrastructure provides the EnableTheming Boolean property to
disable skins for a control and all its children. You can configure a page or control to ignore
themes by setting the EnableTheming property to false. The default value of the property

is true. EnableTheming is defined on the Control class and inherited by all server controls
and pages. If you want to disable theme support for all controls in a page, you can set the
EnableTheming attribute on the @Page directive.

Important Note that the EnableTheming property can be set only in the Page_Preinit event
for static controls—that is, controls defined in the .aspx source. For dynamic controls—that is,
controls created programmatically—you must have set the property before adding the control
to the page’s control tree. A control is added to the page's control tree when you add to the
Controls collection of the parent control—typically, the form or another control in the form.

When is disabling themes useful? Themes are great at ensuring that all page controls have

a consistent look and feel, but at the same time themes override the visual attributes of any
control for which a skin is defined. You can control the overriding mechanism a bit by switch-
ing style sheet and customization themes. However, when you want a control or page to
maintain its predefined look, you just disable themes for that page or control.

Chapter 8 Page Composition and Usability 343

Note that disabling themes affects only skins, not CSS styles. When a theme includes one
or more CSS style-sheet files, they are linked to the <head> tag of the resulting HTML
document and, after that, are handled entirely by the browser. As you can easily guess,
there’s not much a Web browser can know about ASP.NET themes!

Loading Themes Dynamically

You can apply themes dynamically, but this requires a bit of care. The ASP.NET runtime loads
theme information immediately after the Prelnit event fires. When the Prelnit event fires, the
name of any theme referenced in the @Page directive is already known and will be used un-
less it is overridden during the event. If you want to enable your users to change themes on
the fly, you create a Page_Prelnit event handler. The following code shows the code file of a
sample page that changes themes dynamically:

public partial class TestThemes : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack) {
// Populate the 1ist of available themes
ThemeList.DataSource = GetAvailableThemes();
ThemeList.DataBind();
}
}
void Page_PreInit(object sender, EventArgs e)
{
string theme = "";
if (Page.Request.Form.Count > 0)
theme = Page.Request["ThemeList"].ToString(Q);
if (theme == "None")
theme = "";
this.Theme = theme;
}
protected StringCollection GetAvailableThemes()
{
var path = Request.PhysicalApplicationPath + @"App_Themes";
var dir = new DirectoryInfo(path);
var themes = new StringCollection();
foreach (var di in dir.GetDirectories())
themes.Add(di.Name);
return themes;
}
}

The drop-down list control named ThemelList enumerates the installed application themes
and lets you choose the one to apply. The selected theme is then applied in the Prelnit event
and immediately reflected. In the Prelnit event, no view state has been restored yet; so
Request.Form is the only safe way to access a posted value like the selected theme.

344

Part Il ASP.NET Pages and Server Controls

Page Usability Checklist

Mastering the technology for building a Web site is necessary, but often it's not sufficient.
Your site must be able to attract people and make them return on a regular basis. A site must
surely provide valuable content and services, but that might not be good enough if that
content and those great services are hard to find, understand, and consume.

There are three fundamental items that any developers of any Web sites must tick off

their to-do list as soon and as as possible: consistent cross-browser display, Search Engine
Optimization (SEO), and site navigation. Cross-browser display ensures that your pages will
look and work the same regardless of the device being used to reach it. SEO best practices
ensure that your site is ranked high by search engines and possibly appear as one of the first
links when a user searches for a related keyword. Finally, once users arrive, they must be able
to work with the site seamlessly and have an enjoyable experience. Site navigation facilities
are fundamental.

In the rest of this chapter, I'll address some of the best practices and ASP.NET techniques and
technologies to provide users with a consistent and comfortable experience while interacting
with the site.

Cross-Browser Rendering

Although all client browsers these days share a common set of capabilities large enough to
implement nice Web features, the old motto of “Write once, browse everywhere” is a fairy
tale. That a page works the same across different browsers is not a foregone conclusion;
rather, it's something you have to test carefully and that might require a bit of extra work to
achieve. Especially with extremely dynamic pages full of script and HTML manipulation code,
the risk of having some markup misinterpreted is real.

Cross-browser rendering refers to the set of techniques and technologies you can use to
ensure that your pages work and look the same regardless of the browser in use. The key
idea behind cross-browser rendering is that the code within the page is able to detect the
browser ID and its known set of capabilities. Based on that, the code within the page will
then work out a solution to get the best possible markup for the device.

ASP.NET provides a specific APl to detect browser capabilities programmatically and also to
keep the set of capabilities updated over time.

Detecting Browser Capabilities

In ASP.NET, the central repository for browser information is the Browser property on the
HttpRequest object. Here's how it is defined:

public HttpBrowserCapabilities Browser
{

get { ... }

set { ... }

Chapter 8 Page Composition and Usability 345

When the getter method is invoked for the first time, the HttpRequest object gets and caches
any available browser information. The user agent information carried by the request is used
to identify the requesting browser. Any gathered browser information is published through
an instance of the HttpBrowserCapabilities class. The HttpBrowserCapabilities class groups,

in a single place, values that identify a fair number of browser capabilities, including support
for ActiveX controls, scripting languages, frames, cookies, and much more. Note that no in-
formation is in any way dynamically set by the browser; instead, it is retrieved from an offline
server-side repository.

As mentioned, ASP.NET identifies the connected browser by reading the user-agent
information that is passed during a request. ASP.NET compares the user-agent string that

is received from the browser to user-agent strings that are stored in server-side browser
definition files. These files contain information about the known capabilities of various user
agents. When ASP.NET finds a match between the current user-agent string and a user-agent
string in a browser definition file, it loads the corresponding browser capabilities into the
HttpBrowserCapabilities object. The following code shows how to identify and output the
name of the calling browser:

var browserCaps = Request.Browser;
Labell.Text = browserCaps.Browser;

The properties of the HttpBrowserCapabilities object can then be used to determine whether
the browser type that is represented by the user agent supports scripting, styles, frames,

and so on. Based on these capabilities, the controls on the page render Web controls using
appropriate markup.

Browser Definition Files

The class HttpBrowserCapabilities inherits from HttpBrowserCapabilitiesBase, which
represents the list of information that is possible to know about a browser. The base class
includes dozens of properties, including IsMobileDevice, SupportsXmlHttp, JScriptVersion, and
HasBackButton. As an example, IsMobileDevice returns a Boolean value denoting whether

or not the current browser is a mobile device. Likewise, JScriptVersion returns the version of
JavaScript currently being supported by the browser, and SupportsXmiHttp indicates whether
the browser has AJAX capabilities.

Browser information is read from server-side browser definition files installed with ASP.NET.
In ASP.NET 4, you find the following definition files—one for each recognized browser device:

B blackberry.browser
B chrome.browser

B Default.browser

m firefox.browser

B gateway.browser

346

Part Il ASP.NET Pages and Server Controls

B generic.browser
B je.browser

B iemobile.browser
B iphone.browser

B opera.browser

B safari.browser

Browser definition files are plain XML files located under the following folder:

%Windows%\Microsoft.NET\Framework\v4.0.30319\Config\Browsers

Browser files in the specified folder contain global definitions valid for all applications on the
server. If you want to employ application-specific settings, you create an App_Browsers folder
in your project and drop into it any .browser file you might need.

At any time, you can add new .browser files or edit any stored information. The syntax of
.browser files is a bit quirky, and any edit needs to be conducted by hand, with the risk of
breaking things. To make this scenario more seamless, in ASP.NET 4 Microsoft introduced the
concept of a browser-capabilities provider.

Note If you make any edits to any of the .browser files, make sure you re-create the browser
assembly in the global assembly cache (GAC). For this to happen, you have to run the following
command:

aspnet_regbrowsers.exe -I ¢

Needless to say, this action will inevitably restart your entire Web application.

Browser Capabilities Providers

In ASP.NET, a provider is a component that implements a contracted interface and interacts
with specific ASP.NET subsystems only through that interface. Each ASP.NET subsystem that
supports the provider model must have a default provider configured. As a developer, you
can make your application switch from one provider to the next declaratively, when not
doing it programmatically. Through the provider model, a piece of functionality represented
by a “contract” (in this context, it is usually a base class) is injected into a particular subsystem
of ASP.NET. Providers exist for membership, role management, user profiles and, in ASP.NET
4, also for managing browser capabilities.

Browser-capabilities providers enforce the following contract:

public abstract class HttpCapabilitiesProvider
{

public abstract HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request);
}

Chapter 8 Page Composition and Usability 347

The default browser-capabilities provider is the class HttpCapabilitiesDefaultProvider you
find in the System.Web.Configuration namespace. This class is designed to read browser in-
formation from .browser files. Internally, the implementation of the Browser property on the
HttpRequest object ends up calling the configured provider and gets to the actual informa-
tion through the interface of the HttpCapabilitiesProvider class.

If you need to read browser information from other sources, you can replace or extend the
default provider. You create a new provider class that derives from HttpCapabilitiesProvider
and overrides the GetBrowserCapabilities method:

public class CustomProvider : HttpCapabilitiesProvider
{
public override HttpBrowserCapabilities GetBrowserCapabilities(HttpRequest request)

{
// Detect the browser
var userAgent = request.UserAgent;

// Retrieve information
var values = GetBrowserInfoAsHashTable(userAgent);

// Pack information in a consumable format
var browserCaps = new HttpBrowserCapabilities();

browserCaps.Capabilities = values;

return browserCaps;

}
private HashTable GetBrowserInfoAsHashTable(String userAgent)
! var values = new HashTable(180);
;ééurn values;
}

3

The final step consists of registering the new provider. You can do that declaratively through
the <browserCaps> section of the configuration file:

<system.web>
<browserCaps provider="YourApp.CustomProvider, Extensions" />
</system.web>

Alternatively, you can use the following code from global.asax:

void Application_Start(Object sender, EventArgs e)
{
HttpCapabilitiesBase.BrowserCapabilitiesProvider = new YourApp.CustomProvider();

}

When you write a provider, you should also consider caching the information because
although it is static information, it might be requested several times. Setting up forms of data
caching is entirely up to you.

348

Part Il ASP.NET Pages and Server Controls

The primary reason for writing a custom browser capabilities provider is to let developers
store browser capabilities in an alternate repository (for example, a database) and use
that instead of the built in one.

Note The interface that defines the list of capabilities for browsers is fixed. For this reason, to
add a new capability you can only resort to adding extra properties to the Capabilities dictionary
of the HttpCapabilitiesBase class.

Search Engine Optimization

Spreading the word around about a Web site is a key step to getting a good site its deserved
success. People visit a Web site because they are told about it, because they receive a direct
link to it or, more likely, because they were searching for some topics related to the content
of the site and engines such as Bing, Google, and Yahoo suggested they could find good
information there.

If a Web site is quite high in the list of search results, the site is going to experience plenty of
visits. How can you manage to make links from your site look attractive to search engines?
That's precisely a whole new field that goes side by side with Web development—search
engine optimization or SEO.

SEO is critical for any Web sites that need to have high volumes of traffic to survive. More
traffic will likely generate more advertising and increase the revenue the site generates.

Quick SEO Checklist

Search engines won't tell you exactly which parameters they're using to rank pages.
Algorithms, however, are continually updated to stay in sync with user expectations and to
fix any possible drawbacks that could cause inconsistent or unreliable results. Even though
the indexing algorithm used by search engines remains a well-kept trade secret, it is widely
known that pages with certain characteristics are ranked higher than others. Let’s review
some of these SEO techniques.

The first aspect to consider is that the title of the Web page does matter. The title has to
be unique for every page, kept short (about 50 characters maximum), and be meaning-

ful enough to please both end users and search engines. To please search engines, the title
string should include page keywords, preferably in the beginning of the string. In addition,
the content of the title (or a similar string) should also be displayed through an <HI> tag.
This increases the relevance of the content to the search engine's eyes.

Search engines work by searching references to Web pages that can be associated with the
input keywords. In other words, a search engine works by mapping its own keywords to the

Chapter 8 Page Composition and Usability 349

content exposed by pages. HTML pages can include a couple of interesting meta tags in their
<head> section. These meta tags are keywords and description:

<head>
<meta name="keywords" content="ASP.NET Web Forms, Book, Training" />
<meta name="description" content="This book explains how ASP.NET works so that you
find out yourself how to do things." />

</head>

In ASP.NET 4, you can set the keywords and description attributes easily through a pair of new
properties added to the Page class. (See Chapter 5.) Today, however, the importance of the
keywords meta tag is diminished. Bing and Google, for example, have both stated explicitly
that they don't use keywords declared in the <head> of the page but actually extract real
keywords from the content. In light of this, using the keywords meta tag to list your page
keywords is hardly a bad thing, but it is not a decisive factor in determining the final ranking.
A common use of the keywords meta tag today is also to associate your page with misspelled
keywords. For example, if your page is about tennis, the engine will easily figure that out
from the content and rank it accordingly. However, if you list words like tenis in the keywords,
you have a better chance of your page being picked up when the user mistypes words.

The description meta tag, instead, is more relevant, even though it's not specifically for raising
the rank. If a description meta tag is found, search engines embed that content in the result
page instead of creating their own description. If the description is attractive enough, your
page has more chances to be clicked. A description is ideally around 200 characters and
should read well and be informative.

Search engines don't like many things that often populate Web pages. They don't like dupli-
cated URLs, for example. If there are two or more URLs used to get the same content, search
engines tend to lower the page ranking. This happens even if you have subdomains, such as
www.yourserver.com and yourserver.com. Without a permanent redirect being configured at
the Internet Information Services (11S) level, your home page will suffer.

Search engines don't like query strings, hidden fields, Flash/Silverlight components, or rich
JavaScript content. All these things make the page harder to analyze. Search engines, instead,
love plain anchor tags, title attributes, and alt attributes—plain HTML.

If not properly handled, redirects are also problematic because they can lead to duplicated
URLs. Classic redirects you perform through Response.Redirect result in an HTTP 302 sta-
tus code. As developers, we tend to forget that HTTP 302 indicates a temporary redirect. A
temporary redirect therefore tells engines that eventually the page being moved will return
to its original location. If this doesn't happen, engines keep on storing two locations for the
same content. A permanent redirect is HTTP 301, which in ASP.NET 4 is enforced by a new
method—Response.PermanentRedirect.

Query strings should be avoided too. Ideally, URLs should be extensionless and represent a
meaningful path within the content of the page. URL rewriting is an ASP.NET technique that

http://www.yourserver.com

350

Part Il ASP.NET Pages and Server Controls

can help in this regard. In ASP.NET 4, however, routing is a type of URL rewriting that of-
fers a richer programming model and the same (if not higher) degree of effectiveness. (See
Chapter 4, "HTTP Handlers, Modules, and Routing.”)

SEO and ASP.NET

Although ASP.NET 4 put some effort into making it easier for you to improve SEO, there are
a few structural aspects of ASP.NET that are not specifically optimized for search engines. |
don’t mean this to be necessarily a bad statement about ASP.NET Web Forms as a platform.
On the other hand, ASP.NET Web Forms was designed a decade ago when we all were living
in a totally different world and were chasing different priorities than today. In this regard,
ASP.NET MVC is a better (because it's newer) platform that is natively optimized for search
engines.

So my point here is don't be fooled if you read that ASP.NET improves SEQ. It simply gives
you some new tools for implementing features (permanent redirection, meta description,
routing) that were only harder, but not impossible, to achieve before.

Let's briefly review some structural SEO-related issues of ASP.NET.

The postback mechanism carried via JavaScript code is like smoke in the eyes of search
engines. Every time you use link buttons or built-in paging/sorting capabilities of data-
bound controls, you put your page at risk of not being ranked properly. Search engines
don't follow JavaScript and ignore cookies. Because the session ID is stored in a cookie and
engines ignore cookies, some of the page content might remain undiscovered. What about
a cookieless approach for sessions, then? (We'll discover this feature in Chapter 17, “ASP.NET
State Management.”) It would be even worse because it would produce a lot of duplicated
URLs, confusing engines even more.

Finally, the ASP.NET view state. The view state is a potentially large hidden field usually stored
at the beginning of the page, right after the opening <form> tag. For a while, it was assumed
that to make the process quicker, search engines could read only the first chunk of the page
(maybe 100 KB). In this way, because the view state is at the top and much of the real con-
tent would be out of reach. This is conjecture, however, as there's currently no evidence that
search engines do this.

In the end, moving the view state to the bottom of the page to get some alleged SEO bene-
fits can actually be dangerous because the user, in cases where there’s a very large view state,
will likely get the opportunity to post back before the entire content is loaded. This situation,
as you can guess, could cause errors.

For completeness, you can move the view state to the bottom of the page using a
little-known attribute in the configuration:

<pages RenderAl1HiddenFieldsAtTopOfForm="false" />

Chapter 8 Page Composition and Usability 351

Note that regardless of what the attribute name suggests, the attribute has an effect only on
system hidden fields. Custom hidden fields defined programmatically will always be emitted
in their natural position.

Note If search engines don't like JavaScript very much, what about AJAX pages and SEO? AJAX
is inherently JavaScript-based, and if your page is built using JavaScript only, well, it will likely not
be indexed by engines. A simple test is to try to load the page in the browser with JavaScript dis-
abled. What you see in this test is what a search engine will be able to index. To partially remedy
this, you can add static site maps that offer plain HTML links and load at least the initial content
of the page statically through the browser and not without JavaScript code. A recommended
practice is using tools such as HTMLUnit to automate grabbing a static, scriptless version of your
pages. For more information, see http://blog.stevensanderson.com/2010/03/30/using-htmlunit-
on-net-for-headless-browser-automation.

Tools for Measuring SEO Level

Wouldn't it be great if you could run a tool against a public site and get a report about some
of the SEO issues it could spot? SEO correctness depends on whether or not (and in which
measure) you do the few things listed in the previous section. A tool can easily automate the
process of validation and come up with a list of things to fix. From Microsoft, you get the IIS
SEO Toolkit: http.//www.iis.net/download/seotoolkit. The toolkit includes various modules—
Site Analysis, Robots Exclusion, and Sitemaps and Site Indexes.

The Site Analysis module analyzes the content of a Web site and reports suggestions on how
to optimize content, structure, and URLs for search engines.

The Robots Exclusion module enables Web site administrators to manage the content of the
robots.txt file right from the 1IS Manager interface. Created by a site administrator, the file
robots.txt contains instructions for search engines regarding which directories and files in the
site should not be touched and indexed.

Finally, the Sitemaps and Site Indexes module manages the sitemap files (and indexes) at the
site, application, and folder level. This ensures that the sitemap file doesn't contain broken
links and search engines always access fresh and up-to-date navigation information.

Site Navigation

A good navigation system is a fundamental asset for any Web site—for both its human users
and search engines. A good navigation system enables any user at any time to know where
she is, where she has come from, and where she can go.

A navigation system always appears in the same position within all pages; this makes it a
good fit for a master page. It is made of well-described links in which the text inside the
anchor is quite clear about the final destination. Links are preferably emphasized using some

http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://blog.stevensanderson.com/2010/03/30/using-htmlunit-on-net-for-headless-browser-automation
http://www.iis.net/download/seotoolkit

352

Part Il ASP.NET Pages and Server Controls

CSS style and are a static part of the page. The more you use JavaScript, the more you can
create appealing menus. However, the more you require from the equipment of your users,
the more likely you will be to raise SEO issues and screen-reader issues for users with dis-
abilities. These are the possible drawbacks of excessive use of JavaScript in the navigation
system of a page. Finally, a navigation system should always provide an easy-to-reach link to
the home page. A visitor might not land at your site from the main door, so once the user is
there, you might want to show him the way to the home page.

In ASP.NET, the site navigation API allows you to define the map of the site and provide

a declarative description of how it is laid out. By using the site navigation API, you define
the hierarchy of pages you have and group them to form sections and subsections of the
site. ASP.NET caches this information and makes it programmatically accessible at run time.
With site navigation, you store links to pages in a central location and can optionally bind
those links to navigation controls, such as the TreeView and Menu controls. In addition, as
mentioned, a link-based map of the site helps search engines considerably.

ASP.NET site navigation offers a number of features, including site maps to describe the
logical structure of the site, site map providers to physically store the contents of a map
and optional security access rules, and a bunch of controls to display site map information
through navigation components. In this section, we discuss how to define, configure, and
consume site map information.

Defining Site Map Information

You start by defining the list of constituent pages and relationships between them. Exposed
in a standard way, this information then will be easily consumed by site navigation controls
and reflected by page output. By default, the site map is expressed through an XML file,
usually named web.sitemap. (Thanks to the provider model, however, alternative data sources
are possible.)

Site map information is retrieved via the currently selected site map provider. The
default site map provider is registered in the root configuration file as an instance of the
XmliSiteMapProvider class:

<siteMap>
<providers>
<add name="AspNetXmlSiteMapProvider"
siteMapFile="web.sitemap"
type="System.Web.Xml1SiteMapProvider, System.Web, ... " />
</providers>
</siteMap>

As you can see, the schema contains a siteMapFile attribute through which you indicate
the name of the source file where site map information can be read from. In spite of the
extension, the file must be an XML file validated against a given schema. Note that the
XmiSiteMapProvider class doesn't handle files with an extension other than .sitemap. Finally,

Chapter 8 Page Composition and Usability 353

note that the XmiSiteMapProvider class detects changes to the site map file and dynamically
updates the site map to reflect changes.

Located in the application’s root directory, the web.sitemap file organizes the pages in the
site hierarchically. It can reference other site map providers or other site map files in other
directories in the same application. Here's a sample site map file that attempts to describe a
Web site to navigate through the contents of the book:

<siteMap>
<siteMapNode title="My Book" url="default.aspx">

<siteMapNode title="Introduction" url="intro.aspx" />

<siteMapNode title="Acknowledgements" url="ack.aspx" />
<siteMapNode title="References" url="ref.aspx" />

</siteMapNode>

<siteMapNode title="Chapters" url="toc.aspx" />

<siteMapNode title="ASP.NET at a glance" url="chOl.aspx" />

<siteMapNode title="HTTP Handlers and Modules" url="ch02.aspx" />

</siteMapNode>
<siteMapNode title="Appendix" url="appendix.aspx">
<siteMapNode title="Sample Code" url="samples.aspx" />

</siteMapNode>
</siteMapNode>
</siteMap>

A site map XML file is composed of a collection of <siteMapNode> elements rooted in a
<siteMap> node. Each page in the Web site is represented with a <siteMapNode> element.
Hierarchies can be created by nesting <siteMapNode> elements, as in the preceding code
snippets. In most cases, the root <siteMap> node contains just one child <siteMapNode>
element, even though this is not a strict rule hard-coded in the schema of the XML file. All
URLs linked from the site map file should belong to the same application using the file. Also
in this case, though, exceptions are acceptable. In other words, you are allowed to specify
links to pages in other applications, but the site navigation APl won't check these links. As
long as links belong to the same application, the API can verify them and return design-time
errors if there are broken links.

Table 8-4 lists the feasible attributes of the <siteMapNode> element.

Table 8-4 Attributes of the <siteMapNode> Element
Attribute Description

description Defines the text used to describe the page. This text is used to add a
ToolTip to the page link in a SiteMapPath control (discussed later) and as
documentation.

provider String that indicates the site map provider to use to fill the current node.

resourceKey Indicates the name of the resource key used to localize a given node of the
site map.

354

Part Il ASP.NET Pages and Server Controls

Attribute Description

roles String that indicates the roles that users must have to view this page.
siteMapFile Indicates the name of the site map file to use to fill the current node.
title Defines the text used as the text of the link to the page.

url Defines the URL of the page.

The roles attribute is key to implementing a feature known as security trimming. Security
trimming essentially refers to the site map API capability of preventing unauthorized users
from viewing pages that require a particular role.

In addition to using the attributes listed in Table 8-4, you can use custom attributes too. You
cannot use custom nodes. A .sitemap file can contain only <siteMapNode> elements and a
<siteMap> root node.

Site Map Providers

The site navigation subsystem is provider based, meaning that you can use custom providers
to define some site map contents. A custom site map provider reads information from a dif-
ferent storage medium, be it another XML file with a distinct schema, a text file or, perhaps, a
database. A custom site map provider is a class that inherits from SiteMapProvider or, better
yet, from an intermediate class named StaticSiteMapProvider.

Note that you can optionally use multiple providers at the same time. For example, by setting
the provider attribute on a <siteMapNode> node, you instruct the site map subsystem to use
that site map provider to retrieve nodes to insert at that point of the hierarchy.

<siteMap>
<siteMapNode title="Intro" url="intro.aspx" >
<siteMapNode title="Acknowledgements" url="ack.aspx" />
<siteMapNode title="References" url="ref.aspx" />
</siteMapNode>
<siteMapNode provider="SimpleTextSiteMapProvider" />

</siteMap>

The additional provider must be registered in the configuration file and feature all
information needed to connect to its own data source. Here's an example for the sample text
file provider:

<system.web>
<siteMap defaultProvider="Xm1SiteMapProvider">
<providers>
<add name="SimpleTextSiteMapProvider"
type="SimpleTextSiteMapProvider, Samples"
siteMapFile="MySiteMap.txt" />
</providers>
</siteMap>
</system.web>

Chapter 8 Page Composition and Usability 355

The <siteMapNode> linked to the SimpleTextSiteMapProvider component will contain all the
nodes as defined in the MySiteMap.txt file. Reading and parsing to nodes any information in
MySiteMap.txt is the responsibility of the custom provider. As a result, you have a site map
file that uses two providers at the same time: the default Xm/SiteMapProvider and the custom
SimpleTextSiteMapProvider.

Creating the map of a site is only the first step. Once it is created, in fact, this information
must be easily and programmatically accessible. Although most of the time you consume site
information through a bunch of ad hoc controls, it's useful to take a look at the class that acts
as the official container of site map information—the SiteMap class. When an ASP.NET appli-
cation runs, the site map structure is exposed through a global instance of the SiteMap class.

The SiteMap Class

Defined in the System.Web assembly and namespace, the SiteMap class has only static
members. It exposes a collection of node objects that contain properties for each node in
the map. The class is instantiated and populated when the application starts up; the data
loaded is cached and refreshed care of the provider. In particular, the XML site map provider
monitors the site map file for changes and refreshes itself accordingly.

Table 8-5 shows and describes the syntax and behavior of the members featured by the
SiteMap class.

TABLE 8-5 Members of the SiteMap Class

Member Description

CurrentNode A property that returns the SiteMapNode object that represents the currently
requested page.

Enabled A property that indicates whether a site map provider is enabled.

Provider A property that returns the SiteMapProvider object that indicates the provider

being used for the current site map.

Providers A property that returns a read-only collection of SiteMapProvider objects that
are available to the application.

RootNode A property that returns a SiteMapNode object that represents the root page
of the navigation structure built for the site.

SiteMapResolve An event that occurs when the CurrentNode property is accessed. Whether
this event is really raised or not depends on the particular provider being
used. It does fire for the default site map provider.

The SiteMap class retrieves the CurrentNode property by making a request to the provider. A
null value is returned if no node exists for the requested page in the site map, or if role infor-
mation for the current user doesn't match the role enabled on the node.

356

Part Il ASP.NET Pages and Server Controls

The SiteMapPath Control

A site map path is the overall combination of text and links that appears in some pages to in-
dicate the path from the home page to the displayed resource—the classic page breadcrumb.

(See Figure 8-11.)

Home : Chapters : Chapter 10 : Site Map

FIGURE 8-11 Path to the currently displayed page.

ASP.NET provides a made-to-measure navigation path control—the SiteMapPath control—
that supports many options for customizing the appearance of the links.

SiteMapPath reflects node data supplied by the SiteMap object. The control takes limited
space in the page and makes parent pages of the current page only one click away. Table 8-6
shows the properties supported by the SiteMapPath control.

TABLE 8-6 Properties of the SiteMapPath Control

Method Description

CurrentNodeStyle The style used to render the display text of the current node

CurrentNodeTemplate The template to use to represent the current node in the site
navigation path

NodeStyle The style used to render the display text for all nodes in the site navi-
gation path

NodeTemplate The template used to represent all the functional nodes in the site

navigation path

ParentlLevelsDisplayed

The number of levels of parent nodes displayed, relative to the current
node

PathDirection Gets or sets the order for rendering the nodes in the navigation path
PathSeparator The string used to delimit nodes in the rendered navigation path
PathSeparatorStyle The style used for the PathSeparator string

PathSeparatorTemplate

The template used to render the delimiter of a site navigation path

Provider The site map provider object associated with the control

RenderCurrentNodeAsLink If set, causes the control to render the current node as a hyperlink

RootNodeStyle The style for the display text of the root node

RootNodeTemplate The template used for the root node of a site navigation path

ShowToolTips If set, displays a ToolTip when the mouse hovers over a hyperlinked
node

SiteMapProvider Gets or sets the name of the site map provider object used to render
the site navigation control

SkipLinkText Gets or sets the value used to render alternate text for screen readers

to skip the control’s content

Chapter 8 Page Composition and Usability 357

The SiteMapPath control works by taking the URL of the current page and populating an
instance of the SiteMapNode class with information obtained from the site map. Retrieved
information includes the URL, title, description, and location of the page in the navigation
hierarchy. The node is then rendered out as a sequence of templates—mostly hyperlinks—
styled as appropriate.

No code is required to use a SiteMapPath control. All that you have to do is place the
following markup in the .aspx source file:

<asp:SiteMapPath ID="SiteMapPathl" runat="server"
RenderCurrentNodeAsLink="True" PathSeparator=" : " >
<PathSeparatorStyle Font-Bold="true" />
<NodeStyle Font-Bold="true" />
<RootNodeStyle Font-Bold="true" />
</asp:SiteMapPath>

As you can guess, style properties in the preceding markup are not essential to make the
control work and can be omitted for brevity.

Note Style properties that most ASP.NET server controls expose represent the heart of the
ongoing conflict between themes and CSS styles. Style properties form an alternate—in a way, a
higher level—syntax to style controls. In the end, it boils down to a sort of architecture choice: if
you choose to go with server controls, use style properties (and themes), but at that point ignore
CSS and client-side configurations. Otherwise, ignore themes and style properties and take more
care of the emitted markup. In this case, however, are you sure you're still OK with ASP.NET Web
Forms?

Configuring the Site Map

There are various ways to further configure the site map file to address specific real-world
scenarios. For example, you can tie together distinct site map files, localize the title and
description of pages, and serve each user a site map that complies with his or her roles in the
application’s security infrastructure. Let's tackle each of these situations.

Using Multiple Site Map Files

As mentioned, the default site map provider reads its information from the web.sitemap file
located in the application’s root directory. Additional .sitemap files written according to the
same XML schema can be used to describe portions of the site.

The idea is that each <siteMapNode> element can define its subtree either explicitly by listing
all child nodes or implicitly by referencing an external .sitemap file, as shown here:

<siteMap>
<siteMapNode title="My Book" url="default.aspx">

358

Part Il ASP.NET Pages and Server Controls

<siteMapNode siteMapFile="introduction.sitemap" />
<siteMapNode siteMapFile="chapters.sitemap" />
<siteMapNode siteMapFile="appendix.sitemap" />
</siteMapNode>
</siteMap>

The content of each of the child site map files is injected in the final tree representation of
the data at the exact point where the link appears in the root web.sitemap file. Child site map
files can be located in child directories if you desire. The value assigned to the siteMapFile
attribute is the virtual path of the file in the context of the current application.

Note that in this case all site map files are processed by the same site map provider compo-
nent—the default XmlISiteMapProvider component. In the previous section, we examined a
scenario where different providers were used to process distinct sections of the site map. The
two features are not mutually exclusive and, in the end, you can have a default site map file
that spans multiple .sitemap files, with portions of it provided by a different provider. In this
case, as you've seen, all settings for the custom provider must be set in the web.config file.

Securing ASP.NET Site Maps

Most Web sites require that only certain members be allowed to see certain pages. How
should you specify that in a site map? The most effective and efficient approach is using
roles. Basically, you associate each node in the site map with a list of authorized roles, and
the ASP.NET infrastructure guarantees that no unauthorized users will ever view that page
through the site map. This approach is advantageous because you define roles and map
them to users once—for security purposes and membership—and use them also for site
maps.

A feature known as site map security trimming provides a way to hide navigational links in

a site map based on security roles. Enabled on the site map provider and individual nodes,
security trimming serves user-specific views of a site. It does only that, though. It hides links
from view whenever the content of the site map is displayed through hierarchical Ul controls
such as TreeView and Menu. However, it doesn't block users from accessing pages by typing
the URL in the address bar of the browser or following links from other pages. For ensuring
that unauthorized users don't access pages, you need to configure roles and bind them to
the identity of the connected user. (See Chapter 19, "ASP.NET Security.”)

By default, nonprogrammatic access to .sitemap files is protected and results in a forbidden
resource ASP.NET exception. Be aware of this, if you plan to replace the default site map con-
figuration and use files with a custom extension. In this case, make sure you explicitly prohibit
access to these files through IIS. To further improve security, grant NETWORK SERVICE or
ASPNET—the ASP.NET runtime accounts—read-only access to these custom site map files. If
you store site maps in a database, configure any involved tables to make them accessible to
the smallest number of accounts with the least possible set of privileges.

Chapter 8 Page Composition and Usability 359

Note An excessively large site map file can use a lot of memory and CPU. Aside from

a possible performance hit, this situation configures a potential security risk in a hosted
environment. By restricting the size of site maps for a Web site, you better protect your site
against denial-of-service attacks.

Localizing Site Map Information

There are a few properties that you can localize in a site map. They are Title, Description, and
all custom properties. You can use an explicit or implicit expression to localize the property.
First of all, though, you should enable localization by adding a Boolean attribute to the
<siteMap> node:

<siteMap enablelLocalization="true">
</siteMap>

Localizing site map properties consists of binding properties with $Resources expressions.
You can explicitly bind the attribute to a global resource or have it implicitly associated with a
value that results from a local resource key. Here's an example of explicit expressions:

<siteMap enablelLocalization="true">
<siteMapNode
url="~/homepage.aspx"
title="$Resources:MyLocalizations,HomePage" />

</siteMap>

An explicit expression is a $Resources expression that points to a global .resx file and
extracts a value by name from there. If the MyLocalizations.resx file contains an entry named
HomePage, the value will be read and assigned to the attribute. If it isn't there, an implicit
expression takes over.

An implicit expression takes values out of a local resource file. The localizable
<siteMapNode> is associated with a resource key and all of its localizable properties are
defined in the RESX file as entries named after the following pattern:

[resourceKey] . [Attribute]

The following site map snippet shows how to use implicit expressions:

<siteMap enablelLocalization="true">
<siteMapNode
resourceKey="Home"
url="~/homepage.aspx
description="default"
title="default" />

</siteMap>

360

Part Il ASP.NET Pages and Server Controls

In this case, the resource file has the same name of the .sitemap file plus the .resx extension.
In the default case, it will be web.sitemap.resx. This file is expected to contain entries named
Home.description and Home.title. If these exist, their values will be used to determine the
value of the title and description attributes. In the case of implicit expressions, the values that
localizable attributes might have in the .sitemap file are considered default values to be used
in case of trouble with the localized resource files.

Note A .resx file contains resource values for the default culture. To specify resources for a
particular language and culture (say, French), you have to change the extension to fr.resx be-
cause fr is the identifier of the French culture. Similar prefixes exist for most of the languages and
cultures.

Localizing the Site Navigation Structure

What if you want to adapt the navigation structure to a given locale? Unfortunately, the Ur/
property cannot be localized in a site map in the same way as the Title and Description prop-
erties. If you want to change URLs, or perhaps change the structure of the site, you create a
distinct site map for each supported culture and register all of them in the configuration file:

<siteMap defaultProvider="Xm1SiteMapProvider">
<providers>

<add name="DefaultSiteMap"
type="System.Web.XmlSiteMapProvider"
siteMapFile="default.sitemap" />

<add name="FrenchSiteMap"
type="System.Web.Xm1SiteMapProvider"
siteMapFile="fr.sitemap" />

<add name="ItalianSiteMap"
type="System.Web.Xm1S1iteMapProvider"
siteMapFile="1it.sitemap" />
</providers>
</siteMap>

Essentially, you have multiple providers of the same type—XmISiteMapProvider—but
working on distinct site map files. When you access site map information programmatically,
you can specify which site map you want to use. (I'll say more about this in a moment.)

Note You use .resx files as previously discussed to localize site maps as long as you're using the
default provider and the XML .sitemap provider. If you use a custom provider, say a database-
driven provider, you're totally responsible for setting up a localization mechanism.

Chapter 8 Page Composition and Usability 361

Testing the Page

More often than not, Web sites are planned and created by developers and designers
without much assistance from usability experts. So the site might look great and have great
content but still end up being hard to work with for the real users. Designers and developers
are clearly power users of a Web site, but can the same be said for the intended audience of
the site? A fundamental item in any usability checklist must be “Test the site on real users.”

Beyond that, you have the problem of ensuring that each page behave as expected and
react as expected to users’ solicitations. This is another facet of testing—definitely a more
developer-oriented facet.

To effectively test the site on real users and test the functionality of pages, tools are required.
Tools to help test Web pages are a hot new field in the industry.

Testing the Logic of the Page

An ASP.NET Web Forms page results from the combined effect of a view template (ASPX)
and a code-behind class. The code-behind class is responsible for any logic you want the
page to expose. Testing a code-behind class is a matter of writing the code with testabil-
ity in mind and then using a unit-testing tool such as the MSTest environment integrated
in Microsoft Visual Studio 2010. (In Chapter 12, “Custom Controls,” I'll return to design
principles and testability.)

The logic of the page is also responsible for the actual markup being sent to the browser.
What is this markup? Is it relatively static? Or is it rich with JavaScript and dynamic behavior?
If you consider the structure of the page trivial or just static, it might suffice that you ensure
the correct data is assigned to server controls in the view template. This is not hard to figure
out from a bunch of unit tests.

If the structure of the page might differ depending on run-time conditions or parameters,
you probably need to look around for some tools that help you test the front end of a Web
application.

Testing the Client-Side Behavior of the Page

Testing the front end of a Web application goes beyond classic unit testing and requires ad
hoc tools. In this regard, ASP.NET Web Forms is not much different from ASP.NET MVC, or
even from Java or PHP Web applications.

You need a tool that allows you to programmatically define a sequence of typical user ac-
tions and observe the resulting DOM tree. In other words, you want to test the layout and
content of the response when the user performs a given series of actions.

362 Part Il ASP.NET Pages and Server Controls

Such tools have recording features, and they keep track of user actions as they are performed
and store them as a reusable script to play back. Some tools also offer you the ability to edit
test scripts or write them from scratch. Here's a sample test program written for one of the
most popular of these front-end test tools—WatiN. The program tests the sample page we
discussed earlier with a drop-down list and a grid

public class SampleViewTests

{

private Process webServer;

[TestInitialize]

public void Setup(Q

{
webServer = new Process();
webServer.StartInfo.FileName = "WebDev.WebServer.exe";
string path = ...;
webServer.StartInfo.Arguments = String.Format(

"/port:8080 /path: {0}", path);

webServer.Start(Q);

}

[TestMethod]
public void CheckIfNicknameIsNotUsed()

{
using (IE ie = new IE("http://Tocalhost:8080/Samples/Datagrid"))

{
// Select a particular customer ID
ie.SelectList("ddCustomerList™).Option("1").Select();

// Check the resulting HTML on first row, second cell

Assert.AreEqual(
"A Bike Store",
ie.Table(Find.ById("gridOrders™).TableRow[0].TableCells[1].InnerHtm1));

}

[TestCleanup]
public void TearDown()
{
webServer.Kil1(Q);
}
}

The testing tool triggers the local Web server and points it to the page of choice. Next, it
simulates some user actions and checks the resulting HTML.

Different tools might support a different syntax and might integrate with different environ-
ments and in different ways. However, the previous example gives you the gist of what it
means to test the front end.

http://localhost:8080/Samples/Datagrid

Chapter 8 Page Composition and Usability 363

Web Ul testing tools can be integrated as extensions into browsers (for example, Firefox), but
they also offer an API for you to write test applications in C# or test harnesses using MSTest,
NUnit, or other test frameworks. Table 8-7 lists a few popular tools.

TABLE 8-7 Tools for Testing a Web Front End

Tools More information

ArtOfTest http.//www.artoftest.com/home.aspx

Selenium http://seleniumhgq.org

Visual Studio 2010 http://msdn.microsoft.com/en-us/library/dd286726.aspx

Coded Ul Tests

WatiN http://watin.sourceforge.net

Testing Posted Data

In ASP.NET MVC, testing the actual behavior of code-behind classes is relatively easy if you
refactor the code to take that code out to a controller or a presenter. However, each method
you test is expected to receive a bunch of parameters, either through the signature or via
ASP.NET intrinsic objects.

How can you test that the browser really passes in correct data? In other words, how can you
test posted data.

Sending automated POST requests to a URL is a feature that all the tools in Table 8-7 sup-
port. They all let you fill in and post a form. However, in that case, at least, the local Web
server must be up and running. Posting to test pages that do nothing but return a Boolean
answer (expected/unexpected) is a possible way to speed up things.

If you want to simply look at what is being transmitted, you can turn your attention to tools
such as Fiddler (http://www.fiddler2.com/fiddler2) or HttpWatch (http.//www.httpwatch.com).

Note ASP.NET Web Forms was not designed with testability in mind. You can still test Web
pages but at the cost of spinning up the entire ASP.NET runtime; or, more likely, you will reduce
your efforts to just testing what's strictly necessary at the code-behind level. The tools in

Table 8-7 address, instead, the need to test the client user interface and simulate user actions
that result in posted data.

http://www.artoftest.com/home.aspx
http://seleniumhq.org
http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://watin.sourceforge.net
http://www.fiddler2.com/fiddler2
http://www.httpwatch.com

364

Part Il ASP.NET Pages and Server Controls

Summary

A Web page is a special type of a standalone component that has the additional tricky
requirement of being able to work with the rest of the site. Amazingly, this generates a bunch
of extra work because developers, architects, and designers must cooperate to produce a
common and appealing look and feel, ease of maintenance, consistent rendering, navigation
capabilities, and personalization capabilities. All around, there’'s room for a new professional
with ad hoc and somewhat unique skills, such as Web testers and SEO and usability experts.

A successful Web site results from a usable composition of pages, which in turn result from

a consistent composition of Ul blocks. In this chapter, we first reviewed the technologies for
page composition that you find available in ASP.NET (primarily, master pages), and then we
moved toward other side topics, such as cross-browser rendering, search-engine optimiza-

tion navigation, and Ul testing.

In the next chapter, we'll complete the basics of the Web page by looking at input forms.

Chapter 9

ASP.NET Input Forms

It's not enough that we do our best; sometimes we have to do what's required.

—Winston Churchill

Although formless pages are still accepted and correctly handled, the typical ASP.NET Web
Forms page contains a single <form> tag decorated with the runat attribute set to server.
During server-side processing, such a <form> tag is mapped to an instance of the HtmIForm
class. The HtmlForm class acts as the outermost container of all server controls and wraps
them in a plain HTML <form> element when the page is rendered. The resulting HTML form
posts to the same page URL. By design, it doesn't give you any chance to set the action URL
programmatically, and for this reason it is often said to be reentrant. The default method
used to submit form data is POST, but GET can be used as well.

In most cases, the server form is the outermost tag of the page and is contained directly

in <body>. In general, though, the server <form> tag can be the child of any other server
container control, such as <table>, <div>, <body>, and any other HTML generic control.

(I covered HTML controls and Web controls in Chapter 6, “ASP.NET Core Server Controls.”) If
any noncontainer server controls (for example, a TextBox) are placed outside the form tag, an
exception is thrown as the page executes—no check is made at compile time. The exception
is raised by the control itself when the host page begins to render. Noncontainer Web con-
trols, in fact, check whether they are being rendered within the boundaries of a server form
and throw an HttpException if they are not. A call to the Page's VerifyRenderingInServerForm
method does the job. (Be aware of this virtuous behavior when you get to writing custom
controls.)

In this chapter, we'll examine some aspects of form-based programming in ASP.NET,
including how to use multiple forms in the same page and post data to a different page.
We'll also touch on input validation and validation controls.

Programming with Forms

One of the most common snags Web developers face when they first approach the ASP.NET
lifestyle is the fact that managed Web applications support the single-form interface model.
In the single-form interface model, each page always posts to itself and doesn’t supply any
hook for developers to set the final destination of the postback. What in HTML programming
is the Action property of the form is simply not defined on the ASP.NET HtmlForm class. By
default, each ASP.NET page can post only to itself, unless some specific APl extensions are
used to perform a cross-page post. Unlike the action URL, the HTTP method and the target

365

366

Part Il ASP.NET Pages and Server Controls

frame of the post can be programmatically adjusted using ad hoc Htm/Form properties—
Method and Target.

The HtmlIForm Class

The HtmlForm class inherits from Htm/ContainerControl, which provides the form with the
capability of containing child controls. This capability is shared with other HTML control
classes, such as HtmlTable, characterized by child elements and a closing tag.

Properties of the HtmlForm Class

The HtmlIForm class provides programmatic access to the HTML <form> element on the
server through the set of properties shown in Table 9-1. Note that the table includes only a
few of the properties HtmlForm inherits from the root class Control.

TABLE 9-1 Form Property

Property Description

Attributes Inherited from Control, gets a name/value collection with all the
attributes declared on the tag.

ClientID Inherited from Control, gets the value of UniquelD.

Controls Inherited from Control, gets a collection object that represents the
child controls of the form.

DefaultButton String property, gets or sets the button control to display as the
default button on the form.

DefaultFocus String property, gets or sets the button control to give input focus
when the form is displayed.

Disabled Gets or sets a value indicating whether the form is disabled. It matches
the disabled HTML attribute.

EncType Gets or sets the encoding type. It matches the enctype HTML attribute.

ID Inherited from Control, gets or sets the programmatic identifier of the
form. The default value is aspnetForm.

InnerHtml Inherited from HtmlContainerControl, gets or sets the markup content
found between the opening and closing tags of the form.

InnerText Inherited from HtmlContainerControl, gets or sets the text between
the opening and closing tags of the form.

Method Gets or sets a value that indicates how a browser posts form data to
the server. The default value is POST. It can be set to GET if needed.

Name Gets the value of UniquelD.

Style Gets a collection of all cascading style sheet (CSS) properties applied
to the form.

SubmitDisabledControls Indicates whether to force controls disabled on the client to submit

their values, allowing them to preserve their values after the page
posts back to the server. False by default.

Chapter 9 ASP.NET Input Forms 367

Property Description

TagName Returns “form”.

Target Gets or sets the name of the frame or window to render the HTML
generated for the page.

UniquelD Inherited from Control, gets the unique, fully qualified name of the
form.

Visible Gets or sets a value that indicates whether the form is rendered. If this

property is set to false, the form is not rendered to HTML.

The form must have a unique name. If the programmer doesn't assign the name, ASP.NET
uses a default name—aspnetForm. The programmer can set the form’s identifier by using
either the ID or Name property. If both are set, the /D attribute takes precedence. (Note,
though, that any reliance on the Name attribute compromises the XHTML compliance of the

page.)
The parent object of the form is the outer container control with the runat attribute. If such

a control doesn't exist, the page object is set as the parent. Typical containers for the server
form are <table> and <div> if they are marked as server-side objects.

By default, the Method property is set to POST. The value of the property can be modified
programmatically. If the form is posted through the GET method, all form data is passed on
the URL's query string. However, if you choose the GET method, make sure the size allowed
for a GET request does not affect the integrity of your application or raise security issues.

Methods of the HtmIForm Class

Table 9-2 lists the methods available on the HtmlForm class that you'll be using more often.
All the methods listed in the table are inherited from the base System.Web.UI.Control class.

TABLE 9-2 Form Methods

Method Description

ApplyStyleSheetSkin Applies the style properties defined in the page style sheet.

DataBind Calls the DataBind method on all child controls.

FindControl Retrieves and returns the control that matches the specified ID.

Focus Sets input focus to a control.

HasControls Indicates whether the form contains any child controls.

RenderControl Outputs the HTML code for the form. If tracing is enabled, it caches tracing

information to be rendered later, at the end of the page.

Note that the FindControl method searches only among the form’s direct children. Controls
belonging to an inner naming container, or that are a child of a form’s child control, are
not found.

368

Part Il ASP.NET Pages and Server Controls

Multiple Forms

As mentioned, the single-form model is the default in ASP.NET and plays a key role in the
automatic view state management mechanism | described in Chapter 5, “Anatomy of an
ASP.NET Page.” Generally speaking, the ASP.NET's enforcement of the single-form model
does not significantly limit the programming power, and all things considered, doing without
multiple forms is not a big sacrifice. Some pages, though, would have a more consistent and
natural design if they could define multiple logical forms. In this context a logical form is a
logically related group of input controls. For example, think of a page that provides some in-
formation to users but also needs to supply an additional form such as a search or login box.

You can incorporate search and login capabilities in ad hoc classes and call those classes
from within the page the user has displayed. This might or might not be the right way to
factor your code, though. Especially if you're porting some old code to ASP.NET, you might
find it easier to insulate login or search code in a dedicated page. Well, to take advantage of
form-based login, how do you post input data to this page?

Using HTML Forms

As mentioned, ASP.NET prevents you from having multiple <form> tags flagged with the
runat attribute. However, nothing prevents you from having one server-side <form> tag
and multiple client HTML <form> elements in the body of the same Web form. Here's an
example:

<body>
<table><tr><td>
<form id="forml" runat="server">
<h2>0rdinary contents for an ASP.NET page</h2>
</form>
</td>
<td>
<form method="post" action="search.aspx">
<table><tr>
<td>Keyword</td>
<td><input type="text" id="Keyword" name="Keyword" /></td>
</tr><tr>
<td><input type="submit" id="Go" value="Search" /></td>
</tr></table>
</form>
</td>
</tr></table>
</body>

The page contains two forms, one of which is a classic HTML form devoid of the runat
attribute and, as such, completely ignored by ASP.NET. The markup served to the browser
simply contains two <form> elements, each pointing to a different action URL.

Chapter 9 ASP.NET Input Forms 369

This code works just fine but has a major drawback: you can't use the ASP.NET programming
model to retrieve posted data in the action page of the client form. When writing search.
aspx, in fact, you can't rely on view state to retrieve posted values. To know what's been
posted, you must resort to the old-fashioned, but still effective, ASP model, as shown in the

following code sample:

public partial class Search : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
// Use the Request object to retrieve posted data
var textToSearch = Request.Form["Keyword"];
// Use standard ASP.NET programming model to populate the page UI
KeywordBeingUsed.Text = textToSearch;
}
}

You use the protocol-specific collections of the Request object to retrieve posted data—Form
if POST is used, and QueryString in case of GET. In addition, you have to use the name attri-
bute to identify input elements. Overall, this is perhaps not a recommended approach, but it
definitely works. Figure 9-1 shows the page in action.

& Home Page - Windows Internet Explorer =N R
() = [E] htpu/localhosta7015/Defautt aspx (&[4[| sing R

< Favorites | 95

B - v [@ v Pagew Ssfetyv Toolsv v

/@ Home Page

My ASP.NET APPLICATION

[LogIn] &

Home About

MULTIPLE FORMS IN A SINGLE PAGE

ORDINARY CONTENTS FOR AN ASP.NET PAGE

/€ httpi//localhost47015/search.aspx - Windows Intemet Explorer =N R
@O = [&] http://localhost47015/searchaspx ~| B[49| x | [© Bing Rl
Embedded search form <o Favorites | o
keyword | ASP.NET 4| (@ nttpi//lacalhost 4015/ search.aspx || B - B -2 & - Peger safety~ Toos~ @ 7

[Searcn |

My ASP.NET APPLICATION

m_|»

search.aspx

Home About

Keywords: ASP.NET 4

el i] +

Dene +/ Trusted sites | Protected Mode: Off 45 v 0% v

FIGURE 9-1 A server form control and a client HTML form working together.

370

Part Il ASP.NET Pages and Server Controls

When the user clicks the Search button, the search.aspx page is invoked, the page receives
only the values posted through the HTML form, and it uses them to proceed.

Nested HTML Forms

In ASP.NET, most real-world pages are based on master pages. And most of the time the
master page includes an outermost <form> tag. This means that if you add a client HTML
form element at rendering time the two form elements will be nested.

Now nesting forms is possible in theory, but browsers don't actually render nested forms
properly. The HTML 4 standard prevents direct form-to-form dependency. You are beyond
the standard if you add a form element as the direct child of another form. Instead, if you
embed the child form within a block element (DIV, FIELDSET), it is considered valid from a
syntax point of view. As mentioned, though, the fact is that, regardless of what the World
Wide Web Consortium (W3C) believes, browsers just glue the content of the two forms
together. As a result, the outermost parent form determines where the post is made.

Nicely enough, although browsers actually seem to produce the same final effect—the
content of the inner forms merged with the outermost ones—how that happens is slightly
different. For example, if you display a page with nested forms in Firefox 3.6.x, you find out
that the child <form> tags are just stripped off. The form content, on the other hand, is
preserved. With Internet Explorer 8, the child <form> tag is preserved but it's closed inline,
keeping any content out of it and subsequently merging it to the outermost form.

The code that produces the pages shown in Figure 9-1 descends from the standard
ASP.NET 4 template for Web Forms pages with a master. However, because the master
contains a <form> tag, | had to rework the master template to be able to use side-by-side
<form> tags and avoid nesting.

<body>
<div class="page">
<form id="Forml" runat="server">

<div class="main">
<asp:ContentPlaceHolder ID="MainContent" runat="server" />
</div>
</form>

<asp:ContentPlaceHolder ID="ExtraFormContent" runat="server" />

<div class="clear">
</div>
<div class="footer">
</div>
</div>
</body>

Chapter 9 ASP.NET Input Forms 371
The client HTML form element fits into the ExtraFormContent placeholder.
All'in all, nested HTML forms are a nonissue—you just don't use them. However, a common

pitfall in ASP.NET development is that because of master pages you inadvertently end up
with nested forms in an attempt to add a second innocent client HTML form.

Multiple Server <form> Tags on a Page

ASP.NET makes it quite clear: you just can't have multiple server forms in the same Web page.
Given the dynamics of page rendering, an exception is thrown if more than one HtmlForm
control attempts to render. (See Figure 9-2.)

‘& A page can have only one server-side Form tag. - Windows Internet Explorer ===
\J\J [&] hitpirtocathost: ~[&[] x | [l 8ing P ~|

7 Favorites | 55

- —
@ A page can have only one ... i~ B v) ém v Pagev Safetyv Tools~ @~

Server Error in /' Application.

A page can have only one server-side Form tag.

Description: An unhandled exception occurred during the execution of the current web request. Please
review the stack trace for more information about the error and where it originated in the code.

m

Exception Details: SystemWeb.HitpException: A page can have only one server-side Form tag.

Source Error:

2n unhandled exception was generated during the execution of the
current web request. Information regarding the origin and location
of the exception can be identified using the exception stack trace
below.

Stack Trace:

[HttpException (0xB0004005): A page can have only one server-side Form tag.]
System.Web. UT. Page.OnFormRender) +8909912
System.Web. UL HtmIControls. Html Form. RenderChi Tdren (Htm1 TextWriter writer) +36
System.Web. UT. HtmIControls. HtmIContainerControl. Render (Htm1 TextWriter writer)
System.Web. UL. HtmIControls. Html Form. Render (Html TextWriter output) +53
System.Web. UT. Control.RenderControl Internal (Htm1TextWriter writer, ControlAda
System.Web.UI. Control.RenderControl (HtmlTextiriter writer, ControlAdapter ada _
Suctam Wah UT Wemlrnntrnle bem]Corm DandarCantenl flbmlTavtunitar weitar) <0
1 »

Dene /' Trusted sites | Protected Mode: Off 3 v ®100% -

B!

FIGURE 9-2 Using multiple server forms in a page throws a rendering exception.

A little-known fact is that a Web form can actually contain as many server-side forms as
needed as long as only one at a time is visible. For example, a page with, say, three <form
runat=server> tags is allowed, but only one form can be actually rendered. By playing with

the Visible property of the HtmlForm class, you can change the active server form during the
page lifetime.

372

Part Il ASP.NET Pages and Server Controls

This trick doesn't really let you have multiple active forms at the same time, but it can be
helpful sometimes because it allows you to change the active server form over postback
events. Let’s consider the following ASP.NET page:

<body>
<form id="step0" runat="server" visible="true">
<h1>WeTlcome</h1>
<asp:textbox runat="server" id="Textbox1l" />
<asp:button ID="Buttonl" runat="server" text="Step #1"
OnClick="Buttonl_Click" />
</form>

<form id="stepl" runat="server" visible="false">
<h1>Step #1</h1>
<asp:textbox runat="server" id="Textbox2" />
<asp:button ID="Button2" runat="server" text="Previous step"
OnClick="Button2_Click" />
<asp:button ID="Button3" runat="server" text="Step #2"
OnClick="Button3_Click" />
</form>

<form id="step2" runat="server" visible="false">
<h1>Finalizing</hl>
<asp:button ID="Button4" runat="server" text="Finish"
OnCTlick="Button4_Click" />
</form>
</body>

As you can seeg, all <form> tags are marked as runat, but only the first one is visible. Mutually
exclusive forms were a cool way of implementing wizards in old versions of ASP.NET, be-
fore an official wizard control got introduced. By toggling a form's visibility in button event
handlers, you can obtain a wizard-like behavior, as shown in Figure 9-3.

public partial class MultipleForms : System.Web.UI.Page

{
protected void Page_Load(Object sender, EventArgs e)
{
Title = "Welcome";
}
protected void Buttonl_Click(Object sender, EventArgs e)
{
Title = "Step 1";
step0.Visible = false;
stepl.Visible = true;
}
protected void Button2_Click(Object sender, EventArgs e)
{

step0.Visible true;
stepl.Visible = false;

Chapter 9 ASP.NET Input Forms

protected void Button3_Click(Object sender, EventArgs e)

protected void Button4_Click(Object sender, EventArgs e)

Response.Write("<h1l>Successfully done.</h1>");

{
Title = "Finalizing";
stepl.Visible = false;
step2.Visible = true;
}
{
Title = "Done";
step2.Visible = false;
}

(€ Welcome - Windows Internet Explorer

(E=8 B P

@Q v [&] nttpriocaih... = 5[4 | x || sing

3 Favorites | 9%

»

(€ Step1 - Windows Internet Explorer

o= s

@\:Jv &) rttpytocath... ~| 2] 4] x |[© 5ing

¢ Favorites | 5k

@ Welcome GB - &~ @ stepl LB - 7
Welcome Step #1

Step#1 Step #2
/' Trusted sites | Protected Mode: Off 3 v ®100% - /' Trusted sites | Protected Mode: Off 45 v 0% v

{& Finalizing - Windows Internet Explorer

[E=8 Ho

@Q = [&] httpirtocath... ~| 5| 4| x | [ging

7 Favorites | 55

& Done - Windows Internet Explorer

[E=8 =R =)

@Qv (8] hips/tocath.. <[&[4] x | [l 8ing

7 Favorites | 55

| @ Finalizing ‘ G-B~-o&- 7 | & pone [B-B-o&m-~- 7
Finalizing Successfully done.
/' Trusted sites | Protected Mode: Off 3 ov EH100% v /' Trusted sites | Protected Mode: Off 5+ ®100% ~

FIGURE 9-3 Mutually exclusive forms.

Multiple View and Wizards

If you're targeting ASP.NET 2.0 or newer, you might not need to resort to the preceding trick
to switch between forms. You find two new controls—MultiView and Wizard—ready for the
job. The MultiView control employs logic nearly identical to that of multiple exclusive forms,
except that it relies on panels rather than full forms.

The MultiView control allows you to define multiple and mutually exclusive HTML panels.

373

The control provides an application programming interface (API) for you to toggle the vis-

ibility of the various panels and ensure that exactly one is active and visible at a time. The

374

Part Il ASP.NET Pages and Server Controls

MultiView control doesn't provide a built-in user interface. The Wizard control is just that—
a MultiView control plus some wizard-like predefined user interface (Ul) blocks. I'll cover the
Wizard control in great detail later in the chapter.

Cross-Page Postings

The ASP.NET framework offers a built-in mechanism to override the normal processing cycle
and let the page post to another, distinct page. In general, postbacks occur in either of two
ways—through a submit button or via script. The client browser usually takes on any post
conducted through a button and automatically points to the page that the action attribute of
the posting form indicates. A lot more of flexibility is possible when the post occurs via script.

In ASP.NET, however, you can also configure certain page controls—in particular, those that
implement the /ButtonControl interface—to post to a different target page. This is referred
to as cross-page posting.

Posting Data to Another Page

Authoring a Web page that can post data to another page requires only a couple of steps.
First, you choose the controls that can cause the postback and set their PostBackUrl property.
A page can include one or more button controls and, generally, any combination of button
controls and submit buttons. Notice that in this context a button control is any server control
that implements /ButtonControl. (I fully covered the /ButtonControl interface in Chapter 6.)
The following code snippet shows how to proceed:

<form id="forml" runat="server">
<asp:textbox runat="server" id="Keyword" />
<asp:button runat="server" id="buttonPost"
Text="Click"
PostBackUrl1="search.aspx" />
</form>

When the PostBackUrl property is set, the ASP.NET runtime binds the corresponding HTML
element of the button control to a new JavaScript function. Instead of using our old acquain-
tance __doPostback, it uses the new WebForm_DoPostBackWithOptions function. The button
renders the following markup:

<input type="submit" name="buttonPost" id="buttonPost"
value="Click"
onclick="javascript:WebForm_DoPostBackWithOptions(

new WebForm_PostBackOptions("buttonPost", ,
false, "", "search.aspx", false, false))" />

As a result, when the user clicks the button, the current form posts its content to the
specified target page. What about the view state? When the page contains a control that
does cross-page posting, a new hidden field is also created—the __PREVIOUSPAGE field.

Chapter 9 ASP.NET Input Forms 375

The field contains the view state information to be used to serve the request. This view state
information is transparently used in lieu of the original view state of the page being posted to.

You use the PreviousPage property to reference the posting page and all of its controls.
Here's the code behind a sample target page that retrieves the content of a text box defined
in the form:

// This code belongs to doSearch.aspx
protected void Page_Load(Object sender, EventArgs e)
{
// Ensure this is a cross-page postback
if (PreviousPage == null)
{
Response.Write("Must be a cross-page post.");
return;

}

// Retrieves posted data. This ensures PreviousPage is not null.
var txt = (TextBox) PreviousPage.FindControl("Keyword™);

3

By using the PreviousPage property on the Page class, you can access any input control
defined on the posting page. Access to input controls is weakly typed and occurs indirectly
through the services of the FindControl method. The problem here lies in the fact that the
target page doesn't know anything about the type of the posting page. PreviousPage is
declared as a property of type Page and, as such, it can't provide access to members specific
to a derived page class.

Furthermore, note that FindControl looks up controls only in the current naming container.
If the control you are looking for lives inside another control (say, a template), you must first
get a reference to the container, and then search the container to find the control. This hap-
pens commonly when you employ master pages. To avoid using FindControl altogether, a
different approach is required.

What about using the dynamic type in ASP.NET 4? It might work, but this solution also has a
little drawback—the same drawback we encountered in Chapter 8, "Page Composition and

Usability,” for master pages. The problem is that you can't access, say, the Keyword text box
control from within the posted page because the Keyword control is mapped as a protected
member of the page class. The following code, therefore, throws an exception:

dynamic previousPage = PreviousPage;

var txt = previousPage.Keyword; // Keyword 1is inaccessible due to its protection level
if (txt == null)
{

3

376

Part Il ASP.NET Pages and Server Controls

To fix this code, you need to define a public property on the posting page class that exposes
as a public member whatever element you want to retrieve from within the posted page. It
doesn't have to be the control reference; it is recommended that you expose just data. Here's
an example:

public partial class Crosspage : System.Web.UI.Page

{
pubTlic String SelectedKeywords
{
get { return Keyword.Text; }
}
}

With this change, the following call will work:

dynamic previousPage = PreviousPage;
var keywords = previousPage.SelectedKeywords;

The dynamic type, though, involves falling down to the Dynamic Language Runtime (DLR)
engine and should be used only when you really need dynamically resolved code. In this
case, you can get an even more effective (and strongly typed) solution by resorting to a page
directive.

The @PreviousPageType Directive

Let's say it up front. To retrieve values on the posting page, FindControl is your only safe
option if you don't know in advance which page will be invoking your target. However, when
you're using cross-page posting in the context of an application, chances are good that you
know exactly who will be calling the page and how. In this case, you can take advantage of
the @PreviousPageType directive to cause the target page’s PreviousPage property to be
typed to the source page class.

In the target page, you add the following directive:

<%@ PreviousPageType VirtualPath="crosspage.aspx" %>

The directive can accept either of two attributes—VirtualPath or TypeName. The former
points to the URL of the posting page; the latter indicates the type of the calling page. The
directive just shown makes the PreviousPage property on the target page class be of the
same type as the page at the given path (or the specified type). This fact alone, though, is not
sufficient to let you access input controls directly. Each page class contains protected mem-
bers that represent child controls; unfortunately, you can't call a protected member of a class
from an external class. (Only derived classes can access protected members of the parent
class.)

To work around the issue, in the caller page you must add public properties that expose any
information you want posted pages to access. For example, imagine that crosspostpage.aspx

Chapter 9 ASP.NET Input Forms 377

contains a TextBox named Keyword. To make it accessible from within a target page, you add
the following code to the code-behind class:

pubTlic TextBox KeywordControl
{

get { return Keyword; }

}

The new KeywordControl property on the page class wraps and exposes the internal text-box
control. In light of this code, the target page can now execute the following code:

Response.Write(PreviousPage.KeywordControl.Text);

Although you can directly expose a control reference, it is preferable that you expose just
the data the posted page needs to consume. This approach is based on the Law of Demeter,
which essentially states that internal details of components should not be made public un-
less strictly required. Another way of looking at this is in light of the “Tell, don't ask principle”:
your posted page gets what it needs instead of asking for a property on a control.

Detecting Cross-Page Postings

Being the potential target of a cross-page call doesn't automatically make a target page a
different kind of page all of a sudden. There's always the possibility that the target page is
invoked on its own—for example, via hyperlinking. When this happens, the PreviousPage
property returns null and other postback-related properties, such as IsPostBack, assume the
usual values.

If you have such a dual page, you should insert some extra code to discern the page
behavior. The following example shows a page that allows only cross-page access:

if (PreviousPage == null)

{
Response.Write("Sorry, that’s the wrong way to invoke me.");
Response.End();
return;

}

The IsCrossPagePostBack property on the Page class deserves a bit of attention. The property
returns true if the current page has called another ASP.NET page. It goes without saying that

IsCrossPagePostBack on the target page always returns false. Therefore, the following code is
not equivalent to the one seen before:

if (!IsCrossPagePostBack)
{

}

378

Part Il ASP.NET Pages and Server Controls

To know whether the current page is being called from another page, you have to test the
value of IsCrossPagePostBack on the page object returned by PreviousPage:

// PreviousPage is null in case of a normal request
if (!PreviousPage.IsCrossPagePostBack)

{
3

However, this code will inevitably throw an exception if the page is invoked in a normal way
(that is, from the address bar or via hyperlinking, because PreviousPage is null). In the end,
the simplest and most effective way to see whether a page is being invoked through cross-
page postbacks is by checking PreviousPage against null.

Redirecting Users to Another Page

In addition to the PostBackUrl property of button controls, ASP.NET provides another
mechanism for transferring control and values from one page to another—you can use the
Server.Transfer method.

The URL of the new page is not reflected by the browser's address bar because the transfer
takes place entirely on the server. The following code shows how to use the method to direct
a user to another page:

protected void Buttonl Click(object sender, EventArgs e)
{

Server.Transfer("target.aspx");

3

Note that all the code that might be following the call to Transfer in the page is never
executed. In the end, Transfer is just a page redirect method. However, it is particularly effi-
cient for two reasons. First, no roundtrip to the client is requested as is the case, for example,
with Response.Redirect. Second, the same HttpApplication that was serving the caller request
is reused, thus limiting the impact on the ASP.NET infrastructure.

How can you retrieve values from within the transferred page?

You can use the same programming model as for cross-page postings and rely on a non-null
PreviousPage property, DLR interaction, or the @PreviousPageType directive for strongly
typed access to input fields. How can a page detect whether it's being called through a
server transfer or through a cross-page postback? In both cases, PreviousPage is not null, but
the IsCrossPagePostBack on the PreviousPage object is true for a cross-page posting and false
in the case of a server transfer.

Chapter 9 ASP.NET Input Forms 379

Important Passing values from one page to another is a task that can be accomplished in a
variety of ways—using cross-page posting, server transfer, HTML forms, cookies, or query strings.
Which one is the most effective? Cross-page posting and server transfer offer a familiar pro-
gramming model but potentially move a significant chunk of data through the __PREVIOUSPAGE
field. Whether this information is really needed depends on the characteristics of the target
page. In many cases, the target page just needs to receive a few parameters to start working. If
this is the case, HTML client forms might be more effective in terms of data being moved. HTML
forms, though, require an ASP-like programming model.

Validation Controls

The first rule for writing more secure applications is ensuring you get the data right, before
you actually start using it. Getting the data right requires you to pass any external input
through a validation step. In ASP.NET, validation controls provide an easy-to-use mechanism
to perform a variety of validation tasks, including testing for valid types, values within a given
range, or required fields.

ASP.NET validation controls work on the server, but they can be configured to filter invalid
input already on the client. This is accomplished using some JavaScript code that kicks in and
performs validation as soon as the user tabs out of a monitored input field.

All ASP.NET validation controls inherit from the BaseValidator class which, in turn, descends
from Label. All validators defined on a page are automatically grouped in the Validators col-
lection of the Page class. You can validate them all in a single shot using the Validate method
in the page class or individually by calling the Validate method on each validator. The
Validate method sets the IsValid property both on the page and on the individual validator.
The IsValid property indicates whether the user’s entries match the requirements of the vali-
dators. The user’s entry is validated when the Validate method is called and also whenever
the page posts back.

Note Typical control members involved with input validation have been grouped in the
IValidator interface that the BaseValidator class implements. The interface includes the Validate
method and the IsValid and ErrorMessage properties.

Generalities of Validation Controls

Each validation control references an input control located elsewhere on the page. When the
page is submitted, the content of the monitored server control is passed to the associated
validation control for further processing. Each validation control performs a different type of
verification. Table 9-3 shows the types of validation supported by the .NET Framework.

380 Part Il ASP.NET Pages and Server Controls

TABLE 9-3 Validation Controls in ASP.NET
Validation Control Description

CompareValidator Compares the user’s entry against a fixed value by using a comparison
operator such as LessThan, Equal, or GreaterThan. It can also compare
against the value of a property in another control on the same page.

CustomValidator Employs programmatically defined validation logic to check the
validity of the user’s entry. You use this validator when the other
validators cannot perform the necessary validation and you want to
provide custom code that validates the input.

RangeValidator Ensures that the user’s entry falls within a specified range. Lower and
upper boundaries can be expressed as numbers, strings, or dates.

RegularExpressionValidator ~ Validates the user’s entry only if it matches a pattern defined by a
regular expression.

RequiredFieldValidator Ensures that the user specifies a value for the field.

Multiple validation controls can be used with an individual input control to validate
according to different criteria. For example, you can apply multiple validation controls on a
text box that is expected to contain an e-mail address. In particular, you can impose that the
field is not skipped (RequiredFieldValidator) and that its content matches the typical format of
e-mail addresses (RegularExpressionValidator).

Table 9-3 lacks a reference to the ValidationSummary control. The control does not
perform validation tasks itself. Instead, it displays a label to summarize all the valida-
tion error messages found on a Web page as the effect of other validators. I'll cover the
ValidationSummary control later in the chapter.

The BaseValidator Class

Table 9-4 details the specific properties of validation controls. Some properties—such as
ForeColor, Enabled, and Text—are overridden versions of base properties on base classes.

TABLE 9-4 Basic Properties of Validators

Property Description

ControlToValidate Gets or sets the input control to validate. The control is identified by
name—that is, by using the value of the /D attribute.

Display If client-side validation is supported and enabled, gets or sets how the
space for the error message should be allocated—either statically or
dynamically. In the case of server-side validation, this property is ignored.
A Static display is possible only if the browser supports the display CSS
style. The default is Dynamic.

EnableClientScript True by default; gets or sets whether client-side validation is enabled.

Enabled Gets or sets whether the validation control is enabled.

Chapter 9 ASP.NET Input Forms 381

Property Description

ErrorMessage Gets or sets the text for the error message.

ForeColor Gets or sets the color of the message displayed when validation fails.
IsValid Gets or sets whether the associated input control passes validation.
SetFocusOnError Indicates whether the focus is moved to the control where validation failed.
Text Gets or sets the description displayed for the validator in lieu of the

error message. Note, though, this text does not replace the contents of
ErrorMessage in the summary text.

ValidationGroup Gets or sets the validation group that this control belongs to.

All validation controls inherit from the BaseValidator class except for compare validators,

for which a further intermediate class—the BaseCompareValidator class—exists. The
BaseCompareValidator class serves as the foundation for validators that perform typed
comparisons. An ad hoc property, named Type, is used to specify the data type the values
are converted to before being compared. The CanConvert static method determines whether
the user’s entry can be converted to the specified data type. Supported types include

string, integer, double, date, and currency. The classes acting as compare validators are
RangeValidator and CompareValidator.

Note You might want to pay careful attention when using the ForeColor property. Don't get it
wrong—there’s nothing bad with the property, which works as expected and sets the foreground
color being used by the validators to show any messages. That's just the point, however. Today's
applications tend to gain a lot more control over the style of emitted markup and for this reason
tend to style through CSS wherever possible. Like many other similar style properties on server
controls, the ForeColor property emits inline style information, which is really bad for designers
when they get to do their job. Consider that in ASP.NET 4, validation controls no longer use the
red color for error messages unless you set the ControlRenderingCompatabilityVersion attribute
to “3.5" in the <pages> section of the configuration file. The ForeColor property certainly is not
obsolete, but its use should be put aside as much as possible in favor of CSS styles.

Associating Validators with Input Controls

The link between each validator and its associated input control is established through the
ControlToValidate property. The property must be set to the ID of the input control. If you do
not specify a valid input control, an exception will be thrown when the page is rendered. The
associated validator/control is between two controls within the same container—be it a page,
user control, or template.

Not all server controls can be validated—only those that specify their validation prop-
erty through an attribute named [ValidationProperty]. The attribute takes the name of the

382

Part Il ASP.NET Pages and Server Controls

property that contains the user’s entry to check. For example, the validation property for a
TextBox is Text and is indicated as follows:

[ValidationProperty("Text")]
public class TextBox : WebControl, ITextControl
{

3

The list of controls that support validation includes TextBox, DropDownlList, ListBox,
RadioButtonlList, FileUpload, plus a bunch of HTML controls such as HtmlInputFile,
HtmlInputText, HtmlinputPassword, HtmlTextArea, and HtmlSelect. Custom controls can be
validated too, as long as they are marked with the aforementioned [ValidationProperty]
attribute.

Note If the validation property of the associated input control is left empty, all validators accept
any value and always pass the test. The RequiredFieldValidator control represents a rather natural
exception to this rule, because it has been specifically designed to detect fields the user skipped
and left blank.

Gallery of Controls

In general, ASP.NET validators are designed to work on a single control and process a single
“value” for that control. As mentioned, you use the ValidationProperty attribute on cus-
tom controls to specify which property you want to validate. For stock controls, you take
what they provide without many chances to modify things. Keep in mind that for validation
scenarios that involve multiple controls or multiple properties, you need to create your own
custom validation controls.

This said, let's go ahead and take a closer look at the stock validation controls available in
ASP.NET Web Forms.

The CompareValidator Control

The CompareValidator control lets you compare the value entered by the user with a
constant value or the value specified in another control in the same naming container. The
behavior of the control is characterized by the following additional properties:

B ControlToCompare Represents the ID of the control to compare with the current
user's entry. You should avoid setting the ControlToCompare and ValueToCompare
properties at the same time. They are considered mutually exclusive; if you set both,
the ControlToCompare property takes precedence.

Chapter 9 ASP.NET Input Forms 383

B Operator Specifies the comparison operation to perform. The list of feasible
operations is defined in the ValidationCompareOperator enumeration. The default
operator is Equal; feasible operators are also LessThan, GreaterThan, and their varia-
tions. The DataTypeCheck operator is useful when you want to make sure that certain
input data can be converted to a certain type. When the DataTypeCheck operator is
specified, both ControlToCompare and ValueToCompare are ignored. In this case, the
test is made on the type of the input data and succeeds if the specified data can be
converted to the expected type. Supported types are expressed through the following
keywords: String, Integer, Double, Date, and Currency (decimal).

B ValueToCompare Indicates the value to compare the user’s input against. If the Type
property is set, the ValueToCompare property must comply with it.

The following code demonstrates the typical markup of the CompareValidator control when
the control is called to validate an integer input from a text box representing someone’s age:

<asp:CompareValidator runat="server" id="ageValidator"
ControlToValidate="ageTextBox"
ValueToCompare="18"
Operator="GreaterThanEqual"
Type="Integer"
ErrorMessage="Must specify an age greater than 17." />

The CustomValidator Control

The CustomValidator control is a generic and totally user-defined validator that uses custom
validation logic to accomplish its task. You typically resort to this control when none of the
other validators seems appropriate or, more simply, when you need to execute your own
code in addition to that of the standard validators.

To set up a custom validator, you can indicate a client-side function through the
ClientValidationFunction property. If client-side validation is disabled or not supported, simply
omit this setting. Alternatively, or in addition to client validation, you can define some man-
aged code to execute on the server. You do this by defining a handler for the ServerValidate
event. The code will be executed when the page is posted back in response to a click on a
button control. The following code snippet shows how to configure a custom validator to
check the value of a text box against an array of feasible values:

<asp:CustomValidator runat="server" id="membershipValidator"
ControlToValidate="membership"
ClientValidationFunction="CheckMembership"
OnServerValidate="ServerValidation"
ErrorMessage="Membership can be Normal, Silver, Gold, or Platinum." />

384

Part Il ASP.NET Pages and Server Controls

If specified, the client validation function takes a mandatory signature and looks like this:

function CheckMembership(source, arguments)

{
}

The source argument references the HTML tag that represents the validator control—usually,
a tag. The arguments parameter references an object with two properties, IsValid and
Value. The Value property is the value stored in the input control to be validated. The IsValid

property must be set to false or true according to the result of the validation.

The CustomValidator control is not associated in all cases with a single input control in the
current naming container. For this type of validator, setting the ControlToValidate property

is not mandatory. For example, if the control has to validate the contents of multiple input
fields, you simply do not set the ControlToValidate property and the arguments.Value variable
evaluates to the empty string. In this case, you write the validation logic so that any needed
values are dynamically retrieved. With client-side script code, this can be done by accessing
the members of the document's form, as shown in the following code:

function CheckMembership(source, arguments)

{

// Retrieve the current value of the element

// with the specified ID

var membership = document.getElementById("membership™).value;
}

Warning Setting only a client-side validation code opens a security hole because an attacker
could work around the validation logic and manage to have invalid or malicious data sent to the
server. By defining a server event handler, you have one more chance to validate data before
applying changes to the back-end system.

To define a server-side handler for a custom validator, use the ServerValidate event:

void ServerValidation(object source, ServerValidateEventArgs e)

{
3

The ServerValidateEventArgs structure contains two properties—IsValid and Value—with the
same meaning and goal as in the client validation function. If the control is not bound to a
particular input field, the Value property is empty and you retrieve any needed value using

Chapter 9 ASP.NET Input Forms 385

the ASP.NET object model. For example, the following code shows how to check the status of
a check box on the server:

void ServerValidation (object source, ServerValidateEventArgs e) {
e.IsValid = (CheckBoxl.Checked == true);
}

The CustomValidator control is the only option you have to validate controls that are not
marked with the [ValidationProperty] attribute—for example, calendars and check-box
controls. Likewise, it is the only option you have to validate multiple values and/or multiple
controls linked by some relationship. Finally, CustomValidator is also your starting point for
building some remote validation via AJAX. The simplest way of doing that is just by using
some JavaScript that, from within the bound client validator, calls into a server method. The
jQuery library is perfect for the job.

The RegularExpressionValidator Control

Regular expressions are an effective way to ensure that a predictable and well-known
sequence of characters form the user’s entry. For example, using regular expressions you
can validate the format of postal codes, Social Security numbers, e-mail addresses, phone
numbers, and so on. When using the RegularExpressionValidator control, you set the
ValidationExpression property with the regular expression, which will be used to validate the
input.

The following code snippet shows a regular expression validator that ensures the user’s entry
is an e-mail address:

<asp:RegularExpressionValidator runat="server" id="emailValidator"
ControlTovValidate="email"
ValidationExpression="[a-zA-Z_0-9.-]1+\@[a-zA-Z_0-9.-T+\.\w+"
ErrorMessage="Must be a valid email address." />

The regular expression just shown specifies that valid e-mail addresses are formed by two
nonzero sequences of letters, digits, dashes, and dots separated by an @ symbol and fol-
lowed by a dot (.) and an alphabetic string. (This might not be the perfect regular expression
for e-mail addresses, but it certainly incorporates the majority of e-mail address formats.)

Note The regular expression validation syntax is slightly different on the client than on the
server. The RegularExpressionValidator control uses JavaScript regular expressions on the client
and the .NET Framework Regex object on the server. Be aware that the JavaScript regular expres-
sion syntax is a subset of the Regex model. Whenever possible, try to use the regular expression
syntax supported by JavaScript so that the same result is obtained for both the client and server.

386

Part Il ASP.NET Pages and Server Controls

The RangeValidator Control

The RangeValidator control lets you verify that a given value falls within a specified range.
The type of the values involved in the check is specified dynamically and picked from a short
list that includes strings, numbers, and dates. The following code shows how to use a range
validator control:

<asp:RangeValidator runat="server" id="hiredDateValidator"
ControlToValidate="hired"
MinimumValue="2000-1-4"
MaximumValue="9999-12-31"
Type="Date"
ErrorMessage="Must be a date after Jan 1, 1999." />

The key properties are MinimumValue and MaximumValue, which together clearly denote
the lower and upper boundaries of the interval. Note that an exception is thrown if the
strings assigned MinimumValue or MaximumValue cannot be converted to the numbers or
dates according to the value of the Type property.

If the type is set to Date, but no specific culture is set for the application, you should specify
dates using a culture-neutral format, such as yyyy-MM-dd. If you don't do so, the chances
are good that the values will not be interpreted correctly.

Note The RangeValidator control extends the capabilities of the more basic CompareValidator
control by checking for a value in a fixed interval. In light of this, the RangeValidator control
might raise an exception if either MinimumValue or MaximumValue is omitted. Whether the
exception is thrown or not depends on the type chosen and its inherent ability to interpret the
empty string. For example, an empty string on a Date type causes an exception. If you want to
operate on an unbound interval—whether it's lower or upper unbound—either you resort to
the GreaterThan (or LessThan) operator on the CompareValidator control or simply use a virtually
infinite value such as the 9999-12-31 value.

The RequiredFieldValidator Control

To catch when a user skips a mandatory field in an input form, you use the
RequiredFieldValidator control to show an appropriate error message:

<asp:RequiredFieldvValidator runat="server" id="TnameValidator"
ControlToValidate="Tname"
ErrorMessage="Last name is mandatory" />

As long as you're using an up-level browser and client-side scripting is enabled for each vali-
dator, which is the default, invalid input will display error messages without performing
a postback.

WV

Chapter 9 ASP.NET Input Forms 387

Important Note that just tabbing through the controls is not a condition that raises an error; the
validator gets involved only if you type blanks or if the field is blank when the page is posted back.

How can you determine whether a certain field is really empty? In many cases, the empty
string is sufficient, but this is not a firm rule. The InitialValue property specifies the ini-
tial value of the input control. The validation fails only if the value of the control equals
InitialValue upon losing focus. By default, InitialValue is initialized with the empty string.

Special Capabilities

The primary reason why you place validation controls on a Web form is to catch errors and
inconsistencies in the user’s input. But how do you display error messages? Are you interest-
ed in client-side validation and, if you are, how would you set it up? Finally, what if you want
to validate only a subset of controls when a given button is clicked? Some special capabilities
of validation controls provide a valid answer to all these issues.

Server-Side Validation

Validation controls are server-side controls; subsequently, they kick in and give a response on
the server. All postback controls (for example, buttons, auto-postback controls, and controls
that registered as postback controls) validate the state of the page before proceeding with
their postback action. For example, here’s how the Button control handles it. The Web Forms
page life cycle ends up invoking the RaisePostBackEvent method to force the clicked submit
button to execute its click handler:

// Code excerpted from the source code of the System.Web.UI.WebControls.Button
protected virtual void RaisePostBackEvent(string eventArgument)
{

base.ValidateEvent(this.UniqueID, eventArgument);

if (this.CausesValidation)

{

this.Page.Validate(this.ValidationGroup);

}

this.OnClick(EventArgs.Empty) ;

this.OnCommand(new CommandEventArgs(this.CommandName, this.CommandArgument));

}

The Validate method on the class Page just loops through the validators registered with the

specified validation group and returns a response. The response simply updates the state of

validation controls including the validation summary. This response will then be merged into
the page response and output to the user.

If you simply need to know whether the state of the page is valid, you call the /sValid Boolean
property. Note that Page./sValid cannot be called before validation has taken place. It should
always be queried after a call to Page.Validate—either an explicit call you code yourself or an

388 Part Il ASP.NET Pages and Server Controls

implicit call that postback controls perform in their event handler. Note that, as the preceding
code snippet shows, postback controls don't do any validation if their CausesValidation
property is set to false.

Note The Validate method on class Page is always invoked during the postback stage, regard-
less of the features of the postback control—a submit button has different postback mechanics
compared to, say, a link button or an auto-postback control. In general, you'll more likely need
to call IsValid in the code-behind class than Validate. After validation has occurred, in fact, you
might need to check whether it was successful before you perform some other operations.

Displaying Error Information

The ErrorMessage property determines the static message that each validation control

will display if an error occurs. You need to know that if the Text property is also set, it will
take precedence over ErrorMessage. Text is designed to display inline where the valida-
tion control is located; ErrorMessage is designed to display in the validation summary.
(Strategies for using Text and ErrorMessage will be discussed more in the next section, “The
ValidationSummary Control.") Because all validation controls are labels, no other support
or helper controls are needed to display any message. The message will be displayed in the
body of the validation controls and, subsequently, wherever the validation control is actu-
ally placed. The error message is displayed as HTML, so it can contain any HTML formatting
attribute.

Validators that work in client mode can create the tag for the message either
statically or dynamically. You can control this setting by using the Display property of the
validator. When the display mode is set to Static (the default), the element is given
the following style:

style="visibility:hidden;"

The CSS visibility style attribute, when set to Hidden, causes the browser not to display the
element but reserves space for it. If the Display property contains Dynamic, the style string
changes as follows:

style="display:none;"

The CSS display attribute, when set to none, simply hides the element, which will take up
space on the page only if displayed. The value of the Display property becomes critical when
you have multiple validators associated with the same input control. (See Figure 9-4.)

Chapter 9 ASP.NET Input Forms

(€ nttpi//localhost:51520/Stock.aspx - Windows Intermet Explorer [E=n(Ech ===
OO < [&] httpr//tocalhosts1520/5tockas) | & [42 [% |2 ging Rl
i Favorites | o5
| @ nttp/localhost 51520/Stock.asp ‘_| - v [& v Pagev Sefetyv Toolsv @+
My ASP.NET APPLICATION
Home About
FILL THE FORM OUT
Name - 3
Last Name
Age 17 Age must be at least 18,
Email dino at server com Must be an email address.
Hire Date 1799 Must enter a date. Date after 1-1-99.
Membership Level
< i] +

+/" Trusted sites | Protected Mode: Off v H100% v

FIGURE 9-4 Input controls in the form are validated on the client.

389

As you can see, the Hire Date text box is first validated to ensure it contains a valid date and
then to verify the specified date is later than 1-1-1999. If the Display property is set to Static
for the first validator, and the date is outside the specified range, you get a page like the one

shown in Figure 9-5.

(& http://localhost:51520/Stock.aspx - Windows Internet Explorer

OO < [&] nttp//tocaihostsisa/stock.as | & [42 x | [8ing
i Favorites | o5

| @ nttp/localhost51520/Stock aspx \7| G- ~ [@ v Page~ Safetyv Took+ @+
My ASP.NET APPLICATION
Home About
FILL THE FORM OUT
Name - 3
Last Name
Age 17 Age must be at least 18,
Email dino at server com Must be an email address.
Hire Date 1-1-89 Date after 1-1-99.
Membership Level |
Add...
< i] +

+/" Trusted sites | Protected Mode: Off v H100% v

FIGURE 9-5 Static error messages take up space even if they're not displayed.

390 Part Il ASP.NET Pages and Server Controls

Multiple Validators per Control

Note that you can associate multiple validators with a single input control. Here's an excerpt
from the code behind the page in Figure 9-5:

<table>
<tr>
<td>Name</td><td>*</td>
<td><asp:textbox runat="server" id="fname" />
<asp:RequiredFieldvalidator runat="server" id="fnameValidator"
ControlToValidate="fname"
Text="111"
ErrorMessage="Name is mandatory" /></td></tr>
<tr>
<td>Last Name</td><td>*</td>
<td><asp:textbox runat="server" id="Tname" />
<asp:RequiredFieldValidator runat="server" id="TnameValidator"
ControlToValidate="Tname"
Text="111"
ErrorMessage="Last name is mandatory" /></td></tr>
<tr>
<td>Age</td><td></td>
<td><asp:textbox runat="server" id="age" />
<asp:CompareValidator runat="server" id="ageValidator"
ControlToValidate="age"
Operator="GreaterThanEqual"
ValueToCompare="18"
Type="1integer"
ErrorMessage="Age must be at least 18." /></td></tr>
<tr>
<td>Email</td><td></td>
<td><asp:textbox runat="server" id="email" />
<asp:RegularExpressionValidator runat="server" jd="emailValidator'
ControlToValidate="email"
ValidationExpression="[a-zA-Z_0-9.-]+\@[a-zA-Z_0-9.-T+\.\w+"
ErrorMessage="Must be an email address." /></td></tr>

<tr>
<td>Hire Date</td><td></td>
<td><asp:textbox runat="server" id="hired" />
<asp:CompareValidator runat="server" id="hiredValidator"
ControlTovValidate="hired"
Display="Static"
Operator="DataTypeCheck"
Type="date"
ErrorMessage="Must enter a date." />
<asp:RangeValidator runat="server" id="hiredDateValidator"
ControlTovValidate="hired"
Display="Dynamic"
MinimumValue="1999-1-1"
MaximumValue="9999-12-31"
Type="Date"
ErrorMessage="Date after 1-1-99." /></td></tr>

Chapter 9 ASP.NET Input Forms 391

<tr>
<td>Membership Level</td><td></td>
<td><asp:textbox runat="server" id="membership" />
<asp:CustomValidator runat="server" id="membershipValidator"
ControlToValidate="membership"
ClientValidationFunction="CheckMembership"
ErrorMessage="Must be Gold or Platinum." /></td></tr>
</table>

The hired control is being validated by a CompareValidator and a RangeValidator at the same
time. Validation takes place in order, and each validation control generates and displays its
own error message. The content of the input control is considered valid if all the validators
return true. If an input control has multiple valid patterns—for example, an ID field can take
the form of a Social Security number or a VAT number—you can either validate by using
custom code or regular expressions.

Note The preceding HTML snippet uses a table element to lay out the input fields around the
form. This approach is discouraged and plain block elements should be used (DIV and P tags)
that could be lined up via CSS styles. Unfortunately, I'm not a CSS expert.

The ValidationSummary Control

The ValidationSummary control is a label that summarizes and displays all the validation error
messages found on a Web page after a postback. The summary is displayed in a single loca-
tion formatted in a variety of ways. The DisplayMode property sets the output format, which
can be a list, bulleted list, or plain text paragraph. By default, it is a bulleted list. The feasible
values are grouped in the ValidationSummaryDisplayMode enumeration.

Whatever the format is, the summary can be displayed as text in the page, in a message box,
or in both. The Boolean properties ShowSummary and ShowMessageBox let you decide. The
output of the ValidationSummary control is not displayed until the page posts back no mat-

ter what the value of the EnableClientScript property is. The HeaderText property defines the
text that is displayed atop the summary:

<asp:ValidationSummary runat="server"
ShowMessageBox="true"
ShowSummary="true"
HeaderText="The following errors occurred:"
DisplayMode="BulletList" />

This code snippet originates the screen shown in Figure 9-6.

392

Part Il ASP.NET Pages and Server Controls

(€ nttpi//localhost:51520/Stock.aspx - Windows Interet Explorer [E=n(Ech ===
*.®) [&] hitp:/ocalhost51520/5tock.aspx -[&[4]x | ang o~
S Favorites | 95

@ http://localhost51520/Stock.aspx - v [dh v Pagev Safety> Tools~ @+

My ASP.NET APPLICATION

Home About

FILL THE FORM OUT
Name " i

Last Name " i

Age 17 Age must be at least 18, E
Email dino at server com Must be an email address.
Hire Date

Message from webpage ==

Membership Level

add.}
The following errors occurred:

The following errors occurred: £38, - Nameis mandatory
- Last name is mandatory

+ Name is mandatory - Age must be at least 18.
- Last name is mandatory - Must be an email address.
= Age must be at least 18, —
= Must be an email address.

«]] v

+/ Trusted sites | Protected Mode: Off 45 v 0% v

FIGURE 9-6 After the page posts back, the validation summary is updated and a message box pops up to
inform the user of the errors.

The validation summary is displayed only if there’s at least one pending error. Notice that,
in the default case, the labels near the input controls are updated anyway, along with the
summary text. In summary, you can control the error information in the following ways:

B Both in-place and summary information This is the default scenario. Use the
ValidationSummary control, and accept all default settings on the validator controls.
If you want to leverage both places to display information, a recommended approach
consists of minimizing the in-place information by using the Text property rather than
ErrorMessage. If you set both, Text is displayed in-place while ErrorMessage shows up in
the validation summary. For example, you can set Text with a glyph or an exclamation
mark and assign ErrorMessage with more detailed text.

B Only in-place information Do not use the ValidationSummary control, and set the
ErrorMessage property in each validation control you use. The messages appear after
the page posts back.

B Only summary information Use the ValidationSummary control, and set the
ErrorMessage property on individual validation controls. Set the Display property of
validators to None so that no in-place error message will ever be displayed.

Chapter 9 ASP.NET Input Forms 393

B Custom error information You don't use the ValidationSummary control, and you set
the Display property of the individual validators to None. In addition, you collect the
various error messages through the ErrorMessage property on the validation controls
and arrange your own feedback for the user.

Enabling Client Validation

As mentioned earlier, the verification normally takes place on the server as the result of the
postback event or after the Validate method is called. If scripting is enabled on the browser,
though, you can also activate the validation process on the client, with a significant gain in
responsiveness. In fact, there’s no real value in making a roundstrip to the server only to dis-
cover that a required field has been left empty. The sooner you can figure it out, the better.
On the other hand, you certainly can't rely exclusively on client-side validation. To run secure
code and prevent malicious and underhanded attacks, you should validate any input data on
the server too.

When client-side validation is turned on, the page doesn't post back until all the input fields
contain valid data. However, not all types of validation can be accomplished on the client.
In fact, if you need to validate against a database, well, there’'s no other option than posting
back to the server. (AJAX facilities, which we'll explore in Chapter 20, "AJAX,” might provide
relief for this problem.)

Client validation can be controlled on a per-validation control basis by using the
EnableClientScript Boolean property. By default, the property is set to true, meaning

client validation is enabled as long as the browser supports it. By default, the code in the
BaseValidator class detects the browser’s capabilities through the Request.Browser property.
If the browser is considered up-level, the client validation will be implemented. In ASP.NET 4,
browsers and client devices that are considered up-level support at least the following:

B ECMAScript version 1.2 or newer

® W3C DOM Level 1 or greater

Today, nearly all browsers available meet these requirements. Generally, an up-level browser
matches the capabilities of Internet Explorer 6 and newer. Consider that ASP.NET 4 checks
the browser capabilities using the Request.Browser object. The information that this object
returns is influenced by the value of the ClientTarget property on the Page class. The prop-
erty indicates which set of browser capabilities the page assumes from the current browser.
Specifying a value for the ClientTarget property overrides the automatic detection of browser
capabilities that is normally accomplished. You can set the ClientTarget property via code,
using the @Page directive, or in the configuration file.

394

Part Il ASP.NET Pages and Server Controls

What are the feasible values for ClientTarget?

In general, ClientTarget gets a string that refers to a user agent string. However, the root
web.config configuration file defines a couple of default aliases that you can use as shorthand
for common user-agent strings: uplevel and downlevel.

The uplevel alias specifies browser capabilities equivalent to Internet Explorer 6, whereas the
downlevel alias refers to the capabilities of older browsers that do not support client script.
You can define additional aliases in the clientTarget section of the application-level web.config
file. (See Chapter 3, “ASP.NET Configuration.”)

Validation Groups

By default, control validation occurs in an all-or-nothing kind of way. For example, if you
have a set of input and validation controls and two buttons on the form, clicking either
button will always validate all controls. In other words, there’s no way to validate some
controls when one button is clicked and some others when the other button is clicked.

The CausesValidation property on button controls allows you to disable validation on a
button, but that is not the real point here. What would be desirable is the ability to perform
validation on a group of controls. This is exactly what the ValidationGroup property provides.
The property is available on validators, input controls, and button controls.

Using the ValidationGroup property is simple; just define it for all the validation controls that
you want to group together, and then assign the same name to the ValidationGroup property
of the button that you want to fire the validation. Here's an example:

<asp:textbox runat="server" id="TextBoxl" />
<asp:RequiredFieldvalidator runat="server"
ValidationGroup="Groupl"
ControlToValidate="TextBox1"
ErrorMessage="TextBox1l is mandatory" />
<asp:textbox runat="server" id="TextBox2" />
<asp:RequiredFieldvValidator runat="server"
ValidationGroup="Group2"
ControlToValidate="TextBox2"
ErrorMessage="TextBox2 is mandatory" />
<asp:Button runat="server" Text="Check Groupl"
ValidationGroup="Groupl" />
<asp:Button runat="server" Text="Check Group2"
ValidationGroup="Group2" />

The two RequiredFieldValidator controls belong to distinct validation groups—Groupl and
Group?2. The first button validates only the controls defined within Groupl; the second button
takes care of the input associated with Group2. In this way, the validation process can be
made as granular as needed.

WV

Chapter 9 ASP.NET Input Forms 395

Important The ValidationGroup property can also be defined optionally on input controls.
This is required only if you use the CustomValidator control as a way to check whether a given
input control belongs to the right validation group. Unlike other validators, the CustomValidator
control, in fact, is not strictly bound to a specific control.

Validation groups are well reflected on the server-side, where the Validate method of the
Page class features an overload that lets you select the group according to which the page
must be validated.

Dealing with Validation in Cross-Page Posts

Validation groups are especially helpful when combined with cross-page postbacks. As you
saw earlier in the chapter, a cross-page postback allows a button to post the contents of
the current form to another page, in a way overriding the single-form model of ASP.NET.
In a cross-page posting scenario, what if the original page contains validators? Imagine a
page with a text box whose value is to be posted to another page. You don't want the post
to occur if the text box is empty. To obtain this behavior, you add a RequiredFieldValidator
control and bind it to the text box:

<asp:TextBox ID="Keyword" runat="server" />

<asp:RequiredFieldvValidator ID="Validatorl" runat="server"
ControlToValidate="Keyword" Text="*" />

<asp:Button ID="Buttonl" runat="server" Text="Search..."
OnClick="Buttonl_Click" PostBackUrl="doSearch.aspx" />

As expected, when you click the button the page won't post if the text box is empty;

and an asterisk (plus an optional message) is displayed to mark the error. This is because
RequiredFieldValidator benefits the client-side capabilities of the browser and validates the
input controls before proceeding with the post. Hence, in the case of empty text boxes, the
button doesn’t even attempt to make the post.

Is that all, or is there more to dig out?

Let's work with a CustomValidator control, which instead requires that some server-side code
be run to check the condition. Can you imagine the scenario? You're on, say, crosspage.aspx
and want to reach doSearch.aspx; to make sure you post only under valid conditions, though,
you first need to make a trip to crosspage.aspx to perform some validation. Add this control,
write the server validation handler in crosspage.aspx, and put a breakpoint in its code:

<asp:CustomValidator ID="CustomValidatorl" runat="server"
Text="*"
ControlToValidate="Keyword"
OnServerValidate="EnsureValidKeywords" />

396

Part Il ASP.NET Pages and Server Controls

Debugging this sample page reveals that posting to another page is a two-step operation.
First, a classic postback is made to run any server-side code registered with the original page
(for example, server-side validation code or code associated with the click of the button).
Next, the cross-page call is made to reach the desired page:

void EnsureValidKeywords(Object source, ServerValidateEventArgs args)

{
args.Isvalid = false;
if (String.Equals(args.Value, "Dino"))
args.IsValid = true;
}

The preceding code sets the page’s IsValid property to false if the text box contains anything
other than "Dino.” However, this fact alone doesn't prevent the transition to the target page.
In other words, you could still have invalid input data posted to the target page.

Fortunately, this issue has an easy workaround, as shown in the following code:

if (!PreviousPage.IsValid)

{
Response.Write("Sorry, the original page contains invalid input.");
Response.End();
return;

}

In the target page, you test the IsValid property on the PreviousPage property and terminate
the request in the case of a negative answer. However, to avoid a server request and, worse
yet, a page transition, you can add a client check to the CustomValidator control:

<asp:CustomValidator ID="CustomValidatorl" runat="server"
Text="*"
ControlToValidate="Keyword"
ClientValidationFunction="ensureValidKeywords"
OnServerValidate="EnsureValidKeywords" />

Here's a possible implementation of the JavaScript function:

<script type="text/javascript">
function ensureValidKeywords(source, arguments) {
arguments.IsValid = false;
var buf = arguments.Value;
if (buf == "Dino™)
arguments.IsValid = true;
}

</script>

Chapter 9 ASP.NET Input Forms 397

Working with Wizards

An input form is used to collect data from users. However, it is not unusual that the amount
of data to be collected is quite large and dispersed. In these cases, a single form is hardly the
right solution. A wizard is a sequence of related steps, each associated with an input form
and a user interface.

Wizards are typically used to break up large forms to collect user input. Users move through
the wizard sequentially, but they are normally given a chance to skip a step or jump back to
modify some of the entered values. A wizard is conceptually pretty simple, but implementing
it over HTTP connections can be tricky. In ASP.NET, you have a readymade server control—
the Wizard control—that automates many of the tasks.

An Overview of the Wizard Control

The Wizard control supports both linear and nonlinear navigation. It allows you to move
backward to change values and skip steps that are unnecessary because of previous set-
tings or because users don't want to fill in those fields. Like many other ASP.NET controls, the
Wizard control supports themes, styles, and templates.

Wizard is a composite control and automatically generates some constituent controls, such
as navigation buttons and panels. As you'll see in a moment, the programming interface of
the control has multiple templates that provide for in-depth customization of the overall
user interface. The control also guarantees that state is maintained no matter where you
move—backward, forward, or to a particular page. All the steps of a wizard must be de-
clared within the boundaries of the same Wizard control. In other words, the wizard must be
self-contained and not provide page-to-page navigation.

Structure of a Wizard

As shown in Figure 9-7, a wizard has four parts: a header, view, navigation bar, and sidebar.

Header
Step #1
Step #2 Vi
. iew
° (Show wizard steps)
Step #n
s
S

FIGURE 9-7 The four parts of a Wizard control.

398

Part Il ASP.NET Pages and Server Controls

The header consists of text you can set through the HeaderText property. You can change the
default appearance of the header text by using its style property; you can also change the
structure of the header by using the corresponding header template property. If HeaderText
is empty and no custom template is specified, no header is shown for the wizard.

The view displays the contents of the currently active step. The wizard requires you to define
each step in an <asp:wizardstep> element. An <asp:wizardstep> element corresponds to a
WizardStep control. Different types of wizard steps are supported; all wizard step classes
inherit from a common base class named WizardStepBase.

All wizard steps must be grouped in a single <wizardsteps> tag, as shown in the following
code:

<asp:wizard runat="server" DisplaySideBar="true">
<wizardsteps>
<asp:wizardstep runat="server" steptype="auto" id="stepl">
First step
</asp:wizardstep>
<asp:wizardstep runat="server" steptype="auto" id="step2">
Second step
</asp:wizardstep>
<asp:wizardstep runat="server" steptype="auto" id="finish">
Final step
</asp:wizardstep>
</wizardsteps>
</asp:wizard>

The navigation bar consists of autogenerated buttons that provide any needed
functionality—typically, going to the next or previous step or finishing. You can modify the
look and feel of the navigation bar by using styles and templates.

The optional sidebar is used to display content on the left side of the control. It provides

an overall view of the steps needed to accomplish the wizard’s task. By default, it displays a
description of each step, with the current step displayed in boldface type. You can customize
the sidebar using styles and templates. Figure 9-8 shows the default user interface. Each step
is labeled using the ID of the corresponding <asp:wizardstep> tag.

Chapter 9 ASP.NET Input Forms

g http://localhost:53747/Simple.aspx - Windows Internet Explorer

=8 Eo =)

@O = [&] httpirtocath... ~| 5| 4| x | [ging

s Favorites | 95
| @ nttp:/focalhosts3raTys...

| fit ~ B - O & - Page Safery~

o~

My ASP.NET APPLICATION

Home About

THE WORLD'S SIMPLEST WIZARD!

SECOND STEP

Sample Wizard

Previous

m

Next

«]]

b

/" Trusted sites | Protected Mode: Off

#®100% -

& -

FIGURE 9-8 A wizard with the default sidebar on the left side.

Wizard Styles and Templates

You can style all the various parts and buttons of a Wizard control by using the properties

listed in Table 9-5.

TABLE 9-5 The Wizard Control’

Style
CancelButtonStyle

s Style Properties
Description
Sets the style properties for the wizard’s Cancel button

FinishCompleteButtonStyle

Sets the style properties for the wizard's Finish button

FinishPreviousButtonStyle

Sets the style properties for the wizard’s Previous button when at
the finish step

HeaderStyle

Sets the style properties for the wizard's header

NavigationButtonStyle

Sets the style properties for navigation buttons

NavigationStyle Sets the style properties for the navigation area
SideBarButtonStyle Sets the style properties for the buttons on the sidebar
SideBarStyle Sets the style properties for the wizard's sidebar

StartStepNextButtonStyle

Sets the style properties for the wizard’s Next button when at the
start step

StepNextButtonStyle

Sets the style properties for the wizard’s Next button

StepPreviousButtonStyle

Sets the style properties for the wizard's Previous button

StepStyle

Sets the style properties for the area where steps are displayed

399

400

Part Il ASP.NET Pages and Server Controls

The contents of the header, sidebar, and navigation bar can be further customized with
templates. Table 9-6 lists the available templates.

TABLE 9-6 The Wizard Control’s Template Properties
Style Description

FinishNavigationTemplate Specifies the navigation bar shown before the last page of the
wizard. By default, the navigation bar contains the Previous and
Finish buttons.

HeaderTemplate Specifies the title bar of the wizard.
SideBarTemplate Used to display content on the left side of the wizard control.
StartNavigationTemplate Specifies the navigation bar for the first view in the wizard. By

default, it contains only the Next button.

StepNavigationTemplate Specifies the navigation bar for steps other than first, finish, or
complete. By default, it contains Previous and Next buttons.

In addition to using styles and templates, you can control the programming interface of the
Wizard control through a few properties.

The Wizard's Programming Interface

Table 9-7 lists the properties of the Wizard control, excluding style and template properties
and properties defined on base classes.

TABLE 9-7 Main Properties of the Wizard Control

Property Description

ActiveStep Returns the current wizard step object. The object is an instance of
the WizardStep class.

ActiveSteplndex Gets and sets the 0-based index of the current wizard step.

DisplayCancelButton Toggles the visibility of the Cancel button. The default value is false.

DisplaySideBar Toggles the visibility of the sidebar. The default value is false.

HeaderText Gets and sets the title of the wizard.

SkipLinkText The ToolTip string that the control associates with an invisible

image, as a hint to screen readers. The default value is “Skip
Navigation Links"” and is localized based on the server’s current
locale.

WizardSteps Returns a collection containing all the WizardStep objects defined
in the control.

A wizard in action is fully represented by its collection of step views and buttons. In
particular, you'll recognize the following buttons: StartNext, StepNext, StepPrevious,
FinishComplete, FinishPrevious, and Cancel. Each button is characterized by properties to
get and set the button’s image URL, caption, type, and destination URL after a click. The
name of a property is the name of the button followed by a suffix. The available suffixes are
listed in Table 9-8.

Chapter 9 ASP.NET Input Forms 401

TABLE 9-8 Suffix of Button Properties

Suffix Description

ButtonlmageUrl Gets and sets the URL of the image used to render the button

ButtonText Gets and sets the text for the button

ButtonType Gets and sets the type of the button: push button, image, or link
button

DestinationPageUrl Gets and sets the URL to jump to once the button is clicked

Note that names in Table 9-8 do not correspond to real property names. You have the four
properties in this table for each distinct type of wizard button. The real name is composed

by the name of the button followed by any of the suffixes—for example, CancelButtonText,
FinishCompleteDestinationPageUrl, and so on.

The Wizard control also supplies a few interesting methods—for example, GetHistory, which
is defined as follows:

pubTlic ICollection GetHistory()

GetHistory returns a collection of WizardStepBase objects. The order of the items is
determined by the order in which the wizard's pages were accessed by the user. The first
object returned—the one with an index of 0—is the currently selected wizard step. The
second object represents the view before the current one, and so on.

The second method, MoveTo, is used to move to a particular wizard step. The method'’s
prototype is described here:

public void MoveTo(WizardStepBase step)

The method requires you to pass a WizardStepBase object, which can be problematic.
However, the method is a simple wrapper around the setter of the ActiveStep/ndex property.
If you want to jump to a particular step and not hold an instance of the corresponding
WizardStep object, setting ActiveStepindex is just as effective.

Table 9-9 lists the key events in the life of a Wizard control in an ASP.NET page.

TABLE 9-9 Events of the Wizard Control

Event Description

ActiveViewChanged Raised when the active step changes
CancelButtonClick Raised when the Cancel button is clicked
FinishButtonClick Raised when the Finish Complete button is clicked
NextButtonClick Raised when any Next button is clicked
PreviousButtonClick Raised when any Previous button is clicked

SideBarButtonClick Raised when a button on the sidebar is clicked

402

Part Il ASP.NET Pages and Server Controls

As you can seeg, there's a common click event for all Next and Previous buttons you can find
on your way. A Next button can be found on the Start page as well as on all step pages.
Likewise, a Previous button can be located on the Finish page too. Whenever a Next button is
clicked, the page receives a NextButtonClick event; whenever a Previous button is clicked, the
control raises a PreviousButtonClick event.

Adding Steps to a Wizard

A WizardStep object represents one of the child views that the wizard can display. The
WizardStep class ultimately derives from View and adds just a few public properties to it. A
View object represents a control that acts as a container for a group of controls. A view is
hosted within a MultiView control. To create its output, the wizard makes internal use of a
MultiView control. However, the wizard is not derived from the MultiView class.

You define the views of a wizard through distinct instances of the WizardStep class,
all grouped under the <WizardSteps> tag. The <WizardSteps> tag corresponds to the
WizardSteps collection property exposed by the Wizard control:

<WizardSteps>
<asp:WizardStep>

</asp:WizardStep>
<asp:WizardStep>

</asp:WizardStep>
</WizardSteps>

Each wizard step is characterized by a title and a type. The Title property provides a brief de-
scription of the view. This information is not used unless the sidebar is enabled. If the sidebar
is enabled, the title of each step is used to create a list of steps. If the sidebar is enabled but
no title is provided for the various steps, the ID of the WizardStep objects is used to populate
the sidebar, as shown earlier in Figure 9-8.

While defining a step, you can also set the AllowReturn property, which indicates whether the
user is allowed to return to the current step from a subsequent step. The default value of the
property is true.

Types of Wizard Steps

The StepType property indicates how a particular step should be handled and rendered
within a wizard. Acceptable values for the step type come from the WizardStepType
enumeration, as listed in Table 9-10.

Chapter 9 ASP.NET Input Forms 403

TABLE 9-10 Wizard Step Types

Property Description

Auto The default setting, which forces the wizard to determine how each contained
step should be treated.

Complete The last page that the wizard displays, usually after the wizard has been
completed. The navigation bar and the sidebar aren't displayed.

Finish The last page used for collecting user data. It lacks the Next button, and it shows
the Previous and Finish buttons.

Start The first screen displayed, with no Previous button.

Step All other intermediate pages, in which the Previous and Next buttons are
displayed.

When the wizard is in automatic mode—the default type Auto—it determines the type of
each step based on the order in which the steps appear in the source code. For example, the
first step is considered to be of type Start and the last step is marked as Finish. No Complete
step is assumed. If you correctly assign step types to your wizard steps yourself, rather

than use the Auto type, the order in which you declare your steps in the .aspx source is not
relevant.

Creating an Input Step

The following code shows a sample wizard step used to collect the provider name and the
connection string to connect to a database and search for some data. For better graphical
results, the content of the step is encapsulated in a fixed-height <div> tag. If all the steps
are configured in this way, users navigating through the wizard won't experience sudden
changes in the overall page size and layout:

<asp:wizardstep ID="Wizardstepl" runat="server" title="Connect">

<div>
<table>
<tr><td>Provider</td><td>
<asp:textbox runat="server" id="ProviderName"
text="System.Data.SqlClient" />
</td></tr>
<tr><td>Connection String</td><td>
<asp:textbox runat="server" id="ConnString"
text="SERVER=(Tocal) ;DATABASE=northwind;... " />
</td></tr>
<tr><td height="100px"></td></tr>
</table>
</div>

</asp:wizardstep>

Figure 9-9 shows a preview of the step. As you could probably guess, the step is recognized
as a Start step. As a result, the wizard is added only to the Next button.

404 Part Il ASP.NET Pages and Server Controls

‘€ nhtpi//localhost53747/Query.aspx - Windows Intemet Explorer (=% B =<=|
@O v [&] nttoriocathostsarar | &[4[x | [8ing £ -
i Favorites | o5

| @ hitp://localhost:53747/Query.aspx | - ~ [@ v Pagev Safetyv Tools~ @+ =

My ASP.NET APPLICATION

Home About

Search Your Database|

Provider stem Data SglClief
Connection String SERVER={local),DATABASE=northwind,UID=<

n

Connect
\Write the Query
Optional Information

Finalizing...
Show Results

Next

<]] v

Dene +/ Trusted sites | Protected Mode: Off 45 v 0% v

FIGURE 9-9 A sample Start wizard step.

A wizard is usually created for collecting input data, so validation becomes a critical is-
sue. You can validate the input data in two nonexclusive ways—using validators and using
transition event handlers.

The first option involves placing validator controls in the wizard step. This guarantees that
invalid input—empty fields or incompatible data types—is caught quickly and, optionally,
already on the client:

<asp:requiredfieldvalidator ID="RequiredFieldl" runat="server"
text="*"
errormessage="Must indicate a connection string"
setfocusonerror="true"
controltovalidate="ConnString" />

If you need to access server-side resources to validate the input data, you're better off using
transition event handlers. A transition event is an event the wizard raises when it is about to
switch to another view. For example, the NextButtonClick event is raised when the user clicks
the Next button to jump to the subsequent step. You can intercept this event, do any re-
quired validation, and cancel the transition if necessary. I'll return to this topic in a moment.

Defining the Sidebar

The sidebar is a left-side panel that lists buttons to quickly and randomly reach any step of
the wizard. It's a sort of quick-launch menu for the various steps that form the wizard. You

Chapter 9 ASP.NET Input Forms 405

control the sidebar’s visibility through the Boolean DisplaySideBar attribute and define its
contents through the SideBarTemplate property.

Regardless of the template, the internal layout of the sidebar is not left entirely to your
imagination. In particular, the <SideBarTemplate> tag must contain a Datalist control with
a well-known ID—SideBarlList. In addition, the </temTemplate> block must contain a but-
ton object with the name of SideBarButton. The button object must be any object that
implements the /ButtonControl interface.

Note For better graphical results, you might want to use explicit heights and widths for all
steps and the sidebar as well. Likewise, the push buttons in the navigation bar might look better
if they are made the same size. You do this by setting the Width and Height properties on the
NavigationButtonStyle object.

Navigating Through the Wizard

When a button is clicked to move to another step, an event is fired to the hosting page.
It's up to you to decide when and how to perform any critical validation, such as deciding
whether or not conditions exist to move to the next step.

In most cases, you'll want to perform server-side validation only when the user clicks the
Finish button to complete the wizard. You can be sure that whatever route the user has
taken within the wizard, clicking the Finish button will complete it. Any code you bind to the
FinishButtonClick event is executed only once, and only when strictly necessary.

By contrast, any code bound to the Previous or Next button executes when the user moves
back or forward. The page posts back on both events.

Filtering Page Navigation with Events

You should perform server-side validation if what the user can do next depends on the data
she entered in the previous step. This means that in most cases you just need to write a
NextButtonClick event handler:

<asp:wizard runat="server" id="QueryWizard"
OnNextButtonClick="0OnNext">

</asp:wizard>

If the user moves back to a previously visited page, you can usually ignore any data entered
in the current step and avoid validation. Because the user is moving back, you can safely as-
sume she is not going to use any fresh data. When a back movement is requested, you can
assume that any preconditions needed to visit that previous page are verified. This happens
by design if your users take a sequential route.

406

Part Il ASP.NET Pages and Server Controls

If the wizard's sidebar is enabled, users can jump from page to page in any order. If the logic
you're implementing through the wizard requires that preconditions be met before a certain
step is reached, you should write a SideBarButtonClick event handler and ensure that the
requirements have been met.

A wizard click event requires a WizardNavigationEventHandler delegate (which is defined for
you by ASP.NET):

public delegate void WizardNavigationEventHandler(
object sender,
WizardNavigationEventArgs e);

The WizardNavigationEventArgs structure contains two useful properties that inform

you about the 0-based indexes of the page being left and the page being displayed. The
CurrentStepindex property returns the index of the last page visited; NextStepIndex returns
the index of the next page. Note that both properties are read-only.

The following code shows a sample handler for the Next button. The handler prepares a
summary message to show when the user is going to the Finish page:

void OnNext(object sender, WizardNavigationEventArgs e)

{
// Collect the 1input data if going to the last page
// -1 because of 0-based indexing, add -1 if you have a Complete page
if (e.NextStepIndex == QueryWizard.WizardSteps.Count - 2)
PrepareFinalStep();
}
void PrepareFinalStep()
{
string cmdText = DetermineCommandText();
// Show a Ready-to-go message
var sb = new StringBuilder("");
sb.AppendFormat("You’re about to run:

{0}<hr>", cmdText);
sb.Append("
Ready to go?");
ReadyMsg.Text = sb.ToString(Q);
}
string DetermineCommandText()
{
// Generate and return command text here
}

Each page displayed by the wizard is a kind of panel (actually, a view) defined within a parent
control—the wizard. This means that all child controls used in all steps must have a unique
ID. It also means that you can access any of these controls just by name. For example, if one
of the pages contains a text box named, say, ProviderName, you can access it from any event
handler by using the ProviderName identifier.

Chapter 9 ASP.NET Input Forms 407

The preceding code snippet is an excerpt from a sample wizard that collects input and runs a
database query. The first step picks up connection information, whereas the second step lets
users define tables, fields, and optionally a WHERE clause. The composed command is shown
in the Finish page, where the wizard asks for final approval. (See Figure 9-10.)

‘€ nttp://localhost53747/Query aspx - Windows Internet Explorer

(E=8 Bl |
5 -]

@O ® ‘E‘ http://localhost:53747 v| =) \‘,‘ X ‘ \b Bing
4 Favorites | {5

| @ npi//localhostS3747/Query aspx | | M- ~ [@ v Pagew Safetyw Tools~ @~

& nttp//1
@Ov [htpy/Mocatnosts2747 v‘ E|‘9\ x |[© sing
Yy Favorites | 7

| @ hitpy//localhoseS3TAT/Query.asex |

y.aspx - Windows Internet Explorer

[E=E(EoE =)
o -]

| - - [o v Pagev Safetyv Tools~ @+

My ASP.NET APPLICATION

Home

About

My ASP.NET APPLICATION

Home About

Search Your Database

Table |Teritories [=] [?]speciy fields
Columns TerrtoryDescription
Where

[TOP

I

Connect
|Write the Query
Optional Information
Finalizing..

show Results

Next

Search Your Database

ou're about to run:

m

SELECT TerritoryDescription FROM Territories WHERE 1=1

Connect Ready to go?
\Write the Query
Optional Information
Finalizing.

Show Results

‘

v

‘ m |

r

o \

«/ Trusted sites | Protected Mode: Off 45 v R10% ~

/' Trusted sites | Protected Mode: Off fa v RI0% v

FIGURE 9-10 Two successive pages of the sample wizard: query details and the Finish step.

Canceling Events

The WizardNavigationEventArgs structure also contains a read/write Boolean property
named Cancel. If you set this property to true, you just cancel the ongoing transition to the
destination page. The following code shows how to prevent the display of the next step if the
user is on the Start page and types in john as the user ID:

void OnNext(object sender, WizardNavigationEventArgs e)

{
if (e.CurrentStepIndex == 0 &&
ConnString.Text.IndexOf("UID=john") > -1)
{
e.Cancel = true;
return;
}
}

You can cancel events from within any transition event handler and not just from the
NextButtonClick event handler. This trick is useful to block navigation if the server-
side validation of the input data has failed. If you do cause a step to fail, though, you're
responsible for showing some feedback to the user.

408

Part Il ASP.NET Pages and Server Controls

Note You can't cancel navigation from within the ActiveViewChanged event. This event follows
any transition events, such as the NextButtonClick or PreviousButtonClick event, and it occurs
when the transition has completed. Unlike transition events, the ActiveViewChanged event
requires a simpler, parameterless handler—EventHandler.

Finalizing the Wizard

All wizards have some code to execute to finalize the task. If you use the ASP.NET Wizard
control, you place this code in the FinishButtonClick event handler. Figure 9-11 shows the
final step of a wizard that completed successfully.

void OnFinish(object sender, WizardNavigationEventArgs e)

{
string finalMsg = "The operation completed successfully.";
try
{
// Complete the wizard (compose and run the query)
var command = DetermineCommandText();
var table = ExecuteCommand(ConnString.Text, command);
grid.DataSource = table;
grid.DataBind();
// OK color
FinalMsg.ForeColor = Color.Blue;
}
catch (Exception ex) {
FinalMsg.ForeColor = Color.Red;
finalMsg = String.Format("The operation cannot be completed
due to:
{0}", ex.Message);
}
finally {
FinalMsg.Text = finalMsg;
}
}
string DetermineCommandText()
{
// Generate and return command text here
}

DataTable ExecuteCommand()
{

// Execute database query here

Chapter 9 ASP.NET Input Forms 409

1€ nttp://localhost’53747/Query.aspx - Windows Internet Explorer (=% B =<=|
@_) v & hetp/tocathost 53747 v| = \ 6,| % | sing 2 -]
i Favorites | o5

| @ http://localhost:53747/Query.aspx | [IR ~ [@ v Pagev Safetyv Tools+ @+

My ASP.NET APPLICATION

Home About

m

TerritoryDescription
Westbaro

Bedford

Georgetown

Boston

Cambridge

Eraintree

Providence

<[g n] b

Dene +/ Trusted sites | Protected Mode: Off 45 v 0% v

FIGURE 9-11 Final step of a wizard that completed successfully.

If the wizard contains a Complete step, that page should be displayed after the Finish button
is clicked and the final task has completed. If something goes wrong with the update, you
should either cancel the transition to prevent the Complete page from even appearing or
adapt the user interface of the completion page to display an appropriate error message.
Which option you choose depends on the expected behavior of the implemented opera-
tion. If the wizard’s operation can fail or succeed, you let the wizard complete and display an
error message if something went wrong. If the wizard's operation must complete success-
fully unless the user quits, you should not make the transition to the Complete page; instead,
provide users with feedback on what went wrong and give them a chance to try again.

Summary

Form-based programming is fundamental in Web applications because it's the only way to
have users and applications interact. ASP.NET pages can have only one server-side form with
a fixed action property. Subsequently, pages are reentrant and always post to themselves.
The behavior of the form can't be changed because it is crucial to the behavior of ASP.NET,
but a different feature—cross-page posting—comes to the rescue to let users post data from
one page to another. Cross-page posting is essential when you have legacy pages to inte-
grate in a new application that, for whatever reason, can't be adapted to a more specific
ASP.NET architecture.

Input forms also bring to the table the whole theme of input validation. ASP.NET comes
with a stock of native validation controls to cover the basic needs of validation. Validators let

410 Part Il ASP.NET Pages and Server Controls

you put declarative boundaries around input controls so that any user’s input is filtered and
validated both on the client and server. This alone is not sufficient to certify an application as
secure, but it is a quantum leap in the right direction.

Finally, in this chapter entirely devoted to getting input data into an ASP.NET server
application, we've covered wizards—namely, a semi-automatic way of breaking up large
forms into smaller pieces served individually to the user, while keeping track of some state.
Whether you use the ASP.NET Wizard control or roll your own custom solution, the aware-
ness that splitting large forms into sequential screens gives end users a more pleasant
experience is what really matters for ASP.NET developers.

Chapter 10

Data Binding

In matters of style, swim with the current; in matters of principle, stand like a rock.

—Thomas Jefferson

Web applications are, for the most part, just data-driven applications. For this reason, the
ability to bind HTML elements such as drop-down lists or tables to structured data is a key
feature for any Web development platform. Data binding is the process that retrieves data
from a given source and associates it with properties on Ul elements. In ASP.NET, a valid
target for a data binding operation is a server control, also known as a data-bound control.

Data-bound server controls are not another family of controls; they're simply server controls
that feature a few well-known data-related properties and feed them using a well-known set
of collection objects.

In ASP.NET, there are three main categories of data-bound controls: list, iterative, and view
controls. As you'll see in more detail later on, list controls repeat a fixed template for each
item found in the data source. Iterative controls are more flexible and let you explicitly define
the template to repeat, as well as other templates that directly influence the final layout of
the control. Finally, view controls are rich user interface components that provide fixed and
data-driven behavior, such as showing a table of records or a single record.

In this chapter, we'll first review the pillars of data binding in ASP.NET and then proceed to
examine the various types of data-bound controls.

Foundation of the Data Binding Model

ASP.NET data binding is built around a few properties that any data-bound control exposes.
Page authors can assign collections of data to data-bound controls at any time by setting
data binding properties. However, the simple assignment of values to data binding proper-
ties is not sufficient to modify the control’s user interface. The actual data binding process
starts when the page execution flow executes the method DataBind on the page or a
particular control.

For a control, performing a data binding action means updating its internal state to reflect
the collection of values assigned to its bindable properties. Finally, when the control renders
out its markup, the markup will incorporate any bound data.

What kind of data can you pass on to a data-bound control?

411

412

Part Il ASP.NET Pages and Server Controls

Feasible Data Sources

Many .NET classes can be used as data sources—and not just those that have to do with
database content. In ASP.NET, any object that exposes the I[Enumerable interface is a valid
bindable data source. The I[Enumerable interface defines the minimal API necessary to
enumerate the contents of the data source:

public interface IEnumerable
{

IEnumerator GetEnumerator();

3

Many bindable objects, though, actually implement more advanced versions of /[Enumerable,
such as ICollection and IList. In particular, you can bind a Web control to the following classes:

B Collections (including dictionaries, hashtables, and arrays)

m ADO.NET container classes such as DataSet, DataTable, and DataView
B ADO.NET data readers

B Any /Queryable object that results from the execution of a LINQ query

To be honest, | should note that the DataSet and DataTable classes don't actually implement
IEnumerable or any other interfaces that inherit from it. However, both classes do store
collections of data internally. These collections are accessed using the methods of an inter-
mediate interface—I/ListSource—which performs the trick of making DataSet and DataTable
classes look like they implement a collection.

Collection Classes

At the highest level of abstraction, a collection serves as a container for instances of other
classes. A collection is like an array, but with a richer programming interface. All collection
classes implement the /Collection interface, which in turn implements the /Enumerable
interface. As a result, all collection classes provide a basic set of functionalities.

All collection classes have a Count property to return the number of cached items; they have
a CopyTo method to copy their items, in their entirety or in part, to an external array; and
they have a GetEnumerator method that instantiates an enumerator object to loop through
the child items. GetEnumerator is the method behind the curtain whenever you call the
foreach statement in C# and the For...Each statement in Microsoft Visual Basic.

IList and IDictionary are two interfaces that extend /Collection, giving a more precise
characterization to the resultant collection class. /Collection provides only basic and mini-
mal functionality for a collection. For example, /Collection does not have any methods to
add or remove items. Add and remove functions are exactly the capabilities that the IList
interface provides. In the IList interface, the Add and Insert methods place new items at

Chapter 10 Data Binding 413

the bottom of the collection or at the specified index. The Remove and RemoveAt methods
remove items, while Clear empties the collection. Finally, Contains verifies whether an item
with a given value belongs to the collection, and IndexOf returns the index of the specified
item. Commonly used container classes that implement both /Collection and IList are Array,
Arraylist, and StringCollection.

The IDictionary interface defines the API that represents a collection of key/value pairs. The
interface exposes methods similar to /List, but with different signatures. Dictionary classes
also feature two extra properties, Keys and Values. They return collections of keys and values,
respectively, found in the dictionary. Typical dictionary classes are ListDictionary, Hashtable,
and SortedList.

Most of the time, however, you'll be using generic lists of custom objects, as shown here:

boundServerControll.DataSource = new List<Customer>();

The net effect is that the data-bound control is linked to an object that contains a list of
Customer objects.

It is important that the element class—Customer, in the preceding code—implements data
members as properties, instead of fields.

public class Customer

{
public Int32 CustomerId {get; set};
public String Name {get; set;}

3

A property is a data member exposed through the filter represented by a get and/or a
set method. A field, instead, is a member that is exposed directly as a read/write location.
Data members coded as fields won't be discovered at run time and therefore are useless
for data binding. This is by design. However, any .NET class can modify the conventional
algorithm through which its properties are discovered at run time by implementing the
ICustomTypeDescriptor interface.

Implementing the ICustomTypeDescriptor interface gives the object itself a chance to
enumerate exactly the properties it wants to expose regardless of the actual schema of the
class. For example, the interface can be employed to convince a data-bound control that a
given field of the bound class is actually a property.

ADO.NET Classes

ADO.NET provides a bunch of data container classes that can be filled with any sort of data,
including results of a database query. These classes represent excellent resources for fill-
ing data-bound controls such as lists and grids. Having memory-based classes such as the
DataSet in the list is probably no surprise, but it's good to find data readers there too. An

414

Part Il ASP.NET Pages and Server Controls

open data reader can be passed to the data-binding engine of a control. The control will
then walk its way through the reader and populate the user interface while keeping the
connection to the database busy.

Note Data binding works differently for Web pages and desktop applications (whether they are
Windows Forms or Windows Presentation Foundation applications). The biggest difference is that
in Web pages you must explicitly start the data binding process by calling the method DataBind
on the page or control class. In desktop solutions, the simple assignment of data to a bindable
property triggers the binding process for the specific component.

The DataSet class can contain more than one table; however, only one table at a time can be
associated with standard ASP.NET data-bound controls. If you bind the control to a DataSet,
you then need to set an additional property to select a particular table within the DataSet.
Be aware that this limitation is not attributable to ASP.NET as a platform; it is a result of the
implementation of the various data-bound controls. In fact, you could write a custom control
that accepts a DataSet as its sole data-binding parameter.

DataSet and DataTable act as data sources through the IListSource interface; DataView and
data readers, on the other hand, implement /[Enumerable directly.

Queryable Objects

Short for Language INtegrated Query, LINQ is a query language that applies a SQL-like
syntax to enumerable collections of data. The typical result of a LINQ query is a queryable
object that you can see as an abstraction for a command to execute that will actually get
you the data. The peculiarity of queryable objects is that you can bind them to controls
regardless of whether data has been retrieved or not.

A queryable object implements the /Queryable interface which, in turn, derives from
IEnumerable. The actual object you get from a LINQ query, though, implements this interface
in a lazy way such that any attempt to read from the object during data binding will actually
execute the query against whatever data store you queried—an in-memory collection, XML
file, DataSet, or perhaps SQL Server table. Here's an example:

// This 1is a query, defined but not executed yet. The returned
// variable is of a type that implements IQueryable.
var query = from c in customers

where c.Country == "USA"

select c;

// Assignment works because IQueryable derives from IEnumerable.

// As soon as data binding is triggered, an attempt to read from the

// results of the query is made, which will ultimately perform the query.
boundServerControll.DataSource = query;

Chapter 10 Data Binding 415

A simple attempt to enumerate the elements in the query result set is sufficient to trigger the
data fetch operation.

Note More information on LINQ can be found starting at the following page: http.//msdn.
microsoft.com/en-us/library/bb397926.aspx.

Data-Binding Properties

All data-bound controls implement the DataSource and DataSourcelD properties, plus a few
more. The full class diagram for data binding in ASP.NET is detailed in Figure 10-1.

BulletedList

ListBox

DropDownlList GridView

CheckBoxList FormView —®

RadioButtonList DetailsView Each control has its
own set of properties

DataTextField

DataTextFormatString . | | .)
DataValueField 0—| List Control CompositeDataBoundControl |—0 DataKeyField
AppendDataBoundltems I]
ListView | <—| DataBoundControl DataMember
DataSourceObject

This control has its
own set of properties

| BaseDataBoundControl DataSource
I DataSourcelD
| WebControl |
| BaseDatalList |
| DataGrid | | DatalList l—ODataSource
DataSourcelD
DataMember
DataKeyField
DataKeys

FIGURE 10-1 Class diagram for data binding in ASP.NET.

http://msdn.�microsoft.com/en-us/library/bb397926.aspx
http://msdn.�microsoft.com/en-us/library/bb397926.aspx
http://msdn.�microsoft.com/en-us/library/bb397926.aspx

416

Part Il ASP.NET Pages and Server Controls

As you can see, there are two base classes and subsequently two main subtrees—one rooted
in BaseDatalist and one rooted in BaseDataBoundControl. The diagram doesn't extend in a
uniform manner and clearly denotes that the various controls have been added at different
times. You see this clearly from the distribution of the same set of fundamental properties in
the controls derived from BaseDatalist and BaseDataBoundControl.

Let's explore in more detail the various data-binding properties.

Note For some reason, the Repeater control—a low-level iterative control—doesn't inherit
from either of the classes in the diagram. It inherits directly from the Control class. In spite of this,
Repeater has everything that's needed to be considered an iterative control.

The DataSource Property

The DataSource property lets you specify the data source object the control is linked to.

Note that this link is logical and does not result in any overhead or underlying operation until
you explicitly choose to bind the data to the control. This operation is triggered by calling the
DataBind method. When the DataBind method executes, the control actually loads data from
the associated data source, evaluates the data-bound properties (if any), and generates the
markup to reflect changes. The property is defined as follows:

public virtual object DataSource {get; set;}

The DataSource property is declared of type object and can ultimately accept objects that
implement either /Enumerable (including data readers) or IListSource. By the way, only
DataSet and DataTable implement the IListSource interface.

The DataSource property of a data-bound control is generally set programmatically.
However, nothing prevents you from adopting a kind of declarative approach as follows:

<asp:DropDownList runat="server" id="thelList" DataSource="<%# GetData() %>"
/>

The content of the drop-down list control will be determined by the object returned by the
GetData method. In this example, GetData is a public or protected member of the code-
behind page class that returns a bindable object. The # symbol in the code block indicates
that the expression will be evaluated only after a call is made to the method DataBind on the
page that contains the DropDownlList control or on the control itself.

Chapter 10 Data Binding 417

Note How can a data-bound control figure out which actual object it is bound to? Will it be a
collection, a data reader, or perhaps a DataTable?

All standard data-bound controls are designed to work only through the /Enumerable interface.
For this reason, any object bound to DataSource is normalized to an object that implements
IEnumerable. In some cases, the normalization is as easy (and fast) as casting the object to the
IEnumerable interface. In other cases—specifically, when DataTable and DataSet are involved—
an extra step is performed to locate a particular named collection of data that corresponds to
the value assigned to the DataMember property.

There's no public function to do all this work, although a similar helper class exists in the ASP.NET
framework but is flagged as internal. What this helper class does, though, can be easily replicated
by custom code: it just combines an array of if statements to check types and does casting and
conversion as appropriate.

The DataSourcelD Property

The DataSourcelD property gets or sets the ID of the data source component from which the
data-bound control retrieves its data. This property is the point of contact between data-
bound controls and a special family of controls—the data source controls—that includes
SglDataSource and ObjectDataSource. (I'll cover these controls in more detail later in the
chapter.)

public virtual string DataSourceID {get; set;}

By setting DataSourcelD, you tell the control to turn to the associated data source control for
any needs regarding data—retrieval, paging, sorting, counting, or updating.

Like DataSource, DataSourcelD is available on all data-bound controls. The two properties
are mutually exclusive. If both are set, you get an invalid operation exception at run time.
Note, though, that you also get an exception if DataSourcelD is set to a string that doesn't
correspond to an existing data source control.

The DataMember Property
The DataMember property gets or sets the name of the data collection to extract when data
binding to a data source:

public virtual string DataMember {get; set;}

You use the property to specify the name of the DataTable to use when the DataSource
property is bound to a DataSet object:

var data = new DataSet();
var adapter = new SqlDataAdapter(commandText, connectionString);
adapter.Fill(data);

418

Part Il ASP.NET Pages and Server Controls

// Table is the default name of the first table in a
// DataSet filled by an adapter

grid.DataMember = "Table";

grid.DataSource = data;

grid.DataBind(Q);

DataMember and DataSource can be set in any order, provided that both are set before
DataBind is invoked. DataMember has no relevance if you bind to data using DataSourcelD
with standard data source components.

The DataTextField Property

Typically used by list controls, the DataTextField property specifies which property of a
data-bound item should be used to define the display text of the nth element in a list control:

public virtual string DataTextField {get; set;}

For example, for a drop-down list control the property feeds the displayed text of each item
in the list. The following code creates the control shown in Figure 10-2:

CountrylList.DataSource = data;

CountrylList.DataTextField = "country";
CountryList.DataBind(Q);

Brazil hd

Argentina Company City
Austria io Mineiro Sao Paulo
Belgium §

Brazil Arquibaldo Sao Paulo
Canada gt Lanchonetes Campinas
Denmark Carnes Rio de Janeiro
Finland licia Rio de Janeiro
France K

Germany Cozinha Sao Paulo
Ireland Adocicados Rio de Janeiro
Italy o Hipermercados Sac Paulo
Mexico ton Importadora Resende
Norway

Poland

Portugal

Spain

Sweden

Switzerland

UK

UsA

Venezuela

FIGURE 10-2 A drop-down list control filled with the country column of a database table.

An analogous behavior can be observed for other list controls, such as ListBox and
CheckBoxList.

Note List controls can automatically format the content of the field bound through the
DataTextField property. The format expression is indicated via the DataTextFormatString

property.

Chapter 10 Data Binding 419

The DataValueField Property

Similar to DataTextField, the DataValueField property specifies which property of a
data-bound item should be used to identify the nth element in a list control:

public virtual string DataValueField {get; set;}

To understand the role of this property, consider the markup generated for a drop-down list,
set as in the code snippet shown previously:

<select name="CountryList" id="CountryList">
<option selected="selected" value="[A11]">[A11]</option>
<option value="Argentina">Argentina</option>
<option value="Austria">Austria</option>

</seiéét>
The text of each <option> tag is determined by the field specified through DataTextField; the

value of the value attribute is determined by DataValueField. Consider the following code
that fills a ListBox with customer names:

CustomerList.DataMember = "Table";
CustomerList.DataTextField = "companyname";
CustomerList.DataValueField = "customerid";

CustomerList.DataSource = data;
CustomerList.DataBind();

If DataValueField is left blank, the value of the DataTextField property is used instead. Here's
the corresponding markup:

<select size="4" name="CustomerList" id="CustomerList">
<option value="BOTTM">Bottom-Dollar Markets</option>
<option value="LAUGB">Laughing Bacchus Wine Cellars</option>

</select>

As you can see, the value attribute now is set to the customer ID—the unique, invisible value
determined by the customerid field. The content of the value attribute for the currently
selected item is returned by the SelectedValue property of the list control. If you want to

access programmatically the displayed text of the current selection, use the Selected/tem.Text
expression.

The AppendDataBoundltems Property

This Boolean property indicates whether the data-bound items should be appended to
the existing contents of the control or whether they should overwrite them. By default,
AppendDataBoundItems is set to false, meaning that data-bound contents replace any

existing contents.

public virtual bool AppendDataBoundItems {get; set;}

420 Part Il ASP.NET Pages and Server Controls

AppendDataBounditems is useful when you need to combine constant items with data-
bound items. For example, imagine you need to fill a drop-down list with all the distinct
countries/regions in which you have a customer. The user will select a country/region and see
the list of customers who live there. To let users see all the customers in any country/region,
you add an unbound element, such as [All].

<asp:DropDownList runat="server" ID="CountryList"
AppendDataBoundItems="true">
<asp:ListItem Text="[A11]" />
</asp:DropDownList>

With AppendDataBounditems set to false, the [All] item will be cleared before data-bound
items are added.

The DataKeyField Property

The DataKeyField property gets or sets the key field in the specified data source. The
property serves the need of some data list controls that allow item selection and master/
detail views. Controls that support this property are viewable in Figure 10-1 and are
DataGrid, Datalist, and view controls.

All of these controls allow you to select a displayed item over a postback. Following the
selection, however, these controls provide some reference about the data item associated
with the selected row. The DataKeyField indicates which property on the bound data item
identifies the selected record.

Note that the identification of the record is unequivocal only if the field is uniquely
constrained in the original data source.

public virtual string DataKeyField {get; set;}

For example, imagine you display customers in a grid and allow users to click and drill down
on the orders placed by that customer. When the user clicks, a postback occurs in which
you can retrieve the value of the key field that uniquely identifies the selected data item. By
setting DataKeyfField to the Customerld property—presumably the primary key field—you
retrieve the ID of the selected customer and can plan further drill-down queries.

The DataKeyField property is coupled with the DataKeys array property. When DataKeyField
is set, DataKeys contains the value of the specified key field for all the control's data items
currently displayed in the page. You retrieve the actual key value using the following
expression:

// Gets you the value of the specified data key for the item at the given position
GridViewl.DataKeys[GridViewl.SelectedIndex];

Most controls, however, provide a handy SelectedValue property that just wraps the previous
expression.

Chapter 10 Data Binding 421

Note View controls (for example, GridView and FormView) have a richer programming
interface, and they extend the DataKeyField property to an array of strings and rename it to
DataKeyNames. In this way, you can identify data items using multiple key values.

Data-Bound Controls

Data-bound controls are components whose whole interface is driven by one or more
columns of data read from of a feasible data source. As you can see in Figure 10-1, there are
quite a few types of data-bound controls. We can summarize that into three main categories:
list controls, iterative controls and, the functionally richest of all, view controls.

List Controls

List controls display (or at least store in memory) many items at the same time—specifically,
the contents of the bound data source. Depending on its expected behavior, the control
picks the needed items from memory and properly formats and displays them. List controls
include DropDownlList, CheckBoxList, RadioButtonlList, ListBox, and BulletedList. All list controls
inherit from the base ListControl class. Let's find out some more details.

The DropDownlList Control

The DropDownlList control enables users to select one item from a single-selection drop-
down list. You can specify the size of the control by setting its height and width in pixels, but
you can't control the number of items displayed when the list drops down. Table 10-1 lists
the most commonly used properties of the control.

TABLE 10-1 Properties of the DropDownlList Control

Property Description

AppendDataBoundItems Indicates whether statically defined items should be maintained or
cleared when adding data-bound items

AutoPostBack Indicates whether the control should automatically post back to the
server when the user changes the selection

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourcelD ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field used to supply the value of a list item

422

Part Il ASP.NET Pages and Server Controls

Property Description

Items Gets the collection of items in the list control
SelectedIndex Gets or sets the index of the selected item in the list
Selectedltem Gets the selected item in the list

SelectedValue Gets the value of the selected item in the list

The DropDownlList control, as well as many other server controls, features some properties
to configure the graphical aspect of the final markup. At rendering time, these properties
are transformed in cascading style sheet (CSS) style properties. The best practice today is
to avoid style properties such as BorderColor and ForeColor and use CSS classes instead.
Whenever possible and suitable, you should adhere to this de facto standard and emit plain
HTML markup out of server controls.

The DataTextField and DataValueField properties don't accept expressions, only plain prop-
erty names. If you need to combine and display two or more fields from the data source, it is
recommended that you preprocess that data at the source and bind data already in a display
format.

Note The ASP.NET DropDownlList control doesn't support groups of options as provided by the
HTML <optgroup> element. There are various ways to work around this limitation.

To start off, you can create your own customized drop-down control and override the
RenderContents methods. The method is invoked just when the control is requested to write out
its markup. You can add a new attribute to any option that indicates the group. If you take this
route, remember also to update the view state to also store the additional group attribute. Il
return to custom controls and their view state management in the next chapter.

Another approach entails creating a <tagMapping> section in the configuration file and mapping
standard DropDownlList controls to your customized drop-down control. In this way, you don't
even need to change the markup of your ASPX pages and can just add option groups.

Finally, you can keep on using standard DropDownlList controls but add some jQuery code
that adds option groups on the fly as the page is loaded in the browser. I'll cover jQuery in
Chapter 21.

The CheckBoxList Control

The CheckBoxList control is a single monolithic control that groups a collection of selectable
list items with an associated check box, each of which is rendered through an individual
CheckBox control. The properties of the child check boxes are set by reading the associated
data source. You insert a check box list in a page as follows:

<asp:CheckBoxList runat="server" id="employeesList">

Table 10-2 lists the specific properties of the CheckBoxList control.

Chapter 10 Data Binding 423

TABLE 10-2 Properties of the CheckBoxList Control

Property Description

AppendDataBoundltems Indicates whether statically defined items should be maintained or
cleared when adding data-bound items

AutoPostBack Indicates whether the control should automatically post back to the
server when the user changes the selection

CellPadding Indicates pixels between the border and contents of the cell

CellSpacing Indicates pixels between cells

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourcelD ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field used to supply the value of a list item

Items Gets the collection of items in the list control

RepeatColumns Gets or sets the number of columns to display in the control

RepeatDirection

Gets or sets a value that indicates whether the control displays vertically
or horizontally

RepeatLayout Gets or sets the layout of the check boxes: Table, Flow, OrderedList,
UnorderedList

SelectedIndex Gets or sets the index of the first selected item in the list—the one with
the lowest index

SelectedItem Gets the first selected item

SelectedValue Gets the value of the first selected item

TextAlign Gets or sets the text alignment for the check boxes

The CheckBoxList does not supply any properties that know which items have been
selected. But this aspect is vital for any Web application that uses selectable elements. The
CheckBoxList can have any number of items selected, but how can you retrieve them?

Any list control has an Items property that contains the collection of the child items. The
Items property is implemented through the ListitemCollection class and makes each con-
tained item accessible via a List/tem object. The following code loops through the items

stored in a CheckBoxList control and checks the Selected property of each of them:

foreach (var item in chkList.Items)
{
if (item.Selected) {
// This item is selected
var itemValue = item.Value;

424 Part Il ASP.NET Pages and Server Controls

Figure 10-3 shows a sample page that lets you select some country/region names and
composes an ad hoc query to list all the customers from those countries/regions.

‘€ hitp://localhost:27374/CountryList.aspx - Windows Internet Explorer (=% B =<=|
@ O < [&] ttp://iocalhost2r374/Countrytist.a: = | 2 [45| % | [© 8ing o~

i Favorites | o5

@ http://localhost:27374/CountryList.aspx - ~ [@ v Pagev Safetyv Tools~ @+ =

My ASP.NET APPLICATION

Home About

SELECT THE COUNTRIES FOR WHICH YOU WANT TO SEE CUSTOMERS LISTED

[Fl argentina [austria [gelgium [Brazil [Flcanada [Flpenmark [Finland
[rrance DGermany‘ Cireland Dltal;.- [Mexico DNorwa;.- Croland
[Elrortugal [spain [Flsweden [switzerland [uk Fusa [Flvenezuela L

Antonio Moreno Taqueria
Centro comercial Moctezuma
Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store

Let's Stop N Shop

Lonesome Pine Restaurant
Old World Delicatessen
Pericles Comidas clasicas
Rattlesnake Canyon Grocery
Save-a-lot Markets

n

<]] v

Done /" Trusted sites | Protected Mode: Off 5+ ®100% ~

FIGURE 10-3 A horizontally laid out CheckBoxList control in action.

Note that the SelectedXXX properties work in a slightly different manner for a CheckBoxList
control. The SelectedIndex property indicates the lowest index of a selected item. By setting
SelectedIndex to a given value, you state that no items with a lower index should be selected
any longer. As a result, the control automatically deselects all items with an index lower than
the new value of SelectedIndex. Likewise, Selectedl/tem returns the first selected item, and
SelectedValue returns the value of the first selected item.

The RadioButtonList Control

The RadioButtonList control acts as the parent control for a collection of radio buttons. Each
of the child items is rendered through a RadioButton control. By design, a RadioButtonList
can have zero or one item selected. The Selecteditem property returns the selected element
as a Listltem object. Note, though, that there is nothing to guarantee that only one item is
selected at any time. For this reason, be extremely careful when you access the Selected/tem
of a RadioButtonList control—it could be null.

Chapter 10 Data Binding 425

if (radioButtons.SelectedValue != null)

{

// Process the selection here

3

The control supports the same set of properties as the CheckBoxList control and, just like it,
accepts some layout directives. In particular, you can control the rendering process of the list
with the RepeatLayout and RepeatDirection properties. By default, the list items are rendered
within a table, which ensures the vertical alignment of the companion text. The property that
governs the layout is RepeatLayout. The alternative is to display the items as free HTML text,
using blanks and breaks to guarantee some sort of minimal structure. RepeatDirection is the
property that controls the direction in which, with or without a tabular structure, the items
flow. Feasible values are Vertical (the default) and Horizontal. RepeatColumns is the property
that determines how many columns the list should have. By default, the value is 0, which
means all the items will be displayed in a single row, vertical or horizontal, according to the
value of RepeatDirection.

The ListBox Control

The ListBox control represents a vertical sequence of items displayed in a scrollable window.
The ListBox control allows single-item or multiple-item selection and exposes its contents
through the usual /tems collection, as shown in the following code:

<asp:listbox runat="server" id="thelListBox"
rows="5" selectionmode="Multiple" />

You can decide the height of the control through the Rows property. The height is measured
in number of rows rather than pixels or percentages. When it comes to data binding, the
ListBox control behaves like the controls discussed earlier in the chapter.

Two properties make this control slightly different than other list controls—the Rows
property, which represents the number of visible rows in the control, and the SelectionMode
property, which determines whether one or multiple items can be selected. The program-
ming interface of the list box also contains the set of Selected XXX properties we considered
earlier. In this case, they work as they do for the CheckBoxList control—that is, they return the
selected item with the lowest index.

Note All the list controls examined so far support the SelectedindexChanged event, which is
raised when the selection from the list changes and the page posts back to the server. You can
use this event to execute server-side code whenever a control is selected or deselected.

426

Part Il ASP.NET Pages and Server Controls

The BulletedList Control

The BulletedList control is a programming interface built around the <u/> and <o/> HTML
tags, with some extra features such as the bullet style, data binding, and support for custom
images. The following example uses a custom bullet object:

<asp:bulletedlist runat="server" bulletstyle="Square">
<asp:Tistitem>0One</asp:1istitem>
<asp:Tlistitem>Two</asp:1istitem>
<asp:Tistitem>Three</asp:Tistitem>

</asp:bulletedlist>

The bullet style lets you choose the style of the element that precedes the item. You can
use numbers, squares, circles, and uppercase and lowercase letters. The child items can be
rendered as plain text, hyperlinks, or buttons. Table 10-3 details the main properties of a

BulletedList control.

TABLE 10-3 Properties of the BulletedList Control

Property Description

AppendDataBoundltems Indicates whether statically defined items should be maintained or
cleared when adding data-bound items

BulletimageUrl Gets or sets the path to the image to use as the bullet

BulletStyle Determines the style of the bullet

DataMember The name of the table in the DataSource to bind

DataSource The data source that populates the items of the list

DataSourcelD ID of the data source component to provide data

DataTextField Name of the data source field to supply the text of list items

DataTextFormatString Formatting string used to visually format list items to be displayed

DataValueField Name of the data source field to supply the value of a list item

DisplayMode Determines how to display the items: as plain text, link buttons, or
hyperlinks

FirstBulletNumber Gets or sets the value that starts the numbering

Items Gets the collection of items in the list control

Target Indicates the target frame in the case of hyperlink mode

The items of a BulletedList control support a variety of graphical styles—disc, circle, custom
image, plus a few types of numberings, including roman numbering. The initial number can
be programmatically set through the FirstBulletNumber property. The DisplayMode property
determines how to display the content of each bullet—plain text (the default), link button, or
hyperlink. In the case of link buttons, the Click event is fired on the server to let you handle
the event when the page posts back. In the case of hyperlinks, the browser displays the
target page in the specified frame—the Target property. The target URL coincides with the
contents of the field specified by DataValueField.

Chapter 10 Data Binding 427

Figure 10-4 shows a sample page that includes RadioButtonList and BulletedList controls.
The radio-button list is bound to the contents of a system enumerated type—BulletStyle—
and displays as selectable radio buttons the various bullet styles. To bind the contents of an
enumerated type to a data-bound control, you do as follows:

BulletOptions.DataSource = Enum.GetValues(typeof(BulletStyle));
BulletOptions.SelectedIndex = 0;
BulletOptions.DataBind();

To retrieve and set the selected value, use the following code:

var style = (BulletStyle) Enum.Parse(typeof(BulletStyle),
BulletOptions.SelectedValue);
BulletedListl.BulletStyle = style;

(& hitp://localhost27374/Radio.aspx - Windows Intemet Explorer ===
&) = [E] mpsnocahest2r +[2[4 x| [l sing » -
s Favorites | 95

| @ hitpiriocanost27374/Radio... | il v [e = Pagev Safety~ Tools~ @@=

My ASP.NET APPLICATION

Home About

@ Notset @ Numbered © Loweralpha

© Upperalpha © LowerRoman © UpperRoman

m

® pisc @ circle © square

® CustomImage

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland
France
Germany
Ireland
Ttaly
Mexico

B N 22 2R A

— Manwse
< i] v

Done «/ Trusted sites | Protected Mode: Off v B100% -

FIGURE 10-4 A sample page to preview the style of a BulletedList control.

Iterative Controls

Iterative controls supply a template-based mechanism to create free-form user interfaces.
Iterative controls take a data source, loop through the items, and iteratively apply user-
defined HTML templates to each row. This basic behavior is common to all three ASP.NET
iterators: Repeater, Datalist, and DataGrid. Beyond that, iterative controls differ from each
other in terms of layout capabilities and functionality.

Iterative controls differ from list controls because of their greater rendering flexibility. An
iterative control lets you apply an ASP.NET template to each row in the bound data source.

428

Part Il ASP.NET Pages and Server Controls

A list control, on the other hand, provides a fixed and built-in template for each data item.
List controls are customizable to some extent, but you can’t change anything other than the
text displayed. No changes to layout are supported. On the other hand, using a list control is
considerably easier than setting up an iterative control, as you'll see in a moment. Defining
templates requires quite a bit of declarative code, and if accomplished programmatically, it
requires that you write a class that implements the ITemplate interface. A list control requires
only that you go through a few data-binding properties.

Meanwhile, let’s briefly meet each control. When they are properly customized and
configured, there's no graphical structure—be it flat or hierarchical—that Repeater and
Datalist controls can't generate.

The Repeater Control

The Repeater displays data using user-provided layouts. It works by repeating a specified
ASP.NET template for each item displayed in the list. The Repeater is a rather basic templated
data-bound control. It has no built-in layout or styling capabilities. All formatting and layout
information must be explicitly declared and coded using HTML literals, CSS classes, and
ASP.NET controls.

Table 10-4 lists the main properties exposed by the control, not counting those inherited
from the base class WebControl.

TABLE 10-4 Properties of the Repeater Control

Property Description

AlternatingltemTemplate Template to define how every other item is rendered.
DataMember The name of the table in the DataSource to bind.
DataSource The data source that populates the items of the list.
DataSourcelD ID of the data source component to provide data.
FooterTemplate Template to define how the footer is rendered.
HeaderTemplate Template to define how the header is rendered.

Items Gets a RepeaterltemCollection object—that is, a collection of

Repeaterltem objects. Each element of the collection represents a
displayed data row in the Repeater.

ItemTemplate Template to define how items are rendered.
SeparatorTemplate Template to define how the separator between items is to be
rendered.

For the most part, properties are the template elements that form the control’s user inter-
face. The Repeater populates the Items collection by enumerating all the data items in the
bound data source. For each data-bound item (for example, a table record), it creates a

Chapter 10 Data Binding 429

Repeateritem object and adds it to the /tems collection. The RepeaterltemCollection class is a
plain collection class with no special or peculiar behavior. The Repeateritem class represents
a displayed element within the overall structure created by the Repeater. The Repeateritem
contains properties to point to the bound data item (such as a table record), the index, and
the type of the item (regular item, alternating item, header, footer, and so on). Here's a quick
example of a Repeater:

<asp:Repeater ID="Repeaterl" runat="server">
<HeaderTemplate>
<h2>We have customers in the following cities</h2>
<hr />
</HeaderTempTlate>
<SeparatorTemplate>
<hr />
</SeparatorTemplate>
<ItemTemplate>
<%# Eval("City")%>

<%# Eval("Country")%>
</ItemTemplate>
<FooterTemplate>
<hr />
<%# CalcTotal() %> cities
</FooterTemplate>
</asp:Repeater>

Bound to the output of the following method call, the structure produces what's shown in
Figure 10-5:

// Currently selected country name
var country = Countries.SelectedValue;

// Make a call to the DAL to grab cities and countries
var repo = new CustomerRepository();
var data repo.GetCitiesWithCustomers(country);

// Bind
Repeaterl.DataSource = data;
Repeaterl.DataBind();

The method on the data access layer ends up placing a SQL query like the one shown next.
(As you'll see in Chapter 14, the data access layer can be written using plain ADO.NET as
well as LINQ-to-SQL, Entity Framework, NHibernate, or any other Object/Relational Mapper
framework.)

SELECT DISTINCT country, city FROM customers WHERE country=@TheCountry

The @TheCountry parameter is the name of the country/region picked from the
drop-down list.

430

Part Il ASP.NET Pages and Server Controls

€ nhttp://] 27374/ T aspx - Windows Internet Explorer (=% B =<=|

@Q - |g, hitp:/localh.. v| 2] ‘ 4,| X Hb Bing o~
i Favorites | o5
| @ http://localhost27374/T... | far - v [dh v Pagev Safetyv

My ASP.NET APPLICATION

Home About
Spain |z|

WE HAVE CUSTOMERS IN THE FOLLOWING CITIES

m

Barcelona Spain

Madrid Spain

Sevilla Spain

3 cities

« i l v

/" Trusted sites | Protected Mode: Off v H10% -

FIGURE 10-5 A sample Repeater control in action. No predefined list control can generate such a
free-form output.

Of all the templates, only ltemTemplate and AlternatingltemTemplate are data-bound,
meaning that they are repeated for each item in the data source. You need a mechanism

to access public properties on the data item (such as a table record) from within the tem-
plate. The Eval method takes the name of the property (for example, the name of the table
column) and returns the content. You'll learn more about Eval and <%# ... %> code blocks in
a moment when we're discussing data-binding expressions.

The Datalist Control

The Datalist is a data-bound control that begins where the Repeater ends and terminates a
little before the starting point of the DataGrid control. In some unrealistically simple cases,
you can even take some code that uses a Repeater, replace the control, and not even notice
any difference. The Datalist overtakes the Repeater in several respects, mostly in the area of
graphical layout. The Datalist supports directional rendering, meaning that items can flow
horizontally or vertically to match a specified number of columns. Furthermore, it provides
facilities to retrieve a key value associated with the current data row and has built-in support
for selection and in-place editing.

In addition, the Datalist control supports more templates and can fire some extra events
beyond those of the Repeater. Data binding and the overall behavior are nearly identical for
the Repeater and Datalist controls.

In addition to being a naming container, the Datalist class implements the /RepeatinfoUser
interface. The IRepeatinfoUser interface defines the properties and methods that must be
implemented by any list control that repeats a list of items. This interface is also supported
by the CheckBoxList and RadioButtonList controls and is the brains behind the RepeatXXX

Chapter 10 Data Binding 431

properties you met earlier. Here's how to rewrite the previous example to get stricter control
over the output:

<asp:DatalList ID="DatalListl" runat="server" RepeatColumns="5"
GridLines="Both">
<FooterStyle Font-Bold="true" ForeColor="blue" />
<HeaderTemplate>
<h2>We have customers in the following cities</h2>
</HeaderTemplate>
<ItemTemplate>
<%# Eval("City") %> <%# Eval("Country")%>
</ItemTemplate>
<FooterTemplate>
<%# CalcTotal() %> cities
</FooterTemplate>
</asp:DatalList>

Note the FooterStyle tag; the Datalist also lets you explicitly style the content of each
supported template.

Note The Datalist control is deprecated in ASP.NET 4. If you're building a feature-rich user
interface, you might want to take into account more recent view controls, such as the ListView
control.

The DataGrid Control

The DataGrid is an extremely versatile data-bound control that is a fixed presence in any
real-world ASP.NET application. Although it is fully supported, the DataGrid is pushed into
the background by the introduction of a new and much more powerful grid control—the
GridView.

The DataGrid control renders a multicolumn, fully templated grid and provides a highly
customizable, Microsoft Office Excel-like user interface. In spite of the rather advanced
programming interface and the extremely rich set of attributes, the DataGrid simply
generates an HTML table with interspersed hyperlinks to provide interactive functionalities
such as sorting, paging, selection, and in-place editing.

The DataGrid is a column-based control and supports various types of data-bound columns,
including text columns, templated columns, and command columns. You associate the
control with a data source using the DataSource property. Just as for other data-bound
controls, no data will be physically loaded and bound until the DataBind method is called.
The simplest way of displaying a table of data using the ASP.NET grid is as follows:

<asp:DataGrid runat="server" id="grid" />

432

Part Il ASP.NET Pages and Server Controls

The control will then automatically generate an HTML table column for each property
available in the bound data source. This is only the simplest scenario, however. If needed, you
can specify which columns should be displayed and style them at will.

View Controls

The internal architecture of data-bound controls has changed quite a bit over the years. The
first version of ASP.NET came with Repeater, Datalist, and DataGrid controls. They were fully
integrated in the page life cycle, capable of raising postback events and able to render data
according to different types of layouts and algorithms.

In successive versions of ASP.NET, the range of data-bound controls extended to include
FormView and DetailsView, which were providing loudly demanded tools for displaying and
editing a single record of data. These controls, however, were based on a revised internal
architecture that made them capable of handling (not just raising) specific postback events.
This was a big change. Along with FormView and DetailsView, Microsoft also introduced the
GridView control—a revamped data grid control based on the same architecture of other
view controls. Finally, in ASP.NET 3.5 Microsoft also made available the ListView control,
which probably is the only view control you would ever want to use. The ListView control
sums up the characteristics of all the others, and by properly programming it you can obtain
data-driven interfaces of any kind.

Let's briefly review the characteristics of these controls, reserving a deeper look at GridView
and ListView for later in the chapter.

The DetailsView Control

The DetailsView is a control that renders a single record of data at a time from its associated
data source, optionally providing paging buttons to navigate between records. It is similar to
the Form View of a Microsoft Access database and is typically used for updating and insert-
ing records in a master/detail scenario.

The DetailsView control binds to any data source control and executes its set of data
operations. It can page, update, insert, and delete data items in the underlying data source as
long as the data source supports these operations. In most cases, no code is required to set
up any of these operations. You can customize the user interface of the DetailsView control
by choosing the most appropriate combination of data fields and styles from within Visual
Studio. You do not have much control over its markup, however.

Finally, note that although the DetailsView is commonly used as an update and insert
interface, it does not natively perform any input validation against the data source schema,
nor does it provide any schematized user interface such as foreign key field drop-down lists
or made-to-measure edit templates for particular types of data.

Chapter 10 Data Binding 433

The FormView Control

FormView can be considered the templated version of the DetailsView. It renders one record

at a time, picked from the associated data source and, optionally, provides paging buttons to
navigate between records. Unlike the DetailsView control, FormView doesn't use any internal

generation of markup and requires the programmer to define the rendering of each item by
using templates. The FormView can support any basic operation its data source provides.

Note that the FormView requires you to define everything through templates, not just the
things you want to change. The FormView has no built-in rendering engine and is limited to
printing out the user-defined templates.

In ASP.NET 4, the FormView control offers a new property—the RenderOuterTable Boolean
property—through which you can skip the usual <table> tag surrounding the generated
markup. This opens up easier CSS styling opportunities, but it also comes at the cost of losing
autoformatting capabilities.

The GridView Control

The GridView is the successor to the DataGrid control and provides its same set of basic
capabilities, plus a long list of extensions and improvements. As mentioned, the DataGrid—
which is still fully supported in ASP.NET—is an extremely powerful and versatile control.
However, it has one big drawback: it requires you to write a lot of custom code, even to
handle relatively simple and common operations such as paging, sorting, editing, or deleting
data. The GridView control was designed to work around this limitation and make two-way
data binding happen with as little code as possible. The control is tightly coupled to the
family of new data source controls, and it can handle direct data source updates as long as
the underlying data source object supports these capabilities.

This virtually codeless two-way data binding is by far the most notable feature of the

new GridView control, but other enhancements are numerous. The GridView control is an
improvement over the DataGrid control also because it has the ability to define multiple
primary key fields, new column types, and style and templating options. The GridView also
has an extended eventing model that allows you to handle or cancel events such as inserting,
deleting, updating, paging, and more.

The ListView Control

The ListView control is fully template-based and allows you to control all aspects of the user
interface via templates and properties. ListView operates in a way that closely resembles the
behavior of existing data-bound controls, such as FormView or DatalList. However, unlike
these controls, the ListView control never creates any user-interface layout on its own. Every
markup tag that the control emits is entirely under the developer’s control, including header,
footer, body, item, selected item, and so on.

434

Part Il ASP.NET Pages and Server Controls

The ListView control binds to any data source control and executes its set of data operations.
It can page, update, insert, and delete data items in the underlying data source as long as the
data source supports these operations. In most cases, no code is required to set up any of
these operations. If code is required, you can also explicitly bind data to the control using the
more traditional DataSource property and related DataBind method.

The rendering capabilities of the ListView control make it suitable for publishing scenarios
where a read-only, but compelling, user interface is needed. The control also works great in
editing scenarios even though it lacks some advanced features such as input validation or
made-to-measure edit templates for particular types of data or foreign keys.

I'll say more on the ListView control in Chapter 11.

Data-Binding Expressions

As you might have figured out, most of the differences between the various data-bound
controls is in how they use custom templates. A template is a piece of markup that the
control injects in the page at a very specific point. More interestingly, the template contains
bindable elements, which are placeholder markup elements whose content is determined by
bound data.

How would you define the content of such bindable elements? In ASP.NET, a special syntax
is required that we'll examine right away. After this, we'll return to the two most widely used
view controls and examine some of their advanced capabilities.

Simple Data Binding

A data-binding expression is any executable code wrapped by <% ... %> and prefixed by the
symbol #. Typically, you use data-binding expressions to set the value of an attribute in the
opening tag of a server control. A data-binding expression is programmatically managed via
an instance of the DataBoundLiteralControl class.

Note The binding expression is really any executable code that can be evaluated at run time. Its
purpose is to generate data that the control can use to bind for display or editing. Typically, the
code retrieves data from the data source, but there is no requirement that this be the case. Any
executable code is acceptable as long as it returns data for binding. A data-binding expression is
evaluated only when something happens that fires the control’'s DataBinding event.

The following code snippet shows how to set the text of a label with the current time:

<asp:label runat="server" Text='<%# DateTime.Now %>' />

Chapter 10 Data Binding 435

Within the delimiters, you can invoke user-defined page methods, static methods, and
properties and methods of any other page component. The following code demonstrates a
label bound to the name of the currently selected element in a drop-down list control:

<asp:label runat="server" Text='<%# dropdown.SelectedItem.Text %>' />

Note that if you're going to use quotes within the expression, you should wrap the expression
itself with single quotes. The data-binding expression can accept a minimal set of opera-
tors, mostly for concatenating subexpressions. If you need more advanced processing and
use external arguments, resort to a user-defined method. The only requirement is that the
method be declared as public or protected.

Important Any data-bound expression you define in the page is evaluated only after DataBind
is called. You can call DataBind either on the page object or on the specific control. If you call
DataBind on the page object, it will recursively call DataBind on all controls defined in the page.
If DataBind is not called, no <%# ...%> expressions will ever be evaluated.

Binding in Action

Data-binding expressions are particularly useful to update, in a pure declarative manner,
properties of controls that depend on other controls in the same page. For example, suppose
you have a drop-down list of colors and a label and that you want the text of the label to
reflect the selected color:

<asp:DropDownList ID="SelColors" runat="server" AutoPostBack="True">
<asp:ListItem>0Orange</asp:ListItem>
<asp:ListItem>Green</asp:ListItem>
<asp:ListItem>Red</asp:ListItem>
<asp:ListItem>Blue</asp:ListItem>

</asp:DropDownList>

<asp:Label runat="server" ID="1bT1Color"
Text="<%# "You selected: " + SelColors.SelectedvValue %>' />

Note that in the <%# ... %> expression you can use any combination of methods, constants,
and properties as long as the final result matches the type of the bound property. Also note
that the evaluation of the expression requires a postback and a call to DataBind in the post-
back event handler. You set the AutoPostBack property to true just to force a postback when
the selection changes in the drop-down list. At the same time, a call to the page’s or label's
DataBind method is required for the refresh to occur.

protected void Page_Load(object sender, EventArgs e)

{

DataBind();
}

You can bind to expressions virtually any control properties regardless of the type.

436

Part Il ASP.NET Pages and Server Controls

Note You can use data-binding expressions to set control properties in a declarative manner;
you cannot use plain code blocks—that is, <% ... %> expressions—without the # symbol for the
same purpose.

Implementation of Data-Binding Expressions

What really happens when a data-binding expression is found in a Web page? How does the
ASP.NET runtime process it? Let's consider the following code:

<asp:label runat="server" id="today" text='<%# DateTime.Now %>' />

When the page parser takes care of the ASPX source file, it generates a class where each
server control has a factory method. The factory method simply maps the tag name to a
server-side control class and transforms attributes on the tag into property assignments. In
addition, if a data-binding expression is found, the parser adds a handler for the DataBinding
event of the control—a Label in this case. Here's some pseudocode to illustrate the point:

private Control _ BuildControlToday() {
Label __ctrl = new Label();
this.today = _ ctrl;
__ctr1.ID = "today";

__ctrl.DataBinding += new EventHandler(this.__DataBindToday);
return __ctrl;

3

The handler assigns the data-binding expression verbatim to the property:

public void __DataBindToday(object sender, EventArgs e) {
Label target;
target = (Label) sender;
target.Text = Convert.ToString(DateTime.Now);

}

If the value returned by the data-binding expression doesn’t match the expected type, you
generally get a compile error. However, if the expected type is string, the parser attempts a
standard conversion through the Convert.ToString method. (All .NET Framework types are

convertible to a string because they inherit the ToString method from the root object type.)

The DataBinder Class

Earlier in this chapter, you met <%# ... %> expressions in the context of templates, along with
the Eval method. The Eval method is a kind of tailor-made operator you use in data-binding
expressions to access a public property on the bound data item. The Eval method we used in
past code snippets is a shortcut method defined on the Page class that wraps the services of
another Eval method, but one that's defined on another class—DataBinder.

Chapter 10 Data Binding 437

Important Through the Eval method—even if it comes from DataBinder or Page—you can
access public properties on the bound data item. A data-bound control is linked to a collection
of data objects. The data item just represents the element in the bound data source that is being
processed at some point. Therefore, the Eval method ends up querying the data item object for
its set of properties.

The DataBinder class supports generating and parsing data-binding expressions. Of
particular importance is its overloaded static method Eval. The method uses reflection to
parse and evaluate an expression against a run-time object. Clients of the Eval method
include Rapid Application Development (RAD) tools such as Microsoft Visual Studio .NET
designers and Web controls that declaratively place calls to the method to feed dynamically
changing values to properties.

The Eval Method
The syntax of DataBinder.Eval typically looks like this:

<%# DataBinder.Eval(Container.Dataltem, expression) %>

A third, optional, parameter is omitted in the preceding snippet. This parameter is a string
that contains formatting options for the bound value. The Container.Dataltem expression
references the object on which the expression is evaluated. The expression is typically a
string with the name of the field to access on the data item object. It can be an expression
that includes indexes and property names. The Dataltem property represents the object
within the current container context. Typically, a container is the current instance of the item
object—for example, a DataGridltem object—that is about to be rendered.

The code shown earlier is commonly repeated, always in the same form. Only the expression
and the format string change from page to page.

A More Compact Eval

The original syntax of the DataBinder.Eval can be simplified in ASP.NET by writing the
following:

<%# Eval(expression) %>

Any piece of code that appears within the <%# ... %> delimiters enjoys special treatment
from the ASP.NET runtime. Let's briefly look at what happens with this code. When the page
is compiled for use, the Eval call is inserted in the source code of the page as a standalone
call. The following code gives you an idea of what happens:

object o = Eval("lastname™);
string result = Convert.ToString(o);

438

Part Il ASP.NET Pages and Server Controls

The result of the call is converted to a string and is assigned to a data-bound literal control—
an instance of the DataBoundLiteralControl class. Then the data-bound literal is inserted in
the page’s control tree.

The TemplateControl class—the parent of Page—is actually enriched with a new protected
(but not virtual) method named Eval. The following pseudocode illustrates how the method
works:

protected object Eval(string expression)

{
if (Page == null)
throw new InvalidOperationException(..);
return DataBinder.Eval(Page.GetDataItem(), expression);
}

As you can see, Eval is a simple wrapper built around the DataBinder.Eval method. The
DataBinder.Eval method is invoked using the current container’s data item. Quite obviously,
the current container’s data is null outside a data-binding operation—that is, in the stack
of calls following a call to DataBind. This fact brings up a key difference between Eval and
DataBinder.Eval.

Getting the Default Data Item

The pseudocode that illustrates the behavior of the page’s Eval method shows a GetDataltem
method from the Page class. What is it? As mentioned, the simplified syntax assumes a
default Container.Dataltem context object. GetDataltem is simply the function that returns
that object.

More precisely, GetDataltem is the endpoint of a stack-based mechanism that traces the
current binding context for the page. Each control in the control tree is pushed onto this
stack at the time the respective DataBind method is called. When the DataBind method
returns, the control is popped from the stack. If the stack is empty and you attempt to call
Eval programmatically, GetDataltem throws an invalid operation exception. In summary,
you can use the Eval shortcut only in templates; if you need to access properties of a data
item anywhere else in the code, resort to DataBinder.Eval and indicate the data item object
explicitly.

Managing Tables of Data

Let’s delve deeper into the programming features of a very popular and widely used view
control—the GridView control.

Chapter 10 Data Binding 439

The GridView's Object Model

The GridView control provides a tabular, grid-like view of the contents of a data source. Each
column represents a data source field, and each row represents a record. The GridView sup-
ports a large set of properties that fall into the following broad categories: behavior, visual
settings, style, state, and templates. Table 10-5 details the properties that affect the behavior
of the GridView.

TABLE 10-5 Behavior Properties of the GridView Control

Property Description

AllowPaging Indicates whether the control supports paging.

AllowSorting Indicates whether the control supports sorting.
AutoGenerateColumns Indicates whether columns are automatically created for each field

in the data source. The default is true.

AutoGenerateDeleteButton

Indicates whether the control includes a button column to let users
delete the record that is mapped to the clicked row.

AutoGenerateEditButton

Indicates whether the control includes a button column to let users
edit the record that is mapped to the clicked row.

AutoGenerateSelectButton

Indicates whether the control includes a button column to let users
select the record that is mapped to the clicked row.

ClientIDMode

Indicates the algorithm used to generate the client ID.

ClientIDRowSuffix

Gets and sets the names of the data fields whose values will
be appended to the client ID when the client ID mode is set to
Predictable.

ClientIDRowSuffixDataKeys

Gets and sets the values appended to the client ID.

DataMember

Indicates the specific table in a multimember data source to bind
to the grid. The property works in conjunction with DataSource.
If DataSource is a DataSet object, it contains the name of the
particular table to bind.

DataSource Gets or sets the data source object that contains the values to
populate the control.

DataSourcelD Indicates the bound data source control.

RowHeaderColumn Name of the column to use as the column header. This property is

designed for improving accessibility.

SortDirection

Gets the direction of the column’s current sort.

SortExpression

Gets the current sort expression.

The SortDirection and SortExpression properties specify the direction and the sort expression
on the column that currently determine the order of the rows. Both properties are set by the
control’s built-in sorting mechanism when users click a column’s header. The whole sorting
engine is enabled and disabled through the AllowSorting property.

440

Part Il ASP.NET Pages and Server Controls

Each row displayed within a GridView control corresponds to a special type of grid item. The
list of predefined types of items is nearly identical to that of the DataGrid, and it includes
items such as the header, rows and alternating rows, the footer, and the pager. These items
are static in the sense that they remain in place for the lifetime of the control in the applica-
tion. Other types of items are active for a short period of time—the time needed to accom-
plish a certain operation. Dynamic items are the edit row, selected row, and EmptyData item.
EmptyData identifies the body of the grid when the grid is bound to an empty data source.

Note The GridView control provides a few properties specifically designed for accessibility.
They are UseAccessibleHeader, Caption, CaptionAlign, and RowHeaderColumn. When you set
RowHeaderColumn, all the column cells will be rendered with the default header style (boldface
type). However, ShowHeader, HeaderStyle, and other header-related properties don't affect the
column indicated by RowHeaderColumn.

Table 10-6 details the style properties available on the GridView control.

TABLE 10-6 Style Properties of the GridView Control

Style Description

AlternatingRowStyle Defines the style properties for every other row in the table

EditRowStyle Defines the style properties for the row being edited

FooterStyle Defines the style properties for the grid's footer

HeaderStyle Defines the style properties for the grid’s header

EmptyDataRowStyle Defines the style properties for the empty row, which is rendered when
the GridView is bound to empty data sources

PagerStyle Defines the style properties for the grid's pager

RowStyle Defines the style properties for the rows in the table

SelectedRowStyle Defines the style properties for the currently selected row

Table 10-7 lists most of the properties that affect the appearance of the control, and Table
10-8 details the templating properties.

TABLE 10-7 Appearance Properties of the GridView Control

Property Description

BacklmageUr! Indicates the URL to an image to display in the background

Caption The text to render in the control’s caption

CaptionAlign Alignment of the caption text

CellPadding Indicates the amount of space (in pixels) between the contents of a cell
and the border

CellSpacing Indicates the amount of space (in pixels) between cells

EmptyDataText Indicates the text to render in the control when it is bound to an empty

data source

Chapter 10 Data Binding 441

Property Description

GridLines Indicates the gridline style for the control

HorizontalAlign Indicates the horizontal alignment of the control on the page
PagerSettings References an object that lets you set the properties of the pager buttons
ShowFooter Indicates whether the footer row is displayed

ShowHeader Indicates whether the header row is displayed

The PagerSettings object groups together all the visual properties you can set on the pager.
Many of these properties should sound familiar to DataGrid programmers. The PagerSettings
class also adds some new properties to accommodate new predefined buttons (first and last
pages), and it uses images instead of text in the links. (You need to figure out a trick to do
the same with a DataGrid.)

TABLE 10-8 Templating Properties of the GridView Control

Template Description

EmptyDataTemplate Indicates the template content to be rendered when the control is bound
to an empty source. This property takes precedence over EmptyDataText if
both are set. If neither is set, the grid isn't rendered if bound to an empty
data source.

PagerTemplate Indicates the template content to be rendered for the pager. This property

overrides any settings you might have made through the PagerSettings
property.

The final block of properties—the state properties—is shown in Table 10-9. State properties
return information about the internal state of the control.

TABLE 10-9 State Properties

Property Description

BottomPagerRow Returns a GridViewRow object that represents the bottom pager of the
grid.

Columns Gets a collection of objects that represent the columns in the grid. The
collection is always empty if columns are autogenerated.

DataKeyNames Gets an array that contains the names of the primary key fields for the
currently displayed items.

DataKeys Gets a collection of DataKey objects that represent the values of the pri-
mary key fields set in DataKeyNames for the currently displayed records.

Editindex Gets and sets the 0-based index that identifies the row currently ren-

dered in edit mode.

EnablePersistedSelection

Indicates whether the current selection is persisted across postbacks. (It's
true by default.) This is the property you want to set to false to avoid the
scenario in which when row 1 is selected on page 1 and you move to
another page, row 1 is selected automatically also on the new page.

442

Part Il ASP.NET Pages and Server Controls

Property Description

FooterRow Returns a GridViewRow object that represents the footer.

HeaderRow Returns a GridViewRow object that represents the header.

PageCount Gets the number of pages required to display the records of the data
source.

Pagelndex Gets and sets the 0-based index that identifies the currently displayed
page of data.

PageSize Indicates the number of records to display on a page.

Rows Gets a collection of GridViewRow objects that represent the data rows
currently displayed in the control.

SelectedDataKey Returns the DataKey object for the currently selected record.

SelectedPersistedDataKey Returns the DataKey object for the record selected on the previous page.

SelectedIndex Gets and sets the 0-based index that identifies the row currently
selected.

SelectedRow Returns a GridViewRow object that represents the currently selected row.

SelectedValue Returns the explicit value of the key as stored in the DataKey object. It's
similar to SelectedDataKey.

TopPagerRow Returns a GridViewRow object that represents the top pager of the grid.

The GridView is designed to leverage the new data source object model, and it works best
when bound to a data source control via the DataSourcelD property. The GridView also sup-
ports the classic DataSource property, but if you bind data in that way, some of the features
(such as built-in updates and paging) become unavailable.

Events of the GridView Control

Many controls in ASP.NET feature pairs of events of the type doing/done. Key operations in
the control life cycle are wrapped by a pair of events—one firing before the operation takes
place, and one firing immediately after the operation is completed. The GridView class is no
exception. The list of events is shown in Table 10-10.

TABLE 10-10 Events Fired by the GridView Control

Event Description

PagelndexChanging, Both events occur when one of the pager buttons is clicked. They

PagelndexChanged fire before and after the grid control handles the paging operation,
respectively.

RowCancelingEdit Occurs when the Cancel button of a row in edit mode is clicked, but
before the row exits edit mode.

RowCommand Occurs when a button is clicked.

RowCreated Occurs when a row is created.

RowDataBound

Occurs when a data row is bound to data.

Chapter 10 Data Binding 443

Event Description

RowDeleting, RowDeleted Both events occur when a row’s Delete button is clicked. They fire
before and after the grid control deletes the row, respectively.

RowEditing Occurs when a row’s Edit button is clicked, but before the control
enters edit mode.

RowUpdating, RowUpdated Both events occur when a row’s Update button is clicked. They fire
before and after the grid control updates the row, respectively.

SelectedIndexChanging, Both events occur when a row’s Select button is clicked. The two

SelectedIndexChanged events occur before and after the grid control handles the select

operation, respectively.

Sorting, Sorted Both events occur when the hyperlink to sort a column is clicked.
They fire before and after the grid control handles the sort
operation, respectively.

RowCreated and RowDataBound events are the same as the DataGrid's ItemCreated and
ItemDataBound events, with new names. The same is true of the RowCommand event, which
is the same as the DataGrid's temCommand event.

The availability of events that announce a certain operation significantly enhances your
programming power. By hooking the RowUpdating event, you can cross-check what is being
updated and validate the new values. Likewise, you might want to handle the RowUpdating
event to HTML-encode the values supplied by the client before they are persisted to the
underlying data store. This simple trick helps you to fend off script injections.

Binding Data to the Grid

If no data source property is set, the GridView control doesn't render anything. If an empty
data source object is bound and an EmptyDataTemplate template is specified, the results
shown to the user have a friendlier look:

<asp:gridview runat="server" datasourceid="MySource">
<emptydatatemplate>
<asp:label runat="server">
There's no data to show in this view.
</asp:Tlabel>
</emptydatatemplate>
</asp:gridview>

The EmptyDataTemplate property is ignored if the bound data source is not empty.

When you use a declared set of columns, the AutoGenerateColumns property of the grid

is typically set to false. However, this is not a strict requirement—a grid can have declared
and autogenerated columns. In this case, declared columns appear first. Note also that
autogenerated columns are not added to the Columns collection. As a result, when column
autogeneration is used, the Columns collection is typically empty.

444 Part Il ASP.NET Pages and Server Controls

Configuring Columns

The Columns property is a collection of DataControlField objects. The DataControlField object
is akin to the DataGrid's DataGridColumn object, but it has a more general name because
these field objects can be reused in other data-bound controls that do not necessarily render
columns. (For example, in the DetailsView control, the same class is used to render a row.)

You can define your columns either declaratively or programmatically. In the latter case, you
just instantiate any needed data field objects and add them to the Columns collection. The
following code adds a data-bound column to the grid:

var field = new BoundField();
field.DataField = "companyname";
field.HeaderText = "Company Name";
grid.ColumnFields.Add(field);

Columns of data are displayed in the order that the column fields appear in the collection. To
statically declare your columns in the .aspx source file, you use the <Columns> tag, as shown
here:

<columns>
<asp:boundfield datafield="customerid" headertext="ID" />
<asp:boundfield datafield="companyname" headertext="Company Name" />
</columns>

Table 10-11 lists the column field classes that can be used in a GridView control. All the
classes inherit DataControlField.

TABLE 10-11 Supported Column Types in GridView Controls

Type Description
BoundField Default column type, displays the value of a field as plain text.
ButtonField Displays the value of a field as a command button. You can choose the link or

the push button style.

CheckBoxField Displays the value of a field as a check box. It is commonly used to render
Boolean values.

CommandField Enhanced version of ButtonField, represents a special command such as Select,
Delete, Insert, or Update. It's rarely useful with GridView controls; the field is
tailor-made for DetailsView controls. (GridView and DetailsView share the set of
classes derived from DataControlField.)

HyperLinkField Displays the value of a field as a hyperlink. When the hyperlink is clicked, the
browser navigates to the specified URL.

ImagefField Displays the value of a field as the Src property of an HTML tag. The
content of the bound field should be the URL to the physical image.

TemplateField Displays user-defined content for each item in the column. You use this column
type when you want to create a custom column field. The template can contain
any number of data fields combined with literals, images, and other controls.

Chapter 10 Data Binding 445

Table 10-12 lists the main properties shared by all column types.

TABLE 10-12 Common Properties of GridView Columns

Property Description

AccessibleHeaderText The text that represents abbreviated text read by screen readers of
Assistive Technology devices.

FooterStyle Gets the style object for the column’s footer.

FooterText Gets and sets the text for the column’s footer.

HeaderlmageUrl Gets and sets the URL of the image to place in the column’s header.

HeaderStyle Gets the style object for the column'’s header.

HeaderText Gets and sets the text for the column’s header.

InsertVisible Indicates whether the field is visible when its parent data-bound control is
in insert mode. This property does not apply to GridView controls.

ItemStyle Gets the style object for the various columns’ cells.

ShowHeader Indicates whether the column’s header is rendered.

SortExpression Gets and sets the expression used to sort the grid contents when the

column’s header is clicked. Typically, this string property is set to the name
of the bound data field.

The properties listed in the table represent a subset of the properties that each column type
actually provides. In particular, each type of column defines a tailor-made set of properties to
define and configure the bound field.

Bound Fields

The BoundField class represents a field that is displayed as plain text in a data-bound control
such as GridView or DetailsView. To specify the field to display, you set the DataField prop-
erty to the field’s name. You can apply a custom formatting string to the displayed value by
setting the DataFormatString property. The NullDisplayText property lets you specify alterna-
tive text to display should the value be null. Finally, by setting the ConvertEmptyStringToNull
property to true, you force the class to consider empty strings as null values.

A BoundField can be programmatically hidden from view through the Visible property, while
the ReadOnly property prevents the displayed value from being modified in edit mode.

To display a caption in the header or footer sections, set the HeaderText and FooterText
properties, respectively. You can also choose to display an image in the header instead of
text. In this case, you set the HeaderImageUr/ property.

Button Fields

A button field is useful to put a clickable element in a grid's column. You typically use a
button field to trigger an action against the current row. A button field represents any action

446 Part Il ASP.NET Pages and Server Controls

that you want to handle through a server-side event. When the button is clicked, the page
posts back and fires a RowCommand event. Figure 10-6 shows a sample.

| product | Packaging | _price |
Chai 10 boxes » 20 bags $168.00 Add
Chang 24 - 12 oz bottles $19.00 Add
Aniseed Syrup 12 - 550 ml bottles $10.00 Add
Chef Anton's Cajun Seasoning 48 - 6 oz jars $22.00 Add
Chef anton's Gumbo Mix 36 boxes $21.35 Add
Grandma's Boysenberry Spread 12 - 8 oz jars $25.00 Add
Uncle Bob's Organic Dried Pears 12 - 1 |b pkgs. $30.00 Add
Northwoods Cranberry Sauce 12 - 12 oz jars $40.00 Add
Mishi Kobe Miku 18 - 500 g pkogs. $97.00 Add
Ikura 12 - 200 ml jars $21.00 Add
Page: 1

Your Shopping Cart

Quantity Product Price

1 Grandma's Boysenberry Spread 25.0000
1 Aniseed Syrup 10.0000
1 Ikura 31.0000
1 Chai 18.0000

FIGURE 10-6 Button fields in a GridView control.
The following listing shows the markup code behind the grid in the figure:

<asp:GridView ID="GridViewl" runat="server" DataSourceID="ObjectDataSourcel"
AutoGenerateColumns="false" AllowPaging="true"
OnRowCommand="Gr1idViewl_RowCommand">
<PagerSettings Mode="NextPreviousFirstLast" />
<Columns>
<asp:BoundField datafield="productname"
headertext="Product" />
<asp:BoundField datafield="quantityperunit"
headertext="Packaging" />
<asp:BoundField datafield="unitprice"
headertext="Price"
htmlencode="false"
DataFormatString="{0:c}">
<itemstyle width="80px" horizontalalign="right" />
</asp:BoundField>
<asp:ButtonField buttontype="Button" text="Add" CommandName="Add" />
</Columns>
</asp:GridView>

Product information is displayed using a few BoundField objects. The sample button col-
umn allows you to add the product to the shopping cart. When users click the button,

the RowCommand server event is fired. In case multiple button columns are available, the
CommandName attribute lets you figure out which button was clicked. The value you assign
to CommandName is any unique string that the code-behind class can understand. Here's an
example:

Chapter 10 Data Binding 447

void GridViewl RowCommand(object sender, GridViewCommandEventArgs e)

{
if (e.CommandName.Equals("Add"))
{
// Get the index of the clicked row
int index = Convert.ToInt32(e.CommandArgument);
// Create a new shopping item and add it to the cart
AddToShoppingCart(index);
}
}

In the sample, the button column shows fixed text for all data items. You get this by setting
the Text property on the ButtonField class. If you want to bind the button text to a particular
field on the current data item, you set the DataTextField property to the name of that field.

You can choose different styles for the button—push, link, or image. To render the button as
an image, do as follows:

<asp:buttonfield buttontype="Image" CommandName="Add"
ImageUrl1="/images/cart.gif" />

To add a ToolTip to the button (or the image), you need to handle the RowCreated event. (I'll
discuss this in more detail later in the chapter.)

Note The DataFormatString property of the BoundField class doesn't work properly without the
additional attribute HtmlEncode="false”. The reason is because ASP.NET first HTML-encodes the
value of bound field and then applies the formatting. But at that point, the bound value is no
longer affected by the specified format string. Enabling HTML-encoding earlier in the cycle is a
security measure aimed at preventing cross-site scripting attacks.

Hyperlink Fields

Hyperlink columns point the user to a different URL, optionally displayed in an inner

frame. Both the text and URL of the link can be obtained from the bound source. In par-
ticular, the URL can be set in either of two ways: through a direct binding to a data source
field or by using a hard-coded URL with a customized query string. You choose the di-

rect binding if the URL is stored in one of the data source fields. In this case, you set the
DataNavigateUrlFields property to the name of the column. In some situations, though, the
URL to access is application specific and is not stored in the data source. In this case, you can

448

Part Il ASP.NET Pages and Server Controls

set the DataNavigateUrIFormatString property with a hard-coded URL and with an array of
parameters in the query string, as follows:

<asp:HyperLinkField DataTextField="productname"
HeaderText="Product"
DataNavigateUrl1Fields="productid"
DataNavigateUrT1FormatString="productinfo.aspx?id={0}"
Target="ProductView" />

When the user clicks, the browser fills the specified frame window with the contents of the
productinfo.aspx?id=xxx URL, where xxx comes from the productid field. The URL can include
multiple parameters. To include more data-bound values, just set the DataNavigateUrlFields
property to a comma-separated list of field names. This behavior extends that of the
DataGrid's hyperlink column in that it supports multiple parameters.

The text of the hyperlink can be formatted too. The DataTextFormatString property can
contain any valid markup and uses the {0} placeholder to reserve space for the data-bound
value. (See Figure 10-7.)

| product | Ppackaging | Price
i 10 boxes » 20 bags £18.00 ;gafvél;:r:r;f;g;wd
24 - 12 oz bottles $19.00
12 - 550 ml bottles $10.00/| 0 units currently on order,
48 - 6 0z jars $22.00
25 bares sanas | RIS
12 - 8 oz jars $25.00/ | Tokye
12 - 1 |b pkgs. $30.00
12 - 12 oz jars $40.00
18 - 500 g pkgs. $97.00
12 - 200 ml jars $31.00

FIGURE 10-7 Hyperlink fields in a GridView control.

Check Box Fields

The CheckBoxField column is a relatively simple bound column that displays a check box. You
can bind it only to a data field that contains Boolean values. A valid Boolean value is a value
taken from a column of type Bit in a SQL Server table (and analogous types in other databas-
es) or a property of type bool if the control is bound to a custom collection. Any other form
of binding will result in a parsing exception. In particular, you get an exception if you bind a
CheckBoxField column to an integer property, thus implicitly assuming that 0 is false and a
nonzero value is true.

Image Fields

The ImageField column type represents a field that is displayed as an image in a data-
bound control. The cell contains an element, so the underlying field must refer-
ence a valid URL. You can compose the URL at will, though. For example, you can use the
DatalmageUrlField to perform a direct binding where the content of the field fills the Src

Chapter 10 Data Binding 449

attribute of the tag. Alternatively, you can make the column cells point to an external
page (or HTTP handler) that retrieves the bytes of the image from any source and passes
them down to the browser. The following code illustrates this approach:

<CoTumns>
<asp:ImageField DataImageUr1Field="employeeid"
DataImageUrTFormatString="showemployeepicture.ashx?id={0}"
DataAlternateTextField="1astname">
<ControlStyle Width="120px" />
</asp:ImageField>
<asp:TemplateField headertext="Employee">
<ItemStyle Width="220px" />
<ItemTemplate>
<%# Eval("titleofcourtesy™) + " " +
Eval("lastname™) + ", " +
Eval("firstname") %>

<%# Eval("title")%>
<hr />
<i><%# Eval("notes")%></i>
</ItemTemplate>
</asp:templatefield>
</Columns>

Cells in the ImageField column are filled with the output of the next URL:

ShowEmpToyeePicture.ashx?id=xxx

Obviously, xxx is the value in the employeeid field associated with DatalmageUrlField.
Interestingly enough, the alternate text can also be data bound. To do this, you use the
DataAlternateTextField property. Figure 10-8 gives a sneak preview of the feature. The page
in Figure 10-8 employs a template column to render the employee's information. I'll return to
template columns in a moment.

I Employee

Ms. Davolio, Nancy
Sales Representative

Education includes & BA In psychology from Colorado State
University In 1970, She also completed "The Art of the Cold Call "
MNancy Is & member of Toastmasters International,

Dr. Fuller, Andrew
Yice President, Sales

Andrew received his BTS commmercial in 1974 and a Ph.D. in
international marketing from the University of Dallas in 1981, He
is fluent in French and Italian and reads German. He joined the
cormpany 35 & sales representative, was promoted to sales
manager in January 1992 and to vice president of sales in March
1993, Andrew is & member of the Sales Management Roundtable,
the Seattle Chamber of Cormmerce, and the Pacific Rim
Importers Association,

FIGURE 10-8 Image fields in a GridView control.

450

Part Il ASP.NET Pages and Server Controls

Templated Fields

Figure 10-9 shows a customized column where the values of several fields are combined. This
is exactly what you can get by using templates. A TemplateField column gives each row in the
grid a personalized user interface that is completely defined by the page developer. You can
define templates for various rendering stages, including the default view, in-place editing,
the header, and the footer. The supported templates are listed in Table 10-13.

TABLE 10-13 Supported Templates

Template Description

AlternatingltemTemplate Defines the contents and appearance of alternating rows. If these items
are not specified, [temTemplate is used.

EdititemTemplate Defines the contents and appearance of the row currently being edited.

This template should contain input fields and possibly validators.
FooterTemplate Defines the contents and appearance of the row’s footer.
HeaderTemplate Defines the contents and appearance of the row’s header.
ItemTemplate Defines the default contents and appearance of the rows.

A templated view can contain anything that makes sense to the application you're building—
server controls, literals, and data-bound expressions. Data-bound expressions allow you to
insert values contained in the current data row. You can use as many fields as needed in a
template. Notice, though, that not all templates support data-bound expressions. The header
and footer templates are not data-bound, and any attempt to use expressions will result in
an exception.

The following code shows how to define the item template for a product column. The
column displays on two lines and includes the name of the product and some information
about the packaging.

<asp:templatefield headertext="Product">
<itemtemplate>
<%# Eval("productname")%>

available in <%# Eval("quantityperunit")%>
</itemtemplate>
</asp:templatefield>

Figure 10-9 demonstrates template fields in action.

Chapter 10 Data Binding 451

(a:\.rr];IIable in 10 boxes % 20 bags $18.00
gr;lr;gle in 24 - 12 oz bottles $19.00
:\rrgﬁ:;g 2" 550 il bottles $10.00
Svatoblo i 8 B s e 2200
Chef Anton's Gumbo Mix £21.36

available in 36 boxes
Grandma's Boysenberry
Spread $£25.00
available in 12 - 8 oz jars

Uncle Bob's Organic Dried

Pears £320.00
available in 12 - 1 |b pkgs.
Northwoods Cranberry Sauce

available in 12 - 12 oz jars $40.00
Mishi Kobe Niku

available in 18 - 500 g pkgs. $97.00
Ikura $31.00

available in 12 - 200 ml jars

FIGURE 10-9 Template fields in a GridView control.

Working with the GridView

A big difference between the old-fashioned DataGrid control and the GridView control is in
how the control interacts with the host page. The interaction that is established between the
DataGrid and the host page is limited to exchanging notifications in the form of postback
events. The DataGrid lets the page know that something happened and leaves the page free
to react as appropriate. The GridView, instead, if bound to a data source component can
resolve postbacks on its own by interacting autonomously with the bound component. For
both DataGrid and GridView controls, however, the main operations are paging, sorting, and
in-place editing.

Paging Data

The ability to scroll a potentially large set of data is an important but challenging feature for
modern, distributed applications. An effective paging mechanism allows customers to inter-
act with a database without holding resources. To enable paging on a GridView control, all
you do is set the AllowPaging property to true. When the AllowPaging property is set to true,
the grid displays a pager bar and prepares to detect a user’s pager button clicks.

When a user clicks to see a new page, the page posts back, but the GridView traps the
event and handles it internally. With the GridView, there's no need to write a handler for the
PagelndexChanged event. The event is still exposed (and partnered with PagelndexChanging),

452

Part Il ASP.NET Pages and Server Controls

but you should handle it only to perform extra actions. The GridView knows how to retrieve
and display the requested new page. Let’s take a look at the following control declaration:

<asp:GridView ID="GridViewl" runat="server"
DataSourceID="0ObjectDataSourcel™ AllowPaging="true" />

Any data the data source component binds to the grid is immediately pageable. As shown
in Figure 10-10, the control displays a pager with a few predefined links (first, previous, next,
and last) and automatically selects the correct subset of rows that fit in the selected page.

Select a country: (4] W

ID Company Contact
BSBEY B's Beverages Yictoria Ashwaorth
CACTU Cactus Comidas para llevar Patricio Simpson

CENTC Centro comercial Moctezuma Francisco Chang

CHOPS Chop-suey Chinese Yang YWang
COMMI Comércio Mineiro Pedro Afonso
COMSH Consolidated Holdings Elizabeth Brown
DRACD Drachenblut Delikatessen Sven Ottlieb
DUMOM Du monde entier Janine Labrune
EASTC Eastern Connection Ann Devon
ERNSH Ernst Handel Roland Mendel

Page: 2

FIGURE 10-10 Moving through pages in a GridView control.

The default user interface you get with the GridView doesn't include the page number.
Adding a page number label is as easy as writing a handler for the PagelndexChanged event:

protected void GridViewl_PageIndexChanged(object sender, EventArgs e)
{

ShowPageIndex();
}
private void ShowPageIndex()
{
CurrentPage.Text = (GridViewl.PageIndex + 1).ToString(Q);
}

Once again, note that the PagelndexChanged handler is not involved with data binding or
page selection as it is with DataGrids. If you don’t need any post-paging operation, you can
blissfully omit it altogether.

What's the cost of this apparently free (and magical) paging mechanism?

The GridView control doesn't really know how to get a new page. It simply asks the bound
data source control to return the rows that fit in the specified page. Paging is ultimately
up to the data source control. When a grid is bound to a Sq/DataSource control, paging

Chapter 10 Data Binding 453

requires that the whole data source be bound to the control. When a grid is bound to an
ObjectDataSource control, paging depends on the capabilities of the business object you're
connecting to.

When the AllowPaging property is set to true, the grid displays a pager bar. You can con-

trol the characteristics of the pager to a large extent, through the <PagerSettings> and
<PagerStyle> tags or their equivalent properties. The pager of the GridView control also
supports first and last page buttons and lets you assign an image to each button. (This is
also possible for DataGrids, but it requires a lot of code.) The pager can work in either of two
modes—displaying explicit page numbers, or providing a relative navigation system. In the
former case, the pager contains numeric links, one representing a page index. In the latter
case, buttons are present to navigate to the next or previous page and even to the first or
last page. The Mode property rules the user interface of the pager. Available modes are listed
in Table 10-14.

TABLE 10-14 Modes of a Grid Pager

Mode Description

NextPrevious Displays next and previous buttons to access the next and previous pages
of the grid

NextPreviousFirstLast Displays next and previous buttons, plus first and last buttons to directly
access the first and last pages of the grid

Numeric Displays numeric link buttons corresponding to the pages of the grid

NumericFirstLast Displays numeric link buttons corresponding to the pages of the grid, plus

first and last buttons to directly access the first and last pages of the grid

Ad hoc pairs of properties—xxxPageText and xxxPagelmageUrl—Ilet you set the labels for
these buttons as desired. The xxx stands for any of the following: First, Last, Next, or Previous.

Sorting Data

Sorting is a delicate, nonlinear operation that normally is quite expensive if performed on the
client. Generally speaking, in fact, the best place to sort records is in the database environ-
ment because of the super-optimized code you end up running most of the time. Be aware
of this as we examine the sorting infrastructure of the GridView control and data source
controls. The GridView doesn't implement a sorting algorithm; instead, it relies on the data
source control (or the page, if bound to an enumerable object) to provide sorted data.

To enable the GridView's sorting capabilities, you set the AllowSorting property to true. When
sorting is enabled, the GridView gains the ability of rendering the header text of columns as
links. You can associate each column with a sorting expression by using the SortExpression
property. A sorting expression is any comma-separated sequence of column names. Each
column name can be enriched with an order qualifier such as DESC or ASC. DESC indicates

454

Part Il ASP.NET Pages and Server Controls

a descending order, while ASC denotes the ascending order. The ASC qualifier is the default;
if the order qualifier value is omitted, the column is sorted in ascending order. The following
code sets up the GridView column for sorting on the productname data source column:

<asp:GridView runat="server" id="MyGridView" DataSourceID="MySource"
AllowSorting="true" AutoGenerateColumns="false">
<CoTumns>
<asp:BoundField datafield="productname" headertext="Product"
sortexpression="productname" />
<asp:BoundField datafield="quantityperunit"
headertext="Packaging" />
</CoTumns>
</asp:GridView>

Just as for paging, with a GridView no manually written code is required to make sorting
work. If properly configured, the GridView's sorting infrastructure works without further in-
tervention and in a bidirectional way—that is, if you click on a column sorted in descending
order, it is sorted in ascending order and vice versa. You need to add some custom code only
if you want to implement more advanced capabilities such as showing a glyph in the header
to indicate the direction. Just as for paging, the main snag with sorting is how the underlying
data source control implements it.

Editing Data

A major strength of the GridView control—which makes up for a major shortcoming of the
DataGrid—is the ability to handle updates to the data source. The DataGrid control provides
only an infrastructure for data editing. The DataGrid provides the necessary user interface
elements and fires appropriate events when the user modifies the value of a certain data
field, but it does not submit those changes back to the data source. Developers are left with
the disappointing realization that they have to write a huge amount of boilerplate code to
really persist changes.

With the GridView control, when the bound data source supports updates, the control can
automatically perform this operation, thus providing a truly out-of-the-box solution. The
data source control signals its capability to update through the CanUpdate Boolean property.

The GridView can render a column of command buttons for each row in the grid. These
special command columns contain buttons to edit or delete the current record. With the
DataGrid, you must explicitly create an edit command column using a special column type—
the EditCommandColumn class. The GridView simplifies things quite a bit for update and
delete operations.

Chapter 10 Data Binding 455

In-place editing refers to the grid’s ability to support changes to the currently displayed
records. You enable in-place editing on a grid view by turning on the AutoGenerateEditButton
Boolean property:

<asp:gridview runat="server" id="GridViewl" datasourceid="MySource"
autogeneratecolumns="false" autogenerateeditbutton="true">

</asp:gridview>

When the AutoGenerateEditButton property is set to true, the GridView displays an additional
column, like that shown in Figure 10-11. By clicking the Edit button, you put the selected row
in edit mode and can enter new data at will.

== Bottom

Company Address City Country
Edit Delete Alfreds Futterkiste Obere Str, 57 Berlin Germany
Edit Delete Ana Trujillo Emparedados vy Avda. de la Constitucion México D.F. Mexico
----------- heladas 2222
Update Cancel Antanio Marena Tagueria| Mataderos 2312 Mléxica D.F. Mexica
Edit Delete Around the Homn 120 Hanaver Sq. London UK
Edit Delzte Berglunds snabbkop Berguvsvagen 8 Luled Sweden
Edit Delzte Blauer See Delikatessen Forsterstr, 57 Mannheim Germany
Edit Delzte Blondesdds| pare et fils 24, place Kléber Strasbourg France
Edit Delzte Balido Comidas preparadas C/ Araguil, 67 fadrid Spain
Edit Delete Bon app' 12, rue des Bouchers Marseille France
Edit Delete Battam-Dollar Markets 23 Tsawassen Blud, Tsawassen Canada

FIGURE 10-11 A GridView that supports in-place editing.

To abort editing and undo any changes, users simply click the Cancel button. The GridView
can handle this click without any external support; the row returns to its original read-only
state; and the EditIndex property takes back its -1 default value—meaning no row is cur-
rently being edited. But what if users click the update link? The GridView first fires the
RowUpdating event and then internally checks the CanUpdate property on the data source
control. If CanUpdate returns false, an exception is thrown. CanUpdate returns false if the
data source control has no update command defined. The successful completion of an up-
date command is signaled throughout the grid via the RowUpdated event.

The GridView collects values from the input fields and populates a dictionary of name/value
pairs that indicate the new values for each field of the row. The GridView also exposes a
RowUpdating event that allows the programmer to validate the values being passed to the
data source object. In addition, the GridView automatically calls Page.IsValid before starting
the update operation on the associated data source. If Page./sValid returns false, the opera-
tion is canceled. This is especially useful if you're using a custom template with validators. If
the grid is bound to an ObjectDataSource control, things go a bit differently. The bound busi-
ness object must have an update method. This method will receive as many arguments as it
needs to work. You can decide to pass parameters individually or grouped in a unique data
structure. This second option is preferable if you have a well-done data access layer (DAL).

456

Part Il ASP.NET Pages and Server Controls

Data Source Components

A data source component is a server control designed to interact with data-bound controls
and hide the complexity of the manual data-binding pattern. Data source components not
only provide data to controls, they also support data-bound controls in the execution of oth-
er common operations such as insertions, deletions, sorting, and updates. Each data source
component wraps a particular data provider—relational databases, XML documents, special
object models, or custom classes. The support for custom classes means that you can now
directly bind your controls to existing classes—for example, classes in your business or data
access layer.

Internals of Data Source Controls

A data source control represents one or more named views of data. Each view manages a
collection of data. The data associated with a data source control is managed through SQL-
like operations such as SELECT, INSERT, DELETE, and COUNT and through capabilities such
as sorting and paging. Data source controls come in two flavors: tabular and hierarchical.
Tabular controls are described in Table 10-15.

TABLE 10-15 Tabular Data Source Controls

Class Description

AccessDataSource Represents a connection to a Microsoft Access database. It inherits from the
SqlDataSource control, but it points to an MDB file and uses the Jet 4.0 OLE
DB provider to connect to the database.

EntityDataSource Allows binding to the results of an Entity Framework query.

LingDataSource Allows binding to the results of any supported LINQ provider, including of
course LINQ-to-SQL. The control offers properties for you to specify the
data context, table name, projection parameters, and where clause.

ObjectDataSource Allows binding to a custom .NET business object that returns data. The class
is expected to follow a specific design pattern and include, for example, a
parameterless constructor and methods that behave in a certain way.

SqlDataSource Represents a connection to an ADO.NET data provider that returns SQL
data, including data sources accessible through OLE DB and ODBC. The
name of the provider and the connection string are specified through prop-
erties.

Note that the Sg/DataSource class is not specific to SQL Server. It can connect to any ADO.
NET provider that manages relational data. Hierarchical data source controls are listed in
Table 10-16.

Chapter 10 Data Binding 457

TABLE 10-16 Hierarchical Data Source Controls

Class Description

SiteMapDataSource Allows binding to any provider that supplies site map information. The
default provider supplies site map data through an XML file in the root
folder of the application.

XmlDataSource Allows binding to XML files and strings with or without schema
information.

Note that data source controls have no visual rendering. They are implemented as controls to
allow for “declarative persistence” (automatic instantiation during the request processing) as
a native part of the .aspx source code and to gain access to the page view state.

Data Source Views

A named view is represented by a data source view object—an instance of the
DataSourceView class. These classes represent a customized view of data in which special set-
tings for sorting, filtering, and other data operations have been defined. The DataSourceView
class is the base class for all views associated with a data source control. The number of views
in a data source control depends on the connection string, characteristics, and actual con-
tents of the underlying data source. In ASP.NET, built-in data source controls support only
one view, the default view. Table 10-17 lists the properties of the DataSourceView class.

TABLE 10-17 Properties of the DataSourceView Class

Property Description

CanDelete Indicates whether deletions are allowed on the underlying data
source. The deletion is performed by invoking the Delete method.

Canlinsert Indicates whether insertions are allowed on the underlying data
source. The insertion is performed by invoking the Insert method.

CanPage Indicates whether the data in the view can be paged.

CanRetrieveTotalRowCount Indicates whether information about the total row count is available.

CanSort Indicates whether the data in the view can be sorted.

CanUpdate Indicates whether updates are allowed on the underlying data

source. The update is performed by invoking the Update method.

Name Returns the name of the current view.

The CanXXX properties indicate not only whether the data source control is capable of
performing the specified operation but also whether that operation is appropriate given the
current status of the data. Table 10-18 lists all the methods supported by the class.

458

WV

Part Il ASP.NET Pages and Server Controls

TABLE 10-18 Methods of the DataSourceView Class

Method Description

Delete Performs a delete operation on the data associated with the view

Insert Performs an insert operation on the data associated with the view

Select Returns an enumerable object filled with the data contained in the underlying

data storage

Update Performs an update operation on the data associated with the view

All data source view objects support data retrieval through the Select method. The method
returns an object that implements the /[Enumerable interface. The real type of the object
depends on the data source control and the attributes set on it.

Hierarchical Data Source Views

Unlike tabular data source controls, which typically have only one named view, hierarchical
data source controls support a view for each level of data that the data source control rep-
resents. Hierarchical and tabular data source controls share the same conceptual specifica-
tion of a consistent and common programming interface for data-bound controls. The only
difference is the nature of the data they work with—hierarchical vs. flat and tabular.

The view class is different and is named HierarchicalDataSourceView. The class features only
one method—Select—which returns an enumerable hierarchical object. Hierarchical data
source controls are, therefore, read-only.

Important Frankly speaking, | don't like data source components much. It's nothing personal;
it's only business—my business layer, to be precise! Data source components have been one of
the several approaches of Microsoft to make programming easier. With data source components
you write less code and write most of your code in classes instead of ASPX pages. The risk | see
with data source components—and the reason why | don’t much like them—is that they end up
being used everywhere and the entire back-end of the application is built around the needs of
some data source components. | haven't used the Sq/DataSource control for years now; | never
used the LingDataSource and have no plans to use the EntityDataSource.

My advice, reflected in the book, can be summarized as follows. If you feel you have the need
to model your business domain via an object model, use LINQ-to-SQL or Entity Framework
and write a serious business layer around that. If the classes in the business layer don’t match
up with the expectations of rich controls like a GridView, add another layer of components that
can be easily plugged in via ObjectDataSource. In any case, if you are going to use data source
components for data binding, the only control worth a look is, in my humble opinion, the
ObjectDataSource control.

Chapter 10 Data Binding 459

The ObjectDataSource Control

The ObjectDataSource class enables user-defined classes to associate the output of their
methods to data-bound controls. Like other data source controls, ObjectDataSource sup-
ports declarative parameters to allow developers to pass page-level variables to the object’s
methods. The ObjectDataSource class makes some assumptions about the objects it wraps.
As a consequence, an arbitrary class can't be used with this data source control. In particular,
bindable classes are expected to have a default constructor, be stateless, and have methods
that easily map to select, update, insert, and delete semantics. Also, the object must perform
updates one item at a time; objects that update their state using batch operations are not
supported. The bottom line is that managed objects that work well with ObjectDataSource
are designed with this data source class in mind.

Programming Interface of ObjectDataSource

The ObjectDataSource component provides nearly the same programmatic interface (events,
methods, properties, and associated behaviors) as the Sq/DataSource, with the addition

of three new events and a few properties. The events the ObjectDataSource fires are re-
lated to the lifetime of the underlying business object the ObjectDataSource is bound to—
ObjectCreating, ObjectCreated, and ObjectDisposing. Table 10-18 lists other key properties of
ObjectDataSource.

TABLE 10-18 Main Properties of ObjectDataSource

Property Description

ConvertNullToDBNull Indicates whether null parameters passed to insert, delete,
or update operations are converted to System.DBNull. This
property is set to false by default.

DataObjectTypeName Gets or sets the name of a class that is to be used as a
parameter for a select, insert, update, or delete operation.

DeleteMethod, DeleteParameters Gets or sets the name of the method and related parameters
used to perform a delete operation.

EnablePaging Indicates whether the control supports paging.

FilterExpression, FilterParameters Indicates the filter expression (and parameters) to filter the

output of a select operation.

InsertMethod, InsertParameters Gets or sets the name of the method and related parameters
used to perform an insert operation.

MaximumRowsParameterName If the EnablePaging property is set to true, indicates the
parameter name of the Select method that accepts the value
for the number of records to retrieve.

OldValuesParameterFormatString Gets or sets a format string to apply to the names of any
parameters passed to the Delete or Update methods.

SelectCountMethod Gets or sets the name of the method used to perform a
select count operation.

460 Part Il ASP.NET Pages and Server Controls

Property Description

SelectMethod, SelectParameters Gets or sets the name of the method and related parameters
used to perform a select operation.

SortParameterName Gets or sets the name of an input parameter used to sort
retrieved data. It raises an exception if the parameter is
missing.

StartRowIndexParameterName If the EnablePaging property is set to true, indicates the

parameter name of the Select method that accepts the value
for the starting record to retrieve.

UpdateMethod, UpdateParameters Gets or sets the name of the method and related parameters
used to perform an update operation.

The ObjectDataSource control uses reflection to locate and invoke the method to handle the
specified operation. The TypeName property returns the fully qualified name of the assembly
that defines the class to call.

Implementing Data Retrieval

The following code snippet illustrates a class that can be used with an object data source. In
the example, the class does not use LINQ-to-SQL or Entity Framework; it is instead based on
plain ADO.NET code. You can easily rewrite it to perform data access via the context of LINQ-
to-SQL or Entity Framework. The Employee class being used is assumed to be a custom class
created just to simplify data manipulation.

public class EmployeeRepository
{

pubTlic static string ConnectionString {

}
pubTlic static void Load(int employeeID) {

}
pubTlic static IList<Employee> LoadA11() {

}
pubTlic static IList<Employee> LoadByCountry(string country) {

}
pubTlic static void Save(Employee emp) {

3
public static void Insert(Employee emp) {

}
pubTlic static void Delete(int employeelD) {

}

Chapter 10 Data Binding 461

If you don't use static methods, the worker class you use with ObjectDataSource must have a
default parameterless constructor. Furthermore, the class should not maintain any state. (The
main drawback of static methods is that they might trip you up when it comes to unit testing
the DAL, if you ever do it.)

The worker class must be accessible from within the .aspx page and can be bound to the
ObjectDataSource control, as shown here:

<asp:0bjectDataSource runat="server" ID="MyObjectSource"
TypeName="DAL.EmployeeRepository"
SelectMethod="LoadA11" />

When the HTTP runtime encounters a similar block in a Web page, it generates code that
calls the LoadAll method on the specified class. The returned data—a collection of Employee
instances—is bound to any control that links to MyObjectSource via the DataSourcelD
property. Let's take a brief look at the implementation of the LoadAll method:

public static EmployeeCollection LoadAl11()

{
var coll = new List<Employee>();
using (var conn = new SqlConnection(ConnectionString)
{
var cmd = new SqlCommand("SELECT * FROM employees", conn);
conn.Open();
var reader = cmd.ExecuteReader();
HelperMethods.Fill1EmployeeList(coll, reader);
reader.Close();
}
return coll;
}

Although it's a bit oversimplified so that it can fit in this section, the preceding code remains
quite clear: you execute a command, fill in a custom collection class, and return it to the
data-bound control. Binding is totally seamless.

The method associated with the SelectMethod property must return any of the following: an
IEnumerable object such as a collection, a DataSet, a DataTable, or an Object. Preferably, the
Select method is not overloaded, although ObjectDataSource doesn't prevent you from using
an overloaded method in your business classes.

462 Part Il ASP.NET Pages and Server Controls

Using Parameters

In most cases, methods require parameters. SelectParameters is the collection you use to add
input parameters to the select method. Imagine you have a method to load employees by
country/region. Here's the code you need to come up with:

<asp:0bjectDataSource ID="ObjectDataSourcel” runat="server"
TypeName="DAL.EmployeeRepository"
SelectMethod="LoadByCountry">
<SelectParameters>
<asp:ControlParameter Name="country" ControlID="Countries"
PropertyName="Selectedvalue" />
</SelectParameters>
</asp:0bjectDataSource>

The preceding code snippet is the declarative version of the following pseudocode, where
Countries is expected to be a drop-down list filled with country/region names:

string country = Countries.SelectedValue;
EmployeeCollection coll = Employees.LoadByCountry(country);

The ControlParameter class automates the retrieval of the actual parameter value and the
binding to the parameter list of the method. What if you add an [All Countries] entry to the
drop-down list? In this case, if the All Countries option is selected, you need to call LoadAll
without parameters; otherwise, if a particular country/region is selected, you need to call
LoadByCountry with a parameter. Declarative programming works great in the simple
scenarios; otherwise, you just write code.

void Page_Load(object sender, EventArgs e)

{
// Must be cleared every time (or disable the viewstate)
ObjectDataSourcel.SelectParameters.Clear();

if (Countries.SelectedIndex == 0)
ObjectDataSourcel.SelectMethod = "LoadAll1";
else

{

ObjectDataSourcel.SelectMethod = "LoadByCountry";

ControlParameter cp = new ControlParameter("country",
"Countries", "Selectedvalue");

ObjectDataSourcel.SelectParameters.Add(cp);

}

Note that data source controls are like ordinary server controls and can be programmatically
configured and invoked. In the code just shown, you first check the selection the user made
and, if it matches the first option (All Countries), configure the data source control to make a
parameterless call to the LoadAll method.

Chapter 10 Data Binding 463

You must clean up the content of the SelectParameters collection upon page loading.

The data source control (more precisely, the underlying view control) caches most of its
properties to the view state. As a result, SelectParameters is not empty when you refresh

the page after changing the drop-down list selection. The preceding code clears only the
SelectParameters collection; performancewise, it could be preferable to disable the view state
altogether on the data source control. However, if you disable the view state, all collections
will be empty on the data source control upon loading.

Important ObjectDataSource allows data to be retrieved and updated while keeping data
access and business logic separate from the user interface. The use of the ObjectDataSource class
doesn’t automatically transform your system into a well-designed, effective n-tiered system. Data
source controls are mostly a counterpart to data-bound controls so that the latter can work more
intelligently.

To take full advantage of ObjectDataSource, you need to have your DAL already in place. It
doesn’t work the other way around. ObjectDataSource doesn't necessarily have to be bound to
the root of the DAL, which could be on a remote location and perhaps behind a firewall. In this
case, you write a local intermediate object and connect it to ObjectDataSource on one end and
to the DAL on the other end. The intermediate object acts as an application-specific proxy and
works according to the application’s specific rules. ObjectDataSource doesn't break n-tiered sys-
tems, nor does it transform existing systems into truly n-tier systems. It greatly benefits, instead,
from existing business and data layers.

Caching Data and Object Instances

The ObjectDataSource component supports caching only when the specified select method
returns a DataSet or DataTable object. If the wrapped object returns a custom collection (as
in the example we're considering), an exception is thrown. Custom object caching is some-
thing you must do on your own.

ObjectDataSource is designed to work with classes in the business layer of the application.
An instance of the business class is created for each operation performed and is destroyed
shortly after the operation is completed. This model is the natural offspring of the stateless
programming model that ASP.NET promotes. In the case of business objects that are par-
ticularly expensive to initialize, you can resort to static classes or static methods in instance
classes. (If you do so, bear in mind what | said earlier regarding unit testing classes with static
methods.)

Instances of the business object are not automatically cached or pooled. Both options,
though, can be manually implemented by properly handling the ObjectCreating and
ObjectDisposing events on an ObjectDataSource control. The ObjectCreating event fires when

464

Part Il ASP.NET Pages and Server Controls

the data source control needs to get an instance of the business class. You can write the han-
dler to retrieve an existing instance of the class and return that to the data source control:

// Handle the ObjectCreating event on the data source control
public void BusinessObjectBeingCreated(object sender,
ObjectDataSourceEventArgs e)

{
BusinessObject bo = RetrieveBusinessObjectFromPool1();
if (bo == null)
bo = new BusinessObject();
e.ObjectInstance = bo;
}

Likewise, in ObjectDisposing you store the instance again and cancel the disposing operation
being executed:

// Handle the ObjectDisposing event on the data source control
public void BusinessObjectBeingDisposed(object sender,
ObjectDataSourceDisposingEventArgs e)

{
ReturnBusinessObjectToPool (e.0ObjectInstance);
e.Cancel = true;

3

The ObjectDisposing event allows you to perform cleanup actions in your business object
before the ObjectDataSource calls the business object’s Dispose method. If you're caching the
business object, as the preceding code has done, be sure to set the cancel flag so that the
business object’s Dispose method isn't invoked and the cached object isn't as a result stored
in a disposed state.

Setting Up for Paging

Three properties participate in paging: EnablePaging, StartRowIndexParameterName, and
MaximumRowsParameterName. As the name clearly suggests, EnablePaging toggles sup-
port for paging on and off. The default value is false, meaning that paging is not turned
on automatically. ObjectDataSource provides an infrastructure for paging, but actual pag-
ing must be implemented in the class bound to ObjectDataSource. In the following code
snippet, the Customers class has a method, LoadByCountry, that takes two additional
parameters to indicate the page size and the index of the first record in the page. The
names of these two parameters must be assigned to MaximumRowsParameterName and
StartRowindexParameterName, respectively.

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
TypeName="DAL.CustomerRepository"
StartRowIndexParameterName="f1irstRow"
MaximumRowsParameterName="totalRows"
SelectMethod="LoadByCountry">
<SelectParameters>
<asp:ControlParameter Name="country" ControlID="Countries"

Chapter 10 Data Binding 465

PropertyName="SelectedValue" />
<asp:ControlParameter Name="totalRows" ControlID="PageSize"
PropertyName="Text" />
<asp:ControlParameter Name="firstRow" ControlID="FirstRow"
PropertyName="Text" />
</SelectParameters>
</asp:0bjectDataSource>

The implementation of paging is up to the method and must be coded manually.
LoadByCountry provides two overloads, one of which supports paging. Internally, paging is
actually delegated to FillCustomerList.

public static CustomerCollection LoadByCountry(string country)
{
return LoadByCountry(country, -1, 0);
}
public static CustomerCollection LoadByCountry(string country,
int totalRows, int firstRow)

{
CustomerCollection coll = new CustomerCollection();
using (SqlConnection conn = new SqlConnection(ConnectionString))
{
SqlCommand cmd;
cmd = new SqlCommand(CustomerCommands.cmdLoadByCountry, conn);
cmd.Parameters.AddwithValue("@country", country);
conn.Open(Q);
Sq1DataReader reader = cmd.ExecuteReader();
HelperMethods.Fill1CustomerList(coll, reader, totalRows, firstRow);
reader.Close();
conn.Close();
}
return coll;
}

As you can see in the companion source code, FillCustomerList simply scrolls the whole result
set using a reader and discards all the records that don't belong in the requested range. You
could perhaps improve upon this approach to make paging smarter. What's important here
is that paging is built into your business object and exposed by data source controls to the
pageable controls through a well-known interface.

Updating and Deleting Data

To update underlying data using ObjectDataSource, you need to define an update/insert/
delete method. All the actual methods you use must have semantics that are well suited to
implement such operations. Here are some good prototypes for the update operations:

public static void Save(Employee emp)
public static void Insert(Employee emp)
public static void Delete(Employee emp)
public static void Delete(int id)

466

Part Il ASP.NET Pages and Server Controls

More so than with select operations, update operations require parameters. To update a
record, you need to pass new values and one or more old values to make sure the right
record to update is located and to take into account the possibility of data conflicts. To
delete a record, you need to identify it by matching a supplied primary key parameter. To
specify input parameters, you can use command collections such as UpdateParameters,
InsertParameters, or DeleteParameters. Let's examine update/insert scenarios first.

To update an existing record or insert a new one, you need to pass new values. This can be
done in either of two ways—Ilisting parameters explicitly or aggregating all parameters in an
all-encompassing data structure. The prototypes shown previously for Save and Insert follow
the latter approach. An alternative might be the following:

void Save(int id, string firstName, string lastName, ...)
void Insert(string firstName, string lastName, ...)

You can use command parameter collections only if the types involved are simple types—
numbers, strings, dates.

To make a custom class such as Employee acceptable to the ObjectDataSource control, you
need to set the DataObjectTypeName property:

<asp:0bjectDataSource ID="RowDataSource" runat="server"
TypeName="DAL.EmployeeRepository"
SelectMethod="Load"
UpdateMethod="Save"
DataObjectTypeName="DAL.Employee">
<SelectParameters>
<asp:ControlParameter Name="id" ControlID="GridViewl"
PropertyName="SelectedValue" />
</SelectParameters>
</asp:0bjectDataSource>

The preceding ObjectDataSource control saves rows through the Save method, which

takes an Employee object. Note that when you set the DataObjectTypeName property, the
UpdateParameters collection is ignored. The ObjectDataSource instantiates a default instance
of the object before the operation is performed and then attempts to fill its public members
with the values of any matching input fields found around the bound control. Because this
work is performed using reflection, the names of the input fields in the bound control must
match the names of public properties exposed by the object in the DataObjectTypeName
property. A practical limitation you must be aware of is the following: you can't define the
Employee class using complex data types, as follows:

public class Employee {
public string LastName { get; set; }
pubTlic string FirstName { get; set; }

pubTlic Address HomeAddress {...}

Chapter 10 Data Binding 467

Representing individual values (strings in the sample), the LastName and FirstName members
have good chances to match an input field in the bound control. The same can't be said for
the HomeAddress member, which is declared with a custom aggregate type such as Address.
If you go with this schema, all the members in Address will be ignored; any related informa-
tion won't be carried into the Save method, with resulting null parameters. All the members
in the Address data structure should become members of the Employee class.

Unlike the insert operation, the update operation also requires a primary key value to
uniquely identify the record being updated. If you use an explicit parameter listing, you just
append an additional parameter to the list to represent the ID, as follows:

<asp:0bjectDataSource runat="server" ID="MyObjectSource"
TypeName="DAL.SimpleBusinessObject"
SelectMethod="GetEmployees"
UpdateMethod="SetEmployee">
<UpdateParameters>
<asp:Parameter Name="employeeid" Type="Int32" />
<asp:Parameter Name="firstname" Type="string" />
<asp:Parameter Name="lastname" Type="string" />
<asp:Parameter Name="country" Type="string" DefaultValue="null" />
</UpdateParameters>
</asp:0bjectDataSource>

Note that by setting the DefaultValue attribute to null, you can make a parameter optional.
A null value for a parameter must then be gracefully handled by the business object method
that implements the update.

There's an alternative method to set the primary key—through the DataKeyNames property
of GridView and DetailsView controls. I'll briefly mention it here and cover it in much greater
detail in the next two chapters:

<asp:GridView runat="server" ID="gridl"
DataKeyNames="empTloyeeid"
DataSourceId="MyObjectSource"
AutoGenerateEditButton="true">

</asp:GridView>

When DataKeyNames is set on the bound control, data source controls automatically add a
parameter to the list of parameters for update and delete commands. The default name of
the parameter is original_XXX, where XXX stands for the value of DataKeyNames. For the
operation to succeed, the method (or the SQL command if you're using Sq/DataSource) must
handle a parameter with the same name. Here’s an example:

UPDATE employees SET lastname=@lastname
WHERE employeeid=@original_employeeid

468

Part Il ASP.NET Pages and Server Controls

The name format of the key parameter can be changed at will through the
OldValuesParameterFormatString property. For example, a value of {0} assigned to the
property would make the following command acceptable:

UPDATE employees SET Tlastname=@lastname
WHERE employeeid=@employeeid

Setting the DataKeyNames property on the bound control (hold on, note that it's not a
property on the data source control) is also the simplest way to configure a delete operation.
For a delete operation, in fact, you don't need to specify a whole record with all its fields; the
key is sufficient.

Configuring Parameters at Runtime

When using ObjectDataSource with an ASP.NET made-to-measure control (for example,
GridView), most of the time the binding is totally automatic and you don't have to deal
with it. If you need it, though, there’s a back door you can use to take control of the update
process—the Updating event:

protected void Updating(object sender,
ObjectDataSourceMethodEventArgs e)

{
var emp = e.InputParameters[0] as Employee;
if (emp == null) return;
emp.LastName = "WhosThisGuy";

}

The event fires before the update operation climaxes. The InputParameters collection lists the
parameters being passed to the update method. The collection is read-only, meaning that
you can't add or delete elements. However, you can modify objects being transported, as the
preceding code snippet demonstrates.

This technique is useful when, for whatever reasons, the ObjectDataSource control doesn't
load all the data its method needs to perform the update. A similar approach can be taken
for deletions and insertions as well.

Chapter 10 Data Binding 469

Summary

ASP.NET data binding has three faces: classic source-based binding, data source controls, and
data-binding expressions. Data-binding expressions serve a different purpose than the other
two binding techniques. Expressions are used declaratively and within templated controls.
They represent calculated values bindable to any property.

The old data-binding model (the same one introduced with ASP.NET 1.x) is maintained intact
with enumerable collections of data bound to controls through the DataSource property and
a few others that are related. In addition, a new family of controls has made its debut over
the years—data source controls. By virtue of being implemented as a control, a data source
component can be declaratively persisted into a Web page without any further effort in
code. In addition, data source controls can benefit from other parts of the page infrastruc-
ture, such as the view state and ASP.NET cache. Data source controls accept parameters, pre-
pare and execute a command, and return results (if any). Commands include the typical data
operations: select, insert, update, delete, and total count.

The most interesting consequence of data source controls is the tight integration with
some new data-bound controls. These smarter data-bound controls (GridView, FormView,
DetailsView) contain logic to automatically bind at appropriate times on behalf of the page
developer, and they interact with the underlying data source intelligently, requiring you to
write much less code. Existing data-bound controls have been extended to support data
source controls, but only for select operations.

Data source controls make declarative, codeless programming easier and likely to happen in
reality. Data source controls, though, are just tools and not necessarily the right tool for the
job you need to do. Use your own judgment on a per-case basis.

In the next chapter, we take a look at the ListView control—probably the only data-bound
control you would have in ASP.NET if ASP.NET were to be rewritten from scratch today.

Chapter 11
The ListView Control

It's a job that's never started that takes the longest to finish.
—J. R. R. Tolkien

The ListView control sums up the features of multiple view controls in a single one. For
example, it can be used to create a tabular view of data nearly identical to the view you can
obtain from a GridView or DataGrid control. At the same time, the ListView control can be
employed to generate a multicolumn layout with the flexibility that only a general-purpose
Repeater or, better yet, Datalist control can offer.

The ListView control doesn’t only have similarities with other controls; it also has a number of
unique features that, when evaluated from a wider perspective, make similarities shine under
a different light. ListView uses similarities with other controls as the starting point for building
more advanced and unique capabilities that warrant it having its own space in the toolbox of
ASP.NET controls.

In this chapter, I'll focus on exploring the programming interface of the ListView control and
its usage in a variety of common scenarios.

The ListView Control

The control is fully template based and allows you to control all aspects of the user interface
via templates and properties. ListView operates in a way that closely resembles the behavior
of existing data-bound controls, such as FormView or Datalist. However, unlike these con-
trols, the ListView control never creates any user-interface layout. Every markup tag that the
control generates is entirely under the developer’s control, including header, footer, body,
item, selected item, and so on.

The ListView control binds to any data source control and executes its set of data operations.
It can page, update, insert, and delete data items in the underlying data source as long as the
data source supports these operations. In most cases, no code is required to set up any of
these operations. If code is required, you can also explicitly bind data to the control using the
more traditional DataSource property and related DataBind method.

The rendering capabilities of the ListView control make it suitable for publishing scenarios
where a read-only, but compelling, user interface is needed. The control also works great in
editing scenarios even though it lacks some advanced features such as input validation or
made-to-measure edit templates for particular types of data or foreign keys.

471

472 Part Il ASP.NET Pages and Server Controls

The ListView Object Model

Data binding and template support are the principal characteristics of the ListView control
that are most obvious when you examine the control’s programming model. From the pro-
grammer’s perspective, the key thing to be aware of is that you need to specify at least two
template properties for the ListView control to compile and work. They are LayoutTemplate
and ltemTemplate. In addition, the overall layout template must expose a connection point to
the control so that bound records can be merged into the final markup.

Properties of the ListView Control

The ListView layout supports several properties that fall into two main categories: behavior
and templates. It also supports a few general ASP.NET control properties and binding
properties. Table 11-1 lists the behavioral properties.

TABLE 11-1 ListView Behavior Properties
Property Description

ConvertEmptyStringToNull ~ Boolean value, indicates whether empty string values are automatically
converted to null values when any contents edited in the control’s
interface are saved back to the data source.

Editindex Gets or sets the index of the item being edited.

Edititem Gets the item that is currently in edit mode within a ListView control.
The type of the item is ListViewltem.

GroupltemCount Gets or sets the number of items to display per group.

GroupPlaceholderID Gets or sets the ID of the page element where the content for the

ListView groups will be placed. The placeholder must be a server
element flagged with the runat attribute. If a value for this property is
not specified, a value of groupPlaceholder is assumed.

Insertltem Gets the item that is currently in insert mode within a ListView control.
The type of the item is ListViewltem.

InsertitemPosition Gets or sets the location of the insert template. Feasible values are
defined in the InsertitemPosition enumerated type: Firstitem, Lastitem,
or None.

ItemPlaceholder!D Gets or sets the ID of the page element that will host data-bound

items. The placeholder must be a server element flagged with
the runat attribute. If this property is not specified, a value of
ItemPlaceholder is assumed.

Items Gets the collection of bound items.

SelectedDataKey Gets the data-key array of values for the selected item. This value
coincides with SelectedValue except when multiple key fields are used.

SelectedIndex Gets or sets the index of the currently selected item.

SelectedValue Gets the data-key value of the first key field of the selected item.

SortDirection Gets the sort direction of the field or fields being sorted.

SortExpression Gets the sort expression that is associated with the field or fields

being sorted.

Chapter 11 The ListView Control 473

Two properties in this list are somewhat new even to seasoned ASP.NET developers. They are
ItemPlaceholderID and GroupPlaceholderID. When you are using groups to represent bound
items, the group placeholder is the server-side ASP.NET control that, when added to the
layout template, indicates where the group will be rendered. Similarly, the item placeholder
indicates where bound items will be rendered. You add the item placeholder to the item
template or to the group template if you are using groups.

The key thing about the ListView control is its full support for templates and the subsequent
highly flexible rendering engine. Table 11-2 lists the templates the control supports.

TABLE 11-2 ListView Template Properties

Property

AlternatingltemTemplate

Description

Indicates the template used to render every other bound item. If this
property is not specified, all items are usually rendered using the item
template. The alternating item template usually contains the same
controls and content as the item, but with a different style to distin-
guish items.

EdititemTemplate

Indicates the template to use for editing each bound item. The edit
template usually contains input controls to update the values of the
bound record. An edit template should also contain buttons to save
and discard changes.

EmptyDataTemplate

Indicates the template to render when the data source bound to the
ListView control is empty. When this happens, the empty data tem-
plate is rendered instead of the layout template. Note, though, that
the InsertitemTemplate takes precedence if InsertitemPosition is not set
to None.

EmptyltemTemplate

Indicates the template to render when there are no more data items
to display in the last group.

GroupSeparatorTemplate

Indicates the template used to put custom content between each
group in the ListView control.

GroupTemplate Indicates the template used to create a tiled layout for the contents of
the ListView control. In a tiled layout, the items are repeated horizon-
tally in a row according to the value of the GroupltemCount property.

InsertitemTemplate Indicates the template to use for inserting a new data item. The insert

template contains input controls to gather data to initialize a new
record. An insert template should also contain buttons to save and
discard changes.

ItemSeparatorTemplate

Indicates the template used to specify the content for the separator
between the items of a ListView control.

ItemTemplate

Indicates the template to use to render items bound to the control.

LayoutTemplate

Indicates the template to render the root container of any contents
displayed through the ListView control. This template is no longer
required in ASP.NET 4.

SelectedltemTemplate

Indicates the template used to render the currently selected data item.

474

Part Il ASP.NET Pages and Server Controls

In addition to the properties listed in Table 11-1 and Table 11-2, the ListView control has a
number of data-binding properties, including DataKeyNames, DataSource, DataSourcelD,
and DataMember.

The DataKeyNames property specifies the fields that represent the primary key of the

data source. When you set this property declaratively, you use a comma-separated list of
field names. The underlying type is an array of strings. Strictly related to DataKeyNames is
DataKeys. This property contains an object that identifies the unique key for each item that is
currently displayed in the ListView control. Through the DataKeys collection, you can access
the individual values that form the primary key for each displayed record.

DataSource and DataSourcelD provide two mutually exclusive ways of bringing data inside
of the control. The DataSource property represents an enumerable collection of bindable
records; the DataSourcelD property points to a data source control in the page that does the
entire job of retrieving and binding data. Starting with ASP.NET 2.0, all data controls can be
bound to a data source control, but not all of them can fully leverage the capabilities of a
data source control. Only view controls such as GridView and DetailsView can, for example,
update the record in the data source or page and sort based on the capabilities of the under-
lying data source. Older data-bound controls, such as Datalist, support only the read-only
interface of data source controls. In this regard, the ListView control is a logical specialization
of the Datalist control that does provide full support for the capabilities of the underlying
data source control. (In the OO meaning of the word, ListView and Datalist have nothing in
common.)

Finally, because the ListView control inherits from WebControl, it features a bunch of
user-interface properties, including Style, CssClass, SkinID, Visible, and EnableTheming.

Note The ListView control lacks the usual ton of style properties that characterize all other view
controls in ASP.NET. The output of the ListView control can be styled at your leisure, but only by
using cascading style sheets (CSS) directly, without even the mediation from ASP.NET themes.

This is intentional for a number of reasons. First, the control benefits from the momentum that
CSS-based layouts are gaining in the industry. Second, Microsoft Visual Studio comes with a CSS
editor through which editing and attaching styles to HTML elements is a breeze. Finally, the ex-
treme flexibility of the markup generated by the ListView control would be hindered in several
ways by ASP.NET themes. Themes work with entire ASP.NET controls, whereas the ListView con-
trol is an ASP.NET control that generates its output based on a template that is, when all is said
and done, made of pure HTML you control at a fine-grained level.

Events of the ListView Control

The ListView control has no specific methods worth mentioning. Table 11-3 lists the events
that the control fires during its life cycle.

Chapter 11 The ListView Control 475

TABLE 11-3 Events of the ListView Class

Event Description

ItemCanceling Occurs when the user requests a cancel operation, but before the
control cancels the ongoing insert or edit operation.

IltemCommand Occurs when the user clicks on any buttons found in the body of the
control.

ItemCreated Occurs when a new item in the ListView control is being created.

ItemDataBound Occurs when an item is bound to its data.

ItemDeleting, IltemDeleted

The two events occur before and after, respectively, the deletion of
an item. The operation is requested by the interface of the ListView
control.

ItemEditing

Occurs when an edit operation is requested, but before the ListView
switches to the edit template.

Itemlnserting, Itemlnserted

The two events occur before and after, respectively, the insertion of
an item. The operation is requested by the interface of the ListView
control.

ItemUpdating, ItemUpdated

The two events occur before and after, respectively, the update of
an item. The operation is requested by the interface of the ListView
control.

LayoutCreated

Occurs when the layout template is created.

PagePropertiesChanging,

The two events occur before and after, respectively, the properties of

PagePropertiesChanged a page of data in the ListView control change. A page of data is the
set of items that form a page in a paged ListView control. Page prop-
erties include page size and start row index.

SelectedIndexChanging, The two events occur before and after, respectively, the ListView

SelectedIndexChanged control handles the selection of a displayed item and switches to the

selected-item template.

Sorting, Sorted

The two events occur before and after, respectively, the associated
data source is sorted.

As you can see, most of the events are related to the life cycle of individual data items. You
can control when an item is created, deleted, inserted, or edited. Events fire before and after
a given operation is accomplished. So you find doing/done pairs of events for each funda-
mental operation, such as Itemlinserting/Iteminserted or ltemDeleting/ItemDeleted events. You
can determine which item type is being created by using the /ltemType property on the event
data structure. Feasible values are Dataltem, Insertitem, and Emptyltem. These values belong
to the ListViewltemType enumerated type.

The ListView control also features typical events of ASP.NET controls such as Init, Load,
PreRender, DataBinding, and Unload. You can handle these events the same way you handle
them for other ASP.NET controls.

476

Part Il ASP.NET Pages and Server Controls

Note The /temCommand event fires only if the original click event is not handled by a
predefined method. This typically occurs if you define custom buttons in one of the templates.
You do not need to handle this event to intercept any clicking on the Edit or Insert button.

Compared to Other View Controls

The view controls introduced with previous versions of ASP.NET solved many problems that
developers were facing every day. Controls such as GridView and DetailsView make it a snap
to create a list of records and even arrange a master/detail view. However, they offer limited
control over the actual markup generated. Want an example? With a GridView control, plac-
ing a TBODY tag around the group of child rows is not a trivial task. And it is almost impos-

sible to do with a DataGrid control, unless you resort to your most advanced skills and take

on the tough task of deriving a custom grid control.

On the other hand, adapting the final markup to the actual needs would be quite a simple
task if the view controls introduced with earlier versions of ASP.NET provided a bit more
programmatic control over the rendering process and templating. This is just one of the key
capabilities you gain with the ListView control. As you'll see in a moment, the ListView con-
trol is flexible enough to render out in a tabular or tiled manner. It can be used to replace
the GridView control, at least in relatively common situations, but also to create completely
custom layouts.

This said, let's briefly compare the ListView control to the other view controls available in
ASP.NET to see exactly what each control can do and cannot do. Table 11-4 lists and briefly
describes the view controls.

TABLE 11-4 Rich, Data-Bound View Controls in ASP.NET
Control Description

DetailsView Designed to represent a single record of data, the control renders out a tabular and
fixed layout. You decide the fields to be rendered and their format. You can use tem-
plates to customize the appearance of individual data fields, but you can’t change
the overall table-based layout. The control supports in-place editing as well as inser-
tion and deletion, and it goes down to the bound data source control for the actual
data access tasks. As long as the underlying data source supports paging and sort-
ing, the control makes these functionalities available through its own user interface.

FormView The FormView control can be considered to be the fully templated version of the
DetailsView control. It renders one record at a time, picked from the associated data
source and, optionally, supplies paging buttons to navigate between records. It
doesn’t provide any free user interface. You have to build all of it using header, item,
and footer templates. FormView doesn't use data control fields and requires the user
to define the rendering of each item by using templates. It supports any basic data
access operation its data source supports, but you have to provide ad hoc trigger
buttons.

Chapter 11 The ListView Control 477

Control Description

GridView The GridView control provides a tabular, grid-like view of the contents of a data
source. Each column represents a data source field, and each row represents a re-
cord. You can use templates to customize individual data fields, but you are forced
to use the tabular representation of contents. The granularity of customizable items
is the table cell. With some hard work, though, you can change the structure of the
table row—for example, you can add or remove cells. You can hardly do more than
this, however. Like other view controls, the GridView also fully supports two-way
data binding.

So where does the ListView control fit in this puzzle of data-bound controls? Like all the
controls listed in Table 11-4, the ListView control supports two-way data binding—that is, the
ability of displaying and editing the contents of the bound data source. Unlike the others,
though, the ListView control provides the greatest flexibility as far as the generation of the
markup is concerned. It is not limited to a single record like FormView and DetailsView are,
and it is not limited to a tabular layout like the GridView is. It is essentially a repeater with rich
layout capabilities (like a DataList control) and the two-way data-binding capabilities of other
view controls.

Simple Data Binding

You use the ListView control to generate any user interface that needs to be built as

you iterate a collection of records. You associate data with a ListView control using the
DataSource property or, better yet, using the DataSourcelD property. In the former case, you
explicitly provide the data and control any aspect of the binding process. The DataSourcelD
property connects the control to a data source component. The binding process is mostly
automatic, but it works both ways—it reads and saves data. The following data source
control populates a ListView control with customers who reside in the United States:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
TypeName="DAL.CustomerRepository"
SelectMethod="LoadByCountry"
OldvValuesParameterFormatString="original_{0}">
<SelectParameters>
<asp:Parameter DefaultValue="USA" Name="country" />
</SelectParameters>
</asp:0bjectDataSource>

478

Part Il ASP.NET Pages and Server Controls

The data source control invokes the LoadByCountry method on the specified business object
and makes the response available to any bound control. Let’s use a ListView control:

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="0ObjectDataSourcel"
ItemPlaceholderID="ListViewContent">
<LayoutTemplate>
<div id="header">
<hl id="1ogo">Customer List</hl>
</div>
<div runat="server" id="ListViewContent">
<%-- ListView contents display here --%>
</div>
</LayoutTemplate>
<ItemTemplate>
<asp:Label runat="server" ID="1b1Company" Text='<%# Eval("CompanyName") %>' />
,
<asp:Label runat="server" ID="1b1Country" Text='<%# Eval("Country") %>' />
</ItemTemplate>
<ItemSeparatorTemplate>
<hr />
</ItemSeparatorTemplate>
</asp:ListView>

In this example, the ListView control comprises three templates: layout, item, and item
separator. Of the three, only the item separator template is optional. The layout template
defines the overall structure of the output. The <div> element in the layout marked with the
runat=server attribute represents the insertion point for a pair of item and item separator
templates. The item template is finally filled with the actual data from the n.th record. The
Eval method evaluates the specified property on the data item being currently bound. The
Eval method works in reading; as we'll see later, the Bind method works also in writing.

The item markup is made of a company name and country separated by a comma, and
they are vertically separated from one another by a horizontal rule. Figure 11-1 shows
the final results.

Chapter 11 The ListView Control 479

2 ListView Control - Windows Intern... Q@I@

) v B httpifflocalhost: 1066) ¥ | +2| X

.

W [@L\stviewtnntml I fa -

Customer List

Great Lakes Food Market , TSA
Hungry Coyote Import Store, USA
Lary K. Eountry Store, TUSA

Let's Stop M Shep, USA
Lonesome Pine Restaurant, TSA
Old World Delicatessen , T34
Rattlesnake Canyon Grocery, TSA
Sawe-a-lot Markets | TSA

Split Rail Beer & Ale, TSA

The Big Cheese, USA

The Cracker Box, TUSA

Trail's Head Gourmet Provisioners |, USA

White Clover Markets, TUSA

& Internet H100% -

FIGURE 11-1 A simple ListView control in action.

Defining the Layout of the List

Most templated ASP.NET controls provide optional header and footer templates along with a
repeated and data-bound item template. Header and footer templates are instantiated only
once each, at the beginning and end, respectively, of the data binding loop. You can hide the
header and footer, but most controls implicitly force you to think about the layout in terms of
three components placed vertically: the header, body, and footer.

In this regard, the ListView control is different. It has no header or footer template, and it
features just one template for the structure of the resulting markup: the layout template. If
you need a header or a footer, you can easily place them in the layout. But if you need to
develop the layout horizontally or in a tiled manner, the ListView approach makes it easier.

Up until ASP.NET 3.5, the layout template was mandatory in any ListView control. This is no
longer the case, however, with ASP.NET 4. You can use the layout template as follows:

<LayoutTemplate>
<div runat="server" ID="Body">
</div>

</LayoutTemplate>

480

Part Il ASP.NET Pages and Server Controls

Instead of the <div> tag, you can use a tag or provide appropriate CSS styling if you
like the output flow with the rest of the page. The layout template must contain a server-
side element that acts as the insertion point for data-bound item templates. This can be an
HTML element decorated with the runat attribute or an ASP.NET server control. The ID of this
placeholder element must be passed to the ListView's ItemPlaceholderID property.

The LayoutTemplate property alone is not enough, though. At a minimum, you must also
specify content for the ItemTemplate or GroupTemplate property. As mentioned, to bind to
data, you use ASP.NET <%# ... %> data-binding expressions and the Eval or Bind method.

Note Like any other template properties in ASP.NET controls, the template properties of

the ListView control can be set programmatically as well as declaratively. You can assign to a
template property any managed object that implements the /Template interface. Such an object
can be obtained from an ASCX user control by using the LoadTemplate method on the
System.Web.Ul.Page class.

Let's put the graphical flexibility of the ListView control through its paces by examining how
to render bound data using a number of layouts.

Building a Tabular Layout

The ListView control is the perfect tool to build a table-based interface with more liberty
than specialized controls such as DataGrid and GridView typically allow. By properly design-
ing the layout template of a ListView control, you can create an outermost table and then
arrange a completely custom output for the child rows. In this way, you gain control over the
rows and can, for example, employ two rows per record and even give each row a different
number of cells. This level of control is extremely hard to achieve with a GridView control,
although it's not impossible. To customize the GridView control to this level of detail, you
need to override some of its protected virtual methods. Doing this requires the creation of a
new derived control whose behavior touches on parts of the internal mechanics of the grid.

A ListView control lets you achieve the same results, but much more comfortably and with
full support from Visual Studio 2008 designers.

Definition of the Overall Layout

To generate an HTML table, the ListView control needs to have a layout template defined as
in the following code snippet:

<LayoutTemplate>
<div>
<hl id="10go">Customer List</hl>
</div>

Chapter 11 The ListView Control 481

<div>
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
</tr>
<tbody runat="server" id="ListViewContent">
</tbody>
</thead>
</tabTle>
</div>
</LayoutTemplate>

The layout comprises two <div> elements, both of which are optional from a purely
functional perspective. The <div> element, in fact, simplifies the process of styling the
output, as you'll see later in this chapter. Generally, the output is made of two HTML blocks—
one for the header and one for the actual data.

The layout template defines the overall markup by defining the <table> tag and adding a
child <thead> tag. Next, a <tbody> tag wraps the child rows, each of which will be bound
to a data record. In this case, the <tbody> tag hosts the item templates. For this reason, it
features the runat attribute and has its own ID set as the argument of the ItemPlaceholderID
property of the ListView control:

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="0ObjectDataSourcel"
ItemPlaceholderID="ListViewContent">

</asp:ListView>

The actual body of the resulting table is determined by the item and alternating item
templates.

Definition of the Item Template

In a tabular layout, created using an HTML table, the item template can’t be anything but a
sequence of <tr> tags. Unlike with a pure grid control such as GridView, in a ListView layout
you have no limitation on the number of rows per data item you can display. The following
example uses two table rows per bound item:

<ItemTemplate>
<tr>
<td>
<asp:Label runat="server" ID="1b1Company" Text='<%# Eval("CompanyName") %>' />
</td>
<td>
<asp:Label runat="server" ID="1b1Country" Text='<%# Eval("Country") %>' />
</td>

</tr>

482

Part Il ASP.NET Pages and Server Controls

<tr>
<td colspan="2">
<i>To contact this customer, please call <%# Eval("Phone") %></i>
</td>
</tr>
</ItemTemplate>

The first row contains two cells: one for the company name, and one for the country/region.
The second row shows the phone number on a single-cell row. Both rows are rendered for
each record bound to the ListView control. Figure 11-2 demonstrates the markup you obtain
in this way.

{2 ListView Contral - Windaows Internet Explorer E\@\E\

K)+ |] htpipocahostiteey v | 45| X | |
n R —, s - »
w o I@ustwaw Control l B-80 &-

Customer List

Company Country
Great Lakes Food Market UsSh
To contact this customer, please call (503) 535-7535
Hungry Covote Impeort Store TsS4A
To contact this customar, pleass call (503) 555-6874
Lazy K Eountry Store Ush
To contact this customer, please call (509) 535-7969
Let's Stop I Shep UsA
To contact this customar, pleass call (415) 555-5938
Lonesome Pine Restaurant Ush
To contact this customer, please call (503) 535-9573
Old World Delicatessen USA
T contact this customer, please call (907) 555-7384
Rattlesnake Canyon Grocery US4
To contact this customer, please call (305) 535-5939
Sawe-a-lot Markets USA
To contact this customer, please call (208) 555-8097
Split Rail Beer & Ale TsS4A
To contact this customer, please call (307) 555-680
The Big Cheese USh
To contact this customer, please call (503) 535-3612
The Cracker Box UsA
To contact this customar, pleass call (406) 555-5834
Trail's Head Gourmet Prowisicners Ush
To contact this customer, please call (206) 555-8257
“White Clower Markets UsA
To contact this customar, pleass call (206) 555-4112

Done @ Intermet F100% <

FIGURE 11-2 A tabular layout built with the ListView control.

As you can see in the figure, some extremely simple styles have been applied to the table
items. In particular, the <th> tags and the <td> tag of the second row have been styled to
show a bottom border. Style properties can be applied using CSS styles or explicit inline style
properties, as shown next. (Once again, although inline styles are supported in ASP.NET, they
are considered a deprecated technique. You should always go with CSS classes.)

<th style="border-bottom:solid 3px black;">Company</th>

When comparing this sort of flexibility with the GridView control, the GridView control
provides a number of free facilities, but it doesn't offer as much flexibility in design, as seen

Chapter 11 The ListView Control 483

in this example. To choose, you have to first evaluate your requirements and make a choice
between flexibility of rendering and functions to implement.

Using Alternate Rendering for Data Items

ItemTemplate is mandatory in a ListView control and indicates the template to use for each
bound item. The AlternatingltemTemplate property can be used to differentiate every other
item, as shown in Figure 11-3.

{2 ListView Control - Windows Internet Explorer
~ | &]http:fflocalhost: 1068y ¥ | ¥5 | K

o |@L\st\hawcnntml |7 G- =

Customer List

Company Country
Great Lakes Food Market UsA
To contact this customar, pleass call (503) 555-7555
Hungry Coyote Import Store USh
T contact this customer, please call (303) 535-6874
Lazy K Eountry Store UBA
To contact this customer, pleass call (509) 555-7969
Let's Stop M Shop Ush
T contact this customer, please call (£15) 535-5938
Lonesome Pine Restaurant USA
T contact this customer, please call (503) 555-9573
Old World Delicatessen UsSA
To contact this customer, please call (907) 555-7584
Rattlesnake Canyon Grocery USh
To contact this customer, please call (505) 555-5939
Sawe-a-lot Markets UsA
To contact this customer, please call (208) 555-8097
Split Rail Beer & Ale UsSh
To contact this customer, please call (307) 535-4680
The Big Cheese TsS4A
To contact this customar, pleass call (503) 555-3612
The Cracker Box Ush
To contact this customer, please call (406) 535-5834
Trail's Head Gourmet Prowisioners USA
To contact this customar, please call (206) 555-8257
White Clover Markets Ush
To contact this customer, please call (206) 535-4112

Dane & mtermet E 0% v

FIGURE 11-3 A tabular layout built with the ListView control using an alternating item template.

Most of the time, the alternating item template just features the same layout as regular items
but styles it differently. However, changes to the template are allowed to any extent that can
keep your users happy. The following code uses a small indentation for alternating rows:

<AlternatingIltemTemplate>
<tr>
<td>

<asp:Label runat="server" ID="1blCompany" Text='<%# Eval("CompanyName") %>' />
</td>

484 Part Il ASP.NET Pages and Server Controls

<td>
<asp:Label runat="server" ID="1b1Country" Text='<%# Eval("Country") %>' />
</td>
</tr>
<tr>

<td>

<i>To contact this customer, please call <%# Eval("Phone") %></i>
</td>
</tr>
</AlternatingltemTemplate>

Figure 11-4 shows the result.

> List¥iew Control - Windows Internet Explorer

& http:flocalnost: 1066, ¥ | #7| K

TF & @ Ustiew Control ‘ | - B &=

Customer List

Company Country
Great Lakes Food Market UsA
To contact this cusiomer, please call (563) 555-7555
Hungry Coyote Import Store UsA
To contact this customer, please call (583) 555-6874
Lary K Kountry Store TSA
To contact this cusiomer, please call (509) 555-7969
Let's Stop I Shop UsA
To contact this customer, please call (413) 555-5938
Lonesome Pine Restaurant UsA
To contact this cusiomer, please call (563) 555-9573
Old World Delicatessen Ush
To contact this customer, please call (987) 555-7584
Rattlesnake Canyon Grocery TSA
To contact this cusiomer, please call (505) 555-5939
Sawe-a-lot Markets Ush
To contact this customer, please call (208) 555-8097
Split Raill Beer & Ale TSA
To contact this cusiomer, please call (307) 5554688
The Big Cheese UsA
To contact this customer, please call (583) 555-3612
The Cracker Box UsA
To contact this cusiomer, please call (406) 555-3834
Trail's Head Gourmet Prowisioners Ush
To contact this customer, please call (206) 555-8257
White Clower Markets UsA
To contact this cusiomer, please call (206) 555112

Done & Internet H100% -

FIGURE 11-4 Using a slightly different layout for alternating items.

Reflecting On the Table Layout

HTML tables are an essential, but too often abused, piece of the Web jigsaw puzzle. HTML
tables were designed for presenting tabular information. And they are still great at doing

Chapter 11 The ListView Control 485

this. So any developer of a Web page that needs to incorporate a matrix of data is correct in
using HTML tables. The problem with tables is that they are often used to define the page
layout—a task they weren’t designed for.

To illustrate, a grid control that uses HTML tables to output its content is more than accept-
able. A tree-view control that uses HTML tables to list its contents is less desirable. It's not by
mere chance that the ASP.NET team released the CSS adapter toolkit to allow you to change
the rendering engine of some controls to make them inherently more CSS-friendly. And

the TreeView is just one of the controls whose rendering style can be modified by using the
toolkit.

Note Using tables for creating multicolumn layouts—which is still common these days in most
Web sites—has a number of significant drawbacks. Tables require a lot of code (or tags if you
create tables declaratively) that has little to do with the data you intend to display through them.
This code is tedious to write, verbose, and difficult to maintain. Worse yet, it makes for longer
downloads and slower rendering in the browsers (a factor of growing importance for wireless
devices). In addition, tables tend to mix up information and layout instead of forcing you to keep
them neatly separated, and they result in less accessible content.

Building a Flow Layout

Visual Studio provides some facilities to work with ListView controls. Specifically, once you
have bound the control to a data source, Visual Studio queries the data source and offers to
generate some templates for you.

Definition of the Overall Layout

A flow layout is the simplest layout you can get. It requires only that you define a container—
typically, a <div>—and then the markup for each record. The ListView control simply com-
poses the resulting markup by concatenating the markup in a unique flow of HTML tags.
Needless to say, the resulting markup can flow horizontally or vertically, depending on the
tags you use (block or inline) and the CSS styles you apply.

If you're looking for a block flow layout, your LayoutTemplate property will probably always
look as simple as the one shown here:

<LayoutTemplate>
<div ID="ListViewContent" runat="server">
<!-- your markup -->
</div>

</LayoutTemplate>

486

Part Il ASP.NET Pages and Server Controls

If you opt for a tag, instead of getting a new block you get a piece of markup that
flows inline with the rest of the ASP.NET page.

Note that in ASP.NET 4 the LayoutTemplate is optional. You can get the same results if you
simply wrap the markup directly in an ltemTemplate element, as shown here:

<ItemTemplate>
<!-- your markup -->
</ItemTemplate>

This approach simplifies the definition of a ListView without loss of programming power and
generality.

Definition of the Item Layout

A good example of a flowing template is shown in Figure 11-1. Here's another example:

<ItemTemplate>
<div class="border" >
ID:
<asp:Label ID="IDLabel" runat="server" Text='<%# Eval("ID") %>' />

CompanyName:

<asp:Label ID="CompanyNamelLabel" runat="server"
Text="<%# Eval("CompanyName") %>' />

ContactName:

<asp:Label ID="ContactNamelLabel" runat="server"
Text="<%# Eval("ContactName") %>' />

ContactTitle:

<asp:Label ID="ContactTitleLabel" runat="server"
Text="<%# Eval("ContactTitle") %>' />

</div>
</ItemTemplate>

The <div> tag normally creates a new block of markup and breaks the current flow of HTML.
However, if you give it the float:left CSS style, it will float in the specified direction. As a result,
the block of markup forms a horizontal sequence that wraps to the next line when the border
of the browser’s window is met. Figure 11-5 offers a preview.

Note In the previous chunk of HTML markup, | used and <div> tags with styles applied
and also mixed CSS styles with HTML tags used for controlling the appearance of the page, such
as and
. This approach is clearly arguable. The reason why | haven't opted for a niftier,
pure CSS-based code in the snippet is clarity. By reading which CSS styles are applied to which
tag, you can more easily make sense of the output depicted in Figure 11-5.

Chapter 11 The ListView Control 487

£ ListView Control - Windows Internet Explorer

.‘ 3 =] hitpisesinost: 10secoreassan v |41 | X | 2
w e ‘@L\stview Contral ‘7| - B - & [Errags - @roos -
~
ID: GREAL ID: HUNGC
CompanyName: Great Lakes Food Market CompanyName: Hungry Coyote
ContactName: Howard Snyder Import Store

ContactName: Yoshi Latimer
ContactTitle: Sales Representative

ContactTitle: Marketing Manager

1D: LAZYK

CompanyName: Lazy K Kountry Store
ContactName: John Steel
ContactTitle: Marketing Manager

ID: LETSS

CompanyName: Let's Stop M Shop
ContactName: Jaime Yorres
ContactTitle: Owner

ID: LONEP

CompanyName: Lonesome Pine Restaurant
ContactName: Fran Wilson

ContactTitle: Sales Manager

ID: OLDWO
CompanyName: Old ¥World
Delicatessen

ContactName: Rene Phillips
ContactTitle: Sales
Representative

ID: RATTC ID: SAVEA

CompanyName: Rattlesnake Canyon Grocery
ContactName: Paula Wilson
ContactTitle: Assistant Sales Representative

CompanyName: Save-a-lot
Markets
ContactName: Jose Pavarotti

ContactTitle: Sales
Representative

Done & Internet #100% -

FIGURE 11-5 Using the float CSS attribute to display <div> tags as a horizontal sequence.

Building a Tiled Layout

Admittedly, the output of Figure 11-5 is not really attractive, even though it contains a
few elements that, if improved a bit, might lead to more compelling results. The output
of Figure 11-5 shows blocks of markup that flow horizontally and wrap to the next row.
However, they share no common surrounding layout. In other words, those blocks are not
tiled. To build a perfectly tiled output, you need to leverage group templates.

Grouping Items

So far we've used the ListView control to repeat the item template for each bound record.
The GroupTemplate property adds an intermediate (and optional) step in this rendering
process. When you specify a group template, the total number of bound records is par-
titioned in groups and the item template is applied to the records in each group. When a
group has been rendered, the control moves to the next one. Each group of records can have
its own particular template—the group template—and a separator can be inserted between
items and groups. How is the size of each determined? That has to be a fixed value that you

488

Part Il ASP.NET Pages and Server Controls

set, either declaratively or programmatically, through the GroupltemCount property. Let's
consider the following layout and group templates:

<LayoutTemplate>
<table border="1">
<tr ID="groupPlaceholder" runat="server">
</tr>
</tabTle>
</LayoutTemplate>
<GroupTemplate>
<tr>
<td ID="itemPlaceholder" runat="server">
</td>
</tr>
</GroupTemplate>

It indicates that the final output will be an HTML table where a new row is created for each
group of items. Each table row contains as many cells as the value of GroupltemCount

sets. The default value is 1. Note that in the preceding code snippet we're using the de-
fault names for group and item containers—that is, groupPlaceholder and itemPlaceholder.
When these names are used, there's no need to set corresponding GroupPlaceholderID and
ItemPlaceholderID properties on the ListView markup. Here's the top-level markup for a tiled
layout:

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="0ObjectDataSourcel” GroupItemCount="4">

</asp:ListView>

As an example, if you set GroupltemCount to 4, you'll have rows of 4 cells each until there are
less than 4 records left. And after that? What if the number of bound records is not a perfect
multiple of the group item count? That's where the EmptyltemTemplate property fits in:

<EmptyItemTemplate>
<td />
</EmptyItemTemplate>

This template is used to complete the group when no more data items are available.
Figure 11-6 shows a typical tiled output you obtain by employing a ListView control.

Chapter 11 The ListView Control 489

£= List¥iew Control - Windows Internet Explorer

(/i) + |] hapidfocaihost: 1066 (Core35/samplesichi 2iSmplefTieLayout asp IEE [[2]-
e [@sttVuew Control]_I - B - & - [page v BTk v
1D: GREAL 1D: HUNGC 1D: LAZYK 1D: LETSS
Great Lakes Food Market Hungry Coyote fmport Store | Lazy K Kountry Store Lat's Stop N Shop
Contact: Howard Snyder Contact: Yoshi Latimer Contact: John Steel Contact: Jaime Yorres
1D: LOMEP 1D: oLowo 1D: RATTC 1D: SAVEA
Lonesome Pine Restaurant | Oid World Delicstessen Rattlesnake Canyon Grocery | Save-a-lot Markets
Contact: Fran Wilson Contact: Rene Phillips Contact: Paula Wilson Contact: Jose Pavarotti
1D: SPLIR 1D: THEEI 1D: THECR 1D: TRAIH
Spiit Rail Beer & Ale The Big Cheese The Cracker Box Trail's Head Gourmet Pravisioners
Contact: Art Braunschweiger | Contact: Liz Nixon Contact: Liu Wong Contact: Helvetius Nagy
1D: WHITC
White Ciover Markets
Contact: Karl .Jahlonski
Done & Internet 100% v

FIGURE 11-6 A four-cell tiled layout built with the ListView control.

Using the Group Separator Template

Each group of items can be separated by a custom block of markup defined through the
GroupSeparatorTemplate property. Here's an example:

<GroupSeparatorTemplate>
<tr>
<td colspan='4"'> </td>
</tr>
</GroupSeparatorTemplate>

If you add this markup to the preceding example, you'll display a blank row in between rows
with data-bound cells. It's a kind of vertical spacing.

The same can be done horizontally to separate data-bound cells within the same table row.
To do so, you use the ItemSeparatorTemplate property instead. In both cases, the markup
you put in must be consistent with the overall markup being created for the whole ListView
control.

Modifying the Group Item Count Dynamically

The GroupltemCount property is read-write, meaning that you can change the size of each
group programmatically based on some user actions. The following code snippet shows a
pair of event handlers associated with the Click event of two Button controls:

protected void Buttonl Click(object sender, EventArgs e)

{
// There's no upper 1limit to the value of the property
ListViewl.GroupItemCount += 1;

490

Part Il ASP.NET Pages and Server Controls

protected void Button2_Click(object sender, EventArgs e)

{
// The property can't be 2 or less
if (ListViewl.GroupItemCount >2)
ListViewl.GroupItemCount -= 1;
}

The GroupltemCount property itself can't take any value less than 1, but it has no upper limit.
However, it should not accept any value larger than the actual number of data items cur-
rently bound.

As you assign a new value, the set modifier of the property resets the internal data-binding
flag and orders a new binding operation. If you change the value of GroupltemCount over a
postback, the ListView control automatically renders the updated markup back to the client.
(See Figure 11-7)

£ ListView Control - Windows Internet Explorer

IS | &] https/flocaihost: 1066/ Care35/5smples/Ch12{Simplef TieLayoLt. aspx o [#2 [[
W [@L\stview Control Iil Mo B v hpags - (FToos -
ID: GREAL 1D: HUNGC 1D: LAZYK 1D: LETSS

Great Lakes Food Market
Contact: Howard Snyder

Hungry Coyote import Store | Lazy K Kounty Store
Contact: Yoshi Latimer Contact: John Steel

Let's Stop N Shop
Contact: Jaime Yorres

ID: LOMER 1D: OLOWO 1D:
Lonesome Ping Restaurant | Oid Workd Delicatessen

RATTC 1D: SAVEA
Rattlesnake Canyon Grocery | Save-a-lot Markets

Contact: Fran Wilson Contact: Rene Phillips Contact: Paula Wilsan Contact: Jose Pavarotti
ID: SPLIR 1D: THEEI 1D: THECR 1D: TRAIH
Splt Rail Beer & Ale The Big Cheese The Cracker Box Trail's Head Gourmet Provisioners

Contact: Art Braunschweiger | Contact: Liz Nixon Contact: Liu Wong Contact: Helwetius Magy

ID: WHITC
White Clowver Markets
Contact: Karl Jablonski

g

Done & Internet H100% -

istView Control - Windows Internet Explorer.

@\ ~ 5 = |] http:flocahost; 1066 Coreasisamplesicht ¥ | | ¢ % | | 2]

* e [@L\stVlewCuntrul I_w G- 8

. »
e - |-k Page v) Tooks -

1D: GREAL 1D:
Grest Lakes Food Market

HUNGC ID: LAZYK

Contact: Howard Snyder

Rattlesnake Canyon Grocery
Contact: Paula Wilson

1D: THEBI
The Big Cheese

Hungry Coyote fmport Store
Contact: Yoshi Latimer

Save-a-lot Markets
Contact: .Jose Pavarotti

1D: THECR
The Cracker Box

Lazy K Kountry Store
Contact: John Steel

1D: LETSS 1D: LONEP 1D: OLDWO
Let's Stop M Shop Lonesome Pine Restawant | Old World Delicatessen
Contact: Jaime Yorres Contact: Fran Wilson Contact: Rene Phillips
1D: RATTC 1D: SAVEA 1D: SPLIR

Split Rail Beer & Ale

Contact: Art Braunschweiger

ID: TRAIH

Trail's Head Gourmet Provisioners

Contact: Liz Nixon Contact: Liu Wong Contact: Helvetius MNagy
1D: WHITC
White Ciover Markets
Contact: Karl Jahlonski
Done € Intemet 100k T

FIGURE 11-7 Changing the size of ListView groups dynamically.

Chapter 11 The ListView Control 491

The ListView control doesn't natively support more advanced capabilities—such as uneven
groups of items where, for example, the association between an item and a group is based
on a logical condition and not merely determined by an index. In this scenario, you could
have a list where the first group contains customers whose name begins with A and the sec-
ond group contains those beginning with B, and so on. You would have to provide the logic
for this yourself. Let’s look at this next.

Data-Driven Group Templates

The support for groups built into the ListView control is not data driven. In other words, the
layout (groups and items) is first created and it is then bound to data. When the binding step
occurs, the group template is not directly involved and you won't receive any event that tells
you that a group has been either created or bound to its data.

However, this doesn’t mean that your group templates must have a fixed layout and can't be
dynamically populated using data from its contained items. The ListView's ItemDataBound
event is the key to obtaining output such as that shown in Figure 11-8.

(= List¥iew Control - Windows Internet Exp... E]E]

- Bl hepifflocahastinegy v | 42 X | |

i} ﬁﬁ? [@L\stVlewCuntrul]_ & - =

Group 1 starting with G

s Great Lakes Food Market

& Hungry Coyote Import Store
e Lazy K Kountry Store

e Let's Stop N Shop

+ Lonesome Pine Restaurant

Group 2 starting with O

« Old World Delicatessen

« Rattlesnake Canyon Grocery
& Save-a-lot Markets

o Split Rail Beer & Ale

& The Big Chesse

Group 3 starting with T
& The Cracker Box

& Trail's Head Gourmet Provisioners
+ White Clover Markets

& mtermet BT

FIGURE 11-8 The header of each group is determined dynamically by looking at the bound contents.
To start out, let's take a look at the overall layout template of the ListView control:

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="0bjectDataSourcel"
GroupItemCount="5"
OnItemDataBound="L1istViewl_ItemDataBound">
<ItemTemplate>
<Tli><%# Eval("CompanyName") %></T1i>
</ItemTemplate>

492

Part Il ASP.NET Pages and Server Controls

<ItemSeparatorTemplate>

</ItemSeparatorTemplate>

<LayoutTemplate>
<div id="groupPlaceholder" runat="server">
</div>

</LayoutTemplate>

<GroupTemplate>
<asp:Label runat="server" ID="groupHeader" Text="Group" />
<hr />
<div id="itemPlaceholder" runat="server">
</div>

</GroupTemplate>

</asp:ListView>

The group template is made of a Label control followed by an <hr> tag and the list of data
items. Each bound item is expressed through an </i> tag. Let's see how to change the Text
property of the groupHeader control for each group being created. Here's the structure of
the ltemDataBound event handler:

private int lastGroup = -1;
protected void ListViewl_ ItemDataBound(object sender, ListViewItemEventArgs e)
{
// To assign the group a data-bound title, retrieve the data item first
if (e.Item.ItemType == ListViewItemType.DataItem)
{
var currentItem = (ListViewDataItem) e.Item;
CustomizeGroupHeader((ListView) sender, currentItem);

}

The ListViewltemEventArgs argument contains an /tem property that refers to the item being
bound to data. This item can be of a few types—Insertitem, Emptyltem, or Dataltem. The list
of feasible values is in the ListViewltemType enumerated type. In this case, we're interested
only in data items—that is, regular items showing some bound data.

To put your hands on the real data being bound to the item, you need to cast the ListView
item to the ListViewDataltem type, from which you can access a number of data-related
properties:

private void CustomizeGroupHeader(ListView root, ListViewDataltem currentItem)
{
// The type of the data item depends on the data you bound--in this case,
// a collection of Customer objects
var cust = (DAL.Customer) currentItem.Dataltem;

// Get a ListViewContainer object--the container of the group template
Control container = currentItem.NamingContainer;
if (container == null)

return;

Chapter 11 The ListView Control 493

// Look up for a particular control in the group template--the Label
Label groupHeader = (Label)container.FindControl("groupHeader");
if (groupHeader == null)

return;

// Figure out the 0-based index of current group. Note that the display index
// refers to the index of the item being bound, not the group
int groupIndex = currentItem.DisplayIndex / root.GroupItemCount;
if (groupIndex != TastGroup)
{
// This is a new group
lastGroup = groupIndex;

// Update the UI

groupHeader.Text = String.Format("Group {0} starting with {1}",
groupIndex + 1,
cust.CompanyName.Substring(0, 1).ToUpper(Q));

}

You first get a reference to the naming container of the item. This container is the wrapper
control for the group template. By using the FindControl method, you gain access to the
Label control in the group template. The final step entails determining the value for the Text
property of the Label control.

As mentioned, the ListView control doesn't provide any readymade information about
groups. So you don’t know about the index of the current group. The Displayindex prop-
erty tells you only the index of the item being processed. Because the size of each group is
fixed—and is based on the GroupltemCount property—you can easily obtain the 0-based
index of the current group. You track the index of the current group in a global variable, and
whenever a new group is found, you update the header.

Styling the List

Unlike other view controls, the ListView control doesn't feature the usual long list of style
properties such as HeaderStyle, IltemStyle, SelectedltemStyle, and so forth. After a few years of
industry use, Microsoft downsized the importance of style properties and their role. Today, as
evidenced by the ListView control, in ASP.NET, CSS styles are emerging as the most effective
and efficient way to modify the appearance of the markup.

Style Properties

ASP.NET controls let you set style attributes in two nonexclusive ways—using the CssClass
property and using style properties. The CssClass property takes the name of a CSS class
and passes it on to the class attribute of the root HTML tag generated for the control. More
often than not, though, ASP.NET controls produce a complex markup where multiple HTML
tags are rendered together but yet need to be styled differently. Although this is far from

494

Part Il ASP.NET Pages and Server Controls

being an impossible goal to achieve with CSS styles, for a few years Microsoft pushed style
properties as the way to go.

Developers are probably more inclined to use style properties than CSS styles, which require
some specific skills. Anyway, style properties let you specify CSS attributes to apply to par-
ticular regions of the markup being generated. For example, the ltemStyle property in a
GridView control allows you to define the colors, font, and borders of each displayed item.
In the end, the value of these properties are translated to CSS attributes and assigned to the
HTML tags via the style attribute. The developers don't have to build up any CSS skills and
can leverage the Visual Studio editors and designers to get a preview.

Is there anything wrong with this approach?

The problem is that style attributes are defined as part of the page’s code, and there's no
clear separation between layout and style. ASP.NET themes are helpful and certainly miti-
gate the problem. All in all, for view controls with a relatively fixed layout, style properties—
which are better if used through the intermediation of themes—are still a good option. The
ListView control, though, is kind of an exception.

Using Cascading Style Sheets

The ListView control provides an unprecedented level of flexibility when it comes to
generating the markup for the browser. The item that for, say, a GridView control can be
safely identified with a table row, can be virtually anything with a ListView control.

The CSS designer in Visual Studio allows you to style controls and save everything back to
a CSS class. So, as a developer, you always work with properties and scalar values but have
them saved back to the CSS class instead of the view state.

This is another important factor that leads developers to prefer cascading style sheets over
style properties. The CSS is a separate file that is downloaded only once. Style properties, on
the other hand, are saved to the view state and continually uploaded and downloaded with
the page.

Cool cascading style sheets are usually developed by designers and assign a style to the vast
majority of HTML tags. Often cascading style sheets incorporate layout information and
influence the structure of the page they are applied to. A common trick used by cascading
style sheets consists of assigning a particular ID to <div> tags and treating them in a special
way. Let's see how to radically improve the user interface of a previous ListView-based page
with a cool CSS.

First, you explicitly link any relevant CSS file to the page (or the master page) by using the
<link> tag. The HtmIHead control also allows you to load CSS files programmatically. Note

Chapter 11 The ListView Control 495

that most realistic CSS files have an auxiliary folder of images that you have to set up on the
production server too. The CSS file I'm using in the next example assigns a special role to
<div> tags with the following IDs: header, footer, page, and content. The alternative is to ex-
plicitly assign a CSS class using the class attribute. Both ways are widely accepted. The class
approach makes more obvious that something has been styled and what class it has been
assigned to. But, in the end, it's a matter of preference. If you opt for styling via IDs, you are
totally free to choose any names you want. (Note, however, that IDs must be unique to allow
them to be used with client scripts. This can be hard to achieve with multiple controls in one
page, so, class names are really preferred.)

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="0ObjectDataSourcel"
ItemPTlaceholderID="ListViewContent">
<LayoutTemplate>
<div id="header">
<hl id="1ogo">Customer List</hl>
</div>
<div id="page">
<div id="content">
<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
</tr>
<tbody runat="server" id="ListViewContent">
</tbody>
</thead>
</table>
</div>
</div>
<div id="footer">
</div>
</LayoutTemplate>
<ItemTemplate>
<tr>
<td><asp:Label runat="server" ID="Tb1Name"
Text="<%# Eval("CompanyName") %>' /></td>
<td><asp:Label runat="server" ID="1blCountry"
Text="<%# Eval("Country") %>' /></td>
</tr>
</ItemTemplate>
</asp:ListView>

The result is shown in Figure 11-9.

496 Part Il ASP.NET Pages and Server Controls

ey~ ‘g, hitp:/flocalhost: 1066, V| *2|| % ‘ ‘

o o [@Styllng the Listiew Control]_I - B &g

~

Customer List
Company Country

Grest Lakes Food Market usA
Hunary Coyets Impart Store usA
Lazy K Kountry Stors usA
Let's Stap M Shop usA
Lonesome Pins Restaurant usA
0ld Waorld Delicatessen usA
Rattlesnake Canyon Grocery usA
Save-a-lot Markets usA
Split Rail Beer & Ale usA
The Big Cheess usA
The Cracker Box usA
Trail's Hesd Gourmet Provisioners USA
Wihite Claver Markets usA

v

< \ B

Done € Intemet 100k T

FIGURE 11-9 Using cascading style sheets to style the markup of a ListView control.

Working with the ListView Control

The ListView control makes it easy to handle common data-based operations, such as insert,
update, delete, or sorting. All that you have to do is place buttons in the layout template and
associate buttons with command names. Buttons can be global to the list (such as insert,
sort, and page buttons) or specific to a particular item (such as update and delete buttons).
Command names are just strings that are assigned to the CommandName property of the
Button control.

So far, we have considered only scenarios with relatively static and noninteractive templates.
It is definitely possible, though, to use the ListView control to create rich user interfaces that
allow in-place editing, selection of items, paging, and updates back to the data source. Let's
start with in-place editing.

In-Place Editing

Unlike the GridView control, the ListView control doesn't automatically generate an Edit
button; nor does it automatically adapt the edit mode user interface from the item template.

Chapter 11 The ListView Control 497

This responsibility falls to the developer by design. The developer is required to define an
edit template that will be used to edit the contents of the selected item, in keeping with the
flexible nature of the control.

Defining the Edit Item Template

The edit template is any piece of markup you intend to display to your users when they click
to edit a record. It can have any layout you like and can handle data access in a variety of
ways.

If you've bound the ListView control to a data source control—for example, an
ObjectDataSource control—you can take advantage of the ASP.NET built-in support for
two-way data binding. Simply put, you use data binding <%# ... %> expressions to bind to
data, the Eval method for read-only operations, and the Bind method for full I/O operations.

The following markup defines a classic two-column table for editing some fields of a
customer record:

<table>
<tr>
<td>ID</td>
<td><asp:Label runat="server" ID="T1b1ID" Text='<%# Eval("ID") %>' /></td>
</tr>
<tr>
<td>Name</td>
<td><asp:TextBox runat="server" ID="txtName"
Text="<%# Bind("CompanyName") %>' /></td>
</tr>
<tr>
<td>Country</td>
<td><asp:TextBox runat="server" ID="txtCountry"
Text="<%# Bind("Country") %>' /></td>
</tr>
<tr>
<td>Street</td>
<td><asp:TextBox runat="server" ID="txtStreet"
Text="<%# Bind("Street") %>' /></td>
</tr>
<tr>
<td>City</td>
<td><asp:TextBox runat="server" ID="txtCity"
Text="<%# Bind("City") %>' /></td>
</tr>
</table>

Only one displayed item at a time can be in edit mode; the Editindex property is used to get
or set this 0-based index. If an item is being edited and the user clicks on a button to edit
another one, the last-win policy applies. As a result, editing on the previous item is canceled
and it's enabled on the last-clicked item.

498

Part Il ASP.NET Pages and Server Controls

To turn the ListView user interface into edit mode, you need an ad hoc button control with a
command name of Edit:

<asp:Button ID="Buttonl" runat="server" Text="Edit" CommandName="Edit" />

When this button is clicked, the ltemEditing event fires on the server. By handling this event,
you can run your own checks to ensure that the operation is legitimate. If something comes
up to invalidate the call, you set the Cancel property of the event data structure to cancel the
operation, like so:

protected void ListViewl_ItemEditing(object sender, ListViewEditEventArgs e)
{

// Just deny the edit operation

e.Cancel = true;

Adding Predefined Command Buttons

An edit item template wouldn't be very helpful without at least a couple of predefined
buttons to save and cancel changes. You can define buttons using a variety of controls,
including Button, LinkButton, ImageButton, and any kind of custom control that implements
the /ButtonControl interface.

Command names are plain strings that can be assigned to the CommandName property of
button controls. The ListView (and other view controls) recognizes a number of predefined
command names, as listed in Table 11-5.

TABLE 11-5 Supported Command Names

Command Description

Cancel Cancels the current operation (edit, insert), and returns to the default view (item
template)

Delete Deletes the current record from the data source

Edit Turns the ListView control into edit mode (edit item template)

Insert Inserts a new record into the data source

Page Moves to the next or previous page

Select Selects the clicked item, and switches to the selected item template

Sort Sorts the bound data source

Update Saves the current status of the record back to the data source

The following code shows how to add a pair of Save/Cancel buttons:

<asp:Button ID="btnSave" runat="server" Text="Save" CommandName="Update" />
<asp:Button ID="btnCancel" runat="server" Text="Cancel" CommandName="Cancel" />

Chapter 11 The ListView Control 499

Any button clicking done within the context of a ListView control originates a server-side
event—the ltemCommand event:

protected void ListViewl ItemCommand(object sender, ListViewCommandEventArgs e)

{

// Use e.CommandName to check the command requested

}

Clicking buttons associated with predefined command buttons can result in subsequent,

and more specific, events. For example, ltemUpdating and ItemUpdated are fired before and
after, respectively, a record is updated. You can use the ltemUpdating event to make any last-
minute check on the typed data before this data is sent to the database.

Note that before the update is made, ListView checks the validity of any data typed by
calling the IsValid method on the Page class. If any validator is defined in the template, it is
evaluated at this time.

Adding Custom Command Buttons

In the edit mode user interface, you can have custom buttons too. A custom button differs
from a regular Save or Cancel button only in terms of the command name. The command
name of a custom button is any name not listed in Table 11-5. Here's an example:

<asp:Button ID="btnMyCommand" runat="server" Text="Custom"
CommandName="mycommand" />

To execute any code in response to the user’s clicking on this button, all you can do is add an
ItemCommand event handler and check for the proper (custom) command name and react
accordingly:

protected void ListViewl_ItemCommand(object sender, ListViewCommandEventArgs e)
{

// Check the command requested

if (e.CommandName == "MyCommand™)

{

3

Conducting the Update

When the ListView control is used in two-way binding mode, any update operation is
conducted through the connected data source control. You define select and save methods
on the data source, configure their parameters (either declaratively or programmatically), and
delegate to the ListView control all remaining chores.

500

Part Il ASP.NET Pages and Server Controls

For update and delete operations, though, you need to identify the record uniquely. This is
where the DataKeyNames property gets into the game. You use this property to define a

collection of fields that form the primary key on the data source:

<asp:ListView ID="ListViewl" runat="server"

DataSourceID="0ObjectDataSourcel"

DataKeyNames="1d">

</asp:ListView>

In this case, the DataKeyNames tells the underlying data source control that the ID field on
the bound record has to be used as the key. Figure 11-10 shows a sample page in action that
edits the contents of the currently displayed record.

=) - . : :
@‘\:_/] hetpi/flocaihost: 1066, | #2| X | |

=) - . : :
@‘\:_/] hetpi/flocaihost: 1066, | #2| X | |

w & [@L\stviewtnntml::Ir\-p\acemIil -5 &=

w & [@L\stviewtnntml::Ir\-p\acemIil -5 &=

»

Customer List

D CACTT

Name
A e —
St
Ciy

Océanc Atlantico Lida
Ing. Gustavo Moncada 8585 Piso 20-A, Buenos Aires, Argentina

Customer List

Cactus Comidas para llevar
Cerrito 3333, Buenos Alres, Argentina

B

Océanc Atlantico Lida
Ing. Gustavo Moncada 8585 Piso 20-4, Buenos Aires, Argentina

Ranche grande
Aw. del Libertador 900, Buenos Aires, Argentina
Ranche grande
Av. del Libertador 900, Buenos Aires, Argentina
Edit | | Delete || Custom =
g
€ Intemet 100k T Dane € Intemet 100k T

FIGURE 11-10 In-place editing in action with the ListView control.

Deleting an Existing Record

As you can see, Figure 11-10 also contains a Delete button side by side with the aforemen-

tioned Edit button. Here's the full markup for ListView's item template:

<ItemTemplate>
<p>
<%# Eval("CompanyName") %>

<%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country") %>

</p>

Chapter 11 The ListView Control 501

<asp:Button ID="btnEdit" runat="server" Text="Edit" CommandName="edit" />
<asp:Button ID="btnDelete" runat="server" Text="Delete" CommandName="delete"
OnClientClick="return confirm('Are you sure you want to delete this item?');" />
<asp:Button ID="btnMyCommand" runat="server" Text="Custom" CommandName="mycommand" />
</ItemTemplate>

The Delete operation is even more crucial than an update. For this reason, you might want
to be sure that deleting the record is exactly what the user wants. For example, you can pop
up a client-side message box in which you ask the user to confirm the operation. It is a little
piece of JavaScript code that you attach to the OnClientClick property of a Button control or
to the onclick attribute of the corresponding HTML tag. It can save you a lot of trouble.

Showing a Message Box upon Completion

Wouldn't it be nice if your application displays a message box upon the completion of an
update operation? It doesn't change the effect of the operation, but it would make users feel
more comfortable. In a Web scenario, you can use only JavaScript for this purpose. The trick
is that you register a piece of startup script code with the postback event where you execute
the update operation. In this way, the script will be executed as soon as the page is served
back to the browser. From the user’s perspective, this means right after the completion of the
operation. Here's what you need:

protected void ListViewl_ItemUpdated(object sender, ListViewUpdatedEventArgs e)
{
// Display a client message box at the end of the operation
Page.ClientScript.RegisterStartupScript(
this.GetType(Q),
"update_Script",
"alert('You successfully updated the system.');",
true);

Inserting New Data Items

The ListView control allows you to define a made-to-measure interface for adding new
records to the underlying data source. You do this through the InsertitemTemplate property.
More often than not, the insert template is nearly identical to the edit item template, except
for the fields that form the primary key of the data source. These fields are normally ren-
dered as read-only text in the edit template. Clearly they have to be editable in an insert item
scenario.

Setting Up the Insert Item Template

So let's assume you have the following insert item template. As you can easily verify, it is the
same edit item template we used in the previous example, except that a TextBox control is
used for entering the ID of the new customer.

502

Part Il ASP.NET Pages and Server Controls

<InsertItemTemplate>
<table>
<tr>
<td>ID</td>
<td><asp:TextBox runat="server" ID="txtID"
MaxLength="5"
Text="<%# Bind("ID") %>' /></td>
</tr>
<tr>
<td>Name</td>
<td><asp:TextBox runat="server" ID="txtName"
Text="<%# Bind("CompanyName") %>' /></td>
</tr>
<tr>
<td>Country</td>
<td><asp:TextBox runat="server" ID="txtCountry"
Text="<%# Bind("Country") %>' /></td>
</tr>
<tr>
<td>Street</td>
<td><asp:TextBox runat="server" ID="txtStreet"
Text="<%# Bind("Street") %>' /></td>
</tr>
<tr>
<td>City</td>
<td><asp:TextBox runat="server" ID="txtCity"
Text="<%# Bind("City") %>' /></td>
</tr>
</table>
<asp:Button ID="btnInsert" runat="server" Text="Add" CommandName="insert" />
<asp:Button ID="btnCancel" runat="server" Text="Cancel" CommandName="cancel" />
</InsertItemTemplate>

How would you display this template? The edit item template shows up when the user clicks
a button decorated with the Edit command name. Unfortunately, there's no equivalent New
command name to automatically bring up the insert item template. Instead, with the ListView
the New command name is considered a custom command, handled by code you provide to
activate the insert item template, unless it's active by default. We'll look at the details next.

The insert item template is displayed by position. The InsertitemPosition property determines
where the template is displayed. There are three possibilities, as shown in Table 11-6.

TABLE 11-6 Feasible Positions for the Insert Item Template
Position Description

Firstitem The insert item template is displayed as the first item in the list and precedes all
items in the bound data source.

Lastltem The insert item template is displayed as the last item in the list and trails all items
in the bound data source.

None The insert item template is not automatically displayed. The developer is
responsible for showing and hiding the template programmatically. This is the
default value for the InsertltemPosition property.

Chapter 11 The ListView Control 503

If you leave the InsertltemPosition property set to its default value, no insert template is
displayed, but you won't have a predefined button to bring it up. If you use any of the other
two values, the template is always visible and displayed at the beginning or the end of the
list. This might not be desirable in most cases. Let's see how to take programmatic control
over the display of the insert template.

Taking Full Control of the Insert Template

In the layout template, you add a custom button and capture any user’s click event. You can
give the button any command name not listed in Table 11-5:

<asp:Button ID="btnNew" runat="server" Text="New Customer" CommandName="new" />

To handle the click on the button, you write an ltemCommand handler. In the event handler,
you simply change the value of the InsertitemPosition property, as shown here:

protected void ListViewl_ItemCommand(object sender, ListViewCommandEventArgs e)
{
if (e.CommandName.Equals("New", StringComparison.OrdinalIgnoreCase))
{
ListView me = (ListView) sender;
me.InsertItemPosition = InsertItemPosition.FirstItem;

}

Changing the value of InsertltemPosition to anything but None brings up the insert item
template, if any. In the insert template, you need to have a couple of predefined buttons with
command names of Insert (to add) and Cancel (to abort).

It should be noted, though, that the insert item template is not automatically dismissed by
the ListView control itself. As mentioned, this is because of the lack of built-in support for
the New command name. In the end, this requires that you add a couple more handlers to
dismiss the template when the user cancels or confirms the insertion.

The ItemCanceling event fires when the user hits a button associated with the Cancel
command name. This can happen from either the edit or insert template. The event data
object passed to the handler has the CancelMode property, which is designed to help you
figure out what mode is active (insert or edit) and allow you to tailor your application’s
response.

protected void ListViewl_ItemCanceling(object sender, ListViewCancelEventArgs e)

{

ListView me = (ListView) sender;

// Dismissing the insert item template
if (e.CancelMode == ListViewCancelMode.CancelingInsert)
me.InsertItemPosition = InsertItemPosition.None;

504 Part Il ASP.NET Pages and Server Controls

To hide the insert item template after the new data item has been successfully appended to
the data source, you use the lteminserted event:

protected void ListViewl ItemInserted(object sender, ListViewInsertedEventArgs e)
{

ListView me = (ListView) sender;

me.InsertItemPosition = InsertItemPosition.None;

Adding a Bit of Validation

When you're going to add a new record to an existing data source, a bit of validation—much
more than is generally desirable—is mandatory. Being responsible for the insert template,
you can add as many validators as necessary to the markup. The ListView control’s internal
facilities then ensure that the operation is finalized only if no validator raised an error.

In particular, you might want to check whether the ID being inserted already exists in the
data source. You can use a CustomValidator control attached to the text box:

<asp:TextBox runat="server" ID="txtID"
MaxLength="5"
Text="<%# Bind("ID") %>' />
<asp:CustomValidator runat="server" ID="CustomValidatorl"
ErrorMessage="Invalid ID"
ControlToValidate="txtID"
OnServerValidate="CustomValidatorl_CheckID" />

The CustomValidator control fires a server-side event in which you can run code to validate
the text in the input field. The server event is fired via a postback and has the following

prototype:
protected void CustomValidatorl CheckID(object source, ServerValidateEventArgs e)
{
string proposedCustomerID = e.Value;
e.Isvalid = CheckIfUsed(proposedCustomerID);
}
private bool CheckIfUsed(string proposedCustomerID)
{
var ¢ = CustomerRepository.Load(proposedCustomerID);
// The object is of type NoCustomer if no matching customer exists
if (c is DAL.NoCustomer)
return true;
return false;
}

The Load method in the sample data access layer (DAL) used in this example supports the
Special Case pattern. In other words, the method always returns a valid Customer object
regardless of the value of the input proposedCustomerID parameter. If a customer with a

Chapter 11 The ListView Control 505

matching ID can't be found, the return object is an instance of the NoCustomer class. Of
course, NoCustomer is a class that derives from Customer.

How is this different from returning a plain null value or perhaps an error code? In both
cases, the caller can figure out whether a matching customer exists or not. However, return-
ing a special-case Customer object is inherently more informative and doesn't violate the
consistency of the method—a class that inherits from Customer is always returned, whereas
an error code is a number and null is a non-value.

Selecting an Item

The SelectedltemTemplate property allows you to assign a different template to the currently
selected item in the ListView control. Note that only one displayed item at a time can be
given the special selected template. But how do you select an item?

Triggering the Selection

The selected item template is a special case of the item template. The two templates are
similar and differ mostly in terms of visual settings—for example, a different background
color. The switch between the regular and selected item template occurs when the user clicks
on a button with the Select command name. If you intend to support the selection item
feature, you place a Select button in the item template. When this button gets clicked, the
ListView automatically applies the new template to the clicked item. Here are some sample
item and selected item templates:

<ItemTemplate>
<p>
<asp:Tinkbutton runat="server" Text='<%# Eval("CompanyName") %>'
CommandName="Select" />

<%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country™) %>
</p>
</ItemTemplate>

<SelectedItemTemplate>

<h3>

<%# Eval("CompanyName") %>

<%# Eval("Street") %>, <%# Eval("City") %>, <%# Eval("Country") %>
</h3>

<asp:Button ID="btnEdit" runat="server" Text="Edit" CommandName="Edit" />
<asp:Button ID="btnDelete" runat="server" Text="Delete" CommandName="Delete"
OnClientClick="return confirm('Are you sure you want to delete this item?');" />
<asp:Button ID="btnUnselect" runat="server" Text="Unselect" CommandName="unselect" />
</SelectedItemTemplate>

506

Part Il ASP.NET Pages and Server Controls

In addition to changing some visual settings, the selected item template can contain buttons
to trigger operations on the particular item.

In Figure 11-10 shown earlier, each item features its own set of operational buttons, such as
Edit and Delete. This layout can be reworked to display buttons only on the selected item. To
do so, you just move the buttons to the SelecteditemTemplate property.

In the item template, though, you need to insert a button control to trigger the selection

process. You can use a push button or attach any significant text in the template to a link
button:

<asp:Tinkbutton runat="server" Text='<%# Eval("CompanyName") %>' CommandName="Select" />

Figure 11-11 shows the result.

{2 List¥iew Control:: Select - Windows Intennet Explorer

®\- iy~ ‘g hitp:/flocalhost: 1066, V| *2|| % ‘

— -

Customer List

Cerrito 333, Buenos Aires, Argentina

Océano Atlantico Ltda.
Ing. Gustavo Moncada 8585 Piso 20-A,
Buenos Aires, Argentina

@ Delete Unselect

Av, del Libertador 900, Buenos Aires, Argentina

Done & Internet 100% v

FIGURE 11-11 A selected item in a ListView control.

Releasing the Selection

When you click the link button, the ListView switches the template and sets the Selected/ndex
property accordingly. As soon as the user clicks on a different item, the selection is moved
and the previously selected item regains the regular template. Is there a way to program-
matically reset the selection? You bet.

All that you have to do is add a new custom button and handle its click event. In the event
handler, you assign the -1 value to the SelectedIndex property. A value of -1 means that no
items are selected. Here's the related code snippet:

protected void ListViewl_ItemCommand(object sender, ListViewCommandEventArgs e)
{
ListView me = (ListView) sender;
if (e.CommandName.Equals("Unselect"”, StringComparison.OrdinalIgnoreCase))
me.SelectedIndex = -1;

Chapter 11 The ListView Control 507

Note that the index of the currently selected item and the index of the item being edited are
saved to the view state and persisted across postbacks. This means that if the user changes
the country/region selection (shown in Figure 11-11), both the edit and selection indexes are
retained, which might not be desirable. For example, imagine that you selected (or are edit-
ing) the second customer from Argentina. Next, the user changes to Brazil while the selected
(or edit) template is on. The result is that the second customer from Brazil is displayed in the
selected (or edit) mode. If this behavior works for you, there’s nothing to modify in the code.
Otherwise, you need to reset SelectedIndex and EditIndex in any postback event outside the
ListView control. Here's an example:

protected void DropDownListl_SelectedIndexChanged(object sender, EventArgs e)
{
// The sender argument here indicates the DropDownList or any other
// control responsible for the postback. You reference the ListView by
// name or via a custom global member in the code-behind class of the page
ListViewl.SelectedIndex = -1;
ListViewl.EditIndex = -1;

Paging the List of Items

In ASP.NET, grid controls support data paging natively. Purely iterative controls such as
Repeater and Datalist, though, leave the burden of pagination entirely on the developer’s
capable shoulders. The ListView control falls somewhere in the middle of these two ex-
treme positions. The ListView control doesn't have built-in paging capabilities, but it knows
how to work with a new control specifically designed to enable data paging on a variety of
data-bound controls. This control is the DataPager.

The DataPager Control

The DataPager control is designed to add paging capabilities to a family of data-bound
controls and not just the ListView. The support that the DataPager control offers to data-
bound pageable controls such as the ListView is limited to the user interface of the pager.

You configure the DataPager to obtain the pager bar you like best, and then you instruct
the DataPager control to fall back to the paged control to display the specified number of
data items starting at the specified position. In no case does the DataPager expose itself
to the data source or a data source control. All that it does is communicate to the paged
control the next set of records to select and display. Table 11-7 lists the properties of the
DataPager control.

508

Part Il ASP.NET Pages and Server Controls

TABLE 11-7 Properties of the DataPager Control
Property Description

Fields Gets the collection of DataPagerField elements that form the pager bar.
Elements in this collection belong to classes such as NumericPagerField,
TemplatePagerField, and NextPreviousPagerField.

MaximumRows Gets the maximum number of rows that the page can support.

PagedControllD Gets and sets the ID of the control to page. This control must implement the
IPageableltemContainer interface.

PageSize Gets and sets the size of the page. The default value is 10.

QueryStringField The name of the query string field for the current page index. The pager uses
the query string when this property is set.

StartRowIndex Gets the index of the first item in the data source to display.

TotalRowCount Gets the total number of rows to page through.

Only a few of these properties can be set declaratively. They are Fields, PagedControlID,
PageSize, and QueryStringField. The other properties are read-only and owe their value to the
paged control and the size of the bound data source.

Using the DataPager Control

The following code snippet shows the typical code you use to embed a data pager in an
ASP.NET page that hosts a ListView control:

<asp:DataPager ID="DataPagerl" runat="server"
PagedControlID="ListViewl" PageSize="4">
<Fields>
<asp:NextPreviousPagerField />
</Fields>
</asp:DataPager>

The DataPager control heralds a new model for paging data-bound controls that is quite a
bit different from the model employed by GridView controls. The user interface for paging is
not part of the control, but it can be placed anywhere in the page and even driven through
the query string.

The DataPager control is linked to the data-bound control being paged and lets this control
know about the user selection. Subsequently, the paged control adjusts its row proper-

ties and passes the information back to the data pager. Figure 11-12 shows a data pager

in action.

Chapter 11 The ListView Control 509

£= List¥iew Control:: Select - Windows Internet Explorer \;Hﬁl@

@-{*;'] httpiiflocaihost: 1066, | #2| X | |
o [@L\stviewtnntml::SE\Ect Iil G- &-

Customer List

%

24, place Klgber, Strasbourg, France

Ban app!
12, rue des Bouchers, Marseille, France

Du monde entier

184, chaussée de Tournai, Lille, France

javascr & Internet 100% v

FIGURE 11-12 A data pager in action—the pager can be placed anywhere in the page.

Configuring the Data Pager Fields

The user interface of the data pager control is largely customizable. You do that through
the Fields property—a collection of DataPagerField objects. The property allows you to add
multiple pagers of different styles. Table 11-8 lists the various options you have.

TABLE 11-8 Types of Data Pagers
Type Description

NextPreviousPagerField Displays a fully customizable Next/Previous user interface for the pager.
You can use images or text for Next/Previous buttons and also add a
First/Last pair of buttons.

NumericPagerField Displays a fully customizable list of numeric links, one for each page. The
number of pages is calculated on the page size and the total number of
bound rows.

TemplatePagerField Allows you to use a user-defined template for the pager.

All classes in Table 11-8 inherit from the same common class—DataPagerField. If you're
OK with the default user interface of the pagers, you don't need to set any of the pager’s
properties. The following markup, therefore, is perfectly functional:

<Fields>
<asp:NumericPagerField />
</Fields>

Pager fields, though, have a number of visual properties to set the CSS style of buttons, the
companion text, or perhaps the images to use instead of text.

510

Part Il ASP.NET Pages and Server Controls

Pageable Containers

As mentioned, the data pager control doesn't handle data itself. Rather, the control is the
manager of the paging user interface. For this reason, it needs to communicate with the
paged control. Whenever a button in the pager is clicked to move to a given page, the pager
control fires a message to the paged control and has it refresh the user interface properly.

Not all data-bound controls can be paged using a data pager. In ASP.NET, this privilege is
limited to controls that implement the /PageableltemContainer interface. Currently, the sole
control to support this interface is the ListView control. You can create your own custom
controls to implement the interface, however. Here's the definition of the interface:

public interface IPageableItemContainer

{
// Events
event EventHandler<PageEventArgs> TotalRowCountAvailable;

// Methods
void SetPageProperties(int startRowIndex, int maximumRows, bool databind);

// Properties

int MaximumRows { get; }

int StartRowIndex { get; }
}

The PagedControllD property on the DataPager control defines the linked data-bound
control. Whenever the pager is acted on, it invokes the SetPageProperties method on the
paged control through the contracted interface. In doing so, it lets the ListView control (or
the paged control) know about the new start row to display and the size of the page. Here's
the pseudocode used by the ListView control to support paging:

void SetPageProperties(int startRowIndex, int maximumRows, bool databind)
{
if ((this._startRowIndex != startRowIndex) || (this._maximumRows != maximumRows))
{
PagePropertiesChangingEventArgs e;
e = new PagePropertiesChangingEventArgs(startRowIndex, maximumRows) ;
if (databind)
{
this.OnPagePropertiesChanging(e);
}

this._startRowIndex = e.StartRowIndex;
this._maximumRows = e.MaximumRows;
if (databind)

{
this.OnPagePropertiesChanged(EventArgs.Empty) ;
}
}
if (databind)
{
base.RequiresDataBinding = true;
}

Chapter 11 The ListView Control 511

PagePropertiesChanging and PagePropertiesChanged events are fired before and after,
respectively, each paging operation.

The data pager control is normally placed outside the ListView's layout. In this case, you use
the PagedControllD property of the data pager to specify the paged control. However, if the
PagedControlID property is not specified, the data pager assumes that its naming container
is the paged control (as long as it implements the /PageableltemContainer interface). What
does this mean to you? It means you can embed the data pager in the layout template of the
ListView control and avoid setting the PagedControlID property on the pager explicitly.

Sorting the List

The data bound to the ListView control can be sorted using a button in the layout template
with the command name of Sort:

<LayoutTemplate>
<asp:Button ID="btnSort" runat="server" Text="Sort"
CommandName="Sort"
CommandArgument="companyname" />
</LayoutTemplate>

You specify the sort expression and the initial sort direction using the CommandArgument
property of the button. You use asc and desc to indicate the desired direction. Multiple
sorting fields can be listed as well. The sorting automatically reverses from ascending to
descending and vice versa as you click. The ListView's SortExpression and SortDirection
read-only properties tell you at any time about the current status of the sort.

Summary

The ListView control adds the benefits of ASP.NET view controls (such as the GridView or
DetailsView control) to classic repeater data-bound controls such as Datalist. The resulting
control weds the extreme layout flexibility of a DatalList or Repeater control with the power of
two-way data binding of data source controls.

The ListView control can be used to implement virtually any reporting and publishing
scenarios you can imagine. The distinct layout template gives you total control over the
HTML being generated and the style it must have. Various item templates (regular, alternate,
edit, selected, insert) let you decide about the markup to output for each possible state of
the control.

Finally, the ListView control is a pageable control. Unlike other view controls, though, the
ListView control binds to an external pager control—the new DataPager control. The
connection between the two controls is all in the IPageableltemContainer interface. As a
result, each data-bound control with this interface can be paged without incorporating the
logic to page.

Chapter 12
Custom Controls

Ignorance, the root and the stem of every evil.

—Plato

Server controls are one of the pillars of the entire ASP.NET Web Forms framework. Server
controls are compiled classes that encapsulate user-interface and other functionality into
reusable packages. ASP.NET provides a full bag of stock controls to serve most develop-
ers’ needs. However, writing custom controls is possible and sometimes necessary. Custom
controls are no different than standard ASP.NET server controls except that they are bound
to a different tag prefix and must be registered and deployed explicitly. Aside from that,
custom controls can have their own object model, fire events, and support all the design-
time features of Microsoft Visual Studio, such as the Properties window, the visual designer,
property builders, and the Toolbox. Because of their compiled nature, custom controls can
be installed in a single copy in the global assembly cache (GAC), making them available

to all applications, or they can simply be deployed to the \Bin directory for use by a single
application.

A custom control is a class and inherits from a base control class. The logic already available
in the base class determines how much, and what, code you have to write. There are basically
two ways of creating custom controls. If you find that an existing control meets your require-
ments only partially and lacks some key features, the simplest thing you can do is extend the
control by deriving a new class from it. You can override specific properties, methods, and
events as well as add new features. If none of the existing Web server controls meet your
requirements, consider creating a custom control from scratch by deriving from one of the
base control classes—Control and WebControl. These classes provide only the basic function-
ality of ASP.NET server controls, and they require that you take care of some of the control’s
operational aspects yourself, such as rendering, styling, view state, and state management.

Note Custom controls are not to be confused with user controls (ASCX files). Web user controls
are dynamic-compile components and cannot be added to the Toolbox. In addition, user
controls should be deployed as source code unless the application that incorporates them is
precompiled. In this case, you can extract the dynamic assembly that contains the user control
and share it between applications. However, this technique is not supported by Microsoft and,
well, requires a lot of familiarity with the ASP.NET internals.

513

514

Part Il ASP.NET Pages and Server Controls

Extending Existing Controls

When you realize you need a custom control to accomplish a certain task, first pause and
make sure the feature you devised can really be obtained with HTML, literals, and JavaScript
code. If you know how to do that in pure HTML, you can start planning an ASP.NET control
and then architect and engineer the feature for the best reusability and efficiency.

Choosing a Base Class

A custom server control is a Microsoft .NET Framework class that inherits—either directly or
indirectly—from Control. Control is the root class for all server controls in ASP.NET applica-
tions. It should be noted, though, that very few controls that you commonly use in ASP.NET
applications really inherit directly from Control. For the most part, ASP.NET controls inherit
from intermediate classes that encapsulate a given predefined behavior.

Inheriting from a Base Class

Each ASP.NET server control that is not marked as sealed can be further inherited and
specialized. Table 12-1 lists all the classes in ASP.NET that represent some sort of base
functionality. Each class in the list represents the root of a family of controls.

TABLE 12-1 Base Control Classes Available in ASP.NET

Class Description

BaseDataBoundControl Incorporates the basic mechanism and object model for data
binding. It inherits from WebControl.

BaseDatalist Adds grid capabilities such as advanced rendering, templates,
and paging. It inherits from WebControl. This is considered
deprecated in ASP.NET 4.

CompositeControl Incorporates the mechanics of composite controls with
regard to the building of the control’s tree. It inherits from
WebControl.

CompositeDataBoundControl Incorporates the mechanics of composite data-bound controls

with regard to view-state management and the building of the
control’s tree. It inherits from DataBoundControl.

DataBoundControl Adds support for data source controls, and overrides some
methods marked as abstract in the parent class. It inherits
from BaseDataBoundControl.

HierarchicalDataBoundControl Adds support for data hierarchical data source controls, and
overrides some methods marked as abstract in the parent
class. It inherits from BaseDataBoundControl.

ListControl Adds support and an object model tailor-made for list
controls, such as CheckBoxList and DropDownlList.

WebControl Adds an array of user-interface (Ul) properties, such as style
settings, colors, font, and borders. It inherits from Control.

Chapter 12 Custom Controls 515

Among the commonly used controls that inherit directly from Control, you find Repeater,
MultiView, Placeholder, and LiteralControl. All other controls in ASP.NET inherit from one of
these classes.

Extending a Base Class

The base Control class incorporates a number of features and makes them available to all
child controls. A quick list includes view-state management, control identification, naming
container capabilities, design-time support, themes, control state, and adaptive rendering. If
you choose to inherit from any of the classes in Table 12-1, be prepared to write quite a bit
of code because the control you get in the beginning is not particularly rich with concrete
functionalities.

You typically inherit from any of those classes if you're going to write a control that provides
unique capabilities that are hard to find in other ASP.NET controls. Inheriting from any of the
classes in Table 12-1 is more like building a custom control from scratch, where the effective
starting point is determined by the selected base class.

If you opt for inheritance from a concrete control class—that is, a control that provides an
observable behavior and user interface—you should strive to add new features or over-
ride existing capabilities without altering too much the structure and the personality of the
control itself.

A Richer HyperLink Control

Let's start with a sample custom control that extends the standard behavior of the HyperLink
built-in control. By default, the ASP.NET HyperLink control outputs an anchor <a> tag that
points to a URL. By design, any click on an anchor tag is served directly by the browser, which
navigates to the specified page. No postback occurs to the page that originally displayed

the anchor. Put another way, if you want to track that the user clicked on a given anchor, you
need to extend the behavior of the hyperlink control.

Designing a Usage Scenario

Let's further develop the idea of a control that drives users to a different page but gives the
page author a way to track the event. The canonical example used to illustrate the impor-
tance of this feature is the page hit counter. Monitoring the visitor activity is an important
task that each administrator of a Web site should consider to improve the quality and con-
tent of the site. A click-through is the name commonly used to indicate the user’s clicking
to see particular content, and it's an important parameter for evaluating how the visitors

of a site receive advertising. How would you implement a counter service that counts click-
throughs in a page?

516

Part Il ASP.NET Pages and Server Controls

You can associate each button control in a page (Button, HyperLink, ImageButton, LinkButton,
and AdRotator) with an extra layer of code that first tracks the click and then proceeds with
the expected behavior. Getting this behavior with controls that entail a postback is not dif-
ficult. Take the LinkButton class, for example. You can derive a new control and override the
OnClick protected member as follows:

protected virtual void OnClick(EventArgs e)

{
// Track the event
// Proceed with the default behavior
base.OnClick(e);

}

What about the HyperLink control, though? The click on the hyperlink is handled directly by
the browser and doesn’t pass through any ASP.NET code of yours.

A Redirector for the HyperLink Control

The idea is that you force the HyperLink control to adopt a navigation URL that is different

from the one set by the programmer. In other words, you divert the HyperLink to a custom
page on your site where you first accomplish any custom tasks you need (such as tracking)

and then redirect to the originally requested page. The code for such a modified version of
the HyperLink control doesn't look particularly scary:

using System;
using System.Web.UI.WebControls;

namespace Samples

{
pubTlic class Hyperlink : System.Web.UI.WebControls.HyperLink
{
public string RedirectPage
{
get
{
var o = ViewState["RedirectPage"];
if (o == null)
return "redir.aspx";
else
return (String) o;
}
set { ViewState["RedirectPage"] = value; }
}

public new String NavigateUrl

{
get { return base.NavigateUrl; }
set

Chapter 12 Custom Controls 517

{
var url = "{0}?page={1}";
url = String.Format(url, RedirectPage, value);
base.NavigateUrl = url;

}

}

As you can see, the new control has a brand new property—RedirectPage—and overrides
an existing property—NavigateUrl. RedirectPage indicates the URL of the intermediate page,
where the user is temporarily redirected so that any custom tasks such as click-through
tracking can be accomplished. Here’s an example of the code file of such a page:

public partial class Redir : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
// Capture the originally requested page
var url = String.Empty;
var o = Request["Page"];
if (o != null)
{
url = Server.UrlEncode((String) o0);
if (String.IsNul10rEmpty(url)
return;

}

// Do something here, such as updating a counter

// Redirect the user to the originally requested page
Response.Redirect(url);

}

You are assuming that the custom HyperLink control calls the redirector page, passing a Page
parameter on the query string set to the original URL. Of course, this trick is arbitrary and
you can find any better workarounds if you want.

The navigation URL for a hyperlink is set through the NavigateUrl property. You need to
ensure that whenever a new value is assigned to the NavigateUr! property (say,
http://www.asp.net), it gets overridden by something like the following:

redir.aspx?page=http://www.asp.net

In this way, the user first reaches redir.aspx, where his action is tracked, and then he is
directed to his final destination.

To override the setter (or the getter) of a control property, you need the property to be
marked as virtual at some point in the control’s inheritance chain. The HyperLink control has

http://www.asp.net
http://www.asp.net

518

Part Il ASP.NET Pages and Server Controls

a virtual property—Text—and a couple of public, but not virtual, properties such as Target
and NavigateUrl. If the property is not marked as virtual (namely, it is overridable), you can't
override it; however, you can replace its implementation altogether. You do this through the
new modifier in C# and the Shadows modifier in Microsoft Visual Basic .NET:

public new string NavigateUr]

{
get { return base.NavigateUrl; }
set
{
var url = "{0}?page={1}";
url = String.Format(url, RedirectPage, value);
base.NavigateUrl = url;
}
}

The new modifier applied to a property instructs the compiler that the current implemen-
tation for the member replaces any other implementation available on base classes. If you
redefine the NavigateUrl property without using the new keyword, you simply receive a
warning from the compiler. The warning informs you that you are hiding an existing member,
and it just recommends the use of the new modifier if hiding the member was intentional.

Building Controls from Scratch

There are two main situations in which ASP.NET developers feel the need to create custom
controls. At times, developers need a control that simply doesn’t exist in the ASP.NET built-
in toolbox. And occasionally, developers need a control that is similar to one of the native
controls but not close enough to justify using one. In this case, developers typically derive a
new control from an existing one and add or override members as appropriate. Let’s discuss
techniques and tricks to design and code completely new ASP.NET controls that address
functionalities that ASP.NET doesn’t provide out of the box.

Base Class and Interfaces

Several programming aspects support the development of a custom control in ASP.NET. First,
there are base classes such as Control and WebControl. Each class provides a common set of
base properties that address and fit into a particular use case. In addition to base classes, in-
terfaces help you to better characterize the behavior and programming model of the control.
A few interfaces are worth mentioning. They are INamingContainer, IPostBackDataHandler,
and IPostBackEventHandler.

In Table 12-1, you see listed all base classes for controls and data-bound controls. For now,
let’s focus on Control and WebControl.

Chapter 12 Custom Controls 519

Control vs. WebControl

The Control class defines the properties, methods, and events common to all ASP.NET server
controls. These include the methods and events that determine and govern the life cycle

of the control, plus a few properties such as ID, UniquelD, Parent, and ViewState and the
collection of child controls named Controls.

The WebControl class derives from Control and adds extra properties and methods, mostly
regarding control styles that affect rendering. These properties include ForeColor, BackColor,
Font, Height, and Width. WebControl, in particular, is the base class for the family of Web
server controls in ASP.NET.

When developing a new ASP.NET control, there’s just one guideline to follow. If your control
renders a user interface, you should derive it from WebControl. If you're authoring a compo-
nent that doesn't provide specific user-interface features, you're better off using Control as
your base class. Although these rules are effective in most cases, there might be exceptional
situations in which you would reasonably do otherwise. For example, you can derive from
Control if you want to provide a subset of the user-interface features.

When building composite controls—that is, controls designed by aggregating multiple
controls together—you might want to use CompositeControl as the base class. You should
never use UserControl, on the other hand, as a base class for a custom control.

Related Interfaces

Depending on the functionality of your control, you might have to implement additional
interfaces. Typically, a server control implements some of the following interfaces:

B /NamingContainer This interface, also referred to as a marker interface, doesn't
contain methods—it simply notifies the ASP.NET runtime that the control that ex-
poses it should be treated as a naming container. Child controls contained within a
naming container control have their UniquelD property prefixed with the ID of the
container. The naming container, therefore, acts as a namespace and guarantees the
uniqueness of the control's client IDs within the specified naming scope. (Note that
if the ClientIDMode property is set to Static, this warranty just ceases.) The use of the
INamingContainer interface is essential if you're writing composite controls or controls
that include templates.

B /PostBackDataHandler The interface is needed whenever your control has to examine
postback data. If the user can execute actions that affect the state of the control,
you need to look into the postback data. For example, a TextBox control stores its
configuration in the view state but also needs to read what the user typed in through
the browser. This scenario is just where the IPostBackDataHandler interface fits in.
The method LoadPostData lets controls examine posted values. The interface is also

520

Part Il ASP.NET Pages and Server Controls

helpful if you need to raise events on the server based on changes to the data (method
RaisePostDataChanged). Again, the TextBox is the perfect sample control; if the data
changed between postbacks, the TextChanged event is also raised.

B /PostBackEventHandler The interface serves to capture a client-side postback
event (for example, a click). Upon postback, after raising data change events, the
ASP.NET runtime looks for a server control whose UniquelD property matches the
name of a posted value (for example, the name of the clicked button). If a match
is found and the control implements IPostBackEventHandler, ASP.NET invokes the
RaisePostBackEvent method on the control. RaisePostBackEvent is the only method
defined on the IPostBackEventHandler interface. What a particular control does within
the RaisePostBackEvent method can vary quite a bit. The Button control—a simple
control that implements this interface—fires its Click event when ASP.NET invokes the
RaisePostBackEvent method.

Choosing a Rendering Style

For an ASP.NET server control, the sole purpose in life is outputting markup text. The
control’s object model and the system infrastructure it leverages serve to determine the
contents to output, but the whole life cycle of controls (and host pages) inevitably ends with
the rendering step. There are various ways for a server control to render out.

The Render Method

Typically, an ASP.NET control renders out through the Render method. To take total control
of the control’s rendering, you therefore override the Render method and write markup code
to the specified HTML text writer object:

protected override void Render(Htm1TextWriter writer)

The HTML text writer object is a sort of buffer where you can accumulate all the text to be
output—nearly the same as a string builder. You can compose markup using the methods of
the HtmlTextWriter object or by building plain strings. Writing to the text writer is indeed the
fastest way for controls to generate their markup, but unfortunately it doesn't result in eas-
ily readable code. If you take this route for a reasonably complex control, your final code will
look like an intricate mess of nested if-then-else statements. Your code will be hard to read
and maintain.

There's another aspect to consider about direct markup output. Consider the following code
snippet:

protected override void Render(Htm1TextWriter writer)

{
writer.Write("<input type=text id=\"TextBox1\" />");

}

Chapter 12 Custom Controls 521

The final page contains an input field of type text with an ID of TextBoxI1. The server environ-
ment, though, doesn’'t know anything about this element and might not be able to process
server events for this element correctly. In other words, you should render the markup direct-
ly only for controls that output raw HTML that don’t match ASP.NET controls and don't need
to raise or handle server events such as postbacks or post-data-changed events. If you're go-
ing to write a server control that renders an HTML marquee or a table of data, writing to the
control’s text writer buffer is fine. If you're building a control that results from the composi-
tion of other controls, you're better off taking another approach—building the control tree
programmatically.

Building the Control Tree

When your control embeds constituent child controls, you have a composite control. In this
case, it is recommended that you build the final tree of controls programmatically by over-
riding the CreateChildControls method defined on the Control class. You do this by adding
all constituent controls to the Controls collection of the control being developed. Here's an
example:

protected override void CreateChildControls()
{
// Clears child controls
Controls.Clear();

// Build the control tree
CreateControlHierarchy(Q);

// Clear the view state of child controls
ClearChildViewState();
}

ClearChildViewState is a method on the Control class that deletes the view-state informa-
tion for all the server child controls. CreateControlHierarchy, on the other hand, is an arbi-
trary name and represents a user-defined method that builds the control’s tree. You should
feel free to replace that function with your own function or plain code. As a matter of fact,
though, most ASP.NET built-in composite controls define a protected, overridable method
with just that name. Here's a possible implementation for CreateControlHierarchy that creates
a text box with a leading label. Note that not only is the name of CreateControlHierarchy ar-
bitrary, but its prototype also is.

protected void CreateControlHierarchy()
{
// Add the Tlabel
var TbT = new Label(Q);
1b1.Text = "Some text";
Controls.Add(1b1);

522

Part Il ASP.NET Pages and Server Controls

// Add a blank Titeral control for spacing
Controls.Add(new LiteralControl(" "));

// Add the text box

var txt = new TextBox();
txt.Text = String.Empty;
Controls.Add(txt);

// Specifies that child controls have been created
ChildControlsCreated = true;
}

The ultimate goal of CreateControlHierarchy is populating the Controls collection of the
current control with all child controls in the proper position in the final hierarchy. The
ChildControlsCreated Boolean property is defined on the Control class and indicates whether
all child controls have been created or not.

For a composite control, you don't need to override the Render method, but it is recom-
mended that you implement the marker interface INamingContainer to facilitate ASP.NET's
ability to recognize postback events caused by any child control.

Finally, a method that is worth mentioning regarding composite controls is
EnsureChildControls. This method checks whether all child controls have been created
and, if not, it re-creates them. How can the control know about that? It simply reads the
value of the ChildControlsCreated Boolean property and calls CreateChildControls if all
child controls haven't been created. The following code snippet illustrates the behavior of
EnsureChildControls:

protected virtual void EnsureChildControls()

{
if (!ChildControlsCreated)
{
try {
CreateChildControls();
}
finally {
ChildControlsCreated = true;
}
}
}

The SimpleGaugeBar Control

To get a grip on building new ASP.NET controls, let’s create a control with a limited state
but a significant rendering engine. The control, named SimpleGaugeBar, is a simple,

Chapter 12 Custom Controls 523

non-data-bound gauge bar that you can use to implement a rating system that represents
the progress made for certain tasks. Generally, it can be used to give a friendly user interface
to measurable quantities.

Defining the Object Model

A gauge control needs to have at least two properties—one to indicate the value being
rendered, and one that provides the scale. In addition, you can also give users a chance to
control the ruler and the descriptive text for the gauge. Table 12-2 lists the properties of a
gauge control.

TABLE 12-2 Properties of the SimpleGaugeBar Control
Property Description

FormatString Formats the string that the control will render alongside the bar. The string can
contain up to two placeholders. The first placeholder is set with the value; the
second placeholder is set with the scale. The default string has the following form:

{0} / {1}.
GridLines Indicates whether vertical delimiters should be displayed to mark notches.
Maximum Indicates the maximum value the gauge can represent. It's set to 100 by default.
Segments Indicates the number of notches to draw on the gauge ruler. It's set to 4 by default.
Value Indicates the value to represent. It's set to 0 by default, and it cannot be higher

than the scale.

The setter method of the Value property adjusts any value provided that exceeds the current
Maximum. The value stored in Maximum is the highest value you can assign to Value. The
format string should be formed using two parameters in a fixed order: Value and Maximum.
In the format string, you can use any HTML formatting and even reference the parameters
in the reverse order. The following code snippet shows possible ways of setting the format
string:

GaugeBarl.FormatString = "{0} ({1D";
GaugeBar2.FormatString = "Maximum is {1}. Value is {0}";

The SimpleGaugeBar control has no methods and doesn't fire any events.

Implementing the Object Model

Internally, the control renders the gauge using an HTML table. The Value and Maximum pair
are translated as percentages, and the ruler is drawn using table cells. Figure 12-1 shows the
control within the Microsoft Visual Studio designer.

524 Part Il ASP.NET Pages and Server Controls

@0 AsphetGallery - Microsoft Visual Studio
File Edit View Project Build Debug Team Data Format Table Tools Architecture Test ReSharper Analyze Windov
i -S| B9 - @5 b [Deh -| | [# | printable -l e

7 T Demo.aspx.cs

Site.master|

MY ASP.NET APPLICATION

Home About

MainContent (Custom)|LP2|

TEST L

FIGURE 12-1 The SimpleGaugeBar control in action in the Visual Studio designer.

The notches on the ruler are obtained simply by adding as many cells to the underlying table
as there are units in the Segments property. The following listing shows the implementation
of the control properties:

public class SimpleGaugeBar : CompositeControl
{

private int _dividerCelTl;

public SimpleGaugeBar()
{
3

// Gets and sets the value to represent in the gauge bar
public float Value

{
get
{
var o = ViewState["Value"];
if (o == null)
return 0O;
return (float) o;
}
set
{
ViewState["Value"] = value;
if (value > Maximum)
ViewState["Value"] = Maximum;
}
}

// Gets and sets the maximum value representable in the gauge bar
public float Maximum
{

get

{

var o = ViewState["Maximum"];

Chapter 12

if (0o == null)
return 100;
return (float) o;
}

set { ViewState["Maximum"] = value; }

// Number of segments to divide the bar into
pubTlic int Segments

{
get
{
var o = ViewState["Segments"];
if (0 == null)
return 4;
return (int) o;
set
ViewState["Segments"] = value;
if(value < 1)
ViewState["Segments"] = 1;
}
}

// Gets and sets the pattern to format the value in the gauge bar
public string FormatString

{
get
{
var o = ViewState["FormatString"];
if (0o == null)
return "{0} / {1}";
return (string) o;
}
set { ViewState["FormatString"] = value; }
}

// Gets and sets whether the gauge bar has grid Tines
pubTlic bool GridLines
{
get
{
var o = ViewState["GridLines"];
if (0o == null)
return true;
return (bool) o;
}

set { ViewState["GridLines"] = value; }

Custom Controls

525

526

Part Il ASP.NET Pages and Server Controls

The control maintains some state by using the view-state collection. All the properties, in
fact, are persisted using ViewState. Because all the persisted properties are marked as pub-
lic, you can disable the view state altogether and still keep the control fully functional by
explicitly setting properties upon page loading.

Setting Up the Ruler

The ruler divides the area of the control into segments, which are filled proportionally based
on the current value of the gauge. Each segment of the ruler corresponds to a cell in the un-
derlying table. All cells but one are entirely filled or entirely empty. Filled cells are rendered
using the current foreground color; empty cells are rendered using the current background
color. One cell, named the divider cell, contains a child table with exactly one row and two
cells. The first cell is rendered with the foreground color; the second cell is colored as the
control’s background. The two cells have a width, measured in percent, whose total amounts
to 100. The latter cell denotes how much is still left to do to reach the maximum. The fol-
lowing HTML code snippet shows the final HTML markup to render a value of 52 out of 100
using a ruler with four notches or segments:

<table><tr>
<td bgcolor=orange width=25%></td>
<td bgcolor=orange width=25%></td>
<td>
<table><tr>
<td bgcolor=orange width=2%></td>
<td bgcolor=white width=98%></td>
</tr></table>
</td>
<td bgcolor=white width=25%></td>
</tr></table>

Figure 12-2 shows gauges with different ruler settings.

— |

100 / 700

| 1 1 1] 8.5 out of 10

ﬁ o

FIGURE 12-2 The effect of different settings on the gauge ruler.

Setting Up the Control’s Site

As you might have guessed already from the preceding figures, other properties get into the
game in addition to those discussed in Table 12-2. Admittedly, the grayscale rendering used

Chapter 12 Custom Controls 527

in this book doesn’t do justice to the actual capabilities of the SimpleGaugeBar control in
terms of color support. However, the control exploits a few color-related properties defined
on the base class. These properties are BackColor, ForeColor, Width, and Height.

Width and Height are used to delimit the control’s site—that is, the area within the container
the control is assigned for rendering. The control is assigned a default size that can be
changed either programmatically or through the Visual Studio Properties window.

The value of the ForeColor property is used to render the text of the label that accompa-
nies the gauge. The value of the BackColor property determines the color to be used for
the progress bar. Note that the implementation we just discussed assumes that only known
colors can be used.

Rendering the SimpleGaugeBar Control

The user interface of a Web control is pure HTML, sometimes topped off with a bit of client
script. As mentioned, there are basically two ways in which this HTML can be generated. You
can compose the HTML code in the supplied writer, or you can build an in-memory repre-
sentation of the output using existing HTML and Web server controls and then have them
recursively render their contents to the writer. Let's discuss these two options in more detail.

Generating the HTML for a Custom Control

From a pure performance standpoint, writing out the control’s markup to an HTML text
writer object is the preferred approach. No server control is ever instantiated, and the final
and correct markup is sent to the browser. There are a few downsides to this approach you
should consider, however. One is that you end up making several calls to the writer. And,
aside from some negligible repercussions in terms of the performance (repercussions that
are negligible when compared to control instantiation), the size of the code grows consider-
ably, making your source code on the whole much less readable and harder to maintain. Let’s
consider a quick but significant example.

To write the content of a string in a table cell, you need the following code if you decide to
opt for the rich interface of the writer:

output.WriteFullBeginTag("table");
output.WriteFullBeginTag("tr");
output.WriteFullBeginTag("td");
output.Write(text);
output.WriteEndTag("td");
output.WriteEndTag("tr");
output.WriteEndTag("table™);

528

Part Il ASP.NET Pages and Server Controls

However, as long as you don't have a full bag of attributes to render, or a really complex
structure to build, the following code is equally effective and even slightly faster:

output.Write("<table><tr><td>");
output.Write(text);
output.Write("</td></tr></table>");

In general, neither of these two approaches is always the best possible approach. A good
compromise between the two is recommended to optimize performance while producing
compact code. Taking the first approach to its natural limit, you end up with many more lines
of code than are necessary. Taking the second approach further, you resort to building the
control using strings, which is indeed not the best thing you can do, mainly from a mainte-
nance point of view.

In ASP.NET, every piece of HTML code can be managed on the server as an instance of a
class. This pattern results in extreme flexibility and ease of development. However, it doesn't
come without problems either. The rub lies in the fact that you instantiate lots of controls,
which always affects performance. Let’s take a look at this in more detail.

Using Child Controls for Rendering

Sometimes the custom control needs to build up a complex infrastructure with nested tables
and elements. In this case, it makes sense to build an in-memory representation of the over-
all tree and then render everything to HTML using the RenderContents method of the root
control. Typically, for controls with a relatively complex hierarchy of child controls and rich
styles, you override the Render method as follows:

protected override void Render(HtmITextWriter output)

{
// This is a custom method that you normally use
// to ensure that all elements are styled properly.
// We’11 show an implementation of this method later.
PrepareControlForRendering();

// Render the contents of the control
base.RenderContents (output);

3

The SimpleGaugeBar control renders a nontrivial table structure that is much more manage-
able through a control tree:

protected override void CreateChildControls()

{
Controls.Clear();
CreateControlHierarchy(Q);
ClearChildViewState();

}

protected virtual void CreateControlHierarchy()

Chapter 12 Custom Controls 529

// Build the outermost container table
var outer = new Table();

var outerRow = new TableRow();
outer.Rows.Add(outerRow) ;

// Ruler cell

var rulerCell = new TableCell1(Q);
outerRow.Cells.Add(rulerCell);
BuildGaugeBar(rulerCell);

// Text cell
var textCell = new TableCell();
if (!_textStyle.DisplayTextAtBottom)
{
outerRow.Cells.Add(textCel1);
BuildLabel (textCell);
}

// Save the control tree-add the table as a child of the gauge
Controls.Add(outer);

// Build the Tabel
if (!_textStyle.RenderInsideTable & _textStyle.DisplayTextAtBottom)
BuildLabel(nul1);
}

void BuildGaugeBar(TableCell container)
{
// Create the table with one or two rows: ruler (and Tabel)
var t = new Table(Q);
var ruler = new TableRow();
t.Rows.Add(ruler);

// Build the ruler row
BuildRuler(ruler);

// Build the Tabel
if (_textStyle.RenderInsideTable)
BuildLabelIntoTable(t);

// Save the control tree
container.Controls.Add(t);
}

The output of the SimpleGaugeBar control consists of an outermost table that has one
row and two cells. The first cell contains the gauge bar; the second cell optionally con-
tains the text, when the companion text has to be displayed on the side of the gauge. (See
Figure 12-2)) If the text goes below the gauge, it can either be part of the table (a second
row) or just an additional Label control. You control rendering styles of the text through

a custom style property—the TextStyle property—that I'll say more about in a moment.
Let's first focus on the ruler.

530

Part Il

ASP.NET Pages and Server Controls

The ruler is a sequence of table cells. Each cell corresponds to a notch you want to see on
the final gauge. The number of notches is determined by the Segments property. The Value
property is scaled as a percentage of the Maximum value, and the resulting value is used to
determine the color of the various cells. If the value to represent is larger than the value rep-
resented by the current notch, a cell is added with the average width determined by dividing
100 by the number of notches. The same happens if the value is smaller and the divider cell
has been rendered already. (In this case, finished is true.)

void BuildRuler(TableRow ruler)

{

// Calculate the value to represent

var val = GetValueToRepresent();

float valueToRepresent = 100f * val / Maximum;
var numOfSegments = GetNumOfSegments();

int segmentWidth = 100 / numOfSegments;
bool finished = false;
for (int i = 1; i <= numOfSegments; i++)

{

if (valueToRepresent < i * segmentWidth)

{

if (finished)

{

// Still-To-Do

var stillToDo = new TableCel1();
ruler.Cells.Add(stiT1ToDo);

stil1ToDo.Width = Unit.Percentage(segmentWidth);

else

// Cell to divide

_dividerCell =i - 1; // need a 0-based index
var cell = new TableCell1(Q);
ruler.Cells.Add(cell);

cell.Width = Unit.Percentage(segmentWidth);
cell.Height = Unit.Percentage(100);

// Add a child table to the cell

var child = new Table(Q);

child.wWidth = Unit.Percentage(100);
child.Height = Unit.Percentage(100);
cell.Controls.Add(child);
child.Cel1Padding = 0;
child.Cell1Spacing = 0;

var childRow = new TableRow();
child.Rows.Add(chiTdRow) ;

float fx = (100 *
(valueToRepresent - segmentWidth *
(i - 1)) / segmentWidth);
if (valueToRepresent > (i - 1) * segmentWidth)
{
TableCell left = new TableCell();

Chapter 12 Custom Controls 531

childRow.Cells.Add(Teft);

left.Width = Unit.Percentage(fx);
}
var right = new TableCel1Q);
childRow.Cells.Add(right);
right.Width = Unit.Percentage(100 - fx);
finished = true;

}
}
else
{
// Done
var done = new TableCell(Q);
ruler.Cells.Add(done);
done.Width = Unit.Percentage(segmentWidth);
}

3

The divider cell is the cell that is split in two to represent the remaining value, as shown in
Figure 12-3.

[1 1 Il J 8.5 out of 10

FIGURE 12-3 The divider cell in sample SimpleGaugeBar controls.

The divider cell is the first cell where the value of the corresponding notch is larger than the
value to represent. The divider cell is rendered through an embedded table with one row
and two cells. The index of the divider cell is cached for further use.

The companion text of the gauge can be displayed to the right of the gauge or below it.
When rendered below it, the text can either be incorporated in the table or added as an
extra control. BuildLabel can either add the text as an additional control or place it in the
rightmost cell. BuildLabellntoTable writes the text in an additional table row below the gauge.
In this case, the text inherits most of the gauge graphical settings.

void BuildLabel(TableCell container)

{
// Calculate the value to represent
float buf = GetValueToRepresent();

// Get the string to display on the Tabel
string msg = GetTextToRepresent();

var 1b1 = new Label();
if (container is TableCell)
container.Controls.Add(Tb1);

532

Part Il ASP.NET Pages and Server Controls

3

else
Controls.Add(1b1);
1b1.Text = String.Format(msg, buf, Maximum);

// Build the control tree for the label
void BuildLabelIntoTable(Table t)

{

There's no functional difference between the two approaches—it's purely a matter of
appearance and preference. But how can you control the rendering and the styles of the
companion text? You do that through a new style property.

// Calculate the value to represent

float valueToRepresent = GetValueToRepresent();

int numOfSegments = GetNumOfSegments();

// Get the string to display on the Tabel
var companionText = GetTextToRepresent();
if (_textStyle.DisplayTextAtBottom)
{
// Add a bottom row
var label = new TableRow();
t.Rows.Add(Tlabel);

var Tb1Cell = new TableCell1();
Tlabel.Cells.Add(1b1Cel11);

1b1Ce11.CoTumnSpan = numOfSegments;

1b1Cel1.Text = String.Format(companionText, valueToRepresent, Maximum);

Note In the code shown thus far for the SimpleGaugeBar control, there a pair of unexplained
methods: GetValueToRepresent and GetTextToRepresent. In this simple control, the methods
return, respectively, the value of the Value and FormatString properties. However, you can ex-
tend the control with data-binding capabilities. In doing so, most of the changes will consist of
extending the GetValueToRepresent and GetTextToRepresent methods.

The Gauge in Action

After it's compiled, the SimpleGaugeBar control can be installed in the Visual Studio toolbox
and dragged and dropped onto any Web Forms page you're developing. Here’'s some sample

code being added to a page:

<x:SimpleGaugeBar id="GaugeBarl" runat="server'

Width="500px" Height="15px"
FormatString="{0} out of {1}"
Segments="10"

Value="65">

</x:SimpleGaugeBar>

Chapter 12 Custom Controls 533

The properties of the control that feature simple types can be set using the Properties
window; for properties of a complex type, such as classes, you need to write a type converter
and configure the property for the design-time environment of Visual Studio. The following
code shows how to set properties on the gauge control programmatically:

private void Buttonl Click(Object sender, EventArgs e)

{
GaugeBarl.Maximum = 200;
GaugeBarl.Value = 55;

}

You should try to set the Maximum property first because, in this way, the control
automatically validates the value. Maximum and Value are stored in the view state and

are automatically restored when the page posts back. If the host page disables the view state,
you should modify the code that relates to the control so that the needed properties are set
on each request.

Building a Data-Bound Control

So far, we've created the SimpleGaugeBar control as a composite control to display a notched
indicator of a given quantity. By setting the Value and Maximum properties on the control,
you can graphically represent a value on the proper scale. The SimpleGaugeBar control

is not data bound, meaning that no elements in its programming interface can be auto-
matically and declaratively bound to external data. Derived from CompositeControl, the
SimpleGaugeBar control doesn't incorporate any of the features listed previously regarding
data-bound controls.

The goal of this section is to extend the SimpleGaugeBar control to make it support data
binding through enumerable objects and data source controls.

Key Features

A data-bound version of SimpleGaugeBar is a form of simple binding. A couple of existing
properties—Value and FormatString—can be automatically filled with external data accord-
ing to the classic data-binding pattern of ASP.NET. A data source object specified through
either DataSource or DataSourcelD and bindable properties are mapped to public fields on
the data source object through mapper properties. In simple binding, the bound data source
object is an individual object that contains just one logical piece of information—no items,
no lists.

The key features of a data-bound control can be summarized as follows:

B Additional properties to represent mappings between control properties and data
source fields

534

Part Il ASP.NET Pages and Server Controls

B An additional property to represent and persist the data source object
B Additional view-state management to persist the data source object
B Modified rendering to take bound data into account

Let's dig out more.

Adding Data-Bound Properties

When you bind data to, say, a DropDownlList control, you first set the data source and
then specify which fields on the data source should be used to display the text and the
value of the resulting list. The DropDownlList control features a pair of DataTextField and
DataValueField string properties.

The former is set to the name of the public field on the data source that will render the text
of displayed list items. The latter is set to the name of the field on the bound data source
object that will render the unique value associated with each displayed list item.

On a new data-bound control, you need to define similar properties to specify any required
mapping between data source fields and bindable control properties. All these properties are
usually string properties stored in the view state; the name is arbitrary, but it generally fol-
lows the pattern DataXxxField, where Xxx indicates the role of the bindable control property.

Adding a Data Item Property

By design, the bound data source object must be an object that implements any of the
following interfaces: IEnumerable (collections), IListSource (ADO.NET objects), or IDataSource
(data source controls). Let's suppose you bind a control to one row of a DataTable. Do you
really need to persist the whole data row? If yes, what if the data row contains a couple of
large binary large object (BLOB) fields?

The recommended approach entails that you extract a subset of information from the
originally bound data source object and copy that to a control-specific data item object. This
object is an instance of a custom class that typically has as many public properties as there
are bindable properties on the control. For example, the DropDownList control has two bind-
able properties: Text and Value. Subsequently, the data item object—named Listitem—has
two properties: Text and Value. (Naming is arbitrary, though.)

In a new data-bound control, you define a data item class that will be filled with any neces-
sary information contained in the bound data source. This data item object must be persisted
through the view state to guarantee that the control refreshes properly across postbacks.

For performance reasons, the data item class must be able to serialize itself to the view state
without resorting to the binary formatter. Put another way, it means that the data item class
must implement /StateManager, just like style classes do.

Chapter 12 Custom Controls 535

Note The data item class will be a collection of single data item classes if the data binding
involves the association of a list of elements to a control.

Overriding the PerformDataBinding Method

The final key feature for a custom data-bound control is overriding the PerformDataBinding
method. The method receives the contents of the bound data source object in the form of an
enumerable object. As a control developer, you must read any required data from the source
and cache it in the data item object.

Finally, you modify the rendering engine of the control to display bound data.

Note Unless you need a data-bound control that behaves in a particular way (for example, a list
control or a composite data-bound control), deriving your control from DataBoundControl is the
most reasonable thing to do most of the time. If you need to start from a lower level, though,
you can inherit from BaseDataBoundControl and override PerformSelect and ValidateDataSource.
Needless to say, you might want to take this route only if you need to change the way a data
source is validated, retrieved, or both.

The GaugeBar Control

Let's apply all the steps outlined so far to a new version of the SimpleGaugeBar control, aptly
named GaugeBar. The new control will still be a composite control, but it will inherit from
DataBoundControl to gain standard data-binding capabilities.

public class GaugeBar : DataBoundControl

{

}

To be precise, ASP.NET also features a class that incorporates both composition and data
binding. The name of the class is CompositeDataBoundControl.

Mapping Data Source Fields to Control Properties

The new GaugeBar control uses the same code as SimpleGaugeBar and extends it to de-
fine a couple of bindable properties—say, Value and FormatString. This choice of bindable
properties is arbitrary, however.

You define a pair of DataXxxField properties—one for Value and one for FormatString.
These string properties contain the name of the data source fields mapped to the Value

536

Part Il ASP.NET Pages and Server Controls

and FormatString. In particular, DataValueField indicates that the field mapped to Value and
DataTextField specifies the field linked to FormatString. Once again, note that the names used
here are arbitrary.

public virtual string DataValueField
{
get
{
var o = ViewState["DataValueField"] as String;
return o ?? String.Empty;

}
set { ViewState["DataValueField"] = value; }

3

public virtual string DataTextField
{
get
{
var o = ViewState["DataTextField"] as String;
return o ?? String.Empty;

}
set { ViewState["DataTextField"] = value; }
}

As you can see, both properties use the ViewState as the storage medium and are set to the
empty string by default. Other popular data-bound properties available on the GaugeBar
class are DataSource, DataSourcelD, and DataMemober, all of which are inherited from parent
classes.

The GaugeBar's Data Item Object

After the GaugeBar control is bound to some external data, you need to track and cache any
bound data. For this purpose, you need a data item object. As mentioned, a data item object
is a custom class with as many public properties as there are bindable properties in the con-
trol's interface. The data item class for the GaugeBar control is named GaugeBarDataltem
(again, an arbitrary name) and is defined as follows:

public class GaugeBarDataItem : IStateManager
{

private string _text;

private float _value;

private bool _marked;

public GaugeBarDataItem()
{
}

3

The class has two public properties—Text and Value—persisted through local members.

public GaugeBarDataItem(float value, string text)

{
_text = text;
_value = value;
}
public string Text
{
get { return _text; }
set { _text = value; }
}
public float Value
{
get { return _value; }
set { _value = value; }
}

public bool IsTrackingViewState

{

get { return _marked; }

3

pubTlic void LoadViewState(object state)
{
if (state != null)

{
Pair p = (Pair)state;
_value = (float)p.First;
_text = (string)p.Second;
}
}
pubTlic object SaveViewState()
{
return new Pair(_value, _text);
}
pubTlic void TrackViewState()
{
_marked = true;
}

Chapter 12 Custom Controls

537

More interestingly, the class also implements the IStateManager interface, which provides a
standard interface to save any valuable contents to the view state across postbacks.

The SaveViewState method returns a Pair object (a sort of simplified array of two elements)

filled with the current values of the Text and Value properties. The Pair object returned by

SaveViewState becomes the input argument of LoadViewState, which unpacks the Pair object
and initializes the Text and Value properties.

538

Part Il ASP.NET Pages and Server Controls

The GaugeBar control needs to expose a read-only property of type GaugeBarDataltem. You
can use any name for this variable—I'm using Dataltem here. More important than the name
of the property is its implementation. Take a look at the following code:

private GaugeBarDataItem _dataItem;

private GaugeBarDataItem Dataltem
{
get
{
if (_dataltem == null)

{
_dataltem = new GaugeBarDataItem();
if (base.IsTrackingViewState)
_dataItem.TrackViewState();

}

return _dataltem;

}

Unlike other control properties that are persisted directly in the ViewState collection object,
the Dataltem property uses a private member (_dataltem) to persist its value. A private
member, though, is not persistent and doesn't survive postbacks. For this reason, in the get
accessor of the property you need to check _dataltem for nullness and create a new instance
if it is null.

The code contained in the get accessor of a property runs whenever that property is invoked.
As you'll see in a moment, the preceding code ensures that no access to Dataltem results

in a null object exception and that the state of the object is restored correctly after each
postback.

Data Item and View State

Most of the control properties we've considered thus far use the ViewState container to
persist the values. Why should we not store Dataltem or style properties in the same way? Is
there anything wrong with the following code?

// NB: for this code to work, GaugeBarDataItem must be
// a serializable type
public virtual GaugeBarDataItem Dataltem
{
get
{
var o = ViewState["DataItem"] as GaugeBarDataIltem;
return o ?? new GaugeBarDataItem();
}
set { ViewState["Dataltem"] = value; }

Chapter 12 Custom Controls 539

Actually, nothing is “wrong” with the code per-se—but consider for a moment view-state size
and performance. Saving a class type directly in the ViewState container results in the object
being serialized using the binary formatter. The BinaryFormatter class—the standard way to
serialize managed objects in .NET applications—is not particularly fast and is designed to
save the entire state of the object, including both public and private members, both simple
and complex. The use of the BinaryFormatter increases the response time for each request
and generates a larger view-state output. By customizing the view-state serialization, you
obtain much faster code and save exactly the information you need to save.

As a rule of thumb, you should use the ViewState container to store property values if the
type of the property is primitive—a string, numbers, Boolean values, colors, dates, bytes, and
arrays of any of these types. Reference types (for example, custom classes) should be serial-
ized by implementing /StateManager and exposing the property via a get accessor like the
one shown previously. As far as control development is concerned, this is commonly required
for styles and data item properties.

Ad Hoc View-State Management

A control that has properties that take advantage of custom view-state serialization must
override the SaveViewState and LoadViewState protected methods. These methods are
defined on the Control class, and they indicate how to save and restore the state of the
control to and from the view state. The default implementation of both methods takes care
of the contents of only the ViewState container object.

protected override object SaveViewState()

{
// Get the standard state object-ViewState container
var baseState = base.SaveViewState();

// Get the state object for the Dataltem property
var itemState = Dataltem.SaveViewState();

// Get the state object for the TextStyle object
var styleState = TextStyle.SaveViewState();

// Pack everything into a unique object
return new Triplet(baseState, itemState, styleState);
}

The SaveViewState method of the GaugeBar control needs to save three objects: the
standard view state, the Dataltem property, and the TextStyle property. You get the standard
view-state output by calling SaveViewState on the base class, and you get other state objects
by calling SaveViewState on the IStateManager implementation of Dataltem and TextStyle.
The SaveViewState method on the control needs to return a single object, so you just group
all data to return in a single object—typically, an array or a combination of Pair and Triplet
objects.

540

Part Il ASP.NET Pages and Server Controls

The object returned by SaveViewState is received by LoadViewState, which extracts and
assigns data back to the original objects.

protected override void LoadViewState(object savedState)

{
if (savedState != null)
{
var t = (Triplet) savedState;
base.LoadViewState(t.First);
DataItem.LoadViewState(t.Second);
TextStyle.LoadViewState(t.Third);
}
else
{
base.LoadViewState(null);
}
}

The IStateManager implementation of LoadViewState on the serialized objects determines
how each object (for example, styles and data items) restores its own data.

Note that when Dataltem.LoadViewState is called, the get accessor of Dataltem is invoked
and initializes the internal _dataltem member on the first call.

Getting Bound Data

In ASP.NET, a bound control obtains bound data through the PerformDataBinding method.
Overriding this method is mandatory for any data-bound control because the standard im-
plementation of the method does nothing. It is important to recall that the /[Enumerable ar-
gument passed to PerformDataBinding represents the collection of bound data regardless of
the format of the originally bound data source—whether it is an ADO.NET object, collection,
or data source control.

Here's the implementation of PerformDataBinding for the GaugeBar control:

protected override void PerformDataBinding(IEnumerable data)
{
// In this control, in spite of the IEnumerable type being used
// the argument "data" is a single object, not a real 1list to enumerate.
// You need to get an enumerator and call MoveNext once to get the effective
// content to bind.
if (data == null)
return;
var e = data.GetEnumerator();
e.MoveNext();

// Set default values for bindable properties
float displayValue = 0;
var displayText = String.Empty;

Chapter 12 Custom Controls 541

// Read the value for the Value property
if (!String.IsNul1OrEmpty(DataValueField))
displayValue = (float) DataBinder.GetPropertyValue(
e.Current, DataValueField);

// Read the value for the FormatString property
if (!String.IsNul1OrEmpty(DataTextField))
displayText = (String) DataBinder.GetPropertyValue(
e.Current, DataTextField);

// Fill the Dataltem property
Dataltem.Value = displayValue;
Dataltem.Text = displayText;

}

In this particular case, the IEnumerable object passed to PerformDataBinding contains just
one element. The IEnumerable interface, though, doesn't distinguish between a single
element or a list of elements. In other words, to get the data object you need to get the
enumerator and move to the first item:

// data is of type IEnumerable
IEnumerator e = data.GetEnumerator();
e.MoveNext();

// Use e.Current to get the physical data object

The e.Current expression returns the data object bound to the control—that is, the container
from which you extract the fields mapped to bindable properties. If you know the control is
bound to, say, a DataRow object, you can retrieve the value for the Value property through
the following code:

displayValue = ((DataRow) e.Current)[DataValueField];

Using the DataBinder class adds greater flexibility to your code and makes your code
independent from the type of the bound data source. The GetPropertyValue method on
the DataBinder class uses reflection to query the object to see whether it contains a public
property with the specified name:

displayText = (string) DataBinder.GetPropertyValue(
e.Current, DataTextField);

GetPropertyValue returns an object and requires a cast to the proper type.

542

Part Il ASP.NET Pages and Server Controls

The remaining step is updating the rendering engine so that it accesses the Dataltem object
whenever it requires bound data. The BuildLabel method shown next displays the descriptive
text around the gauge:

void BuildLabel(TableCell container)
{

// Calculate the value to represent
var valueToRepresent = GetValueToRepresent();

// Get the string to display on the label
var msg = GetTextToRepresent();

var TbT = new Label(Q);
if (container is TableCell)
container.Controls.Add(1b1);
else
Controls.Add(1b1);

1b1.Text = String.Format(msg, valueToRepresent, Maximum);

}

The BuildLabel method adds a Label control to the control hierarchy under construction. The
text displayed through the label is composed using the value and the format string of the
gauge. Both Value and FormatString can be either data-bound or statically assigned. For this
reason, you should use a get function that checks the current binding, if any, and returns the
bound value or the assigned value. Note the bound value is returned in favor of an assigned
value, if both are present.

float GetValueToRepresent()

{
float f = 0;
if (DataItem.Value >=0)
f = DataItem.Value;
else
f = Value;
return f;
}
string GetTextToRepresent()
{
var msg = "";
if (!1String.IsNul1OrEmpty(Dataltem.Text))
msg = Dataltem.Text;
else
msg = FormatString;
return msg;
}

No other changes are required to enhance the SimpleGaugeBar control and make it
data-bound.

Chapter 12 Custom Controls 543

The following code shows the Load handler of a sample page that uses the GaugeBar control
and binds it to a dynamically generated DataTable object:

public class MyDataContainer
{
public float Numbers { get; set; }
public String Label { get; set; }
}

protected void Page_Load(object sender, EventArgs e)

{
// Uses a random number as the value of the GaugeBar.
// The value is stored in a custom object.
Random rnd = new Random();
var container = new MyDataContainer();
container.Numbers = rnd.Next(0,100);
container.Label = "{0} out of {1}";

// Binds the DataTable to the GaugeBar
GaugeBarl.DataValueField = "Numbers";
GaugeBarl.DataTextField = "Label";
GaugeBarl.DataSource = container;
GaugeBarl.DataBind(Q);

}

The DataTable has two columns—Numbers and Label—of type float and string, respectively.
The table contains one data row. If the table contained multiple rows, only the first would be
taken into account according to the code in PerformDataBinding.

Note that you can also use the Dataltem property to bind data to the GaugeBar control:

GaugeBarl.Dataltem.Value = 12;
GaugeBarl.Dataltem.Text = "{0} %";

Note that no call to DataBind is required to trigger the process and update the control’s user
interface.

Building a Composite Templated Control

The CompositeDataBoundControl class is the starting point for building rich, complex, and
data-bound composite controls. A composite data-bound control must do the following:

B Act as a naming container.
B Create its own user interface through the CreateChildControls method.

B Implement the necessary logic to restore its hierarchy of child elements after postback.

544

Part Il ASP.NET Pages and Server Controls

The good news is that you can completely ignore the third point if you derive your control
class from the CompositeDataBoundControl class. The class, in fact, implements internally any
necessary logic.

Generalities of Composite Data-Bound Controls

The main aspect you care about when building a composite data-bound control is designing
the internal hierarchy of your control. The method to override for this purpose is an over-
loaded version of CreateChildControls. In addition, you typically add styles and templates.

In a real-world composite control, the internal control tree is usually quite complex. The
outermost container is often a multirow HTML table (or perhaps a collection of <div> tags,
each with specific semantics associated with it). However, what's in the various cells and rows
can vary quite a bit and result in a pretty sophisticated combination of child controls and
literals.

Creating a Hierarchy of Child Controls

You should know by now that composite controls build their own interface by composing
controls in the override of the CreateChildControls method. Defined on the Control class, the
method has the following prototype:

protected override void CreateChildControls()

In the CompositeDataBoundControl class, the method is overridden and overloaded.
In particular, the overridden version accomplishes a few interesting tasks. Here's its
pseudo-code:

protected override void CreateChildControls()
{

Controls.Clear(Q);

var o = ViewState["_!ItemCount"];

if ((o == null) & RequiresDataBinding)

EnsureDataBound();

else

{
int numOfItems = (int) o;
object[] items = new object[numOfItems];
CreateChildControls(items, false);
base.ClearChildViewState();

}

Chapter 12 Custom Controls 545

The method first empties the Controls collection so that no pending child controls are left
around. Next, it retrieves a value from a particular (and internally managed) view-state
entry named _!/ltemCount. The view-state entry caches the number of items that form the
composite control. The code that actually builds the control tree is responsible for storing
this value in the view state.

Knowing the number of items that form the control hierarchy is important to optimize the
data-binding process. In ASP.NET, complex controls that show a possibly long list of data
items are implemented as composite data-bound controls. In what way is this different from
list and simple-bound controls?

List controls and simple-bound controls, such as the GaugeBar we considered earlier, cache
the data item or items in the view state. In addition, they can either receive data from the
data-binding process or programmatically through the /tems collection and the Dataltem
property, respectively. Composite data-bound controls (such as ListView and GridView) work
on the assumption that they receive data exclusively from data binding and, for this reason,
don't persist bound data in any form. Consider now the following scenario.

Imagine a page that contains a rich control such as the GridView and some button controls.
One of the button controls, when clicked, executes no code that involves the GridView but
still refreshes the page. Without some special tricks in the control’s code, you can be sure
that the composite data-bound control would be empty upon postback. Why is this so? If
the postback event handler doesn’t bind data back to the composite control, the control has
no way to figure it out and refresh properly. In ASP.NET, by design, composite data-bound
controls take their data only from data binding and don’t cache any bound data. So a special
workaround is required to handle postback events.

For composite data-bound controls, the CreateChildControls method works in either of two
modes: binding or nonbinding. When CreateChildControls is working in binding mode, the
control tree is created as usual. When it's working in nonbinding mode, the control calls

an overloaded version of CreateChildControls. The method is defined as abstract on the
CompositeDataBoundControl and must be overridden in any derived class.

The Overloaded CreateChildControls
The overloaded version of CreateChildControls that is defined on the

CompositeDataBoundControl class is shown here:

protected abstract int CreateChildControls(
IEnumerable dataSource, bool dataBinding);

The first parameter is the collection of bound data. The second parameter indicates
whether the control is being bound to fresh data (that is, it is working in binding mode)

546

Part Il ASP.NET Pages and Server Controls

or is being refreshed after a postback. The return value indicates the number of items
added to the control tree. This value will then be stored in the view state during the call to
PerformDataBinding. The following code snippet shows an excerpt from the source code of
PerformDataBinding on the CompositeDataBoundControl class:

protected internal override void PerformDataBinding(IEnumerable data)
{
base.PerformDataBinding(data);
Controls.Clear(Q);
base.ClearChildViewState();
TrackViewState();
int numOfItems = CreateChildControls(data, true);
base.ChildControlsCreated = true;
ViewState["_!ItemCount"] = numOfItems;
}

Note that PerformDataBinding calls into the new overload of CreateChildControls and
passes it true as the second argument, indicating that a binding operation is taking place.
This makes sense because executing PerformDataBinding, by definition, means you are
performing a binding operation.

What kind of code should you place in the overloaded CreateChildControls? Basically, you
call your own control builder method (typically, CreateControlHierarchy) and return its return
value. I'll return to this point later when discussing the sample BarChart control.

The overloaded CreateChildControls method is invoked in binding mode from within
PerformDataBinding, and it's invoked in nonbinding mode from within the other
CreateChildControls method:

// o is the value read from ViewState
int numOfItems = (int) o;

object[] items = new object[numOfItems];
CreateChildControls(items, false);

In this case, the bound data passed to the method is an empty array of objects of a
well-known size. The goal of this array is to force the control builder method (typically,
CreateControlHierarchy) to loop the right number of times and build an outermost con-
tainer with the right configuration—for example, a table with the right number of rows and
columns.

As you'll see in detail for the sample BarChart control, a composite data-bound control
neatly separates hierarchy from data. If the Boolean parameter of CreateChildControls is false,
no data is added to the hierarchy. How can the control show up as it did the last time? The
ASP.NET postback mechanism guarantees that child controls are restored with all their val-
ues. In other words, if a composite data-bound control displays bound data through, say, a
Label control, after a postback the composite control doesn't restore its bound data directly.
However, it asks any child control, including the Label, to restore itself from the view state. In
doing so, the Label restores the bound data from its Text property.

Chapter 12 Custom Controls 547

The bottom line is that the amount of extra data that flows in the view state for a composite
control is limited to the number of constituent items, and the control refreshes correctly after
a postback. (Of course, child controls put in the view state the usual amount of data.)

The Control Item

It should be clear from the previous discussion that the ASP.NET team had excellent
arguments to dictate that composite data-bound controls get their data exclusively from the
data-binding process. This fact eliminates the need of having a kind of /tems property on
composite data-bound controls that works like the /tems property of list controls. This said,
feel free to add support for data item objects and collections to your composite controls if
you need to.

Most composite controls feature a collection of items, but not a collection of data items. Each
item represents a control item—that is, a logical building block of the control’s user interface.
For a GridView, it is a GridViewRow object that represents a table row. For a sample BarChart
control that displays a bar chart, the control item will be a class derived from TableRow that
contains all the information needed to handle a single bar. The number of items that com-
posite controls store in the view state is exactly the number of “control” items.

Let's see how these concepts apply to a sample composite data-bound control such as
BarChart.

The BarChart Control

The BarChart control inherits from CompositeDataBoundControl and defines the properties
listed in Table 12-3.

TABLE 12-3 BarChart Properties

Property Description

DataTextField Name of the data field to use as the label of each bar.

DataTextFormatString Format string for the display text.

DataValueField Name of the data field to use as the value of each bar.

DataValueFormatString Format string for the value to display on top of each bar.

Items Collection of BarChart items. Each element represents a bar in the
chart. Elements in the /tems collection are of type BarChartltem.

Maximum Gets and sets the maximum value that can be represented in the chart.

SubTitle Gets and sets the subtitle of the final chart.

Title Gets and sets the title of the bar chart.

The final markup for the control is a horizontal bar chart such as the one illustrated in
Figure 12-4.

548 Part Il ASP.NET Pages and Server Controls
Northwind Sales

{(Year 1997)

Davolio po7 o33 55

Fuller 454,958.60

Leverling o115 Jas 61

Feacock ¢y 34,477,570

Buchanan $32,595.05

SUYama e 552,00

King yee,c89.14
Callahan

$59,776.52
Dodsworth $29,577.55

FIGURE 12-4 The BarChart control in action.

Each bar is fully represented by an element in the /tems collection. In addition, the BarChart
control features a few style properties, as Table 12-4 details.

TABLE 12-4 BarChart Style Properties

Property Description

BarStyle The style of the whole row that contains the bar
LabelStyle The style of the label

SubTitleStyle The style of the subtitle in the control’s header
TitleStyle The style of the title in the control’s header

ValueStyle The style of the element displaying the value rendered

The attributes of all style properties are applied in the Render method, as in other
data-bound controls.

The BarChart Item Object

The user interface of the BarChart control is created in the overloaded version of
CreateChildControls.

protected override int CreateChildControls(
IEnumerable dataSource, bool dataBinding)
{

return CreateControlHierarchy(dataSource, dataBinding);

}

Chapter 12 Custom Controls

549

Both input arguments are passed down to an internal CreateControlHierarchy method, which

is ultimately responsible for the creation of the bar chart:

int CreateControlHierarchy(IEnumerable dataSource, bool dataBinding)

{

// Get the data to display (either from data source or viewstate)

if (dataSource == null)

{
RenderEmptyControl();
return 0;

3

// Start building the hierarchy of controls
Table t = new Table();
Controls.Add(t);

// Add the header row with the caption
CreateTitle(t);

// Add the subtitle row
CreateSubTitle(t);

// Add bars
int totalItems = CreateAllItems(t, dataSource, dataBinding);
return totalItems;

}

The control hierarchy is a table with two rows for the title and subtitle and other rows for the
bars of the chart. CreateAllltems adds bar chart items and counts their number. This number

is then returned and ends up in the view state.

int CreateAllItems(Table t, IEnumerable data, bool useDataSource)
{

// Count how many items we add

int itemCount = 0;

// Clears the Items collection (creates it, if null)
Items.Clear();

// Scroll data items, and create table items
foreach (object o in data)
{
// Create the match item object
BarChartItemType itemType = BarChartItemType.Item;
BarChartItem item = CreateBarChartItem(t,
itemType, o, useDataSource);

// Add the newly created object to the Items collection
_items.Add(item);

// Increase the counter
jtemCount++;

3

// Return how many items we have into the viewstate (for postbacks)

return itemCount;

550

Part Il ASP.NET Pages and Server Controls

For each bound item, the method creates a BarChartltem object and adds it to the /tems
collection. We'll discuss the BarChartitem class in a moment.

Note that you use Items.Clear to clear the collection and _items.Add to add a new bar chart
item to the collection. The Items property is implemented as follows:

private BarChartItemCollection _items;

public virtual BarChartItemCollection Items

{
get
{
if (_items == null)
_items = new BarChartItemCollection();
return _items;
}
}

The property Items uses the _items variable as its storage medium. The first call to /tems.Clear
ensures that the collection is properly initialized. The second call to the same collection can
go through the local variable to save a call to the get accessor of the ltems property.

The BarChartitem class represents a bar in the chart and is defined as follows:

public class BarChartItem : TableRow

{
private object _dataltem;
private BarChartItemType _itemType;

pubTic BarChartItem(BarChartItemType 1itemType)
{

_itemType = itemType;
}

public object DataItem

{
get {return _dataltem;}
set { dataltem = value;}

}

public BarChartItemType ItemType
{
get {return _itemType;}
}
}

The class inherits from TableRow (actually, a bar in the chart is a table row) and defines a cou-
ple of properties: Dataltem and [temType. The Dataltem property references the data item in
the bound data source associated with the corresponding item. For example, if the BarChart
is bound to a DataTable, Dataltem is bound to the DataRow that corresponds to a given bar.

Chapter 12 Custom Controls 551

ItemType, on the other hand, indicates the type of table row—such as a title, subtitle, or item.
The item types are defined through an enumerated type:

pubTlic enum BarChartItemType
{

Title,

SubTitle,

Item
}

The Items property groups a bunch of BarChartltem objects in a collection. The collection
type is BarChartitemCollection:

public class BarChartItemCollection : Collection<BarChartItem>
{
}

Because bar chart item objects don't go to the view state, there’s no need to implement
IStateManager and add extra view-state management methods as we did previously for the
hyperlink control.

Adding Bound Data

With a composite data-bound control, you don’t need to override the PerformDataBinding
method. However, you should pay some attention to keeping neatly separated the code that
builds the structure of the control and the code that adds data.

The CreateBarChartltem method creates a new table row and enriches it with a Dataltem
property. What's the content of the row? Looking at Figure 12-3, you can see that each table
row has a cell for the label and a cell for the progress bar.

BarChartItem CreateBarChartItem(Table t, BarChartItemType itemType,
object dataItem, bool useDataSource)
{
// Create a new row for the outermost table
var item = new BarChartItem(itemType);

// Create cells for label and value
var TabelCell = CreatelLabelCell(item);
var valueCell = CreateValueCell(item);

// Add the row to the table
t.Rows.Add(item);

// Handle the data object binding
if (useDataSource)
{
// Get the data source object
item.Dataltem = dataltem;

552

Part Il ASP.NET Pages and Server Controls

// Data bind the team labels

BindLabelCel1(labelCell, dataltem);

BindValueCell(valueCell, dataltem);
}

// Return the fully configured row item
return item;

}

CreateLabelCell and CreateValueCell add cells to the table row. Here is their implementation:

private TableCell CreatelLabelCell(BarChartItem item)
{
// Create and add the cell
var cell = new TableCell1();
item.Cells.Add(cell);
return cell;

}

private TableCell CreateValueCell(BarChartItem item)
{
// Create and add the cell
var cell = new TableCell(Q);
item.Cells.Add(cell);

// Add the internal Tabels
var 1b1Graph = new Label();
var Tb1Text = new Label();

cell.Controls.Add(1b1Graph);
cell.Controls.Add(new LiteralControl("
"));
cell.Controls.Add(1b1Text);

return cell;

3

The colored bar is represented with a label whose width is a percentage of the maximum
value possible on the chart.

As you can see in the code of CreateBarChartitem, an if statement separates the creation of
required child controls from the data binding. If the method is working in binding mode, the
Dataltem property is set on each bar chart item and the following two methods are called to
add data to the child controls of the BarChart control:

private void BindLabelCel1(TableCell cell, object dataltem)
{
if (!String.IsNul1OrEmpty(DataTextField))
{
string txt = DataBinder.GetPropertyValue(
dataltem, DataTextField, DataTextFormatString);
cell.Text = txt;

Chapter 12 Custom Controls 553

private void BindValueCell(TableCell cell, object dataItem)
{
// Bind the Tabel for the graph
var 1b1Graph = (Label) cell.Controls[0];
object o = null;
if (!String.IsNul1OrEmpty(DataValueField))
o = DataBinder.GetPropertyValue(dataltem, DataValueField);
else
return;
var val = Convert.ToSingle(o);
float valueToRepresent = 100 * val / Maximum;
1b1Graph.Width = Unit.Percentage(valueToRepresent);

// Bind the Tabel for the text
var 1b1Text = (Label) cell.Controls[2];
Tb1Text.Text = DataBinder.GetPropertyValue(
dataltem, DataValueField, DataValueFormatString);
}

The data-binding process works in a way that is no different from what you saw earlier for
other types of data-bound controls. The trickiest part here is the calculation of the width of
the label that, when properly styled, generates the horizontal bar.

Note Asyou can see, no style properties are assigned when the control hierarchy is being built.
Just as for other data-bound controls, style attributes are applied later in the control life cycle in
the Render method, immediately before generating the control’s markup.

Events of the BarChart Control

The BarChart control also features a couple of events: BarChartCreated and
BarChartDataBound. It is not coincidental that these two events mimic analogous events
on the DataGrid control. Although far simpler, the BarChart is a control designed along the
same guidelines that inspired the creation of the DataGrid control:

public event EventHandler<BarChartItemEventArgs> BarChartItemCreated;
public event EventHandler<BarChartItemEventArgs> BarChartItemDataBound;
protected virtual void OnBarChartCreated(BarChartItemEventArgs e)
{
if (BarChartItemCreated != null)
BarChartItemCreated(this, e);
}

protected virtual void OnBarChartItemDataBound(BarChartItemEventArgs e)
{
if (BarChartItemDataBound != null)
BarChartItemDataBound(this, e);

554

Part Il ASP.NET Pages and Server Controls

The BarChartltemCreated event is fired whenever a new table row is added to represent a

bar. The BarChartltemDataBound event fires when a newly added table row is bound to its
data. The former event fires regardless of the working mode of the control. The latter fires
only when the control is created in binding mode.

The data carried out with the event is grouped in the BarChartitemEventArgs class:

public class BarChartItemEventArgs : EventArgs
{
private BarChartItem _item;
public BarChartItemEventArgs(BarChartItem item)
{
_item = item;

}

// Properties
pubTlic BarChartItem Item
{
get { return _item; }
}
}

Both events are fired from within the CreateBarChartitem method:

BarChartItem CreateBarChartItem(Table t, BarChartItemType itemType,
object dataItem, bool useDataSource)
{
// Create a new row for the outermost table
var item = new BarChartItem(itemType);

// Create cells for the label and value
var TabelCell = CreatelLabelCell(item);
var valueCell = CreateValueCell(item);

var argsCreated = new BarChartItemEventArgs(item);
OnBarChartItemCreated(argsCreated);

if (useDataSource)

{

BarChartItemEventArgs argsData = new BarChartItemEventArgs(item);
OnBarChartItemDataBound(argsData);

Chapter 12 Custom Controls 555

Using the BarChart Control

Let's see how to consume these events from within a host page. The following markup en-
ables a BarChart control in an ASP.NET page:

<x:BarChart runat="server" id="BarChartl"
Maximum="100" SubTitle="Subtitle" Title="Title"
OnBarChartDataBound="BarChartl_BarChartDataBound" >

</x:BarChart>

Nothing in the preceding markup indicates the data source. In the Page_Load event, the
control is bound to its data—a collection of custom objects with a couple of properties. One
property indicates the amount of sales for an employee in the specified year; the other indi-
cates the name of the employee:

protected void Buttonl Click(object sender, EventArgs e)

{
var data = GetDataByYear(1997);
BarChartl.Maximum = 150000;
BarChartl.Title = "Northwind Sales";
BarChartl.SubTitle = "(Year 1997)";
BarChartl.DataSource = data;
BarChartl.DataTextField = "Employee";
BarChartl.DataValueField = "Sales";
BarChartl.DataBind();

}

The bar chart shown in Figure 12-3 is obtained by running the preceding code. The sample
page handles the BarChartDataBound event through the following code:

void BarChartl_BarChartDataBound(object sender, BarChartItemEventArgs e)
{
// Get the amount of sales for the current bar
var sales = (Decimal) DataBinder.GetPropertyValue(
e.Item.Dataltem, "sales");

// Add a ToolTip
var tip = sales.ToString(Q);
e.Item.Attributes["title"] = tip;

// Highlight bar where sales > 50000
if (sales > 50000)
e.Item.Cells[1].BackColor = Color.LightGreen;
}

The amount of sales for the current employee is retrieved and added to the row as a ToolTip.
In addition, if the sales are larger than 50,000, the cell is highlighted by using a different
background color. (See Figure 12-5))

556

Part Il ASP.NET Pages and Server Controls

Northwind Sales

{(Year 1997)
Davolio $57,533.58
Fuller 454,358.60

Leverling oy sas 61

Peacock I}\

$139,477.70
Buch 139477.7000
UERANAN 425 s9s5.05

SUYama e 552,00
King yee,c89.14

Callahan $59,776.52

Dodsworth $29,577.55

FIGURE 12-5 Output of a BarChart control modified by page-level event handlers.

Note All data-bound controls feature a couple of common events: DataBinding and DataBound.
The former event fires before the data-binding process begins. The DataBound event, on the
other hand, signals that the data-binding phase has terminated.

Adding Template Support

The BarChart control accepts two strings to display as the title and subtitle of the chart.
Likewise, you can define a similar property for the footer. Title, subtitle, and footer are dis-
tinct items in the BarChart control hierarchy. What are you allowed to display in these items?
As long as the properties are implemented as plain strings, there’s not much more than static
text that can show up through the items.

A bit more flexibility can be added with format strings. A format string is a string that
contains a predefined number of placeholders that the control machinery fills with internal
data. For example, the FormatString property of the GaugeBar defaults to {0} / {I}—namely,
a format string with two placeholders. The string is resolved as follows:

// First placeholder gets the Value to represent
// Second placeholder gets the Maximum value that can be represented
String.Format(FormatString, Value, Maximum);

You can enrich the format string with HTML tags to obtain more appealing results but, in
the long run, this approach results in unmanageable code. A much better route to deep
customizations of the user interface of controls is to use templates.

Chapter 12 Custom Controls 557

Templates and User Controls

In ASP.NET, you can import templates in two ways: through properties of type ITemplate
or by dynamically loading user controls. A Web user control is a custom component that
can be used wherever a server control is valid. You can import such a user-defined control
into the layout of the main control and make the interface more flexible and generic. You
put a PlaceHolder control in the location in which you want custom contents to be injected,
and then at run time you create an instance of the user control and add it to the Controls
collection of the placeholder:

placeHolder.Controls.Add(Page.LoadControl("usercontrol.ascx"));

The right time to call this code is early in the control life cycle—that is, in an Init event
handler. Using the LoadControl method, the code of the template is insulated in a separate
file. This can be a good thing or a bad thing, depending on the context. If the template you
want to implement is complex, keeping it off the main page is positive. Otherwise, it would
certainly add a layer of unnecessary complexity. Having the template directly available in the
source code of the page makes authoring the page much more intuitive and fast because
you don't have to follow code into a separate file.

There’s also a sort of compromise between the two approaches. You can define an /Template
property in the control and leave the page author free to decide how to set it—with statically
defined markup or using the contents of an .ascx file.

Defining a Template Property

A template property represents a collection of text and controls that is hosted within a
container. The container is also responsible for exposing properties that page authors can
use to create data-bound expressions. The following code snippet shows how to define a
template property named TitleTemplate:

[PersistenceMode(PersistenceMode.InnerProperty)]
[TemplateContainer(typeof(TitleTemplateContainer))]
public ITemplate TitleTemplate
{

get { return _titleTemplate; }

set { _titleTemplate = value; }
}

The storage of the template is guaranteed by the private member _titleTemplate, defined as
follows:

private ITemplate _titleTemplate = null;

A template property is characterized by a couple of attributes: PersistenceMode and
TemplateContainer.

558

Part Il ASP.NET Pages and Server Controls

The PersistenceMode attribute indicates how a control property is persisted declaratively in a
host page. Table 12-5 lists possible modes of persistence.

TABLE 12-5 Persistence Modes for Control Properties

Property Description

Attribute The property persists as an encoded HTML attribute in the final
markup.

EncodedInnerDefaultProperty The property persists as the only inner text of the control. The
property value is HTML encoded. Only a string can be given this
designation.

InnerDefaultProperty The property persists in the control as inner text and is

the element’s default property. Only one property can be
designated the default property.

InnerProperty The property persists in the control as a nested tag. This is
commonly used for complex objects with templates and styles.

The most common setting is InnerProperty, which instructs Microsoft Visual Studio to save
the contents of the template as a nested tag named after the property:

<x:BarChart runat="server" ID="BarChartl" ... >
<TitleTemplate>

</TitleTemplate>
</x:BarChart>

If you choose InnerDefaultProperty, you can have only one nested tag; by opting for
InnerProperty, you can have as many nested tags as needed. This is good for rich controls
with multiple templates and styles.

The TemplateContainer attribute declares the type of the naming container that will contain
the template once it is created. As mentioned, a template is hosted by a container which,

in turn, is appended to the control’s Controls collection. The TemplateContainer attribute
references a type that you, as a control developer, are responsible for declaring.

Defining a Template Container

A template container type is a simple Web control decorated with the INamingContainer
interface. This control can be given any public members you like. However, it will typically
expose the host control as a whole and a bunch of quick-access properties. Here's a sample
container type for the TitleTemplate property:

public class TitleTemplateContainer : WebControl, INamingContainer
{

private BarChart _parent;

pubTlic TitleTemplateContainer(BarChart parent)

{

_parent = parent;

Chapter 12 Custom Controls 559

}
public string Title
{
get { return _parent.Title; }
}
pubTlic string SubTitle
{
get { return _parent.SubTitle; }
}
public BarChart BarChart
{
get { return _parent; }
}

3

Once again, be sure to note that there are no constraints or special guidelines to influence
the set of members of the class. The class needs to have a reference to the parent control—
the BarChart in this case. Normally, you create this class for a particular control (or set of
controls) and don't reuse it beyond that. It is up to you to expose the parent control through
a direct property (BarChart in the preceding code) or filter the control’s programming inter-
face with a subset of properties (for example, Title and SubTitle). You can also do both things.

The programming interface of the template container class is important because it defines
the information that page authors have access to when creating a template for the property.
The template container is made accessible through the Container property.

Setting a Template Property

You can use any combination of controls and literals to populate a template. To access
external information, though, you need to use data-bound expressions. Here’'s an example:

<TitleTemplate>

<%# Container.Title %>
</TitleTemplate>

The code snippet demonstrates a BarChart title that displays an image in addition to the text
set through the Title property. Here's another example:

<TitleTemplate>

<%# Container.Title %>

<small>(<%# DateTime.Now.ToString() %>)</small>
</TitleTemplate>

Figure 12-6 shows a templated title item where the originally set Title property is displayed
side by side with the current time. The current time is rendered with a smaller font and
within parentheses.

560 Part Il ASP.NET Pages and Server Controls

Northwind Sales ¢1.26:27am)
{(Year 1997)

Davolio pos g2z og

Fuller 454,358.60
Leverling oy sas 61

Feacock o124 477,70

Buchanan $32,595.05

SUYama e 92,00
King 4 e 689,14

Callahan $59,776.52

Dodsworth $29,577.55

FIGURE 12-6 A BarChart control with a templated title.

Note that any style attributes set through the TitleStyle property are maintained in the
template.

The Container keyword references an instance of the template container type. You use the
Container keyword to access any control properties exposed through the template container
class. Nonstatic information requires a <%# ... %> data-bound expression, just like in the
templates of ASP.NET built-in controls.

Rendering a Template

So far you've seen how to define a template property in a server control. But what other
changes to the code are required to host a template? In summary, to define a template
property you need to do the following:

B Define a property of type /ITemplate, and use a private variable as its storage medium.
B Decorate the property with the PersistenceMode attribute.
B Define a template container class.
B Decorate the property with the TemplateContainer attribute.
These steps define only the public interface of the template; more is needed to embed the

template in the control’s hierarchy. In particular, you need to tweak the code that creates
the portion of the control tree where you want the template to display. For example, the

Chapter 12 Custom Controls 561

TitleTemplate property refers to the title item; so the internal method to modify is CreateTitle.
Here's the updated version:

private void CreateTitle(Table t)

{

// Create the table row

var item = new BarChartItem(BarChartItemType.Title);

t.Rows.Add(item);

// Add the title cell

var cell = new TableCell1();

cell.ColumnSpan = BarChart.ColumnsCount;

item.Cells.Add(cell);

// Decide between plain string and template

if (TitleTemplate != null)

{
_titleTemplateContainer = new TitleTemplateContainer(this);
TitleTemplate.InstantiateIn(_titleTemplateContainer);
cell.Controls.Add(_titleTemplateContainer);

}

else
cell.Text = Title;

// Must call DataBind to enable #-expression on templates

item.DataBind();

}

You check whether a template for the title item is defined; if it is not, you just set the Text
property of the title cell with the contents of the Title property. Otherwise, you get an in-
stance of the template container type and use it as the input argument of the Instantiateln
method—the only method on the /Template interface. When done, you add the template
container to the control hierarchy—in this case, to the Controls collection of the title cell.

A fundamental further step is required to enable the template to successfully process data-
bound expressions. You must place a call to DataBind on the title item. Data-bound expres-
sions, in fact, are evaluated only after a call to DataBind is made that involves the parent
control that hosts the expression. Without the DataBind call, templates will work correctly
but won't display any <%# ... %> expression.

Summary

ASP.NET provides a wealth of server controls from which you can likely choose exactly the
control you are looking for. If this is not the case, and the control simply doesn't exist, you
can create your own control from the ground up or by extending an existing control, and

562 Part Il ASP.NET Pages and Server Controls

obtain incredibly powerful results. Writing a control is a matter of defining an appropriate
object model and providing an effective rendering algorithm. Aside from these two points,
other equally important aspects of control development are containment, naming, and
integration with the engine that supplies state management.

In this chapter, we've built a few ASP.NET controls with different capabilities, from simple
components capable of rendering an HTML tree to controls with rich support for data
binding and templates.

Programming Microsoft® ASP.NET 4

Part Ill

Design of the Application

In this part:
Chapter 13: Principles of Software Designccoiviiiiniennn... 565
Chapter 14: Layers of an Application. ittt 593

Chapter 15: The Model-View-Presenter Pattern

563

Chapter 13
Principles of Software Design

There is nothing like returning to a place that remains unchanged to find the ways
in which you yourself have altered.

—Nelson Mandela

Maintaining a software application is probably harder, and definitely more bothersome,

than writing it from the ground up. A large part of a developer’s career is spent performing
maintenance tasks on existing code rather than planning and writing new software. Armed
with this knowledge, | usually advise developers and architects | work with to always give top
priority to one specific attribute of the numerous possible attributes of a software system—
that attribute is maintainability.

The biggest challenge that many software architects face today is how to design and
implement an application that can meet all of the requirements for version 1 plus other
requirements that show up afterward. Maintainability has been one of the fundamental
attributes of software design since the first draft of the ISO/IEC 9126 paper, back in 1991.
(The paper provides a formal description of software quality and breaks it down into a set
of characteristics and subcharacteristics, one of which is maintainability. A PDF version of the
paper can be obtained at http.//www.iso.org.)

The mother of all challenges for today’s software architects is focusing on current requested
features while designing the system in a way that keeps it flexible enough to support future
changes and additions. In this regard, maintainability is king and you should favor it over
everything else. Maintainability represents the best compromise you can get; with a high
level of maintainability in your code, you can achieve anything else—including scalability,
performance, and security.

That sounds very nice, but how do you write software that is easy to maintain?

There are a few basic principles of software design that if properly, and extensively, applied
will transform a piece of code into a manageable and flexible piece of code. Doing this
probably won't be enough to save your team from having to fix a few bugs once the appli-
cation has been deployed to production, but at least it will keep regression at a reasonable
level. More importantly, these principles make it less likely that you'll have to fix a bug with a
workaround rather than with a definitive update.

Let's start by reviewing some of the most alarming symptoms that generally signal that
code-related suffering is on the horizon.

565

http://www.iso.org

566 Part Ill Design of the Application

The Big Ball of Mud

The expression “big ball of mud” (or BBM) refers to a software system that shows no clear
sign of thoughtful design and results in a jungle of spaghetti code, duplicated data and
behavior, piecemeal growth, and frequent expedient repair. Coined by Brian Foote and
Joseph Yooder, the term indicates a clear anti-pattern for developers and architects. You can
read the original paper that formalized BBM at http://www.laputan.org/mud.

Reasons for the Mud

A BBM system usually results from the combined effect of a few causes: the limited skills of
the team, frequent changing of requirements, and a high rate of turnover among team mem-
bers. Often when you face a BBM the best thing you could ideally do is just rewrite the appli-
cation based on a new set of reviewed requirements. But, honestly, I'm not sure I've ever seen
this happen even once. Most of the time, a complete rewrite is simply not a feasible option.

If you have no way out other than facing the BBM, a reasonable but still painful approach
consists of stopping any new development and starting to arrange a bunch of significant
tests. What types of tests? Well, in a BBM scenario you can hardly expect to write plain
isolated unit tests. You wouldn't be immersed in a big ball of mud if you could write plain
unit tests! More likely, you write some sort of integration tests that involve different layers
(when not tiers) and that are not especially quick to run, but at least they provide you with an
automated tool to measure any regression as you proceed with refactoring the existing code.

To try to keep your head above mud, you can only patiently refactor the code and introduce
a better architecture, being very much aware that you're operating in a fragile environment
and any approach must be as delicate as possible. Obviously, this process won't be com-
pleted quickly. It might even take years if the project is very large. On the other hand, the
alternative is to just kill the project.

Let’s find out more about the factors that can lead to a big ball of mud.

Limited Skills

Architecting a system requires some fundamental skills, maybe a bit of talent, and definitely
hands-on experience. Knowledge of best and worst practices also helps a lot. In a word,
education is key. However, the development team is not usually given enough power to cause
huge damage on their own. Management and customers are usually responsible as well,
maybe even more.

When management is too demanding, and when customers don't really know what they
want, the information being conveyed to developers won't be clear and unambiguous.
This leads to arbitrary choices, compromises, and workarounds at all levels that just make it
impossible to come up with a defined architecture.

http://www.laputan.org/mud

Chapter 13 Principles of Software Design 567

Requirements Churn

The term requirements churn refers to making numerous changes to the initially agreed-
upon requirements. Incorporating a new requirement into an existing system, which was
architected without that particular requirement, can be problematic. The cost of such a
change depends on the size of the change, the dependencies in the code, and whether or
not the change affects the structure of the system.

Adding a single change, even a significant one, is not enough to jeopardize the entire
architecture. But when individual significant changes are frequent, over time you transform

a system devised in a given way into something that probably requires a different architec-
ture. If you keep adding new requirements individually without reconsidering the system as a
whole, you create the ideal conditions for a big ball of mud.

Members Turnover

When technical documentation is lacking or insufficient, the worst thing that can happen is
that the rationale for making particular decisions is lost forever. As long as the application
is deployed, works, and doesn’t require proactive or passive maintenance (although I still
haven't found such an application), you're fine. But what if this is not the case?

If the rationale for design and architectural decisions is not entirely evident, how can you
expect new members of the team to take over the maintenance or additional development
for the system? At some point, in their efforts to understand the system, these new mem-
bers must be informed of the rationale for various decisions. If they can't figure out the real
rationale, inevitably they will make further changes to the system based on their assump-
tions. Over time, this leads to a progressive deterioration of the system that is what we've
been referring to as the big ball of mud.

Alarming Symptoms

The big ball of mud doesn't get formed overnight. How can you detect that your system is
deteriorating? There a few hard-to-miss symptoms you don’t want to ignore. They are very
serious. Let's find out what they are.

Make a Change Here, Break the Code There

Can you bend a piece of wood? And what do you risk if you insist on trying to do that?
A piece of wood is typically stiff and rigid and characterized by some resistance to
deformation. When enough force is applied, the deformation becomes permanent.

What about rigid software?

568

Part Il Design of the Application

Rigid software is characterized by some level of resistance to changes. Resistance is measured
in terms of regression. You make a change in one module, but the effects of your change
cascade down the list of dependent modules. As a result, it's really hard to predict how large
the impact of a change—any change, even the simplest—will actually be.

If you pummel a glass or any other fragile material, you succeed only in breaking it down into
several pieces. Likewise, when you enter a change in software and cause it to misbehave in
some places, that software is definitely fragile.

Just as fragility and rigidity go hand in hand in real life, they also do so in software. When a
change in a software module breaks (many) other modules because of (hidden) dependen-
cies, you have a clear symptom of a bad design, and you need to remedy that situation as
soon as possible.

Easier to Use Than to Reuse

Imagine you have a piece of software that works in one project; you would like to reuse it in
another project. However, copying the class or linking the assembly in the new project just
doesn't work.

Why is this so?

If the same code doesn't work when it's moved to another project, it's because of
dependencies. However, the real problem isn't just dependencies; it's the number and depth
of dependencies. The risk is that to reuse a piece of functionality in another project, you'll
have to import a much larger set of functions. In such cases, no reuse is ever attempted and
code is rewritten from scratch. (Which, among other things, increases duplication.)

This also is not a good sign either for your design. This negative aspect of a design is often
referred to as immobility.

Easier to Work Around Than to Fix

When applying a change to a software module, it is not unusual that you find two or more
ways to do it. Most of the time, one way of doing things is nifty, elegant, coherent with the
design, but terribly laborious to implement because of certain constraints. The other way is,
instead, much smoother and quicker to code, but it is sort of a hack.

What should you do?

Actually, you can solve the problem either way, depending on the given deadlines and your
manager’s directives about it.

Chapter 13 Principles of Software Design 569

In summary, it's not an ideal situation because a workaround might be much easier to apply
than the right solution. And that's not a great statement about your overall design either. It
simply means that too many unneeded dependencies exist between classes and that your
classes do not form a particularly cohesive mass of code. This negative aspect of a design is
often referred to as viscosity.

So what should you do to avoid these symptoms showing up in your code and creating a big
ball of mud?

Universal Software Principles

In my opinion, maintainability is the fundamental attribute of modern software. The
importance of maintainability spans the technology spectrum and applies to the Web as well
as desktop applications.

A few universally valid design principles help significantly to produce code that is easier to
maintain and evolve. It is curious to note that they are all principles devised and formulated
a few decades ago. Apparently, for quite some time we've had the tools to build and manage
complex software but real applications were just lacking the complexity to bring them to the
forefront as design best practices. This is also my interpretation of the advent of the Rapid
Application Development (RAD) paradigm a decade ago, which complemented (and in some
cases superseded) object-oriented programming (OOP).

Today, the situation is different. With large companies now taking full advantage of Internet,
cloud, and mobile computing, developers and architects are swamped with an incredible
amount of complexity to deal with. That's why RAD is no longer sufficient in many scenarios.
On the other hand, not everybody is skilled enough to use OOP. It's about time we all redis-
cover some fundamentals of software programming—regardless of the type of application
we're building.

Summarizing, | would boil software principles down to two principles: the High Cohesion and
Low Coupling principle and the Separation of Concerns principle.

Cohesion and Coupling

Cohesion and coupling go hand in hand even though they refer to orthogonal aspects

of your code. Cohesion leads you toward simple components made of logically related
functions—kind of atomic components. Coupling indicates the surface area between two
interfacing components: the wider the area is, the deeper the dependency is between the
components. The magic is all in finding the right balance between cohesion and coupling
while trying to maximize both.

570

Part Il Design of the Application

Cohesion at a Glance

Cohesion indicates that a given software module—a class, if we assume the object-oriented
paradigm—features a set of responsibilities that are strongly related. Put another way, cohe-
sion measures the distance between the logic expressed by the various methods on a class.

If you look for a moment at the definition of cohesion in another field—chemistry—you can
get a clearer picture of software cohesion. In chemistry, cohesion is a physical property of a
substance that indicates the attraction existing between like-molecules within a body.

Cohesion measurement ranges from low to high, with the highest possible cohesion being
preferable. Highly cohesive modules favor maintenance and reusability because they tend

to have no dependencies. Low cohesion, on the other hand, makes it much harder to un-
derstand the purpose of a class, and it creates a natural habitat for rigidity and fragility in
your software. Low-cohesive modules also propagate dependencies, thus contributing to the
immobility and viscosity of the design.

Decreasing cohesion leads to creating classes where methods have very little in common and
refer to distinct and unrelated activities. Translated into a practical guideline, the principle of
cohesion recommends creating extremely specialized classes with few methods that refer to
logically related operations. If the “logical” distance between methods needs to grow, well,
you just create a new class.

Coupling at a Glance

Coupling measures the level of dependency existing between two software classes.

An excellent description of coupling comes from the Cunningham wiki at
http://c2.com/cgi/wiki?CouplingAndCohesion. Two classes, A and B, are coupled when it
turns out that you have to make changes to B every time you make any change to A. In
other words, B is not directly and logically involved in the change being made to module A.
However, because of the underlying dependency B is forced to change; otherwise, the code
won't compile any longer.

Coupling measurement ranges from low to high, with the lowest possible coupling being
preferable.

Low coupling doesn’t mean that your modules have to be completely isolated from one
another. They are definitely allowed to communicate, but they should do that through a set
of well-defined and stable interfaces. Each class should be able to work without intimate
knowledge of the internal implementation of another class. You don't want to fight coupling
between components; you just want to keep it under control. A fully disconnected system is
sort of nonsense today.

Conversely, high coupling hinders testing and reusing and makes understanding the system
nontrivial. It is also one of the primary causes of a rigid and fragile design.

http://c2.com/cgi/wiki?CouplingAndCohesion

Chapter 13 Principles of Software Design 571

Low coupling and high cohesion are strongly correlated. A system designed to achieve
low coupling and high cohesion generally meets the requirements of high readability,
maintainability, easy testing, and good reuse.

Separation of Concerns

Functional to achieving high cohesion and low coupling is the separation of concerns (SoC)
principle, introduced by Edsger W. Dijkstra in his paper “On the role of scientific thought”
which dates back to 1974. If you're interested, you can download the full paper from
http.//www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.

Identifying the Concerns

SoC is all about breaking the system into distinct and possibly non-overlapping features.
Each feature you want in the system represents a concern and an aspect of the system.
Terms like feature, concern, and aspect are generally considered synonyms. Concerns are
mapped to software modules and, to the extent that it is possible, there's no duplication of
functionalities.

SoC suggests that you focus your attention on one particular concern at a time. It doesn’t
mean, of course, that you ignore all other concerns of the system. More simply, after you've
assigned a concern to a software module, you focus on building that module. From the
perspective of that module, any other concerns are irrelevant.

Note If you go through the original text written by Dijkstra back in 1974, you note that he uses
the expression “separation of concerns” to indicate the general principle, but he switches to the
word "aspect” to indicate individual concerns that relate to a software system. For quite a few
years, the word “aspect” didn't mean anything special to software engineers. Things changed

in the late 1990s when aspect-oriented programming (AOP) came into the industry. Ignored for
many years, AOP is being rediscovered today mostly thanks to some ad hoc frameworks such as
Spring .NET and other Inversion of Control (IoC) frameworks.

Modularity
SoC is concretely achieved through modular code and making large use of information

hiding.

Modular programming encourages the use of separate modules for each significant feature.
Modules are given their own public interface to communicate with other modules and can
contain internal chunks of information for private use.

Only members in the public interface are visible to other modules. Internal data is either not
exposed or it is encapsulated and exposed in a filtered manner. The implementation of the

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

572 Part Il Design of the Application

interface contains the behavior of the module, whose details are not known or accessible to
other modules.

Information Hiding

Information hiding (IH) is a general design principle that refers to hiding behind a stable
interface some implementation details of a software module that are subject to change. In
this way, connected modules continue to see the same fixed interface and are unaffected by
changes.

A typical application of the information hiding principle is the implementation of properties
in Microsoft C# or Visual Basic .NET classes. The property name represents the stable inter-
face through which callers refer to an internal value. The class can obtain the value in various
ways (for example, from a private field, from a control property, from a cache, and from the
view state in ASP.NET) and can even change this implementation detail without breaking
external code.

// Software module where information hiding is applied
public class Customer

{
// Implementation detail being hidden
private string _name;

// Public and stable interface
public string CustomerName

{
// Implementation detail being hidden
get {return _name;}

}

Information hiding is often referred to as encapsulation. | like to distinguish between the
principle and its practical applications. In the realm of object-oriented programming,
encapsulation is definitely an application of IH.

In general, though, the principle of SoC manifests itself in different ways in different
programming paradigms, and so it is also for modularity and information hiding.

Note Separation of concerns is the theoretical pillar of multitiered (or just multilayered)
systems. When you try to apply SoC to classes, you run across just one fundamental concept
that you can then find formulated in a number of different ways. You essentially achieve sepa-
ration of concerns by isolating dependencies and abstracting them to interfaces. This is called
low coupling, interface-based programming or, perhaps in a more formal way, the Dependency
Inversion principle that I'll cover in just a moment. Different names—each appropriate in its own
context—but just one key idea.

Chapter 13 Principles of Software Design 573

SOLID Principles

Recently, a particular acronym is gaining a lot of popularity—SOLID. The acronym results
from the initials of five design principles formulated by Robert Martin. The S stands for Single
Responsibility; the O is for the Open/Closed principle; the L is for Liskov's principle; the / is for
Interface Segregation; and finally, the D is for Dependency Inversion.

Taken individually, these principles are nothing new. Any experienced developer and
architect should be at least vaguely familiar with the idea behind each principle, either
because it is part of the developer’s personal education or because of the experience the
developer has gained the field.

SOLID principles are just a further specialization and refinement of universal and
object-oriented design principles. Their definition is relatively simple; yet the adoption of
these principles can be fairly complex.

Note Asyou'll see in a moment, not all principles should be taken literally. Some of them are
just driving vectors that attempt to show you the right direction, but without being dogmatic.
You can download the original papers describing the SOLID principles and their canonical
examples from http://www.objectmentor.com.

The Single Responsibility Principle

The Single Responsibility Principle (SRP) is a formal way of rephrasing the idea behind
cohesion. The principle states that there should never be more than one reason for a class
to change. Applied to the design of the class, it means each class you add to your solution
should focus on just one primary task.

The responsibilities of a class that does just one thing are much smaller than the responsibili-
ties of a class that does multiple things. A responsibility is defined as a “reason to change”;
more specifically, it's a reason for you—the developer—to put your hands on the class’s
source code and edit it.

The purposes of SRP are to simplify maintenance and improve readability. Keeping the code
simple at the root—Dby taking out additional features—is an effective way to smooth mainte-
nance chores. At the end of the day, SRP is a form of defensive programming.

http://www.objectmentor.com

574

Part Il Design of the Application

SRP Canonical Example

Like any other SOLID principle, SRP has its own canonical example aimed at illustrating