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Предисловие

Задачи, предлагаемые вниманию читателя, составлялись на про-
тяжении нескольких десятилетий. Мало-помалу из них получилась
книга, которая, благодаря неоценимой помощи Московского цен-
тра непрерывного математического образования и редакции жур-
нала «Квант», выходит вот уже в третий раз. Первое издание вышло
в  году в издательстве МЦНМО под названием « нестандарт-
ных задач», второе –– в «Библиотечке „Кванта“» в  году, уже как
« нестандартных задач». Теперь книжка еще немного «подросла»,
немного перестроилась и опять получила новое название.

Почти все задачи придуманы автором книги. Впрочем, в отно-
шении задач «авторского права» не существует –– в частности, по
той причине, что порой задачу, придуманную одним, корректиру-
ет (а иной раз корежит) другой, решение находит третий... Вот
и в этом сборнике есть несколько задач, насчет авторства которых
нет полной ясности, или которые придумал автор, а решил кто-то
другой, а иногда –– наоборот. В принципе такие задачи автор встав-
лять избегал, но несколько задач, в которых авторство «спорно»,
все-таки вставил –– уж очень они понравились автору и, надеюсь,
понравятся читателям.

Значительная их часть предлагалась на олимпиадах разного уров-
ня: на Московских городских, на Украинских республиканских, на
международном Турнире городов, на разнообразных студенческих
олимпиадах, матбоях и т. д. Другие «не пошли в дело», и за такие за-
дачи мне всегда было особенно обидно. В особенности –– если зада-
ча возникала сразу после очередной олимпиады: такие задачи обыч-
но всегда кажутся лучше, по крайней мере –– их автору.

В виде дополнения в книге помещена статья «Что такое матема-
тика, или Метаматематика для нематематиков».

Хочу выразить благодарность моим коллегам из Независимого
университета, а также всем работникам редакции журнала «Квант»
за многолетнее сотрудничество, которое, между прочим, породило
некоторые задачи сборника. Но особо хочу поблагодарить Сергея
Дориченко и Юрия Торхова, без участия которых сборник вряд ли
вышел бы в свет.

А. Толпыго



Сокращения

ВМШ –– Вечерняя математическая школа,
ММО –– Московская математическая олимпиада,

СО –– та или иная студенческая олимпиада,
ТГ –– Математический международный Турнир городов,

ТПЯ –– Турнир юных математиков им. М. Ядренко.

Задачи отмечаются звёздочками

∗ –– лёгкая, ∗∗∗ –– трудная,
∗∗ –– средняя, ∗∗∗∗ –– очень трудная или решение неизвестно.



Задачи

Задачи на шахматной доске

1
∗∗

. На бесконечной шахматной доске расставлены белые пеш-
ки на чёрных полях, через три поля на четвёртое, как показано
на рис. . Может ли конь обойти такую доску, побывав на каждом
поле (кроме занятых пешками) ровно по одному разу?

Рис. 

(Конкурс ВМШ, 1966; IX ТГ, весна 1988)

2
∗∗∗

. Требуется расставить ладьи на доске 8× 8 так, чтобы каж-
дое поле доски оказалось под боем не менее чем двух ладей (в том
числе должны быть биты и поля, на которых стоят ладьи, причём
считается, что ладья не бьёт то поле, на котором она стоит). Каким
минимальным числом ладей можно обойтись, если при этом:

а) считается, что ладья бьёт «через» ладью, перекрывающую ей
дорогу к полю;



Задачи на шахматной доске 

б) считается, что ладья не бьёт «через» ладью.
Например, на приводимом рис.  поле, отмеченное знаком •,

в варианте а) бито 5 раз, а в варианте б) только 2.

Рис. 

3
∗∗∗

. а) Игра в «супершахматы» ведётся на доске размером 30×30,
в ней участвуют 20 разных фигур, каждая из которых ходит по сво-
им правилам. Известно, однако, что:

–– любая фигура с любого поля бьёт не более 20 полей;
–– если фигуру сдвинуть на несколько полей, то битые поля соот-

ветственно сдвигаются (может быть, за пределы доски).
Докажите, что:
1) любая фигура бьёт данное поле X не более, чем с 20 полей;
2) можно расставить на доске все 20 фигур так, чтобы ни одна

из них не била другую.
б) Игра в «супершахматы» ведётся на доске размером 100×100,

в ней участвуют 20 фигур, каждая из которых ходит по своим пра-
вилам. Известно, что любая фигура с любого места бьёт не более
20 полей. Докажите, что можно расставить на доске все 20 фигур
так, чтобы ни одна из них не била другую.

(VII ТГ, осень 1985)

4
∗
. а) Можно ли на бесконечной шахматной доске расставить

ферзей так, чтобы на каждой горизонтали, вертикали и диагонали
(обоих направлений) стояло ровно по 1 ферзю?

б) Можно ли расставить ферзей на бесконечной доске так, чтобы
на каждой горизонтали, вертикали и диагонали одного направле-
ния стояло по ферзю, а из диагоналей другого направления битой
оказалась каждая вторая?

в) А каждая пятая?
(СО, 1994)

5
∗∗∗

. Можно ли расставить 15 ферзей на цилиндрической доске
15×15 так, чтобы они не били друг друга?



 Задачи

6
∗∗

. Ладья обходит шахматную доску, каждый раз переходя с клет-
ки на соседнюю (с общей стороной), и, побывав на каждой клетке
один раз, возвращается на начальное место. Таким образом, её марш-
рут –– несамопересекающаяся замкнутая ломаная, ограничивающая
невыпуклый многоугольник. Найдите его площадь. (Считайте пло-
щадь клетки равной 1; маршрут проходит через центры клеток.)

7
∗∗

. а) Ладья обходит шахматную доску, каждый раз переходя
с клетки на соседнюю (с общей стороной), и, побывав на каждой
клетке один раз, возвращается на начальное место. Известно, что она
попала на поле b2 с поля a2. С какого поля она попала на поле h8?

б) Ладья обходит шахматную доску. Маршрут начинается в клет-
ке d4 и кончается в клетке d6. Ладья каждый раз переходит с клет-
ки на соседнюю (с общей стороной), побывав на каждой клетке не
более одного раза. Известно, что ладья побывала во всех четырёх
углах доски и попала на поле a1 с поля a2, на поле a8 с поля a7 и на
поле h8 с поля h7. С какого поля она попала на поле h1?

(XIII ТПЯ, Николаев, 2010)

8
∗
. Белая ладья стоит на поле b2, чёрная на поле c4. Игроки ходят

по очереди, начинают белые. Ладье запрещается становиться под
бой другой ладьи, а также вторично становиться на ранее пройден-
ное поле. Тот, кто не может сделать очередной ход, проигрывает.
Кто должен выиграть, если оба игрока играют наилучшим образом?

(XXXIII ТГ, весна 2012)

9
∗
. Чернопольный слон обходит чёрные клетки шахматной дос-

ки, переходя каждый раз с клетки на соседнюю и не возвращаясь на
уже пройденные клетки. Какое наибольшее число клеток он может
обойти?

10. На шахматной доске размером 80 000×80 000 требуется рас-
ставить шахматных коней так, чтобы каждое белое поле было под
боем хотя бы одного коня.

Достаточно ли для этого:
а) 400 000 000 коней; б) 401 000 000 коней?

Геометрия

11
∗
. Построить 10-угольник A1 A2…A10, зная все его углы и сторо-

ну A1 A2, если ещё известно, что в этот 10-угольник можно вписать
окружность.

(ВМШ, 1964; Сборник «Математические задачи», 1965)



Геометрия 

12
∗
. Дана окружность с центром O и вектор v. Найти на окруж-

ности две такие точки A и B, чтобы угол между векторами v+
#  –

OA,
v+

#   –

OB был максимален.
(XVIII УРО, 1978)

Рис. 

13
∗
. Можно ли разрезать квадратный пи-

рог на 9 равновеликих частей таким образом:
выбрать внутри квадрата две точки и соеди-
нить каждую из них прямолинейными разре-
зами со всеми четырьмя вершинами квадра-
та (рис. )? Если можно, то какие две точки
следует выбрать?

(XXX ММО, 1967)

14
∗∗

. В бесконечно большой каравай, за-
нимающий всё пространство, в точках с целыми координатами впе-
чены изюминки диаметра 0,1. Каравай разрезали на части несколь-
кими плоскостями. Доказать, что найдётся неразрезанная изюминка.

(XXX ММО, 1967)

15
∗∗

. Некий жулик приобрёл квадратный участок земли, обнёс
его забором и получил у доверчивого председателя колхоза доку-
мент, в котором сказано, что он имеет право несколько раз произве-
сти следующую операцию: провести прямую через любые две точки
забора, огораживающего его участок, снести кусок забора между
двумя точками и достроить такой же участок забора с другой сто-
роны симметрично снесённой части относительно выбранной пря-
мой. Сможет ли он такими операциями увеличить площадь своего
участка?

(XXXII ММО, 1969)

16
∗∗

. В куб ABCDA1 B1C1D1 вписаны два тетраэдра ACB1D1 и
BDA1C1. Найти объём их пересечения, если объём куба равен 1.

17. а)∗∗ Ребро деревянного куба равно 1. От одной из вершин
куба на каждом выходящем из неё ребре отложен отрезок длины a.
Плоскость, проходящая через 3 полученные точки, отрезает от куба
треугольную пирамиду. Проведём 8 таких плоскостей (возможно,
полученные пирамиды будут пересекаться); известно, что часть ку-

ба, не принадлежащая ни одной из пирамид, имеет объём
1
2

. Най-
ти a.

б)∗∗∗ Та же задача в n-мерном пространстве.



 Задачи

18
∗∗

. Учитель продиктовал классу задание, которое каждый уче-
ник выполнил в своей тетради. Вот это задание (рис. ): «Нари-
суйте две концентрические окружности радиусов 1 и 10. К малой
окружности проведите три касательных так, чтобы точки их пе-
ресечения A, B и C лежали внутри большой окружности. Измерь-
те площадь S треугольника ABC и площади S1, S2 и S3 трёх обра-
зовавшихся «секторов» с вершинами в точках A, B и C. Найдите
S1+S2+S3−S». Доказать, что у всех учеников, которые правильно
выполнили задание, получилось одно и то же число.

S1

S2

S3

A

B

C

Рис. 

(VII ТГ, осень 1985)

19
∗∗

. Дан полуправильный  восьмиугольник ABCDEFGH. В нём
проведены 8 диагоналей через две вершины на третью: AD, BE

и т. д. В центре образовался новый полуправильный восьмиуголь-
ник A1B1…H1, с которым та же операция проделана ещё раз, и т. д.
Докажите, что этот процесс не может продолжаться бесконечно.

(XIII ТГ, осень 1991)

20
∗∗∗

. В пространстве заданы 48 точек с координатами (±1, ±2,
±3), где порядок цифр 1, 2, 3 и выбор знаков осуществляется все-

 Полуправильным называется такой восьмиугольник, у которого все углы равны
3π

4
, а стороны равны через одну: AB=CD= EF =GH и BC=DE= FG=HA, но AB 6=BC.

Другое, равносильное (для восьмиугольника) определение: полуправильный восьми-
угольник есть пересечение двух неравных квадратов с общим центром, из которых

один повёрнут относительно другого на
π

4
. (При этом, разумеется, предполагается,

что ни один из квадратов не лежит целиком внутри другого.)



Геометрия 

ми мыслимыми способами. Сколько граней имеет выпуклый мно-
гогранник с этими вершинами? Какова форма этих граней?

(Матбой Москва––Ленинград, 1982,
XVI Всесоюзная олимпиада)

21
∗
. На плоскости задана бесконечная сетка из правильных ше-

стиугольников площади 1. На эту сетку наложен квадрат со сто-
роной 1000. Сколько вершин шестиугольной сетки попало внутрь
квадрата? Найти ответ с ошибкой не более  %.

22
∗
. Даны две выпуклые фигуры, каждая площадью 1. Требует-

ся построить выпуклую фигуру площади S, в которую можно поме-
стить обе фигуры. Каково должно быть S, чтобы задача всегда имела
решение?

23
∗
. Построить треугольник по вершине A и двум прямым, на ко-

торых лежат биссектрисы, проведённые из вершин B, C.
24
∗∗∗∗

. Даны 80 векторов
#        –

A1B1,
#        –

A2B2, …,
#            –

A80B80, длина каждого из
них больше 1. Доказать, что из них можно выбрать 7 таким образом,
что всё расстояния Ai B j (i 6= j) больше 0,3.

(Лемма из книги «Геометрия близости» )

25. Куб с ребром 1 лежит по одну сторону от плоскости.
1) Доказать, что 8 чисел –– расстояния от вершин куба до плоско-

сти –– можно так разбить на две четвёрки {a, b, c, d} и {e, f , g, h}, что:
а)∗ a+ b+ c+d= e+ f + g+h,
б)∗∗ a2

+ b2
+ c2

+d2
= e2

+ f 2
+ g2

+h2.
2∗∗) Найти для того же разбиения соотношение между числами

a3
+ b3

+ c3
+d3 и e3

+ f 3
+ g3

+h3.
26
∗∗∗

. Петя нарисовал на плоскости два треугольника: ABC и
A′B′C ′. Он сказал Коле: «В треугольнике ABC выполняется равен-
ство:

AB = mAC+nBC.

Какой угол в нём наименьший?» «А что такое m и n?» –– спросил Ко-
ля. «Это координаты точки M на плоскости», –– и Петя указал в пер-
вой четверти эту точку. «У меня недостаточно данных, чтобы ре-
шить задачу», –– подумав, сказал Коля.

«Тогда реши другую задачу. В треугольнике A′B′C ′ выполняет-
ся равенство: A′B′= pA′C ′+ qB′C ′; p и q –– координаты точки N», ––
и Петя указал другую точку в первой четверти. «Тогда наименьший
угол –– это...» –– сказал Коля.

 Ефремович В. А., Толпыго А. К. Геометрия близости. М.: ФИМА, 2007.



 Задачи

Что можно сказать о расположении на плоскости точек M и N ,
исходя из предположения, что Коля в обоих случаях решил задачу
верно? Какой угол назвал Коля?

27
∗
. Диагонали выпуклого четырёхугольника имеют длины AC=a

и BD= b, a> b. Каким может быть максимальный периметр четы-
рёхугольника ABCD? А минимальный?

28
∗∗

. В выпуклом семиугольнике A1 A2 A3 A4 A5 A6 A7 диагонали
A1 A3, A2 A4, A3 A5, A4 A6, A5 A7, A6 A1 и A7 A2 равны между собой.
Диагонали A1 A4, A2 A5, A3 A6, A4 A7, A5 A1, A6 A2 и A7 A3 тоже равны
между собой. Обязательно ли этот семиугольник равносторонний?

(XXV ТГ, осень 2003)

29. A1 A2 A3…An, n > 4, –– невыпуклый многоугольник, ограни-
ченный несамопересекающейся ломаной.

а)∗∗ Доказать, что либо из вершины A1, либо из вершины A2 мож-
но провести диагональ, целиком лежащую внутри многоугольника.

б)∗ Придумать пример, когда из вершины A1 нельзя провести ни
одной такой диагонали.

в)∗ Пусть кусок некоторой диагонали находится внутри много-
угольника. Придумать пример, когда он не пересекается ни одной
диагональю многоугольника (лежащей в нём целиком или частич-
но –– всё равно).

30
∗
. На плоскости даны две точки A, B и прямая, параллельная

отрезку AB. Найдите на прямой точку C такую, что произведение
AC · BC минимально.

(XXIX ТГ, осень 2007)

31
∗∗

. Стороны четырёхугольника ABCD имеют длины AB = 3,
BC = 4, CD = 6 и DA = 5. Докажите, что площадь такого четырёх-
угольника меньше 19.

32
∗∗

. Квадрат со стороной 1 разрезан на три выпуклых много-
угольника. Может ли случиться, что диаметр каждого из них не пре-
восходит: а) единицы, б) 1,01; в) 1,1?

(XXIX ТГ, осень 2007)

33
∗
. Из бумаги вырезан треугольник, один из углов которого ра-

вен α. Его разрезали на несколько треугольников, и выписали в ряд
числа –– величины всех углов всех полученных треугольников. Мо-
жет ли случиться, что все эти числа меньше α:

а) в случае, если α=70◦; б) в случае, если α=80◦.
(XXIX ТГ, весна 2008)
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34
∗∗

. а) В сферу вписаны куб и правильный октаэдр. Найдите от-
ношение их объёмов.

б) В сферу вписаны правильный икосаэдр и правильный додека-
эдр. Найдите отношение их объёмов.

35
∗∗

. На столе лежит листок бумаги в клеточку. Поверх него по-
ложен ещё один лист бумаги в клеточку; клетки на обоих листах
квадратные и одного размера, но второй лист положен наискось,
так что его линии не параллельны линиям первого. Верхний листок
прозрачный, и видно, как его линии делят один из квадратов ниж-
него листка.

На какое максимальное число частей может быть разделён ниж-
ний квадрат?

А на какое минимальное?

(Летняя конференция ТГ, Теберда, 2010)

36
∗∗

. На столе лежит листок бумаги в клеточку размером 10 000×
× 10 000. Поверх него положен ещё один лист бумаги в клеточку
размером 1000×2000; клетки на обоих листах квадратные и одного
размера. Верхний листок прозрачный, и видно, как линии нижнего
листка делят квадраты верхнего листка на части; таким образом,
мы видим, что число частей верхнего листка больше двух милли-
онов.

Докажите, что это число меньше десяти миллионов.

(Летняя конференция ТГ, Теберда, 2010)

37
∗
. На ватмане нарисован правильный 17-угольник B1B2…B17.

Для каждой тройки его вершин Bi, B j , Bk изготовлен бумажный тре-
угольник, равный Bi B j Bk. Его кладут поверх исходного многоуголь-
ника, совместив с соответствующим треугольником; таким обра-
зом, 17-угольник оказывается покрыт бумажными треугольниками
в несколько слоёв, причём разные точки покрыты различное число
раз. Назовём кратностью точки число треугольников, покрываю-
щих её. (При этом точки, лежащие на контуре 17-угольника или на
его диагоналях, не рассматриваются.)

Укажите какую-нибудь точку, имеющую
а) наименьшую кратность; б) наибольшую кратность.
38
∗∗

. В выпуклом четырёхугольнике ABCD стороны равны соот-
ветственно: AB=10, BC=14, CD=11, AD=5. Найдите угол между
его диагоналями.

(XXXIII ТГ, осень 2011)



 Задачи

39
∗∗∗

. Требуется построить замкнутую 2009-звенную ломаную,
а затем провести 2009 прямых, на которых лежат её звенья. Неко-
торые из этих прямых могут, вообще говоря, совпадать. Какое наи-
меньшее число прямых может получиться?

(XXXI ТГ, весна 2010,
в немного изменённой формулировке)

40
∗
. В треугольнике ABC известны две стороны: AB= 1, AC = 4.

Что можно сказать:
а) о длине h высоты, опущенной из вершины A;
б) о длине m медианы, опущенной из вершины A;
в) о длине b биссектрисы, опущенной из вершины A?
Во всех трёх случаях требуется указать числовые интервалы,

в которых может (не может) лежать соответствующее число.
41
∗∗

. Неплотные упаковки. а) На плоскости расположено 12 кру-
гов радиуса 1. Известно, что расстояние между центрами любых
двух кругов не меньше 10. Докажите, что можно провести прямую,
отделяющую один круг от других. Это означает, что прямая не пе-
ресекает ни один из кругов, причём по одну сторону от неё лежит 1
круг, а по другую –– все остальные.

б) На плоскости расположено 120 кругов радиуса 1. Известно,
что расстояние между центрами любых двух кругов не меньше 10.
Можно ли утверждать, что существует прямая, отделяющая ровно
один из этих кругов от остальных?

42. «Ванька-встанька». Многогранник поставлен на ровную по-
верхность на одну из своих граней. Вообще говоря, может случить-
ся, что он не устоит и перекатится на другую грань.

Каково наименьшее число граней, на которых многогранник
устоит:

а)∗∗∗ в предположении, что многогранник сделан из однородного
материала;

б)∗ если многогранник не обязательно однородный;
в)∗ если многогранник не обязательно выпуклый.
43. а) Нетрудно покрыть единичный квадрат кругом площади

π
2

.
А как покрыть квадрат несколькими кругами, суммарная площадь
которых меньше

π
2

? Круги могут пересекаться и выходить за преде-
лы квадрата.

б) Дайте точную оценку в задаче а).
Иначе говоря: требуется найти число α такое, что (1) квадрат

нельзя покрыть кругами суммарной площади меньше α и (2) для лю-
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бого β>α квадрат можно покрыть кругами площадиβ. (Постарайтесь
также выяснить, можно ли его покрыть кругами площади ровно α.)

Эта задача подразделяется на три, а именно:
б) Найдите α в предположении, что радиусы всех кругов обяза-

ны быть одинаковыми.
б) Найдите α, если разрешается брать круги двух произвольных

радиусов.
б) Найдите α, если разрешается брать круги произвольных ра-

диусов без всяких ограничений.
(Летняя конференция Турнира городов, Теберда, 2010)

44. На плоскости даны 2014 точек, никакие три из которых не
лежат на одной прямой. Требуется построить 2014-угольник с этим
набором вершин (требуется использовать все точки) или, что то
же, –– замкнутую несамопересекающуюся ломаную.

Пусть Л(Ф) –– количество таких ломаных для данной конфигура-
ции точек Ф.

Может ли Л(Ф)
а) равняться нулю; б) равняться 1; в) равняться 2?
45. Выпуклый 100-угольник разделён тремя диагоналями на

4 равновеликие части. Докажите, что одна из диагоналей делит его
на две части равных площадей.

46. Можно ли тремя хордами, ни одна из которых не является
диаметром, разрезать круг на несколько равновеликих (не обяза-
тельно равных) частей?

(ТПЯ, 2014)

47. Найти угол ϕ между гранями правильного n-мерного тетра-
эдра.

48. Прямоугольник p× q, где p, q –– целые взаимно простые чис-
ла, разбит на единичные квадратики. Из левого нижнего угла A

в правый верхний угол C проведена диагональ прямоугольника. От
некоторых квадратиков она отсекает треугольники.

Найти сумму P периметров всех этих треугольников.

Теория чисел

49
∗∗

. Существуют ли два таких последовательных натуральных
числа, что сумма цифр каждого из них делится на ? Если да, то
найдите наименьшую пару таких чисел.

(XXX ММО, 1967)



 Задачи

50
∗
. Делится ли число A=1010101…01 (n единиц) на число B=

=11…1 (n единиц)?
51
∗
. Даны числа 4, 14, 24, …, 104. Доказать, что из них нельзя вы-

черкнуть сначала одно, потом два, потом три, наконец, четыре чис-
ла так, чтобы после каждого вычёркивания сумма оставшихся чисел
делилась на 11.

(XXXI ММО, 1968)

52
∗
. Остап Бендер организовал в городе Фуксе раздачу слонов на-

селению. На раздачу явилось 28 членов профсоюза и 37 не членов,
причём Остап раздавал слонов поровну всем членам профсоюза
и поровну не членам. Оказалось, что существует лишь один способ
такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее
число слонов могло быть у О. Бендера?

(XXX ММО, 1967)

53. Пусть p –– простое число, p>5. Запишем число
1
p

в виде бес-
конечной десятичной дроби.

а)∗ Докажите, что сумма всех цифр периода дроби делится на 9.
б)∗∗ Пусть длина периода равна km; разобьём его на k кусков

(«граней») по m цифр в каждом. Докажите, что сумма этих граней
делится на 99…9 (m девяток).

(Например,
1
7
= 0,(142857); 14+ 28+ 57= 99; 142+ 857= 999.

Или:
1

13
=0,(076923); 76+923=999.)

(XVIII УРО, 1978)

54
∗
. Известно, что {32x}={200x}; {2x}={100x} . Доказать, что

{x}={155x}.
(XXXV УРО, 1995)

55
∗∗

. а) Доказать, что существует такое число q, что в десятичной
записи числа q ·21000 нет ни одного нуля.

(XXX ММО, 1967)

б) Число N не оканчивается нулём. Доказать, что существует та-
кое число q, что в десятичной записи qN нет ни одного нуля.

56
∗∗

. Выписаны числа: 1, 2, 4, …, 2n, …, 21000. Затем выписаны все
первые цифры этих чисел. Сколько единиц среди выписанной 1001-й
цифры?

(СО, 1995)

57
∗∗

. Набор чисел x0< x1< x2<…< xn называется редким, если
все разности xi− x j различны.

 Фигурные скобки означают дробную часть числа x, т. е. разность между x и наи-
большим целым, не превосходящим x.
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а) Дан редкий набор из 17 целых чисел:

0 = x0 < x1 < x2 <… < x16.

Доказать, что x16>145.
б) Набор из семи чисел 0= x0<…< x6 –– редкий. Какое наимень-

шее значение может принимать x6?
в) Для каждого n дан редкий набор x0< x1< x2<…< xn. Извест-

но, кроме того, что существует lim
xn

n2 = A. Доказать, что A¾1.

г) Доказать, что существует такое число B, что для любого n най-
дётся такой редкий набор x1<…< xn, что xn< Bn3.

58
∗∗∗

. По произвольной тройке чисел a0 ¾ b0 ¾ c0 образуется но-
вая тройка, состоящая из чисел a0− b0, a0− c0, b0− c0. Упорядочив
её по убыванию, мы получаем новую тройку a1, b1, c1, с которой де-
лается то же самое, и т. д. Известно, что a0=1, c0=0. Доказать, что

a10>
1

100
. При каком b0 оно будет наименьшим?

(XXIII УРО, 1983)

59
∗
. Существует ли такое число C, что сумма всех делителей чис-

ла n меньше nC при любом n?
60
∗
. Известно, что каждое из r различных чисел a1, a2, …, ar рав-

но произведению двух других, не равных ему чисел этого набора.
Какое наименьшее значение может принимать r, если в качестве
a1, a2, …, ar берутся:

а) положительные числа? б) действительные числа?
в) комплексные числа? г) кватернионы?
61
∗
. а) Рассматриваются все 10-значные числа, которые запи-

сываются семью двойками и тремя единицами. Найти их среднее
арифметическое.

б) То же самое для 10-значных чисел, которые записываются се-
мью нулями и тремя единицами.

62
∗∗

. Пусть a–– произвольное четырёхзначное число, и пусть x,
y, z –– последние три цифры числа a7. Тогда трёхзначное число xyz

(оно может начинаться с одного или нескольких нулей) называется
хорошим. Доказать, что от 000 до 999 существует ровно 505 хоро-
ших трёхзначных чисел.

63
∗∗

. -й и -й годы одинаково читаются слева направо
и справа налево. Интервал между ними составляет 11 лет. Каким
может быть максимальный и минимальный интервал между двумя
соседними годами с аналогичным свойством:

а) в ближайшую тысячу лет; б) в ближайшие 10 000 лет?
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64. а∗) Дано число z. Известно, что числа z13 и z17 –– целые. До-
кажите, что z –– тоже целое.

б∗∗) Докажите, что существует такое число x>0, что его дробная
часть {x}, а также дробные части его квадрата и куба удовлетворя-
ют неравенствам 0,1<{x}<0,9; {x2}<0,000001; {x3}<0,000001.

в∗∗∗) Докажите, что если все условия из п. б) выполнены, то x>5.
г∗∗) Даны числа α, β, γ, все три –– между нулём и единицей (0<

<α, β, γ<1).
Докажите, что существует число z такое, что одновременно при-

ближённо выполняются три равенства: {z}= α, {z2}= β, {z3}= γ,
причём все три выполняются с точностью до 0,000001.

65
∗
. Пусть a∧b обозначает число ab. В выражении 7∧7∧7∧7∧7∧7∧7

надо расставить скобки, чтобы определить порядок действий (все-
го будет пять пар скобок). Можно ли расставить эти скобки двумя
разными способами так, чтобы получилось одно и то же число?

(XXX ТГ, весна 2009)

66
∗∗

. Число n может быть двумя разными способами представле-
но в виде суммы двух кубов натуральных чисел:

n = a3
+ b3

= c3
+d3.

Может ли быть, что n является произведением:
а) трёх простых чисел;
б) двух простых чисел?
67
∗∗∗

. Пусть A –– сумма восьмых степеней всех чисел от 1 до
999 999 999, и пусть B –– сумма восьмых степеней всех тех чисел от
1 до 999 999 999, у которых сумма цифр чётна.

Докажите, что A=2B.
68. Записано действительное число 0, …, n-я цифра которого

есть r-я цифра числа 2n. Подразумевается, что натуральное число r

задано раз навсегда, тогда как n пробегает весь натуральный ряд:
n=1, 2, 3, …

а∗) Докажите, что если r-я цифра отсчитывается с конца числа,
то полученное число рационально.

б∗∗) Докажите, что если r-я цифра отсчитывается с начала числа,
то полученное число иррационально.

(Пример. Если r = 2, то получится число 0,0001362512…, если
отсчитывать с конца, и число 0,0006242510…, если отсчитывать
с начала).
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69. а∗) Докажите, что для любого n в последовательности Фибо-
наччи  0, 1, 1, 2, 3, 5, … найдётся член, делящийся на n.

б∗) Существует ли последовательность Фибоначчи, ни один член
которой не делится на 5; на 7; на 11?

в∗∗∗) Для каких p существует последовательность Фибоначчи, ни
один член которой не делится на p?

70. На экране игрового автомата высвечено натуральное число.
За одну операцию можно изменить его одним из трёх способов:

1) прибавить 3,
2) умножить на 3 и 3) разделить на 3, если оно делится нацело.
а) Верно ли, что несколькими операциями можно из любого на-

турального числа получить любое другое?
б) За какое наименьшее число операций можно из числа 81 по-

лучить 82?
в) За какое наименьшее число операций можно из числа 82 по-

лучить 81?
г) Провести исследование: даны числа a и b, сколько требуется

операций?
(ТПЯ, 2013)

71. Число a> 0 может быть представлено, как разность обрат-

ных квадратов, т. е. a=
1
n2 −

1
m2 . (Например,

16
225
=

1
9
− 1

25
).

Может ли быть так, что число 2a тоже есть разность обратных
квадратов?

72. Хозяйка ждёт гостей и приготовила большую кастрюлю глинт-
вейна. Но она не знает, сколько будет гостей: знает только, что их
будет то ли 3, то ли 7, то ли 11.

Требуется изготовить красивый и элегантный черпак, которым
можно будет по возможности поровну разделить напиток. Проще

всего было бы взять черпак объёмом
1

3 ·7 ·11
=

1
231

, но тогда разли-
вать придётся очень долго.

Какого максимального объёма может быть черпак, чтобы напи-
ток можно было разделить примерно поровну? «Примерно» означа-
ет, что разрешаются отклонения до 5 %, т. е. если гостей будет трое,

то каждому должно достаться от
1
3
+

1
60

до
1
3
− 1

60
, если семь –– от

1
7
+

1
140

до
1
7
− 1

140
, и аналогично для 11.

(ТПЯ, 2014)
 Последовательность Фибоначчи задаётся условием Fn+2 = Fn + Fn+1. В п. а)

F1=0, F2=1.
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73. Хорошо известно, что если число m взаимно просто с 10,
то существуют числа, состоящие только из единиц (т. е. числа вида
111…11), которые делятся на m.

Пусть A –– наименьшее из таких чисел.
а) Докажите, что если m=3k, то A состоит из m единиц.
б) Докажите, что если A состоит из m единиц, то m=3k.
74. а) Требуется расставить числа 1, 2, …, N в каком-то порядке

так, чтобы для всех k= 1, 2, …, N сумма первых k чисел делилась
на k. При каких N это возможно?

б) Требуется расставить числа 1, 2, …, N в каком-то порядке так,
чтобы для всех k=1, 2, …, N −1 сумма первых k чисел делилась на
(k+1)-е. При каких N это возможно?

в) Можно ли расставить все натуральные числа в таком порядке,
чтобы при любом k=1, 2, 3, …, N , … сумма первых k чисел делилась
на (k+1)-е?

75. Множество натуральных чисел {1, 2, …, N} требуется раз-
бить на k подмножеств таким образом, что если a, b входят в одно
из них, то их разность a− b уже не может входить в это множество.
(Например, если в подмножество B входят числа 14, 15, то в нём
уже не могут содержаться числа 29, 1, 7).

Докажите, что это возможно, если:
а) N=2k−1; б) N= (3k−1)/2.
76. а*) Требуется разбить числа от 1 до 2n на пары так, чтобы

суммы чисел в парах образовывали отрезок натурального ряда без
пропусков (т. е. были равны p, p + 1, p + 2, …, l для подходящих
натуральных p и l).

При каких n это возможно?
б***) Требуется разбить числа от 1 до 2n на пары так, чтобы

разности чисел в паре были равны 1, 2, 3, …, n (по одному разу).
При каких n это возможно?
77. Пифагорова тройка (x, y, z) = (3, 4, 5) обладает тем свой-

ством, что x, y –– два последовательных числа. Существуют ли ещё
такие тройки? Правда ли, что их бесконечно много?

78. Пусть a, b –– положительные числа. При каком условии при
любых натуральных m, n выполняется неравенство [ma] 6= [nb]?

79. Требуется записать в ряд какие-нибудь N чисел так, чтобы
сумма любых пяти подряд взятых чисел была положительна, а сум-
ма любых восьми чисел подряд –– отрицательна.

При каком наибольшем N это можно сделать?
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80. Существует ли натуральное число, которое может быть не
менее чем 10 разными способами представлено в виде суммы двух
простых чисел?

81. Сумма цифр чётного числа A равна 43. Какова может быть

а) наименьшая, б) наибольшая сумма цифр числа
A
2

?
82. Назовём 10-значное число полным, если в него каждая циф-

ра входит ровно 1 раз.
Существует ли:
а) такое полное число A, что 2A –– тоже полное?
б) такое полное число A, что 3A –– тоже полное?
в) такое полное число A, что и 2A, и 3A –– тоже полные?

Алгебра

83
∗
. Разложить на множители выражение

Q = a3
+3a2b+3ab2

+28b3.

(XXIII УРО, 1983)

84
∗∗

. На доске выписали в ряд 105 единиц. У каждой третьей
из них изменили знак, затем у каждого пятого из полученных чисел
также изменили знак, после этого знак сменили у каждого седьмого
числа. Найти сумму всех полученных чисел.

(XXIII УРО, 1983)

85
∗∗

. Пусть ar –– число полных квадратов, содержащихся в r-й ты-
сяче, т. е. в промежутке [1000(r − 1); 1000r). Доказать, что после-
довательность {ar} не является периодичной, даже если отбросить
у неё любое число начальных членов.

86
∗∗

. а) Дано шестизначное число, его первая цифра –– 5. Верно
ли, что к нему можно приписать справа ещё 6 цифр так, чтобы в ре-
зультате получился полный квадрат?

б) Тот же вопрос, если первая цифра числа равна 1.
в) Тот же вопрос, если первая цифра числа равна 2.
г) Найти наименьшее шестизначное число, для которого нельзя

приписать справа ещё 6 цифр так, чтобы получить полный квадрат.
д) Дано шестизначное число, его первая цифра равна 3. Какое

наименьшее число цифр требуется, чтобы можно было аналогич-
ным способом получить из него куб (вне зависимости от того, ка-
ково исходное число)?
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87
∗∗

. Натуральный ряд представлен в виде объединения некото-
рого числа попарно непересекающихся бесконечных целочислен-
ных арифметических прогрессий с положительными разностями

d1, d2, … Может ли случиться, что при этом сумма
1
d1
+

1
d2
+… не

превышает 0,9? Рассмотреть два случая:
а) общее число прогрессий конечно,
б) прогрессий бесконечное число.

(XI ТГ, осень 1989)

88
∗
. Не пользуясь таблицами или калькулятором, доказать нера-

венство: 1,5< log2 3<1,6.
(XXII УРО, 1982)

89
∗∗

. Не пользуясь калькулятором, найти число lg 7 с ошибкой
не более 0,01.

90
∗∗

. Известно, что

{a1, a2, …, a50} = {1, 2, …, 50}.

Найти максимальное возможное значение суммы
p

|a1−1|+
p

|a2−2|+…+
p

|a50−50|.

(Отбор на международную олимпиаду, 1993)

91
∗
. Каким соотношениям должны удовлетворять коэффициен-

ты уравнения x4
+ ax3

+ bx2
+ cx + d = 0, чтобы после некоторых

тождественных преобразований и последующей замены перемен-

ной y= x+
k
x

оно сводилось к квадратному уравнению?
(XXIII УРО, 1983)

92
∗
. Всякий ли многочлен 4-й степени

P(x) = ax4
+ bx3

+ cx2
+dx+ e

можно представить в виде P(x)=Q(R(x)), где Q(x) и R(x) –– квад-
ратные трёхчлены?

(XXVI УРО, 1986)

93
∗∗

. Провести прямую, касающуюся графика функции

y = x4
+ax3

+ bx2
+ cx+d

сразу в двух точках. При каких a, b, c, d это возможно?
(СО, 1994)
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94
∗∗∗

. Дана система:






































x1+
1
2

x2+
1
3

x3+…+
1
n

xn =
0!
n!

;

1
2

x1+
1
3

x2+
1
4

x3+…+
1

n+1
xn =

1!
(n+1)!

;

1
3

x1+
1
4

x2+
1
5

x3+…+
1

n+2
xn =

2!
(n+2)!

;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
n

x1+
1

n+1
x2+…+

1
2n−1

xn =
(n−1)!

(2n−1)!
.

а) Решить систему.
б) Пусть n=10. Доказать, что x1=−x10, x2=−x9 и т. д.
в) Пусть n=9. Доказать, что x1= x9, x2= x8 и т. д.
95
∗∗∗

. Матрица составлена из величин

aij =
1

bi− c j
, i, j = 1, 2, …, n.

а) Найти матрицу, обратную к такой матрице.
б) Вычислить определитель матрицы.
96
∗∗

. Матрица составлена из величин aij = (i+ j − 1)k, где i, j =

=1, …, n, а k принимает одно из значений 0, 1, …, n−1. Вычислите
определитель этой матрицы.

97
∗
. Пусть an –– наибольшее значение функции sin x− xn на про-

межутке (0; ∞). Найти lim
n→∞

an.

98
∗∗

. Пусть z пробегает множество всех комплексных корней n-й
степени из 1. Доказать, что

∑ z
x− z

=
n

xn−1

99
∗
. а) У меня на счете лежит 500 долларов. Банк разрешает ли-

бо снять со счёта 300 долларов, либо положить на счёт 198 долла-
ров (и никаких других операций). Какую наибольшую сумму я могу
снять со счёта в результате нескольких таких операций, если внача-
ле у меня в кармане ни гроша, а процентов банк не платит?

б) Имеется доска размером 1×147. На одном из полей стоит шаш-
ка. За один ход разрешается либо сдвинуть шашку влево на 100 полей,
либо вправо на 47 полей. Доказать, что если будет сделано 147 ходов,
то шашка неизбежно вернётся 147-м ходом на исходное поле.

(XX ТГ, весна 1999)
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100
∗
. Дана последовательность a1, a2, …, a2n, в которой все числа

равны +1 или −1. Доказать, что существует такое k, 0¶ k¶2n, что

a1+…+ak−ak+1−…−a2n = 0.

101
∗∗

. Участники шахматного турнира сыграли друг с другом по
одной партии. Затем для каждого участника подсчитали число A,
равное сумме очков всех участников, у которых он выиграл, минус
сумма очков участников, которым он проиграл. Может ли случиться
так, что для всех участников число A окажется: а) положительным?
б) отрицательным?

(XXII ТГ, весна 2001)

102
∗∗∗∗

. Доказать формулы:
∞
∑

1

1
n2 = 3

∞
∑

1

1
n2Cn

2n

;
∞
∑

1

1
n3 =

5
2

∞
∑

1
(−1)n−1 1

n3Cn
2n

.

(Летняя школа ТГ, 1998)

103
∗
. Найдите все арифметические прогрессии, обладающие сле-

дующими свойствами: а) разность d> 0; б) сумма прогрессии рав-

на 1; в) каждый член прогрессии имеет вид
1
k

, где k –– натуральное.
(XXVIII ТГ, осень 2007)

104
∗∗

. Имеется клетчатая бумага; площадь клетки равна 1. Если
на ней отметить два узла, то вертикали и горизонтали, на которых
они лежат, образуют прямоугольник. (Если они лежат на одной го-
ризонтали или вертикали, то получается вырожденный прямоуголь-
ник площади 0.)

Внутри квадрата 30×30 (не на границе) отмечено 29 узлов.
а) Докажите, что можно выбрать два их них так, что площадь

соответствующего прямоугольника меньше 13.
б) Верно ли, что независимо от того, как отмечены узлы, можно

выбрать два узла так, что площадь прямоугольника меньше 10?
105
∗∗

. Последовательность функций определена следующим об-
разом:

f0(x) =
p

x,

f1(x) =
p

x−
p

x+1,

f2(x) =
p

x−
p

x+1−
p

x+2+
p

x+3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn+1(x) = fn(x)− fn(x+2n).

Докажите, что f2010(x) всюду возрастает.
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106
∗∗

. Найдите при произвольном данном n все решения системы

x1 > 0, x2 > 0, …, xn > 0,

x2
1+ x2 = x2

2+ x3 = x2
3+ x4 =… = x2

n−1+ xn = x2
n
+ x1 = 0,9.

107
∗
. По окружности расставлено 999 единиц. Затем к некото-

рым из них разрешается поставить минусы. Места минусов произ-
вольны; их число тоже произвольно, но после их расстановки долж-
но получиться не менее 100 минусов и не менее 100 плюсов.

Затем вычислены произведения всех чисел по 10 подряд (т. е.
произведения вида xk xk+1xk+2…xk+9), а затем взята сумма S всех
999 получившихся чисел.

а) Какое наибольшее значение может принимать S?
б) А какое наименьшее?

(XXXI ТГ, весна 2010)

108
∗∗

. В Стране Дураков проживает 13 олигархов. Несколько лет
назад в ней начали проводить кампании по борьбе с коррупцией.
Суть кампании в следующем: у самого богатого из олигархов (пред-
полагается, что равных состояний нет, т. е. что любые два состоя-
ния различаются хоть на 1 монету) конфискуется всё золото, какое
у него есть, а каждому из остальных выдаётся из государственной
казны по миллиону золотых монет.

На следующий год кампания повторяется: у самого богатого всё
отбирают, а остальным (в том числе и тому, кого экспроприировали
в прошлом году) выдают по миллиону. Так повторяется несколько раз.

Предполагается, что в промежутке между кампаниями олигархи
не богатеют и не беднеют.

Известно, что в начальный момент у всех олигархов в сумме был
31 миллион золотых монет.

Какое наибольшее количество денег могло при этих условиях
оказаться у олигархов после какой-нибудь очередной кампании?
Ответ требуется найти с точностью до 1000 монет.

109
∗∗∗

. Сто положительных чисел x1, x2, …, x100 удовлетворяют
неравенствам

x2
1+ x2

2+…+ x2
100 > 10 000, (∗)

x1+ x2+…+ x100 < 300. (∗∗)
Докажите, что среди них найдутся три числа, сумма которых боль-
ше 100.

(XVII ММО)
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110
∗∗∗

. Обозначим через S(n, m) сумму m-х степеней всех целых
чисел от 1 до n:

S(n, m) =
n
∑

k=1

km.

а) Докажите, что S(n, m) можно записать в виде многочлена от n

степени m+ 1, т. е. S(n, m)= anm+1
+ bnm

+ cnm−1
+…+ f , где ко-

эффициенты a, b, c, …, f зависят от m, но не от n. (Например, как
известно, при любом n для суммы первых степеней имеем

S(n, 1) =
n(n+1)

2
=

1
2

n2
+

1
2

n,

для суммы третьих степеней ––

S(n, 3) =
n2(n+1)2

4
=

1
4

n4
+

1
2

n3
+

1
4

n2).

б) Докажите, что a=
1

m+1
для всех m¾0.

в) Докажите, что b=
1
2

для всех m¾1.
г) Попытайтесь найти дальнейшие коэффициенты.

Взвешивания

111
∗∗

. Туристы взяли в экспедицию 80 банок консервов, веса ко-
торых все известны и различны (имеется список). Через некоторое
время надписи на консервах стали нечитаемыми, и только завхоз
знает, где что. Он может это всем доказать (т. е. обосновать, что
в какой банке находится), не вскрывая консервов и пользуясь толь-
ко сохранившимся списком и двухчашечными весами со стрелкой,
показывающей разницу весов. Докажите, что для этой цели ему

а) достаточно четырёх взвешиваний;
б) недостаточно трёх.

(XVI ТГ, весна 1995)

112
∗∗

. Даны 13 монет, из них одна фальшивая, она отличается
по весу от остальных (неизвестно, фальшивая монета легче или тя-
желее). Определите фальшивую монету тремя взвешиваниями на ча-
шечных весах и установите, легче она или тяжелее, если разрешено,
чтобы весы были неравноплечими. Каким должно быть соотноше-
ние плечей, чтобы задача решалась?

Замечание. При равноплечих весах эта задача, как известно, ре-
шения не имеет.
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113
∗∗∗

. а) Имеется пять гирь разных весов. За одно взвешивание
на весах с двумя чашками можно сравнить любые две гири и узнать,
какая тяжелее. Сколько нужно взвешиваний, чтобы расположить их
в порядке весов?

б) Та же задача для n гирь.
114
∗
. У барона Мюнхгаузена имеется 50 гирь. Известно, что веса

этих гирь –– целые числа 0< a1< a2<…< a50¶ 100, и что суммар-
ный вес гирь –– чётное число.

При этом барон утверждает, что ему удалось подобрать веса так,
что эти гири невозможно разложить на две чашки весов так, чтобы
весы были в равновесии. Не врёт ли барон?

(Пояснение: гири на чашки можно класть и не поровну: скажем,
можно на одну чашку положить 27 гирь, а на другую 23; однако
положить требуется непременно все 50 гирь.)

(XXXII Турнир городов, весна 2011)

115. В наборе 12 гирь разных весов, каждая из которых весит
целое число граммов. Известно, что если раскладывать гири на две
чашки, то всегда перевешивает та чашка, на которой гирь больше.

Доказать, что хотя бы одна из гирь весит более 42 г.
(XXXIV ТГ, весна 2013)

116. Дано некоторое число α>1. Имеется набор из ста гирь ве-
сов 1, α,α2, α3, …,α99.

Требуется разбить этот набор на m частей (в разных частях мо-
жет быть разное количество гирь) так, чтобы веса любых двух из
этих частей отличались не более чем на 1.

При каких α это возможно,
а) если m=2, б) если m=3, в) при других m?

Игры

ö

Рис. 

117
∗
. Кошка и мышка бегают с посто-

янными скоростями V
кошки

=10 и vмышки=

=1 по лабиринту в форме прямоугольника
с проведёнными диагоналями (см. рис. ).
Стороны прямоугольника равны 3 и 4. Диа-
гональные ходы слишком узки для кошки.
И кошке, и мышке запрещено останавли-
ваться, менять свои скорости, а также по-
ворачивать посреди хода, не добежав до одной из вершин или цен-



 Задачи

тра прямоугольника. (Поворачивать на 180◦ в вершине разрешается.)
В начальный момент кошка находится в одной вершине прямоуголь-
ника, мышка в другой. Может ли кошка поймать мышку?

118
∗∗

. Двое играют в следующую игру. Имеется две кучки конфет,
играющие делают ход по очереди. Ход состоит в том, что играющий
съедает одну из кучек, а другую делит на две (равные или неравные)
части. Если он не может разделить кучку, так как в ней всего одна
конфета, то он её съедает и выигрывает. В начале игры в кучках бы-
ло 33 и 35 конфет. Кто выигрывает, начинающий или его партнёр,
и как для этого надо играть?

(XXXI ММО, 1968)

119
∗∗

. Два мудреца играют в следующую игру. Выписаны числа
0, 1, 2, …, 1024. Первый мудрец вычёркивает 512 чисел по своему вы-
бору; затем второй вычёркивает 256 чисел из оставшихся, потом пер-
вый 128 чисел из оставшихся и т. д. На десятом шаге второй мудрец
вычёркивает одно число; остаются два числа. После этого первый муд-
рец платит второму сумму, равную разности этих чисел. Как выгодней
играть первому мудрецу? Как второму? Сколько уплатит первый муд-
рец второму, если оба будут действовать наилучшим образом?

(XXXII ММО, 1969)

120
∗
. Имеется 4 яблока. Они весят 600 г, 400 г, 300 г, 250 г.

Двое –– Петя и Вася –– собираются их съесть. Право выбора за Пе-
тей; он берёт любое из яблок и начинает его есть. Сразу же за ним
Вася берёт любое из оставшихся и тоже начинает есть. Скорость
поедания у обоих одинаковая. Тот, кто съел своё яблоко, имеет пра-
во взять следующее (любое из оставшихся). Какова оптимальная
стратегия обоих мальчиков, если каждый хочет съесть побольше?

121
∗
. На бесконечной плоскости в точке A лежит мяч. Двое –– F

и S –– по очереди бьют по мячу. Длина броска первого не более 2004,
длина броска второго не более 2003. Кроме того, запрещается ме-
нять направление мяча более чем на 90 градусов: иными словами,
если один из игроков делает ход из B в C, а следующий ход делается
из C в D, то угол BCD должен быть тупым или прямым. F хочет за-
гнать мяч в первый квадрант (на плоскости –– обычная прямоуголь-
ная система координат). Сможет ли он этого добиться при условии,
что бьёт первым?

122
∗∗

. Играют двое. У первого игрока есть тысяча чётных карто-
чек (2, 4, …, 2000), у второго –– 1001 нечётных (1, 3, …, 2001). Ходят
по очереди, начинает первый. Ход состоит в следующем: игрок, чья



Таблицы 

очередь ходить, выкладывает одну из своих карточек, а другой, по-
смотрев на неё, выкладывает одну из своих карточек; тот, у кого
число на карточке больше, записывает себе одно очко, а обе вы-
ложенные карточки выбрасываются. Всего получается 1000 ходов
(и одна карточка второго не используется). Какое наибольшее чис-
ло очков может гарантировать себе каждый из игроков (как бы ни
играл его соперник)?

(XXV ТГ, 2003)

123
∗∗

. Играют двое: X и Y . По кругу расставлены единицы и ми-
нус единицы, всего их 60. Вначале единицы и минус единицы чере-
дуются.

Игрок X выбирает любой участок ряда любой длины и меняет зна-
ки у всех чисел участка. После этого Y меняет знак у одного (любого)
числа. Затем ходит X , и так далее. После того, как каждый сделал по
100 ходов, игра заканчивается, и подсчитывается сумма всех чисел.
Это –– выигрыш X (если сумма отрицательна –– то его проигрыш).

Каким будет выигрыш X в предположении, что оба играют наи-
лучшим образом?

124. По кругу расположены n луночек, одна из которых отме-
чена. Петя и Вася играют в следующую игру. В начале игры Вася
кладёт шарик в одну из луночек.

Далее за каждый ход Петя называет натуральные число k (чис-
ла k могут отличаться на разных ходах), а Вася перемещает шарик
из луночки, в которой он находится, на k луночек по часовой либо
против часовой стрелки (по своему усмотрению).

При каких n Петя может играть так, чтобы через несколько ходов
шарик

а) гарантированно попал в отмеченную луночку;
б) гарантированно попал либо в отмеченную луночку, либо в од-

ну из соседних с отмеченной луночек?
(Журнал «Квант», № , 2014)

Таблицы

125. а∗) В турнире в один круг (каждый играет с каждым по ра-
зу) участвовало r команд. Известно, что для каждых двух команд
есть третья, которая выиграла у обеих. Докажите, что r не меньше 7.

б∗∗) А если для каждых трёх команд есть четвёртая, которая вы-
играла у всех трёх? При каких r это возможно (укажите, по возмож-
ности, меньшее число)?



 Задачи

в∗∗∗∗) Дано натуральное число s. Требуется, чтобы для любых s

команд была команда, выигравшая у всех s. Можно ли в этом случае
составить таблицу турнира (для достаточно большого r)?

126
∗∗

. «Вот странно, –– сказал Петя, рассматривая таблицу команд-
ного турнира по шахматам, –– все три участника команды A заняли
первые места на своих досках, но турнир выиграла команда B».

«Такого быть не может», –– авторитетно заявил Вася.
Кто из них прав?
Правила турнира. В каждой команде два основных игрока и один

запасной. Соревнование проходило на двух досках, а запасной (тре-
тья доска) время от времени подменял то одного, то другого основ-
ного игрока на его доске. Место на доске (первой, второй, запасной,
она же третья) определялось по проценту набранных очков: среди
первых досок, среди вторых досок, среди запасных. Система зачёта
обычная: в каждой партии выигравший получал 1 очко, проиграв-
ший 0, за ничью оба игрока получают пол-очка.

127. В шахматном турнире претендентов участвовало n шахма-
тистов, которые до этого неоднократно встречались между собой
в других турнирах. Турнир проводился в 4 круга, т. е. каждый встре-
тился с каждым 4 раза.

Перед началом турнира для каждого из участников был вычис-
лен его рейтинг, который равен проценту очков, набранных до тур-
нира в играх с другими (n− 1) претендентами (выигрыш –– 1 оч-
ко, ничья –– пол-очка, проигрыш –– 0). После турнира был вычислен
аналогичный рейтинг, уже с учётом его результатов. Могло ли слу-
читься, что по результатам турнира у всех, без исключения, участ-
ников рейтинг понизился?

128. Составлена таблица из вещественных (вообще говоря, неце-
лых) чисел. На последнем месте в каждой строке стоит сумма всех
предыдущих чисел строки, и на последнем месте каждого столбца ––
сумма каждого столбца. Соответственно, в правом нижнем углу стоит
сумма всех чисел последней строки, и она же –– сумма чисел послед-
него столбца. Таким образом, таблица имеет примерно такой вид:

1,32 4, 17 5,87 4,11 15,47

12,03 17,91 14,32 5,07 49,33

3,5 21 7,14 3,12 34, 76

16,85 43,08 27,33 12,3 99,56
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Докажите, что можно все числа в таблице (включая суммы) округ-
лить до целых так, чтобы по-прежнему на последних местах стояли
суммы соответствующих чисел. Округлять разрешается в любую сто-
рону: например, число 12,03 можно округлить либо до 12, либо до 13.

129. В шахматном турнире участвовало 3 шахматиста: A, B, C.
Турнир проходил в несколько кругов (каждый сыграл с каждым одно
и то же количество раз). За победу в одной партии давалось 1 очко,

за ничью ––
1
2

, за поражение –– 0.
Известно, что все участники набрали разное число очков, и по

количеству очков расположились в порядке ABC а по количеству
одержанных побед –– в обратном порядке: CBA, т. е. участник B одер-
жал побед строго меньше, чем C, но строго больше, чем A.

Докажите, что не менее 9 партий закончились вничью.

Комбинаторика; разное

130
∗∗

. Номера телефонов в городе N состоят из шести цифр. Мож-
но ли установить в этом городе 100 000 телефонов так, чтобы при вы-
чёркивании из всех этих номеров k-й цифры (k=1, 2, 3, 4, 5, 6) полу-
чалось 100 000 разных номеров?

(XXXI ММО, 1968)

131
∗∗

. Семь школьников решили за день обойти семь кинотеат-
ров. При этом они поступают так: на каждый сеанс шестеро идут
в один кинотеатр, а кто-то седьмой (не обязательно один и тот
же) –– в другой. Во всех кинотеатрах за день проводится 11 сеансов,
которые начинаются в :, :, …, :. К вечеру каждый школь-
ник побывал во всех семи кинотеатрах. Доказать, что в каждом
кинотеатре был сеанс, на котором не был ни один из школьников.

(XXX ММО, 1967)

132
∗
. Дробь

1
2!
− 1

3!
=

3−1
3!
=

2
6

сократима на 2;

дробь
1
2!
− 1

3!
+

1
4!
=

12−4+1
4!

=
9

24
сократима на 3;

дробь
1
2!
− 1

3!
+

1
4!
− 1

5!
=

60−20+5−1
120

=
44

120
сократима на 4.

Доказать, что аналогичная дробь
1
2!
− 1

3!
+…+

1
1996!

сократима
на 1995.

133
∗
. Пусть N –– число перестановок из n элементов, в которых

ни один элемент не стоит на своём месте, а M –– число перестано-
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вок, в которых ровно один элемент стоит на своём месте. Докажите,
что |N−M |=1.

134
∗∗

. В автобусной ленте миллион билетов с номерами от 000 000
до 999 999. Фиолетовым цветом закрашены билеты, у которых сумма
чётных цифр (2-й, 4-й и 6-й) равна сумме нечётных. Каково наиболь-
шее расстояние между двумя соседними фиолетовыми билетами?

(XXXI ММО, 1968)

135
∗∗∗

. Квадратную таблицу n× n требуется так заполнить чис-
лами, равными 1,−1 или 0, чтобы все суммы чисел по строкам
и по столбцам таблицы были различны. Для каких n это возможно?

(XXI УРО, 1981)

136
∗∗

. По кругу лежат 10 монет. Разрешается одновременно пе-
ревернуть или четыре рядом лежащие, или по две слева и справа
от какой-то монеты. Можно ли этими операциями перевернуть все
10 монет?

(XV ТГ, весна 1994)

137
∗
. Трое играют в пинг-понг на вылет. Известно, что в первой

партии A выиграл у B, а в последней C выиграл у A. Известно, кро-
ме того, что A сыграл 24 партии, B –– 28 партий и C –– 38. Сколько
партий выиграл игрок B?

138
∗
. Решить уравнение: tg 3x=11 tg x.

139
∗∗∗∗

. Оценить сверху сумму

S = sin x+ sin 2x+ sin 3x+…+ sin 100x.

Какую наилучшую оценку вы можете получить? Может ли, напри-
мер, эта сумма быть больше 65? 70?

(Матбой 145 школа –– ФМШ––КГУ, Киев, 1985)

140
∗∗

. Рассматриваются всевозможные наборы из 100 неотрица-
тельных целых чисел, расположенных в неубывающем порядке и не
превосходящих 100, в которых сумма всех чисел делится на 10. Дока-
жите, что ровно половина этих наборов заканчивается числом 100.

(Из листка «Материалы для членов методической комиссии

по математике», задачи для Всесоюзной олимпиады, 1979)

141
∗∗

. Дана четвёрка целых чисел a, b, c, d. По ней строится новая
четвёрка

a1 = a− b, b1 = b− c, c1 = c−d, d1 = d−a.

По четвёрке a1, …, d1 тем же способом строится четвёрка a2, …, d2,
и т. д. Известно, что любое из чисел a100, …, d100 не превосходит
миллиарда. Докажите, что a= b= c=d.
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142
∗∗

. Пусть a, b, c, d, e –– натуральные числа. Известно, что a> b.
Рассматривается новая пятёрка чисел:

a1 = a− b+ c−d+ e, b1 = b− c+d− e+a, c1 = c−d+ e−a+ b,

d1 = d− e+a− b+ c и e1 = e−a+ b− c+d.

По ней строится таким же способом следующая пятёрка:

a2 = a1− b1+ c1−d1+ e1 и т. д.;

по пятёрке a2, …, e2 –– следующая пятёрка a3, …, e3, и т. д. до чисел
a100, …, e100.

Докажите, что одно из чисел a100, …, e100 больше 109.
143
∗∗

. Уравнение n(n+ 1)= 2m(m+ 1) имеет в целых числах ре-
шения (3, 2) и (20, 14). Имеет ли оно другие решения?

144. Обозначим через s(x) сумму цифр натурального числа x.
Пусть дано фиксированное число k. Обозначим через Y (k) наиболь-
шее решение неравенства sk(x)> x.

а∗) Найдите Y (2) и Y (3).
б∗∗∗) Верно ли, что число Y (k) при любом k имеет вид a99…9,

где цифра a и число девяток зависят от k?
145
∗∗

. Докажите, что среднее число делителей натурального чис-
ла n, 1<n<1 000 000, больше 10.

146
∗
. Можно ли уместить два точных куба между соседними точ-

ными квадратами? Иными словами, имеет ли решение в целых чис-
лах неравенство: n2<a3< b3< (n+1)2?

(XXVII ТГ, 2005)

147
∗∗

. Докажите, что многочлен f (x)= x2−8x+15 обладает сле-
дующим свойством: для любого n многочлен f ( f …( f (x))…) (n раз)
имеет ровно 2n различных вещественных корней.

148. Положительные числа x1, …, xk удовлетворяют неравенствам

x2
1+…+ x2

k
<

x1+…+ xk

2
,

x1+…+ xk <
x3

1 +…+ x3
k

2
.

а∗∗) Докажите, что k>50.
б∗∗) Постройте пример таких чисел для какого-нибудь k.
в∗∗∗) Найдите минимальное k, для которого такой пример возмо-

жен.
(XXVIII ТГ, 2006)
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149
∗
. Сколько существует разных способов разбить число 2004

на целые положительные слагаемые, которые приблизительно рав-
ны? Слагаемых может быть одно или несколько. Числа называются
приблизительно равными, если их разность не больше 1. Способы,
отличающиеся только порядком слагаемых, считаются одинаковыми.

(XXVI ТГ, осень 2004)

150. а)∗ В двух кучах суммарно лежит N=1001 камень. Из бо́ль-
шей кучи в меньшую перекладывают столько камней, сколько в ней
уже содержится. После этого опять из той кучи, которая теперь яв-
ляется бо́льшей, перекладывают в меньшую столько камней, сколь-
ко в ней содержится, и так делают много раз. Верно ли, что в какой-
то момент в меньшей из куч будет не более 200 камней? А не более
120 камней?

б)∗∗ Пусть α, β (α<β) –– два иррациональных числа, сумма кото-
рых равна 1. Заменим их числами 2α и 2β− 1 (их сумма по-преж-
нему равна 1) и упорядочим эти числа по возрастанию, т. е. обо-
значим через α1 меньшее из них, а через β1 –– большее. С числами
α1, β1 проведём аналогичную операцию, получим числа α2, β2 и т. д.
Какое наименьшее число при этом можно получить? Точнее: каким
должно быть число γ, чтобы можно было утверждать, что при неко-
тором n окажется, что αn¶γ, и для каких γ это неверно?

151. Двое показывают фокус.
На столе лежит 5 карт. Они известны и зрителям, и фокусникам

(например, четыре дамы и валет пик).
Один из зрителей берёт карты, выбирает из них три, а две осталь-

ные прячет (например кладёт рубашкой вверх). Затем он выходит
в соседнюю комнату и показывает свои три карты помощнику фокус-
ника, который берёт у него одну из этих трёх карт (по своему выбору).

Затем зритель возвращается в первую комнату и показывает фо-
куснику (и другим зрителям) две карты, которые у него остались.
Фокусник должен угадать, какую карту взял его помощник.

Всегда ли фокус удаётся? Иными словами, могут ли фокусник
и его помощник договориться о такой тактике, чтобы фокусник су-
мел по двум картам всегда угадать третью?

(XXIX ТГ, осень 2007, тренировочный вариант)

152. Пропагандист получил задание: показать, что в его стране
ситуация в течение последних n лет монотонно улучшалась, т. е.
каждый следующий год был лучше предыдущего.



Комбинаторика; разное 

Он располагает таблицей 3× n, в которую внесены численные
показатели –– значения трёх параметров за каждый из этих годов.
Эти величины (например, показатель инфляции, показатель роста
населения и изменение ВВП) известны: соответствующие показате-
ли получены независимыми организациями.

Для доказательства пропагандисту предоставлено право, во-пер-
вых, уточнить любое из чисел в таблице (или даже все сразу). «Уточ-
нение» означает следующее: каждое число указано с несколькими де-
сятичными знаками –– он имеет право написать вслед за последним
знаком ещё один на своё усмотрение (например, официальный по-
казатель равен 3,251 –– пропагандисту разрешено писать, что он ра-
вен 3,2518). Во-вторых, он имеет право составить по своему усмот-
рению «интегральный показатель благополучия» как сумму показа-
телей таблицы за определённый год с произвольными (т. е. по его
выбору, но одинаковыми за все годы) коэффициентами (например,
3× a1 − 200× a2 + 12× a3). Задача пропагандиста –– составить его
так, чтобы «интегральный показатель» монотонно возрастал.

Верно ли, что пропагандист имеет возможность (независимо от
того, каковы данные таблицы) справиться со своим заданием:

а) если n=4; б) если n=5?
153. Из чисел 1, 2, 3, …, 100 составлены всевозможные суммы.

Затем сосчитали, сколько раз получилась та или иная сумма. Дока-
жите, что чаще всего получается сумма 2525.

154. Сколько повторений одних и тех же чисел есть в треуголь-
нике Паскаля?

Общеизвестны три: (1) единица встречается бесконечное число
раз, (2) на втором и предпоследнем местах встречаются все числа
по разу (следовательно, все числа, встречающиеся внутри, имеют
«дубли») и (3) имеет место симметрия треугольника Паскаля отно-
сительно вертикали.

Исключим эти тривиальные повторы, т. е. будем рассматривать
только такие числа Ck

n , что (∗) k>1 и (∗∗) n¾2k.
Какие числа (с указанными ограничениями) встречаются в тре-

угольнике больше одного раза?
Много ли случаев, когда числа C2

n и C3
m равны?

Верно ли хотя бы такое утверждение: ни одно число, кроме 1, не
встречается в треугольнике Паскаля более 100 000 раз?

155. Имеется m белых и n чёрных фишек. Требуется разложить
все эти фишки на несколько куч (больше одной). Количество куч
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и распределение фишек по кучкам произвольно, но нужно это сде-
лать таким образом, чтобы доля белых фишек во всех кучах бы-
ла приблизительно одинакова. «Приблизительно» означает следу-
ющее: если r –– наибольшая доля белых фишек в одной из этих куч,
а s –– наименьшая, то разность r− s должна быть минимальна.

Как это сделать, если
а) m=20, n=47; б) m=50, n=117?
156. а) Имеется N корзинок, вначале в каждой из них лежит по

одному ореху. Выбираются две корзинки, и из одной из них орехи
(пока что –– один орех) перекладываются в другую, а пустая кор-
зинка выбрасывается. Затем опять выбирается произвольная пара
корзинок (причем предполагается, что выбор любой пары одинако-
во вероятен и от числа орехов не зависит), и опять-таки орех или
орехи из одной высыпаются в другую, а пустая выбрасывается. Так
действуют N−2 раза, после чего остаются только две корзинки, и в
них соответственно m и n орехов, причем n+m=N .

Какова вероятность данного распределения (n, m)?
б) А если остановиться на (N−3)-м шаге? Какое распределение

по трём корзинам более (менее) вероятно?
157. Предлагаются три способа выписать последовательность букв

ААВААВАВААВ… Оказывается, все три способа дают один и тот же ре-
зультат (более точные утверждения будут сформулированы ниже).

Пусть τ –– «золотое сечение», т. е. положительный корень уравне-

ния x2
+ x=1. Таким образом, τ=

−1+
p

5
2
≈0,618…

Перечислим все три способа.
i) На клетчатой бумаге отмечена точка O. Из нее под углом ϕ=

=arctgτ к горизонтальным линиям сетки проведен луч OL. На каж-

O

L

A B

A

A

B

A
B

Рис. 
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дом пересечении OL с линиями сетки мы ставим одну из двух букв:
букву А на пересечении с вертикальной линией, букву В –– с гори-
зонтальной (см. рис. ).

После этого буквы выписываются в порядке, в котором они идут
на луче.

ii) Сначала пишется буква А, а затем делается несколько шагов.
На каждом шаге буква А заменяется на АВ, а буква В –– на А. Таким
образом, на первых шагах мы получаем такие последовательности:

A,

АВ,

АВА,

АВААВ,

АВААВАВА,

АВААВАВААВААВ и т. д.

Докажите, что каждая из получившихся конечных последова-
тельностей является началом последовательности из п. i).

iii) На отрезке [0, 1] отмечаются точки

{τ}, {2τ}, {3τ}, …, {(n−1)τ}.

Они разбивают отрезок на n частей.
Докажите, что имеется бесконечно много значений n таких, что
• среди полученных n частей есть только две различные по длине:

несколько частей длины a, и несколько –– длины b (пусть для опре-
деленности a> b),

• и притом, если выписать длины отрезков по порядку, то полу-
чится кусок последовательности из п. i).
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Задачи на шахматной доске

1. Ответ. Нет, не может.
Решение. Более того, конь не может обойти достаточно боль-

шой квадрат размером r× r. В самом деле, в таком квадрате свобод-

ных белых полей больше, чем чёрных, примерно на
r2

16
(эта формула

является точной, если r делится на 4, и приближённой в противном
случае). Поэтому он может обойти данный квадрат только так: по-
бродив некоторое время по нему, выйти из него (обязательно через
белое поле), затем поблуждать вне его и вернуться в него опять че-

рез белое, и так не менее, чем
r2

16
раз. Но для того чтобы выйти из

квадрата, необходимо сначала оказаться на его «бордюре» шириной
в 2 клетки. Площадь этого бордюра примерно равна 8r, и при боль-

ших r она меньше, чем
r2

16
. Что и требовалось доказать.

2. Ответ. а) требуется 12 ладей; б) не менее 16 ладей.
Решение. Расставить 16 ладей согласно условию очень легко:

можно, например, занять ладьями всю первую и всю последнюю0Z0Z0srsZ0srs0Z00s0Z0Z0ZZrZ0Z0Z00s0Z0Z0Zs0Z0Z0Z0rZ0Z0Z0Zs0Z0Z0Z0
Рис. 
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горизонтали, или же обе диагонали; есть также много других ре-
шений. Расставить 12 ладей труднее; одно из возможных решений
показано на рис. .

Теперь нужно доказать, что в варианте а) нельзя обойтись 11 ла-
дьями, а в варианте б) –– пятнадцатью. Начнём с соображений, об-
щих для обоих вариантов.

1. Если на одной из горизонталей нет ни одной ладьи, то каж-
дое поле этой горизонтали должно быть бито дважды по вертика-
ли. Таким образом, на каждой вертикали стоит минимум 2 ладьи
и их число не меньше 16. Поэтому случай  мы можем исключить
и не рассматривать в дальнейшем. (Для краткости вместо послед-
ней фразы мы будем дальше ставить значок #.)

2. Если на каждой горизонтали не менее 2 ладей, то их число не
меньше 16. #

3. Аналогичные соображения применимы и к вертикалям. По-
этому в дальнейшем мы можем рассматривать только случай, когда
на каждой горизонтали и вертикали стоит не менее одной ладьи,
а на некоторых –– только одна. Но если ладья стоит в одиночестве
на какой-то, скажем, горизонтали, то для того чтобы она была бита
дважды, на её вертикали должно стоять ещё минимум 2 ладьи. По-
этому непременно есть вертикали, на которых более 2 ладей. То же
справедливо и для горизонталей.

Перейдём теперь к решению пункта а.
4а. Если хотя бы на двух горизонталях стоит более двух ладей, то

общее число ладей не меньше, чем 2×3+6×1=12. #
5а. Допустим теперь, что только на одной горизонтали стоит бо-

лее 2 ладей, а число ладей меньше 12. Тогда как минимум на 6 го-
ризонталях стоит по одной ладье; все они должны стоять на верти-
калях, где более 2 ладей. Но тогда либо таких вертикалей не менее
двух –– и мы оказываемся в ситуации, рассмотренной в а, –– либо
все 6 стоят на одной вертикали. Поскольку на остальных 7 вертика-
лях также стоит хотя бы по одной ладье, их число не менее 13 (#),
и все случаи рассмотрены.

Разберём теперь пункт б.
4б. Сосчитаем все стоящие на доске ладьи, исходя из числа 16.

А именно, будем исходить из того, что на каждой горизонтали сто-
ит по 2 ладьи, а если это не так, внесём поправки. Именно, вы-
чтем из 16 число горизонталей, на которых стоит только одна ладья
(пусть L1 –– их множество, а l1 –– их число), и добавим число ладей
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с горизонталей, где их больше; а чтобы не путаться, рассмотрим
множество M1 тех ладей, которые стоят на горизонтали между дву-
мя ладьями. Пусть их число равно m1. Тогда число ладей на дос-
ке равно 16− l1 +m1. Рассуждая аналогично и рассматривая вер-
тикали вместо горизонталей, мы получим, что число ладей равно
16− l2+m2.

5б. Теперь задача была бы решена, если бы мы доказали, что
l1¶m1 или что l2¶m2. Но сделать это трудно; к счастью, оказыва-
ется, что гораздо легче доказать те же неравенства «накрест».

В самом деле, если ладья стоит одна на горизонтали, то она
непременно стоит между двумя ладьями на вертикали, т. е. при-
надлежит множеству M2. Это значит, что L1 ⊂ M2, откуда l1 ¶m2.
Аналогично доказывается неравенство l2¶m1. Из этих неравенств
легко следует, что число ладей не меньше 16.

3. Решение. а) Из условия следует, что любая фигура имеет не
более каких-то определённых 20 ходов (скажем, один –– на 1 поле
влево и 2 поля вверх, как шахматный конь, второй –– на 13 полей
влево и 18 вниз, и т. д.) Отсюда следует, что она бьёт данное по-
ле только с полей, соответствующих «обратному ходу»: на 13 полей
вправо и 18 вверх и т. д. То есть также не более чем с 20 полей.

Поставим теперь на доску первую фигуру A произвольно и по-
пытаемся поставить вторую фигуру B так, чтобы они не били друг
друга. Очевидно, для фигуры B «запретны» поле, где стоит A, поля,
находящиеся под боем A и поля, с которых B бьёт A –– всего не более
чем 41 поле. Затем ставим третью фигуру и т. д. Очевидно, для 20-й
фигуры Z запретны 19 полей, уже занятых предыдущими фигурами,
и 400+400 полей, битых этими фигурами или тех, с которых Z их
бьёт. Таким образом, фигуру Z всё ещё есть куда поставить.

б) Предыдущее рассуждение здесь не годится: если «битые по-
ля» не сдвигаются вместе с фигурой, то вполне возможно, напри-
мер, что то поле, на которое уже поставлена фигура A, фигура B

бьёт с любого поля доски. Рассудим иначе: рассмотрим множество
всех расстановок фигур на доске (их N(N−1)(N−2)…(N−19), где
N = 104) и найдём долю позиций, в которых фигура A бьёт фигу-
ру B. Так как при любой постановке A для B запрещено 20 полей,

эта доля равна
20

9999
. Но теперь легко сообразить, что доля позиций,

где одна из  фигур бьёт другую, во всяком случае не больше, чем

20 ·19 · 20
9999

<1, а стало быть, существуют и другие позиции.
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4. Решение. а) Можно. Поставим первого ферзя произвольно,
затем расставим 8 следующих ферзей так, чтобы они били 2 сосед-
ние с этим ферзём горизонтали, 2 вертикали и по 2 диагонали каж-
дого типа, и при этом не били друг друга. Это заведомо будет вы-
полнено, если ставить их на соответствующую линию достаточно
далеко от первого ферзя: например, первого –– на расстоянии 10,
второго –– на расстоянии 100, третьего на расстоянии 1000, и т. д.

Следующую группу ферзей мы расставим так, чтобы они би-
ли 8 следующих линий (если одна из этих линий уже бита одним
из расставленных ранее ферзей, значит, в очередной группе будет
не 8 ферзей, а меньше). Продолжая этот процесс, мы получим тре-
буемую расстановку на бесконечной доске.

б) Раскрасим доску обычным образом в белый и чёрный цвет.
Теперь ясно, что все поля «вторых» диагоналей одного цвета –– на-
пример, чёрного, и поэтому «белые» диагонали другого направле-
ния заполнить не удастся.

в) Это возможно. Решение примерно такое же, как в а): следует
расставлять ферзей на очередных горизонталях и вертикалях, следя
за тем, чтобы они всё время попадали на «пятые» диагонали.

5. Ответ. Нет.
Доказательство. В самом деле, пусть ферзи расставлены каким-

то образом. Ясно, что достаточно рассматривать случай, когда на
каждой вертикали стоит по одному ферзю. Занумеруем горизонта-
ли и вертикали доски от 0 до 14, и пусть ферзь с нулевой вертикали
стоит на горизонтали номер i0, с первой вертикали –– на горизонта-
ли номер i1 и т. д. Нетрудно проверить, что для того, чтобы ферзи не
били друг друга, должны выполняться три условия:

а) {i0, i1, …, i14}= {0, 1, …, 14} (ферзи не бьют друг друга по го-
ризонталям);

б) {i0+0, i1+1, …, i14+14}={0, 1, …, 14} mod 15 (ферзи не бьют
друг друга по диагоналям одного направления);

в) {i0−0, i1−1, …, i14−14}={0, 1, …, 14} mod 15 (то же по диа-
гоналям второго направления).

Сложим эти три равенства. Мы получим:

{i0, i0−0, i0+0, i1, i1−1, i1+1, …, i14, i14−14, i14+14} =

= 3 {0, 1, …, 14} mod 15. (i)

Теперь (решающий шаг в доказательстве) перейдём в равенстве
(i) от модуля 15 к модулю 3. Поскольку ясно, что {0, 1, …, 14} =
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=5 {0, 1, 2} mod 3, имеем:

{i0, i0−0, i0+0, i1, i1−1, i1+1, …, i14, i14−14, i14+14} =

= 15 {0, 1, 2} mod 3. (ii)

С другой стороны, ясно, что

{i1, i1−1, i1+1} = {0, 1, 2} mod 3 (iii)

независимо от выбора i1. Аналогичное равенство справедливо для i2

и других чисел –– исключая, однако, i0 и другие i, у которых индекс
делится на 3. Не делящихся на 3 индексов 10; вычтя десять равенств
типа (iii) из равенства (ii), мы получим:

{i0, i0−0, i0+0, i3, i3−3, i3+3, …, i12, i12−12, i12+12} =

= 5 {0, 1, 2} mod 3.

Но это последнее равенство явно невозможно, так как правая
часть «делится на 5», а левая «делится на 3»; говоря яснее, левая
часть по модулю 3 совпадает с 3 {i0, i3, …, i12}, а правая часть содер-
жит число 0 пять раз. Это завершает доказательство.

Замечание. В наших рассуждениях мы пользовались идеологи-
ей «теории именованных множеств». Не вдаваясь в подробности,
скажем, что в именованное множество элемент может входить не
один, а несколько раз; таким образом, если в обычной теории мно-
жеств {1, 2}∪ {1, 3}= {1, 2, 3) то в теории именованных множеств
{1, 2}∪ {1, 3}= {1, 1, 2, 3). При таком подходе ясно, например, что
если #(M) –– число элементов множества M , то

#(M ∪N) = #(M)+#(N)

(что, разумеется, неверно в обычной теории множеств). Именно
в силу этого и ему подобных равенств в теории именованных мно-
жеств можно так спокойно складывать и вычитать равенства с мно-
жествами, как мы это делали выше.

Впрочем, читатель легко убедится, что все выше приведённые
рассуждения могут быть проведены и в рамках обычной теории
множеств; для этого следует только рассуждать не с множества-
ми чисел, а, скажем, с множествами листков бумаги, на каждом
из которых написано какое-то число; тогда, скажем, равенство (i)
означает, что когда мы сложим вместе листки, на которых написаны
элементы первых трёх множеств, то среди этих 45 листков будут 3,
на которых написана цифра 0, три –– с цифрой 1, и т. д.
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6. Ответ. 31.
Решение. Будем считать наш многоугольник 64-угольником, т. е.

будем считать, что часть углов равна 180◦ (остальные, очевидно ––
90◦ или 270◦).

Очевидно, если угол в данной клетке равен 90◦, то от клетки
берётся её четверть; если 180◦ –– то половина, и если 270◦ –– то три
четверти. Таким образом, площадь пропорциональна сумме углов

с коэффициентом
1

360
.

Но сумма углов n-угольника известна и равна 180◦ · (n−2), при-
чём легко видеть, что если рассматривать, как это делаем мы, также
и несколько развёрнутых углов, то формула остаётся справедливой.
Отсюда сразу получаем ответ.

7. Ответ. a) g8; б) g1.
Решения обоих пунктов основаны на одном и том же соображе-

нии: маршрут имеет ориентацию. В задаче а) ладья могла попасть
на a только по маршруту

b––a––a––b
(иначе осталась бы не пройденной клетка a). Это означает, что она
обходила доску по часовой стрелке, откуда и следует ответ.

В задаче б), поскольку маршрут не замкнут, ладья в принципе
может менять его ориентацию. Однако поскольку углы a и h ладья
обходит против часовой стрелки, то и угол h она обязана обходить
против неё, тогда как перед тем, как пройти угол a, она изменила
ориентацию пути.

8. Ответ. Выигрывают чёрные.
Решение. Если бы белая ладья вначале стояла на a, а чёрная ––

на h, то у чёрных была бы очевидная стратегия (симметрия относи-
тельно центра), позволяющая им всегда сделать ход –– следователь-
но, у белых когда-нибудь ходы кончились бы.

Наша задача сводится к этой перенумерацией рядов доски. Да-
дим второй горизонтали номер 1, четвёртой –– номер 8, остальные
занумеруем произвольно. Аналогичным образом поступим относи-
тельно вертикалей. Теперь ладьи стоят на полях a и h, следова-
тельно, проходит ранее указанное решение.

9. Ответ. 29.
Пример строится без больших трудностей. Один из возможных

маршрутов показан на рис. .
Для доказательства того, что больше не получится, разделим дос-

ку на 4 кольца и заштрихуем часть клеток, как показано на рис. .
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Рис.  Рис. 

При этом заштриховано 40 клеток, в том числе 20 чёрных, а не
заштриховано только 24 (12 чёрных), и поскольку при каждом ходе
мы переходим из одного кольца в другое, получается, что обойти
можно не более 24 чёрных клеток. Что и требовалось доказать.

Позвольте! Требовалось доказать, что обойти можно не более
29 –– а мы что сделали? Мы доказали слишком много, и значит, где-
то ошибка. Или даже две ошибки.

Одна, достаточно стандартная ошибка состоит в том, что мы
забыли: можно начать со штрихованного поля и кончить тоже на
штрихованном. Это даст нам плюс единицу: 25 вместо 24. А где ещё
4 единицы?

Дело в том, что есть 4 места (но только 4!), где можно перейти со
штрихованной клетки опять на штрихованную: это переходы h-g,
a-b, f-e и c-d. (Есть также 3 места, где можно перейти с нештри-
хованной клетки на нештрихованную, но они нам ни к чему).

Эти 4 перехода (все они реализованы в приведённом маршруте)
и позволяют получить 29 обойдённых клеток вместо 25. Больше уж
никак не выходит.

10. Ответ. а) Нет, б) да.
Решение. Ясно, что коней надо ставить на чёрные поля.
а) Каждый конь бьёт 8 полей, если только он не стоит вблизи

края доски. Таким образом, 400 миллионов коней могло бы хватить
только в том случае, если бы каждый конь бил ровно 8 полей, и все
эти поля были различны. Между тем конь, который бьёт угловое
поле, уже не может бить 8 разных полей.
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б) С другой стороны, представим себе на минуту, что наша доска
тороидальна (первая горизонталь граничит с последней, и то же для
вертикалей). Тогда любой конь на доске бьёт 8 полей. Расставим
коней на каждой 4-й диагонали через 1. Если нумеровать поля, как
на шахматной доске (буквой и цифрой), то надо поставить коней на
поля a, c, e, g, i, …, затем на 4-ю диагональ, т. е. на поля a, c,
e, … и т. д. При этом на чёрных полях окажется 400 миллионов
коней, никакие два из которых не бьют одно поле, так что каждое
белое поле будет бито не более одного раза. Отсюда следует, что
каждое поле действительно бито один раз.

Для обычной (не тороидальной) доски нужно применить точно
ту же расстановку, но при этом окажется, что биты не все поля края
доски (на тороидальной они биты благодаря тому, что конь с по-
следней горизонтали бьёт поля на первой и второй, и т. п.) Следо-
вательно, придётся расставить ещё некоторое число коней, но по-
скольку речь идёт только о полях двух крайних рядов (со всех че-
тырёх сторон), да ещё только белых, то очевидно, что вполне доста-
точно будет 400 000 000+8×40 000, а это значительно меньше, чем
требует условие.

Геометрия

11. Решение. Пусть B1, B2, …, B10 –– точки касания. Тогда

∠B1OB2 = 180◦−∠B1 A2B2.

Таким образом, нам известны все центральные углы BiOBi+1. Постро-
им произвольную окружность, разделим её на эти углы и проведём
в точках Bi касательные к окружности. Полученный 10-угольник бу-
дет подобен искомому. Остаётся построить подобный 10-угольник
со стороной нужной длины.

12. Указание. Концы искомых векторов находятся на окружно-

сти S, равной данной, с центром O′ таким, что
#     –

OO′= v. Если вектор v

слишком короткий, то можно добиться того, что искомый угол бу-
дет равен 180◦, если же он достаточно длинный, то максимальным
будет угол между двумя касательными из точки O к окружности S.

13. Ответ. Нельзя.
В самом деле, выберем первую точку O произвольно и соединим

её с вершинами квадрата A, B, C, D. Легко видеть, что если сторона

квадрата равна 1, то S∆OAB+S∆OCD=
1
2

, тогда как для выполнения

условия эта сумма должна была бы равняться
4
9

или
5
9

.
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14. Решение . Рассмотрим плоскость P, параллельную коорди-
натной и отстоящую от неё на целое число, поэтому в ней лежат
изюминки. Потребуем дополнительно, чтобы P не совпадала ни
с одной из плоскостей разреза и (если они параллельны) не лежала
от них на расстоянии меньше 0,1. Очевидно, такая P существует,
поскольку плоскостей, параллельных координатным, бесконечно
много. Тогда легко сообразить, что разрезанными в плоскости P

окажутся только изюминки, лежащие в нескольких более или менее
широких полосах, соответствующих пересечению нашей плоскости
с плоскостями разреза. После этого остаётся решить задачу, анало-
гичную исходной, но уже в плоскости. Разберите её сами.

Решение . Рассмотрим достаточно большой куб со стороной A.
Разрезанными в этом кубе окажутся изюминки, находящиеся на
расстоянии меньше чем 0,1 от одной из плоскостей, т. е. внутри
нескольких «листов» толщины 0,2. Объём всех этих листов не пре-
восходит 0,2 · N · S, где N –– число плоскостей, а S –– максимальная
площадь пересечения плоскости с кубом. Нетрудно сообразить, что S

не превосходит суммы проекций секущей плоскости на координат-
ные, и уж не больше 3A2. Таким образом, при больших A суммарный
объём разрезанных изюминок может расти только как A2. Между тем
суммарный объём всех изюминок в кубе растёт как A3.

15. Ответ. Да, сможет.
На рис.  а––д показана одна из возможностей. Очевидно, фи-

гура, возникшая после третьего отражения, по площади равна ис-
ходному квадрату, но не выпукла. Поэтому после 4-го отражения
площадь исходного квадрата увеличится, что и требуется.

16. Решение. Рёбрами этих тетраэдров служат диагонали гра-
ней куба. Поэтому пересечение тетраэдров имеет на каждой грани
только одну точку –– её центр. Отсюда легко следует, что само пере-
сечение является выпуклой оболочкой этих шести точек F1F2…F6,
т. е. октаэдром. Его объём равен сумме объёмов двух четырёхуголь-
ных пирамид F1…F5 и F2…F6 (точки F1 и F6 лежат на противополож-

ных гранях); основание такой пирамиды имеет площадь
1
2

, высота

тоже равна
1
2

. Поэтому объём пересечения равен 2 · 1
3
· 1

2
· 1

2
=

1
6

.

17. Решение. а) Разрежем куб на 8 равных кубиков с ребром
1
2

тремя плоскостями, параллельными граням. Тогда от каждого
из этих кубиков отрезает некую часть лишь одна пирамида; стало
быть, она должна делить кубик пополам, а для этого она должна
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a) б)

в) г)

д)

Рис. 

пройти через его центр. Если, например, грани исходного куба за-
даются уравнениями x= 0, x= 1, y= 0, y= 1, z= 0, z= 1, то центр

одного из кубиков имеет координаты
�

1
4

,
1
4

,
1
4

�

. Отсюда уже легко

установить, что уравнение соответствующей плоскости имеет вид

x+ y+ z=
3
4

; следовательно a=
3
4

.

б) Решение аналогично. Заметим, что если n>4, то откладывать
отрезок придётся уже не на ребре, а на его продолжении.

Ответ. a=
n
4

.
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18. Решение. Пусть a –– площадь большого круга, а b –– площадь
сегмента, отсекаемого от него касательной из условия задачи (за-
метьте, что эта площадь одинакова для всех трёх сегментов). Тогда
нетрудно видеть, что S1+S2+S3−S=3b−a.

19. Решение. Пусть у начального восьмиугольника AB=a, CD=

= b 6=a. Пусть, например, a> b.
Пусть a1, b1 –– стороны восьмиугольника A1B1…H1. Тогда числа

a, b, a1, b1 удовлетворяют соотношениям: a1+
p

2b1=a, b1+
p

2a1=b.
Вычитая эти равенства одно из другого, мы видим, что (

p
2−1)×

× (b1− a1)= a− b. Но это означает, что b1− a1 в два с лишним раза
больше, чем a− b. С другой стороны, ясно, что сами числа a1, b1

меньше, чем числа a и b. Поэтому после нескольких операций раз-
ность b1−a1 станет больше, чем сами числа, что абсурдно.

Но что же это означает геометрически? На первый взгляд кажет-
ся, что нет ничего, что могло бы помешать проводить всё новые
диагонали и продолжать процесс неограниченно. Ключ к разгадке ––
в последней фразе определения полуправильного восьмиугольника:
«ни один из квадратов не лежит целиком внутри другого».

Восьмиугольник A1B1…H1, как и исходный, является пересече-
нием двух квадратов; стороны одного из них –– прямые AF, BE, DG

и CH, а второго –– AD, EH, CF, BG. Из наших рассуждений следует,
что либо один из этих квадратов уже лежит внутри другого, либо это
произойдёт с очередными квадратами после нескольких операций.
В этот момент процесс и должен оборваться.

20. Решение. Чтобы задать грань, зададим плоскость, в кото-
рой эта грань лежит. Рассмотрим плоскость x = 1. На ней лежат
некоторые вершины, но легко сообразить, что, например, вершины
(2, 3, 1) и (−1, 2, 3) лежат по разные стороны от неё: для одной x>1,
а для другой x< 1. Зато плоскость x= 3 –– грань. На ней лежат все
вершины (3, y, z), где y и z принимают значения 1, 2 с любыми
знаками. Её легко нарисовать в плоскости ( y, z); она представляет
собой полуправильный восьмиугольник. Ещё 5 подобных граней
дают 5 уравнений x=−3, y=±3, z=±3.

Рассуждая аналогично, мы видим, что плоскость x+ y + z= 4 ––
не грань, так как для некоторых точек сумма координат больше 4,
а для некоторых меньше. Зато плоскость x+ y+ z=6 задаёт грань,
на которой лежат точки (1, 2, 3), причём координаты могут сто-
ять в произвольном порядке. Отсюда ясно, что соответствующая
грань –– шестиугольник, притом правильный, со стороной

p
2. Его
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стороны задаются парой вершин, у которых одна координата сов-
падает, например, (3, 1, 2) и (2, 1, 3). Всего граней, ей подобных,
имеется  (включая её саму) –– например, это грань −x− y+ z=6.

Наконец, имеется последний тип грани, примером которой слу-
жит грань x+ y=5. Это прямоугольник; рассмотрите его самостоя-
тельно. Всего получается 6+8+12=26 граней.

Для того чтобы убедиться в том, что других граней нет, доста-
точно проверить: а) что каждая вершина лежит на трёх из числа
перечисленных граней; б) что любые две грани, имеющие общую
вершину, имеют и вторую общую вершину, т. е. общее ребро. Сде-
лайте это сами.

21. Ответ. 2 000 000.
Решение. 1) Поскольку площадь шестиугольника равна 1, в квад-

рат попало около миллиона шестиугольников. Рассмотрим любую
прямую, продолжающую одну из сторон какого-нибудь шестиуголь-
ника; легко заметить, что на такой прямой лежит 2 вершины шести-
угольников, затем центр очередного шестиугольника, опять 2 вер-
шины, центр и т. д. Отсюда следует, что вершин вдвое больше, чем
центров.

2) Для того чтобы этот набросок решения превратить в коррект-
ное решение (т. е. принять во внимание, что некоторые шестиуголь-
ники лежат в квадрате лишь частично и т. п., и доказать, что возни-
кающие из-за этого ошибки находятся в пределах разрешённых пя-
ти процентов), следует только проследить, что именно происходит
на границе квадрата.

Заметим, что сторона шестиугольника, а также расстояние от его
вершины до центра (они равны между собой) меньше 1. Рассмотрим
теперь наряду с данным квадратом X концентричный ему квадрат
Y со стороной 994; разность двух квадратов образует «рамочку» ши-
рины 3. Число шестиугольников, которые пересекаются (полностью
или частично) с квадратом Y , не меньше, чем 9942, их центров ––
столько же, и центр любого из них содержится в квадрате со сторо-
ной 996. Зафиксируем теперь направление одного из рёбер; мы ви-
дим, что и 2 вершины, следующие по этому направлению за центром
шестиугольника, также лежат внутри квадрата X; следовательно, вер-
шин в квадрате X во всяком случае не меньше, чем 2 ·9942. Эта оцен-
ка укладывается в допустимые 5 %. Чтобы получить оценку сверху,
надо окружить квадрат X такой же рамочкой ширины  и убедиться,
что число вершин в данном квадрате меньше, чем 2 ·10062.
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Вопрос к читателю. Действительно ли ошибку нельзя оценить
точнее, чем пятью процентами? Попытайтесь получить оценку по-
лучше.

22. Ответ. Такого S не существует (например, если одна фигура
круглая, а другая длинная).

23. Указание. Если отразить A относительно любой из этих пря-
мых, то отражённая точка попадёт на прямую BC.

24. Решение. Предположим для начала, что вектор
#        –

A1B1 обла-
дает следующим свойством: не менее семи других векторов

#      –

Ai Bi та-
ковы, что A1Bi < 0,3. Но тогда легко убедиться, что именно эти 7
(или более) векторов удовлетворяют условию задачи, так как

Ai B j ¾ Ai Bi− Bi A1− B j A1 ¾ 1− 1
3
− 1

3
¾

1
3

.

Аналогично разбирается случай, когда существует семь или более
таких векторов

#      –

Ai Bi, что Ai B1<0,3.
Теперь предположим, что и то и другое неверно, и начнём под-

бирать нужную семёрку. В качестве первого вектора возьмём
#        –

A1B1.
Из оставшихся 79 придётся выбросить, как не соответствующие
условиям, не более 12 векторов (шесть и шесть, как выше). В ка-
честве второго возьмём любой из оставшихся; в отношении двух
выбранных векторов условие задачи выполняется, а выбросить, как
и на первом шаге, придётся не более 12 векторов. После 6 шагов
будет взято 6 векторов и выброшено не более 72, поэтому останется
ещё по крайней мере два вектора, любой из которых можно взять
в качестве седьмого искомого.

25. Решение. Пусть A –– ближайшая к плоскости вершина куба.
Допустим сначала, что она лежит на плоскости. Пусть e, f , g –– это
расстояния от плоскости до трёх вершин, находящихся с A на одном
ребре (или, иными словами, это проекции рёбер куба на нормаль
к плоскости). Тогда легко видеть, что остальные расстояния равны
e+ f , e+ g, f + g и e+ f + g, причём последнее расстояние наиболь-
шее; примем его за h. Тогда

0+ (e+ f )+ (e+ g)+ ( f + g) = e+ f + g+ (e+ f + g),

т. е. справедлива формула а). Далее, элементарная выкладка пока-
зывает, что

e2
+ f 2

+ g2
+ (e+ f + g)2

= (e+ f )2
+ (e+ g)2

+ ( f + g)2,

e3
+ f 3

+ g3
+ (e+ f + g)3

= (e+ f )3
+ (e+ g)3

+ ( f + g)3
+6efg.
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Обозначим через Q1, Q2 левую и правую части первых двух ра-
венств (суммы первых и вторых степеней). Заметим ещё, что сум-
ма нулевых степеней расстояний для обеих частей равна 4; поло-
жим поэтому Q0= 4. Пусть теперь вершина A лежит от плоскости
на расстоянии x, и пусть e, f , g –– как выше, проекции рёбер куба
на нормаль к плоскости; тогда расстояния от вершин до плоскости
равны x+ e, x+ f , x+ e+ f и т. д.

Теперь нетрудно видеть, что суммы первых, вторых и третьих
степеней как в правой, так и в левой части представляют собой мно-
гочлены от x степени 1, 2, 3 соответственно, а именно:

P1(x) = Q0 x+Q1;

P2(x) = Q0 x2
+2Q1 x+Q2;

P3(x) = Q0 x3
+3Q1 x2

+3Q2 x+R;

где R –– сумма кубов (одна или другая). Отсюда видно, что суммы
первых и вторых степеней равны, а разность сумм кубов не зависит
от x и равна 6efg.

26. Ответ. Коля назвал угол C (ни при каких m, n нельзя дока-
зать, что наименьший –– угол A или угол B). Точка N на плоскости
(m, n) лежит внутри невыпуклого четырёхугольника PQRS с верши-

нами P(0, 0), Q
�

1
2

, 0
�

, R
�

1
3

,
1
3

�

, S
�

0,
1
2

�

или на его границе. Точ-

ка M , соответственно, лежит вне PQRS.

Пример. Пусть N = R, т. е. стороны треугольника удовлетворя-
ют равенству 3AB= AC+ BC. Тогда без труда доказывается, что сто-
рона AB –– наименьшая.

Решение. Примем, что сторона AB имеет длину 1, и пусть x, y ––
длины сторон AC и BC. Тогда точка W(x, y) задаёт нам треугольник.
Однако годится не любая точка W ; в силу неравенств треугольни-
ка её координаты должны удовлетворять неравенствам x + y > 1,
x + 1> y, x − 1< y. Геометрически это означает, что точка W ле-
жит внутри бесконечного треугольника T , показанного на рис. .
Области I, II, III, на которые разбит T , –– это части, в которых наи-
меньшей из сторон является соответственно AB, AC, BC.

Согласно условию стороны x, y удовлетворяют линейному урав-
нению mx+ny=1. Для того чтобы из этого уравнения можно было
установить, какая сторона (или, соответственно, какой угол) явля-
ется наименьшей, требуется, чтобы вся та часть прямой, которая
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B(1, 2)

A(2, 1)

III

II
I

T

Рис. 

лежит внутри T , лежала внутри одной из областей I, II, III. Из черте-
жа сразу видно, что если прямая пересекает первый квадрант (т. е.
m>0, n>0), то это возможно лишь для области I и задача, заданная
Коле, разрешима в том случае, если точки A(2, 1) и B(1, 2) лежат под
прямой. Это означает, что числа m, n удовлетворяют неравенствам
2m + n< 1, m+ 2n< 1, которые в совокупности с неравенствами
m>0, n>0 задают четырёхугольник PQRS.

27. Решение. Задача в предложенной формулировке, строго го-
воря, решения не имеет, так как ни максимум, ни минимум не до-
стигаются.

В самом деле, легко сообразить, что периметр больше 2a (ло-
маные ABC и ADC длиннее отрезка AC), но меньше 2(a+ b). Рису-
нок  показывает, как можно неограниченно приблизиться к тому
и другому пределу, но достичь их, очевидно, невозможно.

а)
A

CD

B
P≈2(a+ b)

б)

A

C

D B P≈2a

Рис. 

Замечание. На XXV Турнире городов () задача была дана
в следующей формулировке.
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Периметр выпуклого четырёхугольника равен 2004, одна из диа-
гоналей равна 1001. Может ли вторая диагональ быть равна 1? Рав-
на 2? Равна 1001?

С учётом сказанного выше ясно, что ответы на эту задачу: нет;
да; да.

28. Ответ. Обязательно.
Решение. Мы предполагаем, что семиугольник выпуклый. До-

статочно доказать, что A1 A2 = A2 A3. Тогда из симметрии условия
получим, что все стороны семиугольника равны.

Заметим, что по признаку равенства треугольников (по трём
сторонам) треугольники A6 A1 A3, A7 A2 A4, A1 A3 A5, …, A5 A6 A2 рав-
ны, кроме того, все эти треугольники равнобедренные. Пусть углы
при основаниях этих равнобедренных треугольников равны α, а уг-
лы при вершинах, противолежащих основаниям, равны β.

Заметим, что

∠A2 A4 A1 = ∠A2 A4 A6−∠A1 A4 A6 = β−α =
= ∠A3 A5 A7−∠A2 A5 A7 = ∠A3 A5 A2,

откуда треугольники A2 A4 A1 и A3 A5 A2 равны (по двум сторонам
и углу между ними). Это значит, что

A1 A2 = A2 A3.

29. Решение. Чтобы построить пример, требуемый в задаче б),
можно обойтись пятиугольником (см. рис.  а).

Пример для задачи в) –– семиугольник (см. рис.  б).

A5 A2

A3A4

A1 A1

A6

A3

A4

A5

A6

A7

а) б)

Рис. 

Докажем теперь, что из одной из соседних вершин A1, A2 можно
провести диагональ. Для этого рассмотрим два случая: ∠A1> 180◦

и ∠A2<180◦.
В первом случае продолжение стороны A2 A1 лежит (поначалу)

внутри многоугольника; продолжим её за точку A1 до пересечения
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с контуром многоугольника. Если точкой пересечения является вер-
шина, то нужная диагональ уже построена, в противном случае точ-
ка пересечения F лежит на некоторой стороне Am Am+1. Будем сдви-
гать точку F вдоль стороны Am Am+1 в сторону Am+1. Тогда либо она
сдвинется до точки Am+1 (и в этом случае A1 Am+1 –– искомая диа-
гональ), либо этому помешает некоторая вершина многоугольни-
ка Ak, которая встанет на пути. В этом случае искомая диагональ ––
A1 Ak.

Если же∠A1<180◦, то рассмотрим соседние с A1 вершины A2 и An.
Либо A2 An –– искомая диагональ, либо внутри треугольника A1 A2 An

лежит часть контура, и в том числе некоторые вершины. Выберем
из них вершину Ai, ближайшую к A1, тогда диагональ A1 Ai –– иско-
мая.

30. Решение. Так как площадь треугольника ABC не зависит от

выбора точки C, а с другой стороны, равна
1
2

AC · BC · sin∠C, следо-
вательно, точку C надо выбрать так, чтобы sin∠C был максимален.

Рис. 

Построим на AB как на диаметре окруж-
ность (рис. ). Если эта окружность пере-
секается с прямой, то искомых точек две,
и это –– точки пересечения (угол C прямой).
Если окружность касается прямой, то иско-
мая точка –– точка касания.

Если же она не пересекается с прямой, то
синус будет максимальным для максималь-
ного угла ACB (синус растёт вместе с углом).
Этот угол максимален для равнобедренного треугольника: AC= BC.
В самом деле, через A и B можно провести окружность, касающуюся
прямой в точке C. Для любого другого треугольника ABE точка E

лежит вне этой окружности, соответственно, ∠AEB<∠ACB.
31. Решение. Построим произвольный такой четырёхугольник,

а затем отразим точку D относительно срединного перпендикуляра
к отрезку AC. Мы получим четырёхугольник ABCD′, у которого дли-
ны сторон те же, но теперь стороны идут в другом порядке:

AB = 3, BC = 4, CD′ = 5 и D′A = 6.

Очевидно, площадь от такой операции не изменилась.
Теперь разрежем четырёхугольник ABCD′ по диагонали BD′ на

два треугольника. Тогда очевидно, что их площади не превосходят
BC ·CD′

2
= 10 и

BA · AD′

2
= 9. Таким образом, площадь четырёхуголь-
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ника не превышает 19, причём равенство было бы возможно только
в случае, если бы оба угла C и A были прямые. Но это, как лег-
ко видеть, невозможно (диагональ BD не может одновременно слу-
жить гипотенузой треугольников ABD′ и CBD′). Поэтому неравен-
ство SABCD=SABCD′<10+9=19 является строгим.

Замечание 1. Поскольку разница между суммами квадратов BC2
+

+CD2 и DA2
+ AB2 невелика, максимальное значение меньше 19, но

весьма близко к нему. На самом деле достигается значение 18,973…,
т. е. ошибка меньше 0,03, или 0,15%.

Замечание 2. Площадь четырёхугольника со сторонами a, b, c, d

максимальна, если он вписанный (т. е. если ∠A+∠C=π).
32. Ответ. а) Нет; б), в) да.
В случае в) достаточно разрезать квадрат на три равных прямо-

угольника размером 1× 1
3

.

Рис. 

В случае б) резать нужно аккуратнее. Отрежем

от квадрата полосу ширины
1
8

, а оставшийся пря-

моугольник 1× 7
8

разделим на два прямоугольни-

ка
1
2
× 7

8
(рис. ). Квадрат диаметра каждого из

трёх равен
65
64

, и диаметр d=1,0078<1,01.

Замечание. Оценка d=d0=

q

65
64

является точной. Докажите это
сами.

33. Ответ. а) Не может; б) может.
а) Для того, чтобы все углы были меньше 70◦, требуется непре-

менно разрезать угол α. После этого появится угол, который не
больше 35◦. Ясно, что в дальнейшем он никуда не исчезнет (если
его разрезать, он станет только меньше). Но если в треугольнике

или

Рис. 
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один угол не превышает 35◦, то один из двух других не меньше, чем
180◦−35◦

2
>70◦.

б) Предположим, что треугольник равнобедренный, т. е. в нём один
угол (пусть это угол A) равен 80◦, и два угла B, C –– по 50◦. Проведя
биссектрису угла A, мы получаем два угла по 40◦. Далее можно нари-
совать картинку, в которой все углы не превосходят 75◦ (рис. ).

34. Решение. а) Объёмы куба и октаэдра, вписанных в шар ра-
диуса R, нетрудно найти непосредственно. Мы, однако, пойдём дру-
гим путём, который имеет то важное преимущество, что он годится
также и для задачи б).

Во всех указанных случаях вписанное тело можно разбить на пи-
рамиды с общим центром в центре сферы. Для этого нужно соеди-
нить центр шара со всеми вершинами данного тела, и получится
разбиение: куба –– на шесть четырёхугольных пирамид, октаэдра ––
на восемь треугольных, додекаэдра –– на 12 пятиугольных и икоса-
эдра –– на 20 треугольных.

Рис. 

Итак, разобьём куб на эти 6 пира-
мид, а затем каждую из пирамид допол-
нительно разобьём на 4 неправильные
треугольные пирамиды. Для этого нужно
ещё из центра шара опустить перпенди-
куляр на соответствующую грань куба,
и соединить полученную точку с верши-
нами грани (рис. ).

Таким образом, мы получили 24 оди-
наковых треугольных пирамиды. У такой пирамиды есть 3 попарно
перпендикулярных рёбра, откуда легко следует, что объём пирами-

ды равен
1
6

произведения этих рёбер, т. е. V =
H(R2−H2)

6
. Соответ-

ственно, объём куба в 24 раза больше.
Точно так же мы можем разбить октаэдр на 24 неправильных

треугольных пирамиды (8 граней, и на каждой 3 пирамиды), для ко-
торых верно почти всё сказанное, за одним важным исключением.
Из трёх рёбер этой пирамиды одно (высота) по-прежнему перпен-
дикулярно двум другим, но два ребра основания образуют уже не
прямой угол, а угол 120◦; соответственно, объём равен произведе-
нию трёх рёбер на синус этого угла, или

V =
H(R2−H2)

6
· sin 120◦.
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По условию задачи, радиус R, входящий в эти две формулы, для
куба и октаэдра один и тот же. Но теперь заметим (это –– важней-
ший момент рассуждения!), что и высота H в этих двух формулах
одна и та же.

В самом деле, как известно, центры граней куба являются вер-
шинами правильного октаэдра, тогда как центры граней этого ок-
таэдра вновь являются вершинами куба, который получается из ис-
ходного гомотетией. Отсюда видно, что угол ϕ между векторами

#  –

OA

и
#   –

OG (O –– центр шара, G –– центр одной из граней тела, A –– одна из
вершин этой грани) для куба и октаэдра один и тот же: фактически,
векторы

#  –

OA и
#   –

OG для куба и октаэдра одни и те же, только они
меняются ролями и, соответственно, имеют разные длины. Но это
и означает, что высоты H=R · sinϕ для куба и октаэдра равны.

Соответственно, отношение объёмов куба и октаэдра равно

sin 90◦

sin 120◦
=

2p
3
≈ 1,155.

Конечно, этот ответ нетрудно получить и прямым вычислением
объёмов обоих тел (сделайте это!).

б) Теперь для решения задачи б) остаётся заметить, что все про-
ведённые рассуждения проходят также для додекаэдра и икосаэдра.
В частности, оба они разбиваются на одинаковое число треуголь-
ных пирамид (только на этот раз их не 24, а 60= 12 · 5= 20 · 3),
и опущенные на грани перпендикуляры также равны по длине.

Что же касается угла при основании, то он равен
2 ·180◦

k
, где k ––

число сторон одной грани пирамиды. Таким образом, для икоса-
эдра, как и для октаэдра, он равен 120◦ (впрочем, это отнюдь не
значит, что их объёмы равны: число пирамид различно, да и высоты
у них разные), а для додекаэдра 72◦.

Отсюда следует, что отношение объёмов додекаэдра и икосаэдра

равно
sin 72◦

sin 120◦
≈ 0,951

0,866
≈1,1.

35. Лемма . Число частей равно 1 + a + b + c, где a, b, c –– со-

ответственно число горизонтальных линий, пересекающих данный

квадрат, вертикальных линий и узлов сетки.

Доказательство проще всего провести, сначала стерев все ли-
нии на верхнем листке (тогда остаётся одна часть), а затем восста-
навливая их одну за другой. Каждый раз, когда мы проводим новую
линию или когда линия пересекает одну из уже восстановленных
(т. е. появляется узел) –– возникает ещё одна часть.
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Лемма . В квадрате со стороной 1 нельзя поместить треуголь-

ник, у которого и основание и высота, на него опущенная, не мень-

ше 1 и не параллельны сторонам квадрата.

Доказательство легко следует из того, вполне элементарного,
факта, что в квадрат со стороной 1 не может поместиться треуголь-

ник площади больше
1
2

, причём равенство возможно только если
основание треугольника совпадает со стороной квадрата.

Ответ. Число частей не меньше 4 и не больше 6.

Рис. 

Примеры для 4, 5 и 6 частей легко на-
рисовать (рис. ).

Для того, чтобы доказать, что частей
не может быть меньше или больше, выяс-
ним, чему могут быть равны числа a, b, c.
Поскольку «ширина» наклонно лежаще-
го квадрата в горизонтальном или верти-
кальном направлении больше 1, но заве-
домо меньше 2, ясно, что первые два чис-
ла не могут быть меньше 1 или больше 2.
Легко также убедиться в том, что c не мо-
жет быть больше 2, тогда как значения 0, 1 или 2 допустимы –– это
видно из приведённых рисунков.

Допустим, что частей всего 3; из сказанного следует, что это воз-
можно только в случае a= b= 1, c= 0. Но тогда наш квадрат це-
ликом помещается в трёх квадратах, именно так, как показано на
рис. , и мы видим, что эта картинка противоречит лемме .

Рис. 

Случай семи частей, как ни странно, аналогичен в том смысле,
что сводится к той же лемме (рис. ).

36. Попытаемся приближённо вычислить число частей. Для это-
го будем считать, что верхний прямоугольник не положен на ниж-
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ний, а нарисован на нём. Сотрём теперь все его линии и будем их
восстанавливать одну за другой. Мы будем считать, что верхний
прямоугольник –– тот, число частей в котором надо оценить –– рас-
положен параллельно осям (его линии вертикальны и горизонталь-
ны), а линии нижнего, по всей вероятности, наклонны.

Итак, вначале мы рисуем только верхний прямоугольник разме-
ром 1000×2000 без внутренних линий. В данный момент части, на
которые он разделён, –– это квадратики нижнего листка, а на гра-
нице –– части квадратиков. Поскольку почти все части имеют пло-
щадь 1, ясно, что число частей немного больше, чем 2 миллиона.

Теперь будем проводить одну за другой линии верхнего прямо-
угольника, сначала горизонтальные, потом вертикальные. Каждая
линия даёт столько новых частей, на сколько частей она разбивает-
ся точками пересечения. Имеется около двух миллионов точек пере-
сечения горизонталей с вертикалями, и кроме того, надо сосчитать,
сколько есть точек пересечения новых линий, которые мы рисуем,
с линиями нижней сетки.

Пусть наименьший угол между линиями верхней и линиями
нижней решёток равен α. Каждая верхняя линия имеет длину
1000 или 2000. Рассмотрим, например, линии длины 1000. Число
пересечений такой линии с линиями нижней приближённо равно
1000·(sinα+cosα). Эта величина максимальна, еслиα=

π
4

, и в этом
случае она составляет 1000 ·

p
2. Случай линий длины 2000 полно-

стью аналогичен, и легко убедиться, что число частей приближённо
равно 2 ·106 · (2+2

p
2)≈2 ·4,83 ·106.

Остаётся проверить, что эффекты, связанные с границей пря-
моугольника, незначительны, так что коэффициент при миллионе
остаётся меньше 10.

37. Решение. Проведём все диагонали 17-угольника; они разби-
вают его на несколько многоугольников. Очевидно, что в каждом из
этих многоугольников кратность постоянна, или, иными словами,
если двигать точку внутри такого многоугольника (т. е. не пересе-
кая ни одной диагонали), то кратность точки не меняется.

Нам будет удобно также учесть ещё всю бесконечную область
вне 17-угольника, как ещё одну часть; эта часть не покрыта, и по-
тому кратность её точек, разумеется, надо считать нулевой.

Теперь выберем для начала точку C вне 17-угольника, и начнём
её двигать к центру. Двигать мы будем не обязательно по прямой, но
так, чтобы, во-первых, не проходить через вершины 17-угольника
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или точки пересечения диагоналей, а во-вторых, так, чтобы всё
время продвигаться ближе к центру (иначе говоря –– угол между на-
правлением к центру и направлением движения всё время остаётся
острым). Ясно, что можно, например, построить соответствующий
маршрут в виде ломаной из двух звеньев.

Мы утверждаем, что при таком движении кратность точки всё
время возрастает. В самом деле, при пересечении одной из сторон
многоугольника она из нулевой становится ненулевой, а при пере-
сечении одной из диагоналей –– мы «теряем» или «приобретаем» все
треугольники, для которых эта диагональ является одной из сторон.
Очевидно, таких треугольников имеется 15, причём мы теряем те,
у которых третья вершина лежит по одну сторону, и приобретаем
те, у которых третья вершина лежит по другую. Очевидно и то, что
когда мы приближаемся к центру, то вторых больше, чем первых.

Отсюда следует, что наименьшую кратность (она, очевидно, рав-
на 15) имеют точки, близко прилегающие к одной из сторон, а наи-
высшую –– центр. Найдите эту кратность сами.

38. Ответ. Это прямой угол.
Доказательство. Пусть O является точкой пересечения диаго-

налей, ∠AOB=α. Тогда по теореме косинусов

AB2
+CD2

= OA2
+OB2−2OA·OB ·cosα+OC2

+OD2−2OC ·OD ·cosα

и аналогичная формула для BC2
+ AD2, но произведения идут с про-

тивоположным знаком.
Поэтому, зная соотношение между AB2

+CD2 и BC2
+ AD2, мож-

но сказать, будет ли угол острым (это будет тогда и только тогда,
когда первая сумма меньше второй), тупым или прямым. В данном
случае

AB2
+CD2

= 100+121 = 221 = BC2
+ AD2,

поэтому угол обязан быть прямым.
Стоит заметить, что отсюда следует более общий факт: допу-

стим, что даны 4 стороны 4-угольника. Этого, разумеется, недо-
статочно, чтобы определить его форму: 4-угольник с данными сто-
ронами «нежесткий», например, если это квадрат, то его можно
деформировать в ромб. Однако при такой деформации сохраняется
одно свойство угла между диагоналями: если он был острым, то он
и останется острым (хотя может изменить своё значение), если был
тупым –– останется тупым, и что самое главное –– если был прямым,
то таким он и останется.
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Условие же того, что угол между диагоналями прямой, таково:
суммы квадратов противоположных сторон равны.

39. Ответ. 65 прямых.
Доказательство. При переходе с одного звена на другое мы

должны перейти с одной прямой на другую. Отсюда следует, что все
вершины ломаной, кроме, может быть, первой и последней –– точки
пересечения данных прямых (мы будем называть их узлами), и,
соответственно, все звенья, кроме первого и последнего –– отрезки,
начинающиеся и кончающиеся в этих узлах.

Допустим, что прямых не более n. Тогда на каждой прямой не

более (n− 1) узлов, и потому не более
h

n−1
2

i

звеньев (не считая

первого и последнего). Таким образом, всего звеньев не более чем

2+n ·
h

n−1
2

i

. Для n=64 это даёт только 1986 звеньев, т. е. меньше,

чем требуется.
Пусть теперь даны 65 прямых общего положения, т. е. никакие

две не параллельны, и никакие три не пересекаются в одной точ-
ке. На каждой из них имеется 64 узла. Проведём звенья ломаной,
соединив на каждой прямой первый по порядку узел со вторым,
третий с четвёртым, и т. д.; на каждой прямой получилось 32 звена,
а всего их 65 · 32= 2080. При этом каждый узел является концом
двух звеньев, а это значит, что получилась замкнутая ломаная.

Однако остаётся ещё одна проблема. Хотя мы получили вроде бы
нужную ломаную (лишние звенья, разумеется, не помеха, их мож-
но отбросить), но нет никакой гарантии, и даже никаких основа-
ний думать, что она связна. По всей вероятности, она состоит из
нескольких кусков.

Тем не менее теперь уже легко завершить решение. Выберем
конкретные 65 прямых следующим образом: возьмём правильный
65-угольник и проведём в нём 65 самых длинных диагоналей (через
32 вершины на 33-ю); пусть это будут данные прямые. Очевидно,
все точки пересечения лежат на диагоналях, т. е. внутри много-
угольника.

Проведём изложенную выше конструкцию. Легко сообразить, что
мы получили 16 замкнутых ломаных, каждая из которых представляет
собой 130-угольную невыпуклую звезду или, если угодно, «зубчатое
колесо», и эти колёса концентрически лежат одно внутри другого.

Осталось сообразить, как перестроить эту конструкцию, чтобы
«связать» эти 16 ломаных, не выходя за пределы наших 65-ти прямых.
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Рис. 

Сделать это нетрудно: на рис.  пока-
зано, как это делается в случае 9-уголь-
ника. В результате число звеньев немно-
го уменьшится (так, ломаная на рисунке
имеет 35, а не 36 звеньев), но так как
у нас имеется 71 «лишнее» звено, то ника-
ких трудностей здесь возникнуть не мо-
жет.

Но теперь поставим дополнительную
задачу, решение которой неизвестно.

Пусть дано 2n+1 прямых «общего по-

ложения». На каждой из этих прямых есть 2n точек пересечения

с другими (тройных точек пересечения, по предположению, нет),
которые высекают на ней два луча 2n−1 отрезков.

Отметим на каждой прямой все нечётные отрезки, как выше.

Получится замкнутая ломаная из n(2n+1) звеньев, которая, одна-

ко, совсем не обязана быть связной.
Вопрос: из скольких кусков она состоит или может состоять?
Число кусков может зависеть (и, вероятней всего, действительно

зависит) от расположения прямых –– т. е. ответ, по всей вероятности,
не единственный. Интересно было бы хотя бы получить оценки свер-
ху и снизу: «число кусков не больше того-то, но не меньше того-то».

40. Ответ. а) 0<h¶1; б)
3
2
<m<

5
2

; в) 0< b<
8
5

.

Решение. В задаче а) достаточно заметить, что высота, во вся-
ком случае, не больше боковой стороны, но может ей равняться,
если треугольник прямоугольный.

б) Построим сторону AC. Точка B лежит на окружности ω ради-
уса 1 с центром в A. Основание медианы должно лежать на пересе-
чении двух окружностей: окружности неизвестного нам радиуса m

с центром в A и окружности, гомотетичной ω с коэффициентом го-

мотетии
1
2

и с центром гомотетии в C. Соответственно, число m

должно быть таким, чтобы эти окружности пересекались, и тогда
треугольник можно построить.

Легко убедиться, что если m>
5
2

, то первая окружность целиком

содержит вторую, а если m<
3
2

, то напротив, она лежит целиком
внутри. Случаи равенства означают, что окружности касаются друг
друга, но тогда треугольник, который мы пытаемся построить, будет
вырожденным (все три точки A, B, C –– на одной прямой).
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Решение задачи в) совершенно аналогично, с той разницей, что
если основание медианы делит основание BC пополам, то основа-
ние биссектрисы делит его в отношении 1 : 4.

41. Анализ задачи. Сформулируем вопрос по-другому. Пусть име-
ется n кругов одного и того же радиуса r, и расстояние между цен-
трами любых двух кругов не меньше d. При этом предполагается,
что n задано, а мы будем искать соотношение между r и d.

Вопрос: какому неравенству должны удовлетворять числа r и d,
чтобы можно было утверждать, что при любом расположении кру-

гов можно один из них отделить от других?

Рис. 

Решение этой задачи. Предположим
сначала, что центры кругов расположены
в вершинах правильного n-угольника со
стороной d. Пусть A, B, C –– три последо-
вательные вершины (рис. ); из сообра-
жений симметрии можно, не ограничивая общности, считать, что
круг, которую нужно отделить –– это круг с центром B. Прямая, от-
деляющая этот круг, конечно, обязана пересекать стороны AB и BC.

Пусть X и Y –– середины этих сторон AB и BC. Очевидно, если
радиус круга не превосходит длины высоты треугольника BXY , т. е.

r ¶
d
2

sin
π
n

,

то прямая XY не пересекает круг и, следовательно, отделяет его от
всех прочих (круги с вершинами в A и C она не пересекает по сообра-
жениям симметрии, а остальные круги –– тем более не пересекает).

С другой стороны, пусть r>
d
2

sin
π
n

. Тогда легко видеть, что лю-
бая касательная к кругу с центром в B лежит ближе либо к точке
A, либо к точке C, т. е. непременно пересекает хотя бы один круг.
Это и значит, что мы нашли соотношение между r и d для случая
правильного многоугольника.

Пусть теперь центры кругов расположены произвольным обра-
зом; рассмотрим их выпуклую оболочку. Это многоугольник, число
вершин которого не больше n, и потому хотя бы один из его углов

не меньшеπ
�

1− 2
n

�

. Пусть B –– вершина этого угла, A, C –– соседние

с ней. Тогда все остальные вершины лежат вне криволинейного тре-
угольника, образованного лучами BA, BC и дугой радиуса 10 (см.

рис. ), откуда следует, что если r ¶
d
2

sin
π
n

, то круг с центром B

отделить можно.



 Решения

B

A C

Рис. 

Теперь решим нашу задачу . По условию, d= 10, r= 1. Соот-

ветственно, требуется, чтобы выполнялось неравенство sin
π
n
¾

1
5

.

Калькулятор (или таблицы) показывают, что sin 12◦=0,2079…>

>
1
5

. Это означает, что при 15 кругах всё ещё всегда можно отделить

один круг, тогда как 16 кругов уже можно расположить так, чтобы
они были «неотделимы» –– например, если центры кругов располо-
жены в вершинах правильного 16-угольника.

Соответственно, при 12 кругах прямая, отделяющая один из них,
всегда существует, а при 120 кругах она может не существовать.

42. Ответ на задачу (в): ни одной. Существуют многогранники,
которые могут стоять только на вершинах. Пример: тренога фото-
графа. Другой пример: возьмём, например, икосаэдр и на каждой из
его граней построим треугольную пирамиду; получится «колючая
звезда», которую тоже невозможно просто-напросто поставить на
какую-то грань (вопрос о том, устоит ли она, уже не существует).
Несложно также привести пример многогранника, который можно
поставить на некоторые грани –– но при этом устоять ни на одной
из них он не сможет.

Ответ на задачу б): одна грань. Пример такого рода как раз и да-
ёт «ванька-встанька». Для этого достаточно, чтобы центр тяжести
располагался вблизи одной из граней.

Меньше единицы ответ быть не может как из физических сооб-
ражений, так и из математических.

С точки зрения физики: допустим, что многогранник не может
стоять ни на одной из своих граней, т. е. на какую его ни поставь ––
он будет перекатываться на другую. Тогда можно утилизировать
энергию, выделяющуюся при перекатывании, т. е. создать вечный
двигатель.
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Математическое доказательство таково. Опустим перпендикуля-
ры из центра тяжести O на все грани. Если перпендикуляр OA попа-
дает не на грань (а только в её плоскость, за гранью), то он пересе-
кает другую грань в некоторой точке B, откуда немедленно следует,
что OA>OB>OC, где C –– основание перпендикуляра к этой грани,
следовательно, перпендикуляр OA –– не самый короткий.

Отсюда следует, что самый короткий перпендикуляр неизбежно
падает на грань.

Случай а) намного сложнее. Нетрудно привести пример, когда
таких грани две (простейший такой пример –– усечённая пирами-
да), а вот может ли быть одна?

Этот вопрос гораздо сложнее. Оказывается, ответ положитель-
ный: можно построить выпуклый однородный многогранник,

способный стоять только на одной грани. Удалось даже приду-
мать пример всего лишь с -ю гранями. Подробнее об этом см.
https://www.youtube.com/watch?v=9_EK4ki2_Yk, а также https://

en.wikipedia.org/wiki/Monostatic_polytope

43. Решения. а) Один из способов состоит в том, чтобы покрыть

квадрат одним кругом радиуса r =

p
2

2
, затем немного уменьшить

этот радиус. Останется 4 не покрытых уголка, которые можно по-
крыть четырьмя маленькими кругами.

Другой способ приведён ниже.
б) Начнём с задачи б), как наиболее простой из трёх. Ответ

в этой задаче: α= 1. Иными словами, квадрат можно покрыть не-
сколькими кругами, если разрешается, чтобы их суммарная пло-
щадь равнялась 1+ ǫ, как бы мало ни было ǫ.

Очевидно, достаточно доказать следующую лемму:

Лемма. Если можно покрыть квадрат площади 1 кругами сум-

марной площади 1+ ǫ, то существует также способ по крыть его

кругами суммарной площади 1+
ǫ
2

.

Для этого сначала заметим, что если единичный квадрат можно
покрыть кругами суммарной площади меньше 1+ ǫ, то любую фигу-
ру площади S можно покрыть кругами суммарной площади меньше
S · (1+ ǫ).

Для доказательства этого вспомогательного утверждения до-
статочно заметить, что любую фигуру можно «почти точно» по-
крыть сеткой из мелких квадратиков. Покрыв каждый квадрат нуж-
ным образом, мы получим покрытие произвольной фигуры.
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Теперь докажем лемму. Для этого мы впишем в единичный квад-
рат круг, а затем оставшуюся фигуру (её площадь равна S= 1− π

4
)

покроем мелкими квадратиками, с тем, чтобы покрыть её кругами
суммарной площади меньше S · (1+ ǫ).

Этого достаточно для доказательства леммы, а с тем доказано
и утверждение задачи.

Перейдём к задаче б).
Очевидно, единичный квадрат можно покрыть сеткой из правиль-

ных шестиугольников, и затем каждый шестиугольник покрыть кру-
гом. Отношение площади круга к площади шестиугольника равно

γ=
2π

3
p

3
. Поскольку площадь сетки немного больше площади квад-

рата, то суммарная площадь кругов (обозначим её β) будет боль-
ше γ, но разность β− γ можно сделать сколь угодно малой, взяв
достаточно малые шестиугольники.

Докажем теперь, что приведённая конструкция оптимальна, т. е.
α=γ.

Лемма. Пусть даны N кругов одинакового радиуса (можно счи-

тать, что радиус равен 1), и в каждый вписан многоугольник, со-

держащий центр круга, причём количество углов всех многоугольни-

ков не превышает 6N. Тогда суммарная площадь многоугольников не

превышает суммарной площади вписанных в те же круги правиль-

ных 6-угольников.
Для доказательства леммы соединим каждую вершину много-

угольника с центром O соответствующего круга; тем самым много-
угольник разбит на треугольники. Удвоенная площадь треугольника
не больше sinα, где α –– угол при вершине O; при этом сумма всех
таких углов равна 2πN , а их количество равно n¶6N . Таким обра-
зом, требуется оценить сверху выражение sinα1+ sinα2+…+ sinαn

при условии α1 + α2 +…+ αn = 2πN . Можно считать, что n= 6N

(если это не так, добавим несколько нулевых углов). Теперь мож-
но, например, воспользоваться тем, что график функции sin x –– вы-
пуклый, и потому максимум достигается, если все слагаемые равны
между собой; в этом случае все углы будут по

π
3

, поэтому у нас и по-
лучится сумма площадей правильных шестиугольников.

Вернёмся к нашей задаче, причём будем решать её для произ-
вольного многоугольника T площади 1 с углами, не превосходя-

щими
2π
3

. Пусть T покрыт несколькими кругами одного радиуса ǫ.

Тогда T можно разбить на многоугольники по следующему прин-
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Рис. 

ципу: берём точки, для которых данный
центр круга –– ближайший (рис. ). По-
скольку круги одного радиуса, то сторона-
ми получающихся многоугольников явля-
ются общие хорды двух пересекающихся
кругов (или части этих хорд), и каждый
многоугольник Ri целиком лежит внут-
ри соответствующего круга (иначе некото-
рые точки не были бы покрыты). Более то-
го, центр круга, естественно, лежит в Ri.

Среднее значение внутреннего угла при

каждой вершине разбиения не превосходит
2π
3

(это проверяется от-
дельно для вершин внутри T , точек на границе и углов –– в послед-

нем случае как раз и важно, что углы T не превышают
2π
3

), откуда
легко следует, что число углов не превосходит 6N . Значит, по лемме
суммарная площадь многоугольников (которая равна 1) не больше,

чем N · 3
p

3
2
ǫ2, т. е. суммарная площадь кругов не меньше

N ·πǫ2
¾

2

3
p

3ǫ2
·πǫ2

=
2π

3
p

3
,

что и требовалось.
Замечание. Отсюда, в частности, следует, что если T –– правиль-

ный 6-угольник, то наилучший способ его покрытия –– покрыть его
одним кругом; при любом другом способе суммарная площадь будет
строго больше.

Заметим ещё, что приведённое доказательство с минимальными
изменениями проходит для любого многоугольника с числом сто-
рон, не большим 6.

б) Здесь оптимальная конструкция такова.
Во-первых, ясно, что часть квадрата надо заполнить кругами

большего радиуса (как именно –– будет сказано ниже), а оставшую-
ся часть –– по методу, описанному в решении б), т. е. мелкой 6-уголь-
ной сеткой.

Во-вторых, из соображений, высказанных выше, ясно, что мень-
ший радиус должен быть как можно меньше. Но и больший радиус
тоже должен быть малым; иначе говоря, требуется, чтобы 1≫ r1≫ r2

(чем сильнее уменьшаются радиусы, тем лучше; оптимальное соот-
ношение не достигается, но говоря условно, требуется, чтобы отно-

шения
r1

1
и

r2

r1
оба были близки к нулю).
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Заполним квадрат мелкой (относительно мелкой; применитель-
но к радиусу r2 она будет, напротив, очень крупной) 6-угольной сет-
кой. Затем каждому 6-угольнику сопоставим круг радиуса r с тем же
центром.

Таким образом, суммарная площадь всех покрывающих кругов
(если пренебречь эффектами, связанными с границей квадрата –– а,
как мы знаем, это вполне корректно) равна площади кругов радиу-
са r1 (их столько же, сколько 6-угольников), плюс площадь оставшихся
«уголков», умноженная на γ. Будем называть второе слагаемое полной
площадью уголков; она в γ раз больше их «настоящей» площади.

Теперь понятно, что нам достаточно рассматривать покрытие
одного 6-угольника, которому соответствует 1 «большой» круг (ра-
диуса r1) и 6 «уголков».

β

Рис. 

Пусть боковая сторона каждого
6-угольника равна a (число a можно вы-
брать произвольно, лишь бы оно было
достаточно малым). Должны выполнять-

ся неравенства a> r1>
a
p

3
2

. Это значит,
что круг не полностью покрывает соот-
ветствующий ему 6-угольник, но при-
том вылезает за его границу.

Остаётся найти соотношение между
a и r1, при котором достигается экстремум. Примем вначале r1= a,
и будем медленно увеличивать этот радиус. Если он увеличивается
на δ, то площадь большого круга увеличилась на площадь кольца
радиуса r1 и ширины δ, т. е. приблизительно на 2πr1δ. С другой
стороны, площадь «уголков» уменьшилась на 6βr1δ (рис. ), соот-
ветственно, их полная площадь уменьшилась на 6γβr1δ.

Очевидно, суммарная площадь уменьшается, пока первое выра-
жение меньше второго, и начинает расти после того, как они срав-
няются. Минимум, стало быть, достигается, если они равны, т. е.
требуется, чтобы выполнялось равенство 2πr1δ=6γβr1δ. Сокращая,
получаем

β =
2π
6γ
=

p
3

2
.

При этом

r1 = a ·
p

3
2
· 1

cos
�

π
6 −

β

2

� .
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Коэффициент, с которым покрыт весь 6-угольник (и, тем самым,
также и весь квадрат), нетрудно вычислить, но он имеет несколько
«зубодробительный» вид.

Стоит заметить, что тем же способом можно найти оптималь-
ное покрытие, если разрешается брать круги трёх разных радиусов,
и вообще, любого фиксированного числа k разных радиусов.

Таким образом, мы решили задачу почти полностью. Однако
приведённое доказательство имеет «лакуну»: не доказано, что цен-
тры «больших» кругов следует размещать именно в форме 6-уголь-
ной решётки. Возможно, читатели сумеют восполнить этот пробел.

44. Ответ. Да в случае б) и нет в случаях а), в).
Решение. Для доказательства приведённого выше ответа вос-

пользуемся сначала простенькой леммой:

Лемма. Если KLMN –– выпуклый 4-угольник, то сумма его диаго-

налей всегда больше, чем сумма противоположных сторон:

KM+ LN > KL+MN и KM+ LN > KN+ LM .

В самом деле, если O –– точка пересечения диагоналей, то

KO+OL > KL, MO+ON > MN ,

что и даёт первое неравенство. Второе аналогично. (Замечание: од-
нако, вообще говоря, неверно, что сумма диагоналей больше суммы
двух соседних сторон).

Теперь рассмотрим произвольную ломаную, и пусть какие-то два
её звена, например, AB и FG, пересекаются. Тогда AFBG –– выпук-
лый четырёхугольник, AB и FG –– его диагонали, и поэтому

AB+ FG > AF+ BG, а также AB+ FG > AG+ BF.

Посмотрим, в каком именно порядке идут в нашей ломаной эти
4 вершины. Поскольку она замкнута, несущественно, с какой на-
чать. Пусть, например, мы начинаем в порядке AB, и далее идут
C…EFGH…ZA. Тогда заменим отрезки AB и FG на AF и BG –– полу-
чится более короткая замкнутая ломаная AFE…CBGH…ZA.

Таким образом, если ломаная самопересекающаяся, то имеется
другая, более короткая. Следовательно, кратчайшая ломаная не

может иметь самопересечений, а это означает, что в вопросе а)
ответ отрицательный.

(Мы считали, что отрезок FG проходится именно в порядке от F

к G; если его проходят в обратном направлении, то, разумеется, всё
точно так же, только тогда надо AB и FG заменять на AG и BF).



 Решения

Чтобы разобрать п. б), в), рассмотрим по отдельности два случая.
i) Допустим, что наши точки являются вершинами выпуклого

многоугольника. Тогда его контур есть несамопересекающаяся ло-
маная, и других нет. В самом деле, любая другая ломаная содер-
жит одну из диагоналей многоугольника, и следовательно, разделя-
ет оставшиеся точки. Поэтому неизбежно, как минимум, одно само-
пересечение. Соответственно, Л(Ф)=1 (и не может равняться 2).

ii) Пусть теперь предположение (i) неверно. Построим выпук-
лую оболочку данных точек; это некий выпуклый многоугольник
ABC…K, причём одна или несколько точек лежат внутри этого мно-
гоугольника. Пусть это точки M , …, N , S.

Рассмотрим сначала несамопересекающуюся ломаную ABC…K,
а затем выбросим из неё одно звено (например, звено AB), и по-
строим кратчайшую ломаную AMN…SB, начинающуюся в точке A,
проходящую через все внутренние точки и заканчивающуюся в B.

Тогда ломаная AMN…SBC…KA –– замкнутая и несамопересека-
ющаяся. Действительно, звенья первой части не пересекаются, по-
тому что она –– кратчайшая, звенья второй –– потому что это контур
выпуклого многоугольника. Наконец, звенья второй части не пере-
секаются со звеньями первой, поскольку они лежат целиком внутри
многоугольника.

Выбросим теперь какое-нибудь другое звено. Получится ещё од-
на несамопересекающаяся ломаная, не совпадающая с первой, по-
скольку в первой нет звена AB, а во второй оно есть. Таким образом,
общее число несамопересекающихся ломаных не меньше, чем сто-
рон у многоугольника, т. е. не меньше трёх.

Замечание. Равенство Л(Ф)= 3 возможно. Оно выполняется для
невыпуклого 4-угольника.

45. Набросок решения. Отметим на сторонах треугольника ABC

три точки: A1 на BC, B1 –– на AC, C1 –– на AB. Разделим треугольник
на четыре части отрезками A1B1, A1C1, B1C1. Если все эти отрезки ––
средние линии треугольника, то все четыре части равны, а при любом
другом делении центральная часть больше, чем одна из угловых.

Вернёмся к исходной задаче. Предположим обратное: каждая из
диагоналей AB, KC и RS отсекает от 100-угольника четверть площа-
ди, так что есть три «крайние» части и одна «центральная».

Предположим сначала, что центральная часть –– треугольник (это
возможно в том случае, если K совпадает с B, а R и S –– с C и A

соответственно).
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B

C
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Y

Z

Рис. 

Проведём через точки A, B, C опорные прямые, чтобы образо-
вался треугольник XYZ (рис. ).

Как указывалось выше, площадь треугольника ABC не меньше,
чем площадь хотя бы одного из треугольников AYB, BZC, CXA, а сле-
довательно, заведомо больше, чем площадь лежащего внутри этого
треугольника многоугольника, –– противоречие.

Остаётся «заделать дыры» в доказательстве, а именно: доказать
начальное утверждение о делении треугольника на 4 части, а также
разобрать случаи, когда центральная часть –– не треугольник, или
когда она вообще лежит вне 100-угольника, а не содержит его ––
такую картинку тоже можно нарисовать. Эти технические моменты
мы опускаем.

46. Ответ. Можно разделить на 5 частей (и только так).
Решение. Нетрудно разделить круг на 4 или 6 равновеликих ча-

стей, но нетрудно также видеть, что при этом одна из хорд непре-
менно должна быть диаметром. Остаются варианты 7 или 5 частей.

i) Разделить на 7 равных частей нельзя.
В самом деле, очевидно, что каждая из прямых должна отделить

от круга часть, составляющую
3
7

его площади, а поэтому каждая
прямая отстоит от центра круга заведомо меньше, чем на

r
7

.
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Поскольку куски, образованные двумя прямыми и дугой круга,
должны быть равны, углы между прямыми тоже должны быть рав-
ны. Прямых три, поэтому углы между ними равны 60◦. В центре
образуется равносторонний треугольник, а весь круг разделён на
три равных криволинейных треугольника (две стороны прямые, од-
на –– дуга окружности), три равных криволинейных четырёхуголь-
ника и один правильный треугольник в центре.

Теперь из того, что любая прямая отстоит от центра круга мень-
ше чем на

r
7

, следует, что центральный треугольник намного мень-

ше, чем требуется.
ii) Деление на 5 частей.
Будем считать, что радиус круга равен 1, а площадь, соответ-

ственно, равна π.
Чтобы круг был разделён именно на 5 частей, одна хорда (обо-

значим её AB) не должна пересекаться с двумя другими. Согласно
условию, тогда она отсекает от круга сегмент площадью

π
5

. Цен-
тральный угол α, стягиваемый хордой AB, удовлетворяет трансцен-
дентному уравнению

α− sinα =
2π
5

()

Теперь проведём ещё две хорды, отсекающие от круга сегменты пло-

щадью
2π
5

так, чтобы одна начиналась в точке A, а другая в точке B,
как показано на рисунке.

A B

CD

R

Рис. 

Каждая из этих хорд стягивает угол β, удовлетворяющий уравне-
нию

β− sinβ =
4π
5

, ()
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Теперь круг разделён на 5 частей: сегмент AB, имеющий нуж-
ную площадь, три криволинейных треугольника BCR, CDR и DAR,
и «обычный» треугольник ABR. Площадь этого последнего, как не-
трудно убедиться, равна

S = sin2 α
2
· tg(π− α+β

2
). ()

Решая уравнения (), () приближённо, мы находим, что α≈ 2,113
и β≈ 2,824. Подставляя эти значения в формулу (), мы получаем,
что площадь треугольника приближённо равна 0,604, т. е. меньше,
чем

π
5

. Площадь криволинейного треугольника RDC равна тому же
числу.

Остаётся немного повернуть хорду BD по часовой стрелке. Если
она станет близка к AC, то площадь криволинейного треугольника

RDC будет близка к
2π
5

и заведомо больше чем
π
5

, откуда следует,

что при некотором промежуточном положении эта площадь будет
равна

π
5

. После этого и все остальные площади автоматически ста-
нут равны этому числу.

47. Ответ. cosϕ=
1
n

.
Решение. Восставим из центра тетраэдра перпендикуляры к двум

граням. Проведя через них двумерную плоскость, мы получим в сече-
нии 4-угольник, один из углов которого –– искомый угол между гра-
нями, другой –– угол α между перпендикулярами, а два остальных ––
прямые. Следовательно, α+ϕ=π, и достаточно найти угол α.

Чтобы найти α, восставим перпендикуляры из центра ко всем
граням, рассмотрим соответствующие векторы с общим началом
в центре тетраэдра и с концами в центрах граней. Из соображений
симметрии ясно, что сумма всех n+ 1 векторов равна 0. Квадрат
этой суммы равен сумме квадратов всех векторов плюс сумма удво-
енных произведений; в первую сумму входит (n+ 1) слагаемое, во

вторую ––
n(n+1)

2
.

Для удобства считаем, что длина каждого вектора равна 1. Таким

образом, первая сумма равна n+1, вторая же равна
2 cosα ·n(n+1)

2
.

Отсюда cosα=−1
n

, cosϕ=
1
n

.
Как частные случаи, получаем:
в двумерном тетраэдре (т. е. в правильном треугольнике) коси-

нус угла между сторонами равен
1
2

, ϕ=60◦;
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в трёхмерном тетраэдре, который, собственно говоря, только
и является тетраэдром в точном смысле слова, угол между гранями

равен arccos
1
3

.
48. Решение. Пусть для определённости p> q. Будем также счи-

тать, что большая сторона прямоугольника AB (и параллельная ей
CD) расположена горизонтально, меньшая сторона BC –– вертикаль-
но, угол A –– левый нижний, а угол C, соответственно –– правый верх-
ний.

Очевидно, все получающиеся треугольники подобны друг другу,
и гипотенузой в каждом из них является кусок диагонали AC.

Поскольку диагональ делит каждый квадратик либо на два четы-
рёхугольника, либо на четырёхугольник и треугольник (но не на два
треугольника), каждый кусок диагонали либо является гипотенузой
только в одном треугольнике, либо вообще не служит гипотенузой.

Обозначим через d длину той части диагонали, на которой лежат
гипотенузы, тогда, очевидно, сумма всех периметров равна

p+q+
p

p2+q2

p

p2+q2
·d.

Величину d проще всего найти, вычтя из длины всей диагонали
суммарную длину кусков, не являющихся гипотенузами. Легко ви-

деть, что каждый такой кусок имеет длину

p

p2+q2

p
, а их количество

равно (p− q−1). Отсюда получаем ответ:

d =
p

p2+ q2 · q+1
p

, P = (p+ q+
p

p2+ q2) · q+1
p

.

Теория чисел

49. Решение. Обозначим сумму цифр произвольного числа x че-
рез S(x). Пусть a и a+1 –– искомые числа. Ясно, что a должно окан-
чиваться несколькими девятками. Предположим, что a=…99…99
(r девяток в конце), тогда S(a+1)=S(a)−9r+1, откуда 9r−1 долж-
но делиться на 49; 9r=50, 99, … Поскольку 50 не делится на 9, ясно,
что минимальное подходящее r=11. Итак, a оканчивается на 11 де-
вяток, и так как S(a) делится на 49, то S(a)¾147. Отсюда

a = 4999989…9, a+1 = 4999990…0

(11 нулей в конце).
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50. Ответ. Делится при нечётном n и не делится при чётном.
Доказательство. 11A=11…1 (2n единиц)=1000…01B. Поэто-

му дело сводится к выяснению того, делится ли число 10n
+1 на 11.

Но 10≡ (−1) (mod 11), поэтому 10n
+1≡ (−1)n

+1 (mod 11) делит-
ся на 11 при нечётных n. Частное, как нетрудно заметить, равно
9090…9091.

51. Доказательство. Так как после четвёртого вычёркивания
остаётся только одно число, это должно быть число 44. Но сумма ис-
ходных одиннадцати чисел делится на 11, следовательно, на первом
шаге необходимо вычеркнуть число, делящееся на 11, т. е. число 44.
Противоречие.

52. Ответ. 2 ·28 ·37=2072. В этом случае необходимо раздавать
членам профсоюза по 37 слонов, а не членам –– по 28, при раздаче
членам профсоюза другого числа слонов число оставшихся слонов
не будет делиться на 37.

Решение. Допустим, что число слонов было больше, чем 2 ·28 ·37.
Тогда либо членам, либо не членам профсоюза было роздано боль-
ше, чем 28 ·37 слонов; пусть, например, справедливо первое. Тогда
каждому члену профсоюза досталось k>37 слонов, и можно вместо
этого раздать каждому из них по k − 37 слонов, а лишних 28 · 37
слонов поровну разделить между 37 не членами. Второй случай ана-
логичен.

53. Доказательство. Для доказательства пункта а) достаточно
воспользоваться тем известным фактом, что если сама дробь полу-
чается делением единицы на p, то её период есть результат деления
на p числа 99…9 (число девяток равно длине периода). Так как чис-
ло 99…9 делится на 9, а p взаимно просто с 9, то сам период (как
число) делится на 9. Поэтому (по признаку делимости на 9) делится
и сумма его цифр.

Для решения пункта б) обозначим через A число 99…9 (km де-
вяток), а через B –– число 99…9 с m девятками. Далее нужно восполь-
зоваться двумя фактами: 1) p не делит B (в противном случае длина
периода равнялась бы m, а не km), а следовательно, взаимно просто
с ним; 2) имеется признак делимости на B, аналогичный признаку
делимости на 9: если M –– любое число, а N –– сумма его m-цифровых
граней, то M и N делятся на B одновременно. Теперь ясно, что до-
казательство б) полностью аналогично доказательству а).

54. Решение. Если {32x}={200x}, то {168x}=0, т. е. 168x –– це-
лое число. Аналогично и 98x –– целое. Отсюда мы легко выводим,
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что 70x –– целое; 28x –– целое; 14x –– целое. (Если известно, что kx ––
целое, lx –– целое, и наибольший общий делитель чисел k и l равен r,
то rx тоже целое.) Но тогда и 154x –– целое, т. е. {154x}=0, откуда
{x}={155x}.

55. Решение (И. Н. Бернштейн). а) Процедуру решения удобно
иллюстрировать на более низкой степени двойки, например на чис-
ле 1024=210.

Если мы возьмём показатель степени меньше 10, например 28
=

=256, то доказывать нечего, так как само это число делится на себя
и не имеет нулей. Однако в числе 210

=1024 есть ноль; «убьём» его.
Для этого добавим к нему то же число, умноженное на 100:

1024
+

102400

103424

Ноль на третьем справа месте исчез, зато возник новый ноль
на пятом месте. «Убьём» его тем же способом:

103424
+

10240000

10343424

Аналогичную процедуру можно применить и к числу 21000; хо-
тя мы не знаем, на каких местах в нём находятся (и находятся ли)
нули, ясно, что мы можем последовательно «убивать» каждый ноль,
начиная справа, и тем самым получить число (оно имеет вид 21000×
× 101100…01000101 при какой-то комбинации нулей и единиц),
не имеющее нулей на последних n местах справа.

Может показаться, что это ничего особенного не даёт: один ноль
мы «убиваем», но одновременно получаем другой левее его. Рас-
смотрение примера с числом 210 показывает, что этот процесс будет
продолжаться бесконечно… Однако суть дела в том, что вполне до-
статочно получить описанным способом число, в последней тысяче
цифр которого отсутствуют нули. После этого все остальные цифры
можно просто отбросить, так как делимость на 1000 от них не за-
висит.

Замечание. Аналогично решается задача и в случае, когда вме-
сто числа 21000 мы возьмём число 51000. Ясно также, что число 1000
можно заменить на любое r.
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б) Любое число, не оканчивающееся нулём, имеет вид либо n ·2r,
либо n ·5r, где n взаимно просто с 10. Оба случая аналогичны, рас-
смотрим, например, первый.

Мы уже видели, что существует число Q, не имеющее нулей и де-
лящееся на r. Запишем теперь ряд чисел Q, QQ, QQQ, …, QQQ…Q,
…, каждое из которых –– число Q, выписанное несколько раз под-
ряд. По принципу Дирихле два из них имеют одинаковый остаток
при делении на n, поэтому их разность делится на n. Но их разность
неизбежно имеет вид QQ…Q00…0. Теперь уже очевидно, что, от-
бросив в последнем числе нули в конце, мы получим искомое число.

56. Решение. Если N<10k, 2N ¾10k, то, очевидно, число 2N на-
чинается с единицы (а N –– уже нет). Поэтому число единиц в по-
следовательности равно числу переходов из класса k-значных чисел
в класс (k + 1)-значных. (Например, при переходе от двузначных
к трёхзначным появляется начинающееся с единицы число 128.)

Это означает, что число единиц равно числу цифр в последнем чис-
ле, т. е. в числе 21000. Так как lg 2=0,30103…, то lg 21000

=301,03…,
т. е. в этом числе 302 цифры.

Ответ. 302.
57. Указания. а) Нужно использовать то, что
∑

(xi− xi−1)+
∑

(xi− xi−2) ¾ 1+2+…+29 = 435.

б) Существует набор 0, 2, 3, 10, 16, 21, 25, в котором, таким обра-
зом, x6=25. По-видимому, для x6<25 редких наборов не существует.

в) Следует использовать те же соображения, что в п. а), для сумм
чисел вида (xi− xi−1), (xi− xi−2), (xi− xi−3) и т. д.

г) Один из возможных ответов: xi− xi−1= (n2− i+1).
58. Решение. Легко заметить, что при всех k, начиная с k= 1,

ak= bk+ ck. Поэтому имеем, начиная с k=2:

{ak, bk, ck} = {bk−1, ck−1, bk−1− ck−1}.

Следовательно, зная множество

M = {ak, bk, ck},

мы знаем числа bk−1 и ck−1 (они принадлежат множеству M), и зна-
ем, что ak−1 –– сумма каких-то двух из них.

Пусть a10= x, b10= y, тогда c10= x− y (x¶2 y). Ясно, что макси-
мальные значения a9, b9 и c9 равны x+ y, x, y. Рассуждая таким же
образом, мы видим, что числа a8, b8, c8 не превосходят

(x+ y)+ x = 2x+ y, x+ y, x;
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числа a7, b7, c7 –– не превосходят

(2x+ y)+ (x+ y) = 3x+2 y, 2x+ y, x+ y

и т. д. На десятом шаге мы увидим, что a0¶55x+34 y¶89x.
Но a0=1. Отсюда

x ¾
1

89
>

1
100

.

Равенство выполняется, если

b0 =
55
89

.

Замечание. Очевидно, задача связана с числами Фибоначчи

1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

Объясните, в чём именно заключается эта связь?

59. Ответ. Нет.
Решение. Если n=p1 ·p2 ·p3 ·…·pr, то сумма делителей n не мень-

ше, чем n
�

1
p1
+

1
p2
+…+

1
pr

�

. Но сумма чисел, обратных к первым r

простым, может быть сделана сколь угодно большой.
60. Решение. а) Пусть a1 –– наибольшее среди чисел a1, …, ar.

Так как оно равно произведению двух чисел, меньших его, то каж-
дое из этих чисел должно быть больше 1. Тем самым и a1>1, и в на-
боре есть не менее трёх чисел, больших 1. По аналогичным причи-
нам должно быть хотя бы три числа, меньших 1. Пример для r= 6
строится легко:

2, 3, 6,
1
2

,
1
3

,
1
6

.

Ответ. r=6.
б) Если среди этих чисел нет числа −1, то, рассуждая как выше,

мы увидим, что должно быть три числа с модулем больше 1 и три ––
с модулем меньше 1, так что r>5. Если же одно из чисел равно −1,
мы можем подобрать пять чисел, например,

−1,−1
2

,−2,
1
2

, 2.

Четырёх чисел не хватает, так как необходимо, чтобы среди них бы-
ли ещё по меньшей мере два отрицательных числа и два положи-
тельных.

Ответ. r=5.
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в) Здесь можно обойтись четырьмя числами, а именно не рав-
ными единице комплексными корнями 5-й степени из 1. Легко убе-
диться, что каждый из них является произведением двух других.
Трёх чисел не хватает, так как из равенств ab= c, ac= b следует, что
a2
=1.
Ответ. r=4.
г) Можно взять три стандартных корня из −1: числа i, j, k.
Ответ. r=3.
61. а) Ответ. 1 888 888 888,7=1 111 111 111 · 17

10
.

Решение. Возьмём какое-нибудь число указанного типа и «цик-
лически изменим» его 10 раз. Ясно, что в сумму на каждом месте
войдёт 3 единицы и 7 двоек, так что среднее на каждом месте со-

ставит
17
10

. Остаётся заметить, что все числа указанного типа разби-
ваются в группы по 10.

б) Указание. Здесь первой цифрой каждого из чисел обязана
быть единица, так что и первая цифра среднего арифметического ––
единица. На оставшихся местах стоит 2 единицы и 7 нулей, поэтому
ответ:

1 000 000 000+111 111 111 · 2
9
= 1 222 222 222,(2).

62. Указание. Хорошим является любое число, оканчивающееся
на 1, 3, 7 или 9 (вот 400 чисел). Далее, если число оканчивается
на чётную цифру (2, 4, 6 или 8), то оно должно делиться на 8, от-
куда легко сообразить, что таких чисел 100. Если число кончается
на 5, то оно должно делиться на 125, и есть четыре таких числа:
это 125, 375, 625 и 875. Наконец, число, кончающееся нулём, только
одно: 000.

Замечание. Задача легко обобщается на случай k-значных чисел
и произвольной степени l, но с оговоркой: l должно быть взаимно
просто с 10 и больше или равно k. В таком случае ответ:

N = 10k−1
�

4+
4

2k−1

�

+2k−1
+1.

Если же эти условия не выполнены, то задача существенно услож-
няется.

63. Ответ. а) 110 лет и 11 лет, б) 110 лет и 2 года.
Соответствующие пары лет: в первом случае (2002, 2112) (или,

скажем, (2332, 2442)) и (2992, 3003), во втором –– та же пара (2002,
2112) и (9999, 10001).
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64. а) Из условия задачи следует, что z4
=

z17

z13 рационально. По-

этому рационально также и z12. Деля z13 на z12, мы видим, что и z

рационально. Но степень рационального числа может быть целым
числом только в том случае, если оно само целое.

б) Мы будем искать подходящее число x в интервале [a; b]= [N+

+ 0,2; N + 0,8], где N достаточно велико (как будет видно из даль-
нейшего, можно, например, взять N=107). Первое неравенство вы-
полнено автоматически. Для того, чтобы выполнялось третье, рас-
смотрим все числа R1, R2, …, лежащие в интервале [a3; b3] и име-
ющие вид M + 0,0000001, M –– целое число. Любое из них «на две
трети годится» на роль куба искомого числа –– в том смысле, что
выполнены первое и третье неравенства. Остаётся удовлетворить
второе.

Для этого будем перебирать все эти числа последовательно. При
переходе от Mi к Mi+1=Mi+1 число x2 (оно равно указанному чис-

лу в степени две трети) увеличивается менее чем на
1

1 000 000
, при

этом чисел достаточно много, так что в какой-то момент происходит
«переход через целое». Именно в этот момент мы получаем нужное
число.

Решение задачи г) полностью аналогично.
в) Пусть N= [x3], M= [x2]. Тогда

N2−M3
= (N

4
3 +N

2
3 M+M2)(N

2
3 −M) =

= (N
4
3 +N

2
3 M+M2)(N

1
3 +M

1
2 )(N

1
3 −M

1
2 ).

Если x<5, то первые два множителя заведомо меньше 100 и 12
соответственно (оценка грубая, но нам и такой хватит). Последний
же множитель очень мал (порядка одной миллионной), так как чис-

ла N
1
3 и M

1
2 очень близки к x. Следовательно, произведение мень-

ше 1. А так как числа целые, то получается, что N2
=M3.

Но тогда число y=
N
M

–– целое (см. задачу а)) и очень близко к x.
Это противоречит условию, согласно которому x отстоит от целого
не меньше чем на 0,1.

65. Ответ. Можно.
Решение. Достаточно воспользоваться очевидным тождеством

(a∧b)∧c=a∧(bc)= (a∧c)∧b, и взять a=7, b=7, c=7∧7.
66. Ответ. а) Это возможно, например; n=1729=1000+729=

=1728+1=7 ·13 ·19.
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б) Это невозможно. В самом деле, n= (a+ b) · (a2−ab+ b2), при-
чём второй множитель не меньше, чем ab, и следовательно, больше
первого. Точно так же n= (c+ d) · (c2− cd+ d2). Если эти представ-
ления различны, то выходит, что

a+ b = c2− cd+d2 > c+d = a2−ab+ b2 > a+ b.

Противоречие.
(Строго говоря, мы упустили случаи, когда a=1 или a= b=2. Но

они достаточно очевидны).
67. Есть довольно стандартное доказательство методом индук-

ции (главная трудность здесь состоит в том, чтобы правильно сфор-
мулировать утверждение индукции).

Мы, однако, предложим другой, более красивый путь.
Представим каждое число от 0 до 999 999 999 в виде суммы «раз-

рядных единиц» (например: 70 264 = 70 000 + 200 + 60 + 4). При
возведении такой суммы в 8-ю степень мы получаем выражения
типа 70000a ·200b ·60c ·4d, где a+ b+ c+d=8.

Теперь разобьём числа A и B на слагаемые, соответственно раз-
ложению каждой из восьмых степеней, и приведём подобные чле-
ны. Ясно, что получатся выражения примерно такого вида:

N ·70 000a ·200b ·60c ·4d,

где коэффициент N пропорционален количеству 9-значных чисел,
в разложение которых на разрядные единицы входят слагаемые
70 000, 200, 60 и 4.

Но в разложение числа A входит 100 000 таких чисел (в числе
∗ ∗ ∗ ∗ 7 ∗ 260 нам известны 4 цифры, а остальные пять произволь-
ны), тогда как в разложение числа B –– вдвое меньше.

Остаётся заметить, что рассуждение, которое мы провели для
конкретного члена N · 70 000a · 200b · 60c · 4d, годится и для любого
другого члена: в разложение B входит ровно половина соответству-
ющих членов.

Остаётся понять один важный момент: неужели такое рассужде-
ние годится для любых степеней? –– Нет, конечно. Для того, чтобы
оно было верно, необходима важная оговорка: есть хотя бы один
разряд, который вообще не участвует в данном разложении (в на-
шем примере таких разрядов было 5: 4-й, а также с 6-го по 9-й).

Но для степеней не выше 8 это справедливо! Действительно, по-
скольку слагаемых в любом девятизначном числе ровно 9 (некоторые
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из них, возможно, равны нулю, как в этом примере), а степень вось-
мая, то неизбежно в каждом из членов по отдельности хотя бы одно
из девяти слагаемых участвует в нулевой степени, т. е. фактически во-
обще не участвует. Это соображение и завершает доказательство.

68. а) Проще всего заметить, что циклически повторяется не
только r-я цифра, но весь набор из последних r цифр. В самом деле,
поскольку таких наборов конечное число, рано или поздно один из
наборов должен повториться. С этого момента дальше всё пойдёт
по циклу, т. е. десятичная дробь окажется периодической.

б) Рассуждаем от противного. Предположим, что r-я цифра по-
вторяется циклически, и длина периода равна m. Но тогда найдётся
такое s, что через sm мест повторится как r-я, так и (r−1)-я цифра.
Легко видеть, что начиная с этого момента, (r − 1)-я цифра будет
повторяться с периодом sm. Отсюда, аналогично, выводим, что цик-
лически повторяется (r−2)-я цифра, и т. д., вплоть до первой цифры
включительно.

Итак, достаточно рассмотреть случай, когда циклически повто-
ряется первая цифра с некоторым периодом t.

Но тогда мы можем определить, на сколько больше знаков имеет
число 2(n+t) в сравнении с 2n. Число 2(n+1) имеет на один разряд
больше, чем число 2n, тогда и только тогда, когда его первая цифра
равна 1. Таким образом, разность числа знаков равна числу единиц
в цикле первых цифр.

Это утверждение верно и в том случае, если мы рассматриваем
цикл длины tM (в нём в M раз больше единиц, чем в цикле длины t).
Если в цикле длины t имеется q единиц, то в цикле длины tM− qM

единиц.
Значит, число 2(n+tM) всегда имеет k+ qM знаков, каково бы ни

было M . Но отсюда легко вывести, что 2t
=10q, что абсурдно.

69. Решение. а) Очевидно, что достаточно найти такие k, m, что
по модулю n

ak ≡ am, ak+1 ≡ am+1, тогда ak−m ≡ a0 ≡ 0.

б) Начинающуюся не с нуля последовательность Фибоначчи, в ко-
торой ни один член не делится на 5, легко указать: 1, 3, 4, 7, 11, 18, …
В ней остатки отделения на 5 чередуются: 1, 3, 4, 2, 1, 3, …

Причина этого в том, что по модулю 5 можно извлечь корень из
5 (он равен 0), и поэтому «золотое сечение»

1+
p

5
2

=
1
2
= 3 (mod 5)
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является рациональным числом. Соответственно, геометрическая
прогрессия 1, 3, 33, …, 3n, … является в то же время последователь-
ностью Фибоначчи –– естественно, без нулей.

в) Из предыдущего немедленно следует, что такую последова-
тельность можно построить для любого такого p, что по модулю p

извлекается корень из 5. Согласно закону взаимности Гаусса, это
возможно, если p = 5 или p = 5k ± 1. Так, например, для p = 11
корень из 5 равен ±4, «золотое сечение» равно 4 или 8, и годят-
ся геометрические прогрессии с этими знаменателями, например
1, 4, 5, 9, 3, …

Напротив, для других чисел вопрос не столь прост. Для p=7 нуж-
ной последовательности Фибоначчи не существует, что можно дока-
зать перебором всех последовательностей, начинающихся с чисел
{1, k}, где 1¶ k¶6. В общем случае ответ неизвестен.

70. а) Да, верно. В самом деле, достаточно заметить, что:
i) к любому числу можно прибавить 1 (умножить на 3, приба-

вить 3 и разделить на 3);
ii) любое число, которое больше 1, можно уменьшить, поскольку

для любого x>1 справедливо неравенство
x+2

3
< x.

б) Обозначим наши операции так: (+) –– прибавление , (∗) ––
умножение на 3, (&) –– деление. Тогда самый быстрый способ –– ∗+&,
т. е. 81––243––246––82 (три операции). Двух шагов недостаточно, так
как число 82 можно за 1 ход получить только из чисел 246 или 79,
а ни того, ни другого нельзя получить за 1 ход из 81.

в) Кратчайший способ получить 81 таков:

∗++&++&++&++&+∗∗,
или

82––246––249––252––84––87––90––30––33––36––

––12––15––18––6––9––27––81

(16 операций).
Чтобы доказать, что меньшим числом операций обойтись нель-

зя, обратимся сразу к п. г). Итак, пусть даны произвольные нату-
ральные числа a, b.

Запишем их в троичной системе. (Например, числа 11 и 2011
примут вид соответственно 102 и 2 202 111).

В троичной системе наши операции означают следующее: (∗) ––
приписывание нуля в конце числа, (&) –– вычёркивание последнего



 Решения

нуля (если он есть) и (+) –– прибавление единицы в предпоследнем
разряде. Преобразование 82 в 81 в троичной записи выглядят так:

10001––100010––100020––100100––10010––10020––10100––1010––

1020––1100––110––120––200––20––100––1000––10000.

Доказательство того, что меньшим числом операций обойтись
нельзя, состоит из следующих шагов:

i) оценить число операций (+). Их должно быть не менее девяти:
надо прибавить по  единицы в каждом из  разрядов, и ещё одну
единицу в пятом.

ii) доказать, что операций (∗), (&) суммарно должно быть не ме-
нее 7. В самом деле, чтобы прибавить единицы в несколько разных
разрядов, необходимо то вставлять, то вычёркивать нули.

г) Ответ нетрудно найти, используя приведённые выше сообра-
жения, однако аккуратное доказательство довольно длинное и скуч-
ное. Мы позволим себе его опустить.

71. Ответ. Да, может.
Решение. Сначала подберём числа А, А так, чтобы каждое из

них равнялось разности двух квадратов (именно квадратов, а не об-
ратных квадратов). Годятся, например, числа

A = 16 = 25−9, 2A = 32 = 81−49.

Теперь остаётся разделить их на подходящий квадрат, и тогда
квадраты превратятся в обратные квадраты. В данном случае надо
делить на 25×81×49=99 225, и мы получим

a =
16

99225
=

1
3969
− 1

11025
=

1
632 −

1
1052 ,

2a =
32

99225
=

1
1225
− 1

2025
=

1
352 −

1
452 .

72. Ответ. Объём равен
1

77
.

Доказательство. В самом деле, тогда можно разлить поровну
на 7 и 11 гостей, тогда как в случае трёх гостей надо будет двоим
налить по 26 черпаков, одному –– 25.

Тогда
26
77
− 1

3
=

1
231
<

1
60

и
1
3
− 25

77
=

2
231
<

1
60

, что и требуется.

Докажем теперь, что черпак большего объёма не годится.

В самом деле, пусть его объём равен
1
z

, и пусть z не делится наце-

ло на 7, или вообще не является целым числом. Тогда разделить на
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семерых поровну не удастся, и следовательно, кому-то достанется,
как минимум, на один черпак больше, чем другому.

Но по условию, оба они должны попасть в интервал от
1
7
+

1
140

до

1
7
− 1

140
. Следовательно, объём черпака не может быть больше

1
70

,

z¾70.
Если при этом z не делится на 11, то по аналогичным сообра-

жениям z¾110. Если же делится, то 77 как раз и есть наименьшее
подходящее z.

73. Доказательство. а) Надо доказывать следующее более об-
щее утверждение.

Пусть r –– произвольное натуральное число, не делящееся на 3.
Тогда существует число вида rrr…rr, которое делится на 3k, причём
наименьшее такое число содержит 3k групп r.

Остальное просто. В самом деле, если мы применим индукцию,
то сразу увидим, что её основание очевидно (поскольку сумма цифр
чисел r и rr не делится на 3, а сумма цифр числа rrr –– делится),
а индуктивный переход почти очевиден.

б) Пусть сначала число m не делится на 3. Тогда число из r еди-
ниц делится на m в том и только в том случае, когда на m делится
число 99…999 (из стольких же девяток).

Рассмотрим числа 9, 99, 999, …, 99…99 (в последнем числе
(m−1) девяток). Ни одно из них не может давать при делении на m

остаток (m−1), поскольку это означало бы, что число 99…99+1=
=100…00 делится на m, что неверно.

Следовательно, либо эти числа дают при делении на m все про-
чие возможные остатки (и остаток ноль в том числе –– что и требу-
ется), либо какие-то два дают при делении на m одинаковый оста-
ток. В последнем случае мы заканчиваем рассуждение стандарт-
ным образом –– вычитаем одно из другого, их разность имеет вид
99…9900…0 и делится на m, откуда следует, что и число из девяток
делится на m.

Итак, если m не делится на 3, то наше утверждение верно.
В общем случае, когда m=3k×n, n>1 и n не делится на 3, легко

указать число, делящееся на m и состоящее менее чем из m единиц.
Для этого надо только использовать приведённые выше соображения.

74. Решение. а) Ответ. Только при N=1 или N=3.
Расположить три числа не представляет труда: 1, 3, 2 или 3, 1, 2.

Докажем, что другие N не годятся.
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Прежде всего, последняя сумма равна
N(N+1)

2
, и если N чёт-

но, то она не делится на N . Следовательно, остаётся только случай
нечётного количества чисел: N=2n−1.

В этом случае последняя сумма всегда удовлетворяет условию.
Рассмотрим предпоследнюю; она равна

N(N+1)
2
−aN = n(2n−1)−aN

и должна делиться на (2n−2).
Имеем: n(2n− 1)= (2n− 2)n+ n. Отсюда следует, что разность

делится только в том случае, если aN = n, и предпоследняя сумма
равна n(2n−2).

Но теперь рассмотрим предыдущую сумму; она равна n(2n−2)−
−aN−1 и должна делиться на (2n−3). Между тем

n(2n−2) = n(2n−3)+n,

откуда ясно, что член aN−1 тоже должен равняться n.
(Если N =3, то 2n−3=1, и последнее утверждение уже необос-

нованно.)
Мы получили, что aN =aN−1 –– противоречие.
б) Ответ. Это возможно всегда.
Вот одна из подходящих конструкций. Она годится как при N=2k,

так и при N=2k+1:

k+1, 1, k+2, 2, k+3, 3, …, 2k, k, (2k+1).

При N=2k последний член отсутствует.
Есть и другие конструкции, например:

2k, 2, (k+1), 3, (k+2), 4, (k+3), 5, …, k, (2k−1), 1, (2k+1).

в) Ответ. Можно.
Однако эта задача, как ни странно, намного сложнее, чем задача

б). Дело в том, что предложенная там конструкция для бесконечно-
го числа не проходит.

Тем не менее, можно привести конструкцию такой последова-
тельности для бесконечного числового ряда. Она состоит из беско-
нечного числа трёхходовых комбинаций; каждая комбинация поз-
воляет включить в последовательность несколько чисел, в том чис-

ле наименьшее из оставшихся после предыдущего шага. Таким об-
разом, «на бесконечности» мы получим все натуральные числа.
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Начало конструкции. Выбираем несколько первых чисел так,
чтобы условие выполнялось (например, так, как описано в решении
задачи б). Пусть S –– сумма всех выписанных чисел, и пусть r –– пер-
вое число, которое пока ещё не выписано.

Первая комбинация. Первый шаг. Пишем числа S, 2S, 4S, …,
2n ·S. Теперь сумма равна 2n+1 ·S.

Второй шаг. Представим эту сумму в виде произведения двух до-
статочно больших чисел ab. Например, удобно взять a=2k, b= (2l)S,
где k+ l=n+1, и числа k, l достаточно велики.

Третий шаг. Начинаем выписывать числа в следующем порядке:
a, b+ 1, a+ 1, b+ 2, a+ 2, b+ 3, … Легко видеть, что всякий раз
очередная сумма равна произведению предыдущего числа на сле-
дующее, и следовательно, делится на очередное число. Например,
S=ab, S+a=a(b+1) и т. д.

Делаем это до тех пор, пока очередная сумма не будет делиться
на r. Такой момент непременно наступит, так как мы последова-
тельно выписываем числа a, a+ 1, a+ 2, … –– не позже чем через
r шагов одно из них разделится на r, что и требовалось.

Четвёртый шаг. Выписываем число r, и возвращаемся к первому
шагу комбинации. Далее идёт вторая комбинация, потом третья и т. д.

В целях лучшего понимания проиллюстрируем всё это на при-
мере. Начало конструкции: 3, 1, 4, 2, 5. Сумма этих чисел равна 15.
Первое отсутствующее –– число 6. (Иными словами, в наших обозна-
чениях S=15, r=6.)

Первый шаг: пишем числа 15, 30, 60, 120. Сумма равна 240.
Второй шаг: 240=30 ·8.
Третий шаг: пишем числа 8, 31, 9, 32, 10, 33, 11, 34, 12.
Число 12 делится на r, поэтому теперь можно выписать число

r=6.
Вся сумма равна 240+8+31+…+12+6=594. S=594, r=7.
Далее начинаем сначала, т. е. выписываем числа 594, 1188, 2376,

… Согласно процедуре, в какой-то момент нам удастся выписать
число 7, и т. д.

75. Решение. а) Существуют различные примеры. Приведём два
простейших. Пусть для определённости k=7, тогда 2k−1=127.

i) В первое множество входят все нечётные числа, во второе ––
все числа вида 4m+2, в третье –– все числа вида 8m+4 и т. д. В ше-
стое входят числа вида 26 ·m+25, т. е. числа 32 и 96, а в последнее,
седьмое –– одно число 64.
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ii) В первое множество входит только число 1, во второе –– 2 и 3,
в третье –– 4, 5, 6, 7 и т. д., всякий раз от 2i до 2i+1−1. В последнее
входят все числа от 64 до 127.

Ясно, что оба этих способа годятся для любого k.
б) Докажем более общий факт: если числа от 1 до N можно раз-

бить на k подмножеств, удовлетворяющих условию, то числа от 1
до 3N+1 можно разбить на (k+1) подмножеств.

В самом деле, числа 1 до N разобьём на k подмножеств, что по
предположению возможно. Затем числа от N+1 до 2N+1 включим
в (k+1)-е подмножество (оно удовлетворяет условию, т. е. разность
любых двух чисел из этой группы не превосходит N). В заключение
числа от 2N +2 до 3N +1 включим в первые k подмножеств по оче-
видному принципу: число A, A>2N +1, входит в i-ое подмножество
в том случае, если в него входит число A−2N−1. Выполнение усло-
вия очевидно.

Если начать с 1 (N =1, k=1), то мы видим, что числа от 1 до 4
разбиваются на  группы, числа от 1 до 13 –– на 3, от 1 до 40 –– на 4
и т. д. Это именно то, что требуется.

В частности, при k=3 получаются такие три подмножества:

{1, 4, 10, 13}, {2, 3, 11, 12}, {5, 6, 7, 8, 9}.

Прямая проверка показывает, что для k=1, 2, 3 полученная оцен-

ка точна, т. е. числа от 1 до 5 нельзя разбить на два подмножества,
а числа от 1 до 14 –– на три. Вероятно, то же справедливо и дальше,
но доказательства нет. Нет даже доказательства, что весь натураль-
ный ряд нельзя разбить на конечное число подмножеств.

Зато нетрудно доказать, что весь натуральный ряд можно раз-
бить на несколько подмножеств, если из него исключить какую-
нибудь арифметическую прогрессию, начинающуюся с нуля (т. е.
все числа, делящиеся на некое k, каково бы ни было k).

К примеру, если выбросить числа, делящиеся на , то весь нату-
ральный ряд можно разбить на 3 подмножества, а если выбросить
числа, делящиеся на 24 –– то на 5. (Сделайте это.)

76. а) Ответ. Для нечётных n и только для них.
В самом деле, среднее арифметическое всех сумм «по два», оче-

видно, равно 2n+1. Поэтому отрезок натурального ряда должен на-
чинаться с некоторого числа (2n+1)− k и заканчиваться, симмет-
ричным образом, числом (2n+1)+ k, т. е. содержать 2k+1 членов:
n=2k+1.
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Если n=2k+1, (соответственно 2n=4k+2), то годится, напри-
мер, такое разбиение:

{4k+2, k+1}, {4k+1, k}, {4k−1, k−1}, …, {3k+2, 1}

(получились все числа одной чётности), а далее

{3k+1, 2k+1}, {3k, 2k}, …, {2k+2, k+2}.

б) Очевидно, что сумма всех этих разностей и сумма всех чисел
1+2+…+2n имеют одинаковую чётность. Иначе говоря, суммы

1+2+…+2n = n(2n+1) и 1+2+…+n =
n(n+1)

2

–– одной чётности. Отсюда сразу следует, что при n=4k+2, n=4k+3
задача решения не имеет.

Остаётся рассмотреть числа вида 4k, 4k+ 1. Для них подобрать
подобное разбиение можно, но не просто.

Общая конструкция. Разобьём все числа от 1 до 2n на «боль-
шие», т. е. те, которые войдут в разность со знаком плюс, и «малые»
(те, которые надо будет вычитать).

Поскольку 1+ 2+…+ 2n= n(2n+ 1) и 1+ 2+…+ n=
n(n+1)

2
,

то сумма всех «больших» чисел должна равняться
n(5n+3)

4
, а сумма

малых ––
n(3n+1)

4
.

Рассмотрим, например, случай n = 4k, и попробуем включить
в «малые» все числа от 1 до 2k и от 4k+1 до 6k. Но тогда их сумма
будет равна

k(2k+1)+ k(10k+1)= 2k(6k+) =
n

3n
4
+1

,

т. е. чуточку больше, чем требуется.
Для того чтобы арифметика сошлась, нужно, например, из «ма-

лых» выбросить число 5k и вместо него взять число 4k.
Такая замена позволяет сделать ещё один «финт»: перейти с чёт-

ных разностей на нечётные. А именно, мы берём вначале все чёт-
ные разности по убыванию, т. е. пары {8k, 4k}, {8k− 1, 4k+ 1}, …,
{7k+ 1, 5k− 1} а затем (ведь число 5k пропущено, оно из «малых»
перенесено в «большие») берём уже нечётные разности, т. е. пары
{7k, 5k+1}, {7k−1, 5k+2}, …, {6k+1, 6k}.

Дальнейшее построение уже сравнительно нетрудно найти. Вот
окончательная конструкция для n=4k.
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Строим разбиение чисел от 1 до 8k следующим образом:

{5k, k+1};

{2k+1, 1}; {8k, 4k}, {8k−1, 4k+1}, …, {7k+1, 5k−1}

(получаются все чётные числа от 4k до 2k+2 по убыванию);

{7k, 5k+1}, {7k−1, 5k+2}, …, {6k+1, 6k}

(а здесь –– все нечётные от 2k−1 до 1);

{4k−1, 2}, {4k−2, 3}, …, {3k+1, k} (недостающие нечётные);

{3k, k+2}, {3k−1, k+3}, …, {2k+2, 2k} (недостающие чётные).

б) Конструкция для n=4k+1 аналогична. Действительно, числа
от 1 до 8k+2 можно разбить следующим образом:

{8k+2, 4k+2}, {8k+1, 4k+3}, …, {7k+3, 5k+1};

{5k+2, k+1};

{7k+2, 5k+3}, {7k+1, 5k+4}, …, {6k+3, 6k+2};

{2k+2, 1};

{4k+1, 2}, {4k, 3}, …, {3k+3, k};

{3k+2, k+2}, {3k+1, k+3}, …, {2k+3, 2k+1}.

77. Решение. Как известно, пифагоровы тройки можно найти
по формуле x = p2 − q2, y = 2pq, z = p2

+ q2. По предположению,
p2− q2

=2pq±1, или (p− q)2
=2q2±1.

Последнее диофантово уравнение, как известно, имеет беско-
нечное множество решений; полагая r= p− q, можно указать после-
довательно такие пары: (r, q)= (1, 0); (1, 1); (3, 2); (7, 5); (17, 12); …

Соответственно получаем пары

(p, q) = (1, 0); (2, 1); (5, 2); (12, 5); (29, 12); …

(x, y, z) = (1, 0, 1); (3, 4, 5); (21, 20, 29); (119, 120, 169);

(697, 696, 985)…

Таким образом, искомых пар существует бесконечно много.
78. Ответ. Это верно тогда и только тогда, когда числа a, b удо-

влетворяют равенству
k
a
+

l
b
=1 для некоторых подходящих k и l.

Доказательство.

Предварительная лемма. Если a, b положительны, то для лю-

бых положительных m, n число
(m+n)ab

a+ b
лежит между ma и nb.
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Для доказательства леммы достаточно сначала вычесть из это-

го числа ma, а затем nb: разности равны соответственно
a(nb−ma)

a+ b

и −b(nb−ma)
a+ b

, они разных знаков.

Теперь предположим для начала, что выполнено равенство
1
a
+

+
1
b
=1. Тогда при любых натуральных m и n число

(m+n)ab

a+ b
=

m+n
1
a
+

1
b

целое. По лемме оно заключено между ma и nb, а это и означает, что
целые части этих чисел разные.

Но если для чисел a и b выполняется требуемое неравенство, то
тем более оно выполняется для кратных им чисел ka, lb. Это озна-

чает, что утверждение верно также и в том случае, если
k
a
+

l
b
= 1,

каковы бы ни были натуральные k, l. Итак, достаточность условия
доказана. Перейдём к более сложному: докажем, что оно является
и необходимым.

Забудем на время, что числа m, n должны быть целыми. Постро-
им плоскость с координатами (m, n), и выясним, в каких точках
плоскости выполняется равенство [ma]= [nb].

Рис. 

Легко видеть, что это цепь прямо-

угольников размером
1
a
× 1

b
, показанная

на рис. . Их общей диагональю явля-
ется прямая am= bn (или, говоря точ-
нее, их диагоналями являются отрезки
этой прямой); мы будем называть её
диагональю цепи, а прямоугольники ––
прямоугольниками цепи.

Требуется доказать, что внутри этой
цепи лежит хотя бы одна целая точка. Начнём с произвольной це-
лочисленной точки на плоскости, и попытаемся её «загнать» внутрь
нашей цепи. Очевидно, при этом мы вправе сдвигать точку в трёх
направлениях, а именно:

i) на любое целое число вправо-влево (при этом целочисленная
точка остаётся целочисленной),

ii) на любое целое число вверх-вниз,

iii) наконец, можно её также сдвинуть вниз на вектор
n

−1
a

,−1
b

o

.

Действительно, такой сдвиг переводит наши прямоугольники цепи
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один в другой, так что если после сдвига точка попала внутрь k-го
прямоугольника, то до сдвига она лежала в (k+1)-м.

Однако «очевидно», что сдвигая точку сразу в трёх направлени-
ях, мы плотно заполним её образами всю плоскость. Следовательно,
точки-сдвиги исходной точки попадут, в частности, и в наши прямо-
угольники, что и требовалось доказать.

Остаётся, правда, выяснить, что означает «очевидно», и в част-
ности –– почему это «доказательство» не проходит, например, когда
1
a
+

1
b
=1.

Разобраться в этом мы предлагаем читателям. Подсказка: для

начала целесообразно доказать, что если
1
a
+

1
b
= 1, то все точки-

сдвиги попадают на семейство прямых вида

x+ y = m, где m = 0, 1, 2,−1,−2, …

79. Ответ. При N=11.
Доказательство.

i) Не больше. Допустим, что удалось расставить 12 чисел или
больше: a1, a2, …, a12. Выберем из них любые три подряд, и при-
пишем к ним слева или справа ещё пять наших чисел (например:
мы выбрали числа a3, a4, a5 –– припишем ещё числа a6, a7, …, a10).
Тогда сумма приписанных чисел, согласно условию, положительна,
а сумма всех восьми –– отрицательна. Следовательно, сумма любых
трёх чисел подряд отрицательна.

Важнейшее замечание: соль решения в том, что к любой тройке
всегда можно приписать либо 5 чисел слева (если номер первого
числа больше 5), либо справа (если номер первого числа не боль-
ше 5, а последнего, следовательно, не больше 7).

Итак, сумма любых пяти чисел подряд положительна, а сумма
любых трёх подряд отрицательна. Применим тот же приём вторич-
но: выберем любые 2 числа подряд, и припишем к ним ещё три. По
тем же соображениям получается, что сумма нашей пары обязана
быть положительна.

Но это уже явно абсурдно. В самом деле, возьмём  чисел подряд,
тогда, разбив их на две тройки, мы видим, что их сумма отрицатель-
на, а разбив на три пары –– что положительна. Противоречие.

ii) Не меньше. Пусть N=11 или меньше. Тогда приведённое рас-
суждение не проходит, поскольку к средней тройке –– числам a5, a6

и a7 –– нельзя приписать ещё пять ни справа, ни слева.
Отсюда, впрочем, ещё ничего не следует. Однако вот конструкция.
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Расставим одинаковые числа x со сдвигом на 5, а также на 8 но-
меров. Это значит, что числа, равные x, стоят на 1-м, 9-м, 4-м, а так-
же 6-м, 11-м, 3-м и 8-м местах. На оставшиеся  места поставим
число y.

Легко убедиться, что в таком случае сумма любой пятёрки чи-
сел равна 3x + 2 y, а сумма любой восьмёрки –– 5x + 3 y. Остаётся
подобрать числа x, y так, чтобы первая сумма была положительна,
а вторая отрицательна. Можно, например, положить x=−5, y=8.

Другое доказательство. п. i) Рассмотрим все пятёрки, какие мож-
но выбрать подряд из 12 чисел. Их 8 штук, и они начинаются с пер-
вого, второго, …, восьмого числа. Составим сумму всех пятёрок;
исходные 12 чисел входят в эту сумму по нескольку раз, а именно
столько, сколько показано в таблице:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1 2 3 4 5 5 5 5 4 3 2 1

Теперь рассмотрим сумму всех восьмёрок, которые можно вы-
брать в таблице, и также посчитаем, по сколько раз каждое чис-
ло войдёт в сумму всех восьмёрок. Легко убедиться, что получится
точно та же таблица.

Это означает, что сумма

S= a1+2a2+3a3+4a4+5(a5+a6+a7+a8)+4a9+3a10+2a11+a12

равна, с одной стороны, сумме всех пятёрок (т. е. положительна),
а с другой –– сумме всех восьмёрок (т. е. отрицательна). Противо-
речие.

Замечание. Эти же методы позволяют решить задачу в общем слу-
чае: если любая сумма m чисел должна быть положительна, а сумма
любых n –– отрицательна, причём m и n взаимно просты, то расста-
вить можно максимально m+ n− 2 числа. Постарайтесь доказать
это самостоятельно.

Ещё замечание. А как изменится ответ, если m и n имеют макси-
мальный общий делитель r?

80. Ответ. Да, существует. Например, число 120 представимо
12-ю способами.

81. Сумма цифр S числа
A
2

не может быть меньше
43
2

, т. е. 23.
Кроме того, сумма цифр числа A равна 2S−9k, где k –– число пере-
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носов в разрядах при суммировании
A
2
+

A
2

. Соответственно, мини-
мальная сумма цифр равна 26 (сумма цифр удвоенного числа равна
52−9k, и может быть только 1 перенос).

Максимальная сумма равна 215. Можно взять число 55…5 · 2=
=11…10 (43 ненулевых цифры).

В самом деле, если в каком-то разряде происходит перенос, то
у удвоенного числа в следующем разряде стоит нечётная цифра ––
следовательно, не нуль.

Поэтому переносов не может быть больше 43. В приведённом
числе их как раз и будет 43.

82. Ответ-решение. Существует во всех трёх случаях.
а) Годится, например, число A=1 023 456 789 (2A=2046 913 578).

Добавим к этому, что если A = 123 456 7890, то числа 2A, 4A, 7A

и 8A –– тоже полные (!).
б) Тут пример найти труднее. Идея поиска такова: легко сообра-

зить, что если бы перенос в разрядах не происходил, то годилось бы
любое полное число. Однако переносы неизбежно происходят.

Сумма цифр полного числа равна 45, поэтому при утроении нуж-
но, чтобы произошло (3 ·45−45) : 9=10 переносов в разрядах (при
этом подразумевается, что при утроении, например, девятки проис-
ходит 2 переноса). Так как цифры 1, 2 не дают переноса (даже если
после них стоит большая цифра), 4, 5 всегда дают один перенос,
а 7, 8, 9 –– два, то цифры 3 и 6 должны в сумме дать 2 переноса:
либо после 6 должна стоять большая цифра, а после 3 –– малая, либо
наоборот.

Кроме того, цифры должны «пройти круг». Это означает сле-
дующее: если бы переносов в разрядах не было, то любое число
из 9 или 10 разных цифр при утроении оставалось бы таким же:
1→3, 2→6, и т. д. –– каждая цифра встретится по одному разу (в от-
личие от удвоения). Но так как неизбежно происходят переносы
в разрядах, то к полученным цифрам прибавляются перенесённые
из предыдущего разряда единицы или двойки. Сумма переносов
должна дать ровно 10.

Исходя из этих соображений, можно найти различные ответы.
Годится, например, число 1 459 837 620. При умножении его на три
происходит следующее:

0→ 0, 2→ 6, 6→ 8 (и единица в уме),

7→ 1+1 = 2 (и 2 в уме) и т. д.
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То есть, вместо того, чтобы пройти круги 1→ 3→ 9→ 7→ 1,
2→ 6→ 8→ 4→ 2 (а 0 и 5 переходят в себя), числа идут по такому
кругу:

1→ 3+1 = 4→ 2+1 = 3→…,

причём сумма добавленных единиц равна 10.
в) Существует. Найти здесь не очень легко. Однако годится, на-

пример, число A=2 865 347 109.

Алгебра

83. Указание. Q= (a+ b)3
+ (3b)3 и поэтому делится на (a+ b)+

+3b=a+4b.
84. Ответ. 105 · 1

3
· 3

5
· 5

7
=15.

Решение. При первой операции меняется знак у трети всех чи-
сел. Поэтому от всей суммы S остаётся

S1 =
2
3
·S+ 1

3
· (−S) =
�

1− 2
3

�

·S.

При второй операции на −1 умножается пятая доля плюс единиц
и пятая доля минус единиц (почему?), следовательно, опять-таки от
суммы остаётся

4
5
·S1+

1
5
· (−S1) =
�

1− 2
5

�

·S1.

Убедитесь сами, что при третьей операции сумма умножается на

1− 2
7
=

5
7

.
85. Решение. Легко доказать, что начиная с некоторого места

ar равно 0 или 1. (Можно даже указать, что это верно, например,
с 250-й тысячи.) Однако в дальнейшем интервалы между полными
квадратами возрастают, и потому в последовательности {ar} возни-
кают всё более длинные «куски» из сплошных нулей. Для того чтобы
получить кусок длины s, требуется только, чтобы для очередного
возводимого в квадрат числа N выполнялось неравенство

(N+1)2−N2 > 1000 · (s+1),

т. е. N > 500 · (s+ 1). Поэтому период должен был бы состоять из
одних нулей, что невозможно.

86. а) Ответ. Нет.
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Решение. Поскольку 72 < 50, а 7,82 > 60, то в промежутке
[50 · 1010; 60 · 1010] содержится менее 105 (точнее, менее 80 000)
квадратов. Поэтому квадратов «не хватает» на 105 шестизначных
чисел, начинающихся с 5.

б) Ответ. Да.
Решение. В самом деле, пусть a –– некоторое шестизначное чис-

ло, меньшее
p

2 ·1011. Тогда a<4,5 ·105, и потому

(a+1)2−a2
= 2a+1 < 106.

Отсюда ясно, что продвигаясь по ряду чисел a2, (a+1)2, (a+2)2, …
мы не пропустим ни одного шестизначного числа B: это могло бы
случиться лишь в том случае, если бы оказалось, что (a+ k)2< B ·106,
тогда как (a+ k+1)2¾ (B+1) ·106.

в) Ответ. Нет.
Решение. Рассуждение из п. а) здесь уже не проходит, так какp

30−
p

20>1. Необходимо воспользоваться тем, что
p

30−5<0,5;
отсюда следует, что не все шестизначные числа из промежутка
[25 ·104; 30 ·104] «закрываются» квадратами.

г) Ответ. 251 000.
Решение. Если a< 500 000, то (a+ 1)2 − a2 < 1 000 000. Отсюда

видно, что в ряде чисел 12, 22, …, 500 0002 встречаются все 6-знач-
ные «начала». Следовательно искомое число больше, чем 5002

=

=250 000. Рассмотрим теперь число

(500 000+ b)2
= 25 ·1010

+1 000 000b+ b2.

Когда b пробегает значения 1, 2, …, второе слагаемое обеспечивает
увеличение шестой слева цифры на 1; поэтому весь вопрос в том,
когда именно член b2 приведёт к «проскакиванию». Очевидно, это
произойдёт при b=1000. Тогда имеем:

501 0002
= 251 001 ·106,

откуда видно, что на 1002 шестизначных числа от 250 000 до 251 001
приходится только 1001 «корень» от 500 000 до 501 000, причём

500 9992
= 250 999 998 001,

так что пропускается число 251 000. Допустим теперь, что кроме него
было пропущено какое-то другое шестизначное число из промежут-
ка [250 000; 251 000]. Тогда в этом промежутке пропущено два числа,
и на 1000 «корней» приходится 999 квадратов. Из принципа Дирихле
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следует, что какое-то другое число в ряду квадратов встретится два-
жды; но этого быть не может, так как начиная с числа 250 000 рас-
стояние между любыми двумя квадратами больше миллиона.

д) Решите эту задачу сами, приняв во внимание, что

3 ·105
¶ n < 4 ·105.

и что N3− (N−1)3<3N2 для любого N .
Ответ. 13 цифр. (Почему двенадцати недостаточно?)
87. Решение. а) Невозможно, так как если N –– общее кратное

чисел d1, d2, …, dm, то среди первых N чисел не более 0,9 ·N членов
данных прогрессий.

б) Это возможно. Например: первая прогрессия начинается с еди-
ницы и имеет разность 2, т. е. состоит из всех нечётных чисел (d1=

= 2; {1, 3, 5, …}), вторая начинается с 2 и имеет разность 8 (d2 =

=8; {2, 10, 18, …}), третья начинается с 4 и имеет разность 32 и т. д.:
k-я прогрессия начинается с первого из пропущенных до сих пор
чисел и имеет разность 22k−1. Легко убедиться, что эти прогрессии
не пересекаются; сумма обратных разностей равна

1
2
+

1
8
+

1
32
+… =

1
2
· 1

1− 1
4

=
2
3
< 0,9.

В действительности сумму обратных разностей можно сделать сколь
угодно малой. (Как?)

88. Указание. Одно неравенство следует из того, что 23
=8<32

=

=9; другое –– из того, что 28
=256>243=35.

89. Решение. 210
=1024>1000, откуда следует, что lg 2>0,3.

Поскольку 72 ·2= 98< 100, то 2 lg 7+ lg 2< 2. Отсюда получаем,
что lg 7<0,85.

С другой стороны, 3,42>10, т. е. lg 3,4>
1
2

. Но 73
=343, следова-

тельно, 3 lg 7>2,5, lg 7>0,83.
Отсюда получаем ответ: lg 7≈0,84 (ошибка меньше 0,01). В дей-

ствительности lg 7≈0,8451.
90. Ответ. Максимум достигается, если эти числа «по возмож-

ности» равны между собой. Это значит, что a1 = 26, a2 = 27, …,
a25=50; a26=1, a27=2, …, a50=25. Тогда каждый модуль равен 25,
а вся сумма равна 5 ·50=250.

91. Ответ. c2
=a2d.

Указание.
�

x+
k
x

�2
=x2

+2k+
k2

x2 , откуда ясно, что после деления

исходного уравнения на x2 первый и последний член выражаются
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через y2. Остаётся проследить за тем, чтобы величина k для второго
и четвёртого членов была такой же, как для первого и последнего.

92. Ответ. Нет.
Решение. В самом деле, пусть P(x)=Q(R(x)) и y, z –– корни Q.

Тогда, используя теорему Виета для Q(x), получаем:

P(x) = Q(R(x)) = k(R(x)− y)(R(x)− z),

откуда видно (используем теорему Виета для R(x)), что сумма кор-
ней первого и второго множителя одинакова. Таким образом, необ-
ходимое условие такого представления состоит в том, что корни
P(x) можно разбить на две пары x1, x2 и x3, x4 так, что

x1+ x2 = x3+ x4.

Можно показать, что это условие является и достаточным.

93. Ответ. a2>
8b
3

.
Решение. Если y1= Ax+ B –– такая касательная, то функция y− y1

должна иметь два двойных корня. Отсюда легко следует, что y− y1=

= (x2
+ px+ q)2. Числа p и q легко найти, исходя из того, что функ-

ция y− y1 совпадает с y в степенях выше первой, а коэффициенты
при первой и нулевой степенях x можно сделать произвольными за
счёт выбора A, B. Прямое вычисление показывает, что

p =
a
2

, q =
b
2
− a2

8
,

и тогда функция
y1 = y− (x2

+ px+ q)2

линейна и задаёт искомую касательную. Остаётся, однако, вопрос:
действительно ли она касается кривой y? Это зависит от того, будут
ли корни уравнения x2

+ px+ q=0 вещественными или мнимыми,
т. е. от знака дискриминанта. Условие, указанное в ответе, и озна-
чает, что D>0.

При D = 0 касательная прямая имеет две сливающиеся точки
касания (т. е. одну точку касания 3-го порядка), а при D < 0 –– две
мнимые точки касания. Например, если y = x4

+ x2
+ 1, то прямая

y1 =
3
4

имеет с графиком две мнимые точки касания; на графике
они не видны, прямая лежит ниже графика.

94. Ответ. xk=
(−1)k−1

(n−1)!
Ck

n−1.

Решение. Решение этой системы связано с разложением дроби
1
Q
=

1
( y+1)( y+2)…( y+n)
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на простейшие. Именно, пусть эта дробь равна сумме

x1

y+1
+

x2

y+2
+…+

xn

y+n
,

тогда левые части уравнений –– не что иное, как значения суммы
при y=0, 1, 2, …, n−1, а правые части –– значения самой дроби. Те-
перь утверждения б) и в) непосредственно следуют из симметрии
задачи относительно замены y на n+1− y. Пункт а) решается стан-

дартным образом –– приведением равенства
1
Q
=

x1

y+1
+… к обще-

му знаменателю, отбрасыванием знаменателя и подстановкой кор-
ней.

95. Указание. Решение этой задачи сходно с предыдущей. А имен-
но, рассмотрим систему линейных уравнений, k-e уравнение кото-
рой имеет вид

x1

bk− c1
+

x2

bk− c2
+…+

xn

bk− cn
= 0.

(В правой части стоит 0 для всех уравнений, кроме n-го; если же
k=n, то в правой части должна стоять единица.)

Тогда, во-первых, решение системы {x1, …, xn} представляет со-
бой последний столбец обратной матрицы (для нахождения других
столбцов нужно рассмотреть в правой части единицу не на n-м, а на
другом месте), а во-вторых, из формулы Крамера немедленно следу-

ет, что xn есть частное двух определителей
∆n−1

∆n
, где∆n –– определи-

тель данной матрицы, а∆n−1 –– такой же определитель, но (n−1)-го
порядка. Это позволяет найти определитель системы по индукции.

Для нахождения x1, …, xn нужно, как выше, рассмотреть разло-
жение на простейшие рациональной дроби

P(x)
(x+ b1)…(x+ bn)

=
x1

x+ b1
+…+

xn

x+ bn
,

где P(−c1)=…= P(−cn)=0. Учитывая последнее уравнение, мы ви-
дим, что

P(x) = (x+ c1)…(x+ cn−1) · (b1− cn)…(bn− cn)
(c1− cn)…(cn−1− cn)

,

откуда

xn =
P(−bn)

(b1− bn)…(bn−1− bn)
=

[(c1− bn)…(cn−1− bn)] · [(b1− cn)…(bn− cn)]

(b1− bn)…(bn−1− bn)(c1− cn)…(cn−1− cn)
.

Остальные xk находятся аналогично.
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96. Ответ. Если k< n−1, то D=0. Легко убедиться, что строки
линейно зависимы.

При k=n−1 получаем D= (−1)n(n−1)/2((n−1)!)n.
97. Ответ. Предел равен sin 1.
98. Решение . Вычет левой части в точке z, очевидно, равен z.

Вычет правой части равен n, делённому на производную знамена-

теля, т. е.
n

nxn−1 при x= z. Но тогда xn−1
= zn−1

=
1
z

. Поэтому вычеты

совпадают и разность левой и правой части имеет только устрани-
мые особенности, т. е. является константой. Чтобы убедиться в том,
что эта константа равна 0, достаточно, например, подставить в обе
части равенства x=0.

Решение . Обозначим левую часть равенства через f (x), пра-
вую часть равенства –– через g(x). Приведём сумму f (x) к общему
знаменателю; ясно, что она примет вид

f (x) =
P(x)

xn−1
,

где P(x) –– многочлен степени не выше n−1.
Заметим далее, что левая часть (как и правая) не меняется при

замене переменной x на ζx, где ζ –– любой корень n-й степени из 1.
Но тогда и P(x) не меняется при такой замене (поскольку не меня-
ется знаменатель xn− 1). Однако таким свойством обладают лишь
многочлены вида P(x)=Q(xn). Учитывая степень P(x), мы видим,
что P(x)=C. Найти константу можно так же, как и в первом реше-
нии.

Решение  (А. В. Князюк). Пусть P(x)= (x−a)…(x−d) –– любой
многочлен. Тогда по формуле логарифмической производной

P′(x)
P(x)

=
1

x−a
+…+

1
x−d

.

Следовательно,
xP′(x)
P(x)

=
x

x−a
+…+

x
x−d

;

с другой стороны,

nP
P
= n = 1+1+…+1 =

x−a
x−a

+…+
x−d
x−d

.

Вычитая эти равенства одно из другого, мы получаем для любого
многочлена:

∑ ξ

x−ξ =
xP′−nP

P
,
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где ξ пробегает все корни многочлена P. Условие данной задачи
есть частный случай получившейся формулы для P(x)= xn−1.

99. Решение. Начнём с задачи б). Ясно, что в каждый момент
можно делать один и только один из двух возможных ходов (либо
вправо, либо влево), т. е. игра действительно может продолжаться
неограниченно, но её ход полностью предопределён начальным по-
ложением фишки. Ясно, что рано или поздно фишка окажется на
поле, где она уже была. Сколько ходов пройдёт между двумя её попа-
даниями на это поле? Если считать, что между этими попаданиями
было сделано x ходов вправо и y ходов влево, то (x, y) –– решение
уравнения 100x − 47 y = 0 в натуральных числах. Но наименьшее
такое решение есть x = 47, y = 100, так что для возврата на ста-
рое место нельзя обойтись менее чем 147 ходами. Следовательно,
за первые 147 ходов фишка обойдёт все поля по одному разу, а на
148-м она может попасть только на исходное поле (иначе оказалось
бы, что она дважды попала на одно поле с интервалом менее 147
ходов).

Перейдём к задаче а). Поскольку числа 300 и 198 имеют общий
делитель 6, количество снятых долларов кратно 6 и не может быть
больше 498. Для того чтобы доказать, что можно снять 498 долла-
ров, отметим аналогию задач а) и б). В том и другом случае в любой
момент есть возможность делать только один ход из двух возмож-
ных (единственное исключение составляет случай, когда на счете
лежит 302 доллара, но если такое положение создалось, то сняв 300,
мы решим задачу; в остальных случаях если можно снять 300 дол-
ларов, то на счете имеется не менее 308 долларов, и у меня нет 198
долларов, чтобы их положить; соответственно, если фишку можно
сдвинуть вправо, то её невозможно двигать влево). Таким образом,
если сделать (498 : 6+1=84) операции, то на счете возникнет каж-
дое из 84 возможных положений, в том числе и 2 доллара.

100. Решение. Если

a1+…+…+a2n = 0, то k = 2n.

Пусть теперь эта сумма отлична от нуля; заметим, что она чётна.

Поэтому
a1+…+…+a2n

2
= r –– целое число. Сумма a1 +…+ ak уве-

личением k на единицу меняется на 1, причём при k=0 она равна
0, а при k=2n она равна 2r. Поэтому на некотором шаге она будет
равна r. Тогда и сумма оставшихся чисел будет равна r, что и требу-
ется.
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101. Ответ. Нет, не может (в обоих случаях).
Решение. а) Пусть (n+1) –– число участников, Sk –– сумма очков

k-го участника и Ak –– число, указанное в условии. Докажем, что

A =
∑

Ak ¶ 0.

Пусть ak и bk –– число выигранных и проигранных k-м участни-
ком партий соответственно, тогда

Sk =
n+ak− bk

2
.

Это число входит в общую сумму A несколько, а именно bk, раз со
знаком плюс и несколько, а именно ak, раз –– со знаком минус. Раз-

бивая Sk на два слагаемых –– постоянное
n
2

и переменное
(ak− bk)

2
,

мы видим, что

A =
n
2
·
∑

(bk−ak)+
∑ (ak− bk)(bk−ak)

2
.

Первое слагаемое равно нулю в силу того, что на каждый выигрыш
одного из участников приходится проигрыш другого, т. е.

∑

ak=
∑

bk,
а второе очевидным образом неположительно (оно может равнять-
ся нулю в том и только в том случае, когда каждый из участников
проиграл и выиграл одинаковое число партий, т. е. набрал ровно
половину возможных очков).

б) Рассмотрим сумму
∑

Sk · Ak. Поскольку Ak состоит из слага-
емых Sr, которые идут со знаками плюс и минус, то и вся сумма
состоит из слагаемых±SkSr. Если k-й игрок выиграл у r-го, то такое
слагаемое входит в общую сумму дважды –– со знаком плюс в Sk Ak

и со знаком минус в Sr Ar. Если же они сыграли вничью, то такое
слагаемое не входит в сумму вовсе. Так или иначе, все слагаемые
взаимно уничтожаются и сумма равна нулю.

Поскольку все Sk положительны, это означает, что среди Ak име-
ются как положительные, так и отрицательные. Заметим, кстати,
что это решение проходит и в случае задачи а).

102. Решение. Для доказательства первой формулы надо мно-
гократно итерировать следующие два соотношения:

∞
∑

n=1
an = a1+

∞
∑

n=2
an, ()

∑ 1
n2 =
∑ n+1

n2(n+1)
=
∑ 1

n(n+1)
+
∑ 1

n2(n+1)
, ()

причём первый ряд в формуле () суммируется в конечном виде.
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Применяя сначала первую, а затем вторую формулу непосред-
ственно к левой части, мы получаем:

∞
∑

1

1
n2 = 1+

∞
∑

2

1
n(n+1)

+

∞
∑

2

1
n2(n+1)

= 1+
1
2
+

∞
∑

2

1
n2(n+1)

, ()

первые два члена дают
3
2

, т. е. как раз первый член правой части.
Для получения второго слагаемого нужно повторить процедуру, т. е.
из ряда, оставшегося в правой части (), опять выделить первый

член (он равен
1

12
), а в оставшемся выражении домножить числи-

тель и знаменатель на n+ 2. В результате полученное выражение
опять-таки разбивается на два слагаемых, из которых одно сумми-
руется в конечном виде; получившиеся два конечных члена отно-
сятся как 1 : 2 и в сумме дают нужное второе слагаемое и т. д. Мно-
гократно итерируя этот процесс, мы и получим первую формулу.

Вторая формула доказывается точно тем же способом, с той лишь
разницей, что если в первом случае числитель и знаменатель нуж-
но последовательно домножать на n+ 1, n+ 2 и т. д., то во втором
случае домножать нужно на n2−1, n2−4, n2−9 и т. д.

103. Ответ.
1
6

,
1
3

,
1
2

.
Доказательство. Пусть сначала в прогрессии 2k + 1 членов,

тогда среднее значение равно среднему члену и равно
1

2k+1
. Наи-

меньший член больше 0, следовательно, наибольший меньше, чем
2

2k+1
, соответственно, не больше чем

1
k+1

. В прогрессии имеется k

членов, которые больше среднего, поэтому её членами являются все

числа
1

2k+1
,

1
2k

,
1

2k−1
, …,

1
k+1

. Но эти числа образуют прогрессию

только в том случае, если их не более 2. Следовательно, k=1.
Случай чётного числа членов разбирается аналогично, и в этом

случае решений нет.
104. Очевидно, если все площади больше нуля (в противном слу-

чае доказывать нечего), на каждой из 29 горизонталей должно быть
по одному узлу, и все эти узлы стоят также на разных вертикалях.
Таким образом, если нумеровать узлы по горизонталям, получается
перестановка чисел {1, …, 29}. Соответственно, задача может быть
переформулирована следующим образом:

Числа 1, 2, …, 29 переставлены произвольным образом, так, что

число k стоит на месте с номером ak.
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а) Докажите, что существуют такие k, r, что модуль произве-

дения Mkr= (k− r)(ak−ar) меньше 13.
б) Верно ли, что существуют такие k, r, что модуль произведе-

ния Mkr меньше 10?
Далее мы решаем именно эту задачу.
Решение. а) Назовём «соседями» a числа a−1 и a+1. Очевидно,

каждое число имеет двух соседей, кроме 1 и 29, у которых только по
одному соседу.

Допустим, что утверждение а) неверно, и рассмотрим числа, сто-
ящие на местах с номерами от 12 до 18. Если разность каких-то
двух их них равна 1 или 2, то Mkr ¶ 12. Отсюда следует, что эти
семь чисел не могут быть соседними или даже иметь общих соседей.
Следовательно, у них не менее 12 различных соседей (было бы 14,
но, возможно, два из них –– числа 1 и 29, которые имеют только по
одному соседу).

Хотя бы один из соседей попадает в интервал от 6 до 24 (вне
этого интервала лежит только 10 чисел: 1––5 и 25––29), и этот сосед
вместе с исходным числом даёт нужную пару, поскольку разность
самих чисел равна 1, а разность мест не более 12.

б) Нет, неверно. Вот пример.
Пусть ak = 12k (mod 29), т. e. a1 = 12, a2 = 24, a3 = 36− 29= 7,

и т. д. Докажем, что все Mkr не меньше 12.
Допустим противное. Тогда в формуле для Mkr по крайней мере

один из сомножителей меньше четырёх. Пусть сначала это первый
сомножитель; обозначим его R. Тогда второй сомножитель (обозна-
чим его S) либо в 12 раз больше R (в этом случае очевидно, что про-
изведение не меньше 12), либо отличается от 12R на число, крат-
ное 29. Учитывая, что нас интересует не само число, а его модуль,
можно сказать, что второй множитель всегда равен либо 12R, либо
±29±12R, либо, наконец, ±58±12R. Конкретно получаем:

• Если R=1, то S может принимать только значения 12, 17.
• Если R= 2, то S принимает значения 24, 5. В последнем слу-

чае Mkr=10, откуда и видно, что данный метод позволяет получить
оценку 10, но не лучше.

• Если R=3, то S принимает значения 7, 22.
Остаётся рассмотреть случай, когда меньше четырёх не первый,

а второй сомножитель S. В этом случае достаточно воспользоваться
тем фактом, что 122

=144=5 ·29−1, откуда следует, что R=−12S

(mod 29), и надо просто повторить уже приведённое рассуждение.
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105. Доказательство надо, конечно, проводить по индукции.
Вопрос в том, какое именно утверждение надо положить в основу
индукции. Оказывается, надо доказывать индукцией по n следующее
утверждение: для любых n, m > 0 m-я производная функции fn(x)
монотонна и всюду сохраняет знак.

Первый шаг доказательства: проверяем его «в лоб» для n = 0
и для всех m.

Действительно, все производные имеют вид f (m)
0 (x)= Am x1/2−m,

и эти функции попеременно то возрастают, то убывают, в зависи-
мости от знака коэффициента Am.

Остаётся доказать, что если наше утверждение справедливо для
данного n и для всех m одновременно, то оно верно для n+1 (и для
всех m). Это уже несложно: сохранение знака очередных функций
легко вытекает из монотонности предыдущих, а их монотонность ––
из сохранения знака производной. Сверх того, надо ещё проверить,
что f2010(x) возрастает, а не убывает; убедитесь в этом сами.

106. Очевидно, при произвольном n имеется решение x1= x2=…
…= xn –– положительный корень уравнения x2

+ x=0,9.
Мы утверждаем, что при нечётном n других решений нет, а при

чётном n есть ещё две серии решений, для которых x1=x3=…=xn−1,
x2 = x4 =…= xn, x1 + x2 = 1. При этом x1 является одним из двух
корней уравнения x+ (1− x)2

=0,9.
Для доказательства сравним xk с xk+2. Пусть, например, k=1 (со-

ответственно, k+2=3) и x1> x3. Тогда из равенства x2
1 + x2= x2

3+ x4

следует, что x2< x4. Но из этого аналогичным образом следует, что
x3> x5, и т. д.

Естественно, случай x1< x3 совершенно аналогичен.
В итоге, в зависимости от того, как соотносятся x1 и x3, мы по-

лучаем одну из трёх цепочек неравенств (равенств): либо

x1 > x3 > x5 > x7 >…,

либо

x1 < x3 < x5 < x7 <…,

либо, наконец,

x1 = x3 = x5 = x7 =…

Поскольку уравнения идут по кругу, эта цепь замкнётся, и в первом
и втором случаях получается противоречие: x1> x1.

Таким образом, xk= xk+2 для всех k. Остальное очевидно.
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107. Ответ. а) 995. б) −997.
Доказательство. Приведём для начала примеры, когда эти сум-

мы таковы.
Чтобы получить число 995, можно расставить минус единицы на

местах с номерами: 1 и 2; 11 и 12; 21 и 22; …; 991 и 992. При этом
среди произведений получится только две минус единицы (там, где
минус единицы на 991 и 992 местах «цепляются» за минус единицы
на 1 и 2 местах), во все остальные произведения входит ровно две
минус единицы, так что произведение равно +1.

Чтобы получить число (−997), надо расставить минус единицы
на местах 1, 11, 21, …, 991.

Теперь докажем, что в любую сумму входит не менее двух минус
единиц и не менее одной плюс единицы.

Если мы перемножим все получившиеся произведения, то каждое
число войдёт в него в 10-й степени, так что произведение равно +1.

Следовательно, среди полученных произведений чётное число
минус единиц, и соответственно, нечётное число плюс единиц. Та-
ким образом, есть по меньшей мере одна плюс единица, и мини-
мальная сумма равна

998 · (−1)+ (+1) = −997.

Докажем теперь, что все произведения не могут равняться плюс
единице. В самом деле, два соседних произведения xk · xk+1 · xk+2 ·…
… · xk+9 и xk+1 · xk+2 ·… · xk+10 равны между собой тогда и только
тогда, когда xk= xk+10. Но если это выполняется для всех k, то легко
убедиться, что все наши числа должны быть равны между собой,
а это противоречит условию.

108. Решение. Если прошло более 13 лет, то каждого из олигар-
хов уже экспроприировали, и поэтому распределение денег будет
таким: у самого бедного (экспроприированного в нынешнем году) 0
миллионов, у второго (экспроприированного год назад) 1 миллион,
у следующего 2 и т. д. –– всего 0+1+2+…+12=78 миллионов.

Допустим теперь, что прошло k лет, k<13, тогда имеется k экс-
проприированных олигархов, у которых имеется

0+1+…+ (k−1) =
k(k−1)

2
миллионов.

Кроме того, есть (13− k) тех, до кого ещё не дошли руки. У них
денег N + (13− k) · k, где N –– количество денег, которое было у них
изначально.
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Поскольку вначале эти олигархи были самыми бедными,

N ¶
31 · (13−k)

13
. (∗)

Максимум достигается, если, во-первых, неравенство (∗) является
«почти равенством» (т. е. поначалу у всех олигархов было практиче-
ски поровну), и во-вторых, при подходящем k.

Найти нужное k проще всего так: уже доказано, что поначалу все

должны были иметь поровну, т. е. по
31
13
=2, … Обозначим это число

r (миллионов).
Тогда в k-й год олигархи получают суммарно 12 миллионов, а те-

ряют r+ (k−1). Поскольку 2< r<3, отсюда сразу видно, что в пер-
вые 10 лет их суммарный капитал прибывает, а на 11-й начинает
убывать; максимум достигается после 10 лет кампаний. В этот мо-
мент трое олигархов ещё не раскулачены; они имеют 30+3r милли-
онов, а остальные –– 0+ 1+…+ 9= 45 миллионов. Итого 75+ 3r=

= 75+
93
13
= 82+

2
13
= 82 миллиона 154 тысячи (с ошибкой менее

1000). Это и есть ответ.
109. Решение. Заметим прежде всего, что если в условии заме-

нить строгие неравенства на нестрогие, то задача становится невер-
ной, причём имеется два контрпримера:

а) x1=100, x2= x3=…= x100=0;

б) x1= x2=…= x9=
100

3
, x10=…= x100=0.

Наличие не одного, а двух (притом принципиально разных) контр-
примеров показывает, что задача трудная. Но оно же, как мы уви-
дим ниже, позволяет изящно завершить решение.

Перейдём к решению. Без ограничения общности можно счи-
тать, что

x1 ¾ x2 ¾… ¾ x100,

и, таким образом, нам требуется доказать, что x1+ x2+ x3>100.
Поскольку заведомо 10 000< x2

1+ x2
2 +…+ x2

100¶ x1 · (x1+ x2+…

…+ x100), и второй сомножитель меньше 300, то x1>
100

3
.

Предположим, что наше утверждение неверно, т. е. x1+ x2+ x3¶

¶100, и применим известный приём «усиления неравенства». А имен-
но, мы утверждаем, что можно без ограничения общности считать,
что x2= x3.

В самом деле, если x2− x3= a>0, то мы можем заменить наши
числа на такие:

x1+a, x2−a = x3, x3, x4, …, x100,
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причём при такой замене левая часть первого неравенства из усло-
вия, как легко видеть, увеличивается, а вторая остаётся неизмен-
ной. Таким образом, оба неравенства остаются в силе, и по-преж-
нему x1+ x2+ x3¶100.

Далее, мы можем считать также, что x1+ x2+ x3=100 (в против-
ном случае опять-таки можно заменить числа x2 = x3 на большие,
уменьшив при этом какие-то из оставшихся чисел x4, …, x100). При
этом произойдёт то же самое: левая часть первого неравенства из
условия увеличивается, вторая остаётся неизменной, и оба неравен-
ства остаются в силе.

Итак, если условие неверно, то существуют такие числа x1, …

…, x100, что x2= x3=
100− x1

2
и неравенства справедливы.

Но это уже нетрудно опровергнуть. В самом деле, в таком случае

x2
1+ x2

2+…+ x2
100 ¶ x2

1+ x2 · (x2+…+ x100) ¶

¶ x2
1+

h100− x1

2

i

· (300− x1),

откуда

x2
1 +

h100− x1

2

i

· (300− x1) > 10 000.

Последнее условие является квадратичным неравенством относи-
тельно x1. Можно было бы прямым вычислением проверить, что
оно не может выполняться, но проще сослаться на соображения,
высказанные вначале. А именно, мы видели, что это неравенство

обращается в равенство при x1 = 100 и при x1 =
100

3
. Достаточно

бросить беглый взгляд на график параболы, чтобы увидеть, что на
интервале между этими точками оно неверно, а это и требуется.

110. Решение. Запишем по биному Ньютона разложение
(k+1)m+1 для всевозможных k. Получим следующий набор формул:

(n+1)m+1
= (n+1)m+1

= nm+1
+C1

m+1nm
+C2

m+1nm−1
+C3

m+1nm−2
+…

nm+1
= [(n−1)+1]m+1

= (n−1)m+1
+C1

m+1(n−1)m
+

+C2
m+1(n−1)m−1

+C3
m+1(n−1)m−2

+…

(n−1)m+1
= [(n−2)+1]m+1

= (n−2)m+1
+C1

m+1(n−2)m
+

+C2
m+1(n−2)m−1

+C3
m+1(n−2)m−2

+…

Просуммировав все эти формулы, мы видим, что в левой части стоят
все (m+1)-е степени от 1 до (n+1), а в правой –– также все (m+1)-е
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степени, но от 1 до n, (а также много членов меньшей степени).
Члены 1m+1, 2m+1, …, nm+1 взаимно уничтожаются, и остаётся сле-
дующая формула:

(n+1)m+1
= C1

n+1S(n, m)+C2
n+1S(n, m−1)+C3

n+1S(n, m−2)+… ()

Эта формула позволяет получить рекуррентную формулу для S(n, m).
Тем самым доказан пункт а). В самом деле, в левой части стоит мно-
гочлен степени (m+1), а в правой –– S(n, m) и ещё несколько слага-
емых, каждое из которых, согласно индуктивному предположению,
является многочленом от n степени не выше n (поэтому старший ко-
эффициент не сокращается). Отсюда также находим несколько пер-
вых коэффициентов многочлена S(n, m). Несколько дальнейших ко-
эффициентов таковы:

a =
1

m+1
, b =

1
2

, c =
m
12

, d = 0, …

Взвешивания

111. Решение. а) Для простоты рассуждений завхоз добавляет
одну пустую банку (весом 0) и включает её в список.

Первое взвешивание организуется так: на одну чашку он кла-
дёт 27 самых тяжёлых банок (он знает, какие банки нужно взять),
а на другую –– 27 самых лёгких. Получается разность, наибольшая
из всех возможных. Остальные члены турпохода должны признать,
что разбиение на 3 группы (27 самых тяжёлых, 27 самых лёгких
и 27 остальных) произведено правильно. Завхоз помечает банки
буквами «т» (тяжёлые), «л» (лёгкие) и «с» (средние).

Второе взвешивание: на одну чашку кладутся 9 самых тяжёлых
банок из числа 27, помеченных буквой «т», 9 самых тяжёлых из груп-
пы «с» и 9 самых тяжёлых из группы «л». На другую чашку –– анало-
гично три самые лёгкие девятки из трёх групп, возникших при пер-
вом взвешивании. Опять получается максимальная разность из всех,
которые могут получиться, если брать девятки из этих трёх групп.
Остальные туристы опять должны признать, что выделение тяжё-
лых и лёгких групп проведено правильно. Завхоз помечает девятки
второй буквой «т», «л» или «с», так что получается 9 групп по 9 банок
в каждой, которые помечены парами букв «тт», «тс» и т. д.

Третье взвешивание: кладём на первую чашку по три самых
лёгких банки из каждой группы, а на вторую –– по три самых тя-
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жёлых; аналогично помечаем банки третьей буквой, и в результате
все банки будут разбиты на 27 групп. Четвёртым взвешиванием мы
кладём на одну чашку по самой лёгкой банке из каждой группы,
а на вторую –– по самой тяжёлой. И на этот раз ясно, что разность
весов будет максимальна по сравнению с любой другой комбина-
цией, при которой на каждую из чашек кладётся по одной банке
из каждой группы. Тем самым завхоз доказал, что веса банок имен-
но таковы, как он утверждал.

Замечание. Допустим, что вместо буквы «л» мы будем писать 0,
вместо «с» –– единицу и вместо «т» –– двойку. Тогда на банке будет
написано четырёхзначное число; проверьте, что оно есть просто-
напросто троичная запись номера банки (считая по увеличению ве-
сов) без единицы. (Почему?)

Легко убедиться, что при наличии N банок потребовалось бы
log3 N взвешиваний (с округлением до целого в сторону увеличения).

б) Предположим, что проделано только 3 взвешивания; при каж-
дом взвешивании банка попадает либо на левую, либо на правую
чашку, либо остаётся в стороне. В зависимости от этого пометим
каждую банку одной из букв «т», «л» или «с» (последнее означает,
что банка не взвешивалась). Аналогично напишем по букве после
второго и третьего взвешиваний. Наборов из букв всего 27, а ба-
нок –– 80. Значит, найдутся две банки с одинаковой маркировкой.
Это означает, что при каждом взвешивании эти банки попадали
на одну и ту же чашку (или одновременно откладывались в сторо-
ну); поэтому невозможно, основываясь на результатах только трёх
взвешиваний, различить их.

112. Решение. Предположим, что плечи относятся как 1 : 2. По-
ложим на одну чашку три монеты, на другую шесть.

Если весы в равновесии, то эти девять монет настоящие, а фаль-
шивая –– одна из четырёх оставшихся. Кладём на одну чашку весов
две настоящие монеты, а на другую –– три подозрительные и од-
ну настоящую. Если равновесие не нарушено, то фальшивая моне-
та –– последняя (можно третьим взвешиванием выяснить, легче она
или тяжелее); если же равновесие нарушилось, то фальшивая –– од-
на из этих трёх (причём известно, легче она или тяжелее). Тогда тре-
тьим взвешиванием кладём две из них на разные чашки, дополнив
одну из чашек ещё одной, настоящей монетой. Этого достаточно,
чтобы определить фальшивую.
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Теперь допустим, что при первом взвешивании равновесие нару-
шено и что перевесила, например, чашка с тремя монетами. Тогда
четыре оставшихся монеты –– настоящие, а фальшивая –– либо одна
из трёх (тяжелее других), либо одна из шести (легче). Вторым взве-
шиванием мы можем разложить эти шесть «подозрительно лёгких»
монет на две кучки по три в каждой (и дополнить одну чашку тре-
мя настоящими монетами); это позволит определить, находится ли
фальшивая монета на одной чашке, на другой, или она среди трёх
«подозрительно тяжёлых». Третье взвешивание находится без труда.

113. Решение. а) Заметим прежде всего, что для пяти гирь до-
статочно восьми взвешиваний.

В самом деле, за три взвешивания можно расположить 3 гири
в порядке их весов. Для того чтобы определить место четвёртой ги-
ри среди них, достаточно двух взвешиваний (сначала надо её срав-
нить со средней по весу); итак, за 5 взвешиваний удалось распо-
ложить 4 гири в порядке весов. Место пятой легко определить за
3 взвешивания.

Этот метод годится для любого числа гирь и позволяет расста-
вить n гирь по весу за a1+a2+…+an−1 взвешиваний, где ak равно
log2(k+1), округлённому до ближайшего целого сверху: a1=a2=1,
a3 = a4 = 2 и т. д. Оценка сверху, очевидно, равна log2(n!), также
округлённому в бо́льшую сторону.

Однако для пяти гирь найденное решение не оптимально: мож-
но обойтись семью взвешиваниями. Для этого надо действовать
следующим образом.

Обозначим гири A, B, C, D, E. Взвесим сначала две разные пары
гирь, и пусть A> B, C>D. Взвесим теперь A и C; очевидно, они рав-
ноправны, поэтому пусть A> C. Нетрудно заметить, что в каждом
случае мы делили 5!= 120 вариантов расположения гирь по весам
пополам, так что теперь осталось 15 возможностей.

Сравним теперь гири C и E. Имеется две возможности:
1) C>E; допустимо 8 вариантов порядка: ABCDE; ABCED; ACBDE;

ACBED; ACEBD; ACDBE; ACDEB; ACEDB.
Тогда установлено, что A –– самая тяжёлая, а гири D и E оказа-

лись равноправны; сравниваем их. Допустим, что D> E; тогда оста-
лось найти гире B место между C, D, E, и это легко сделать за два
взвешивания.

2) E>C; возможны 7 вариантов порядка: ABECD; AEBCD; AECBD;
AECDB; EABCD; EACBD; EACDB.
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Следующим взвешиванием сравним гири A и E. Если A тяже-
лее, то остаётся найти место гире B между гирями E, C, D, если же
тяжелее гиря E, то у нас остаётся 2 взвешивания, чтобы выбрать
один правильный вариант из трёх. В том и другом случае решение
очевидно.

Стоит отметить, что это решение единственно (по крайней мере
на первых четырёх ходах). В самом деле, если мы, например, на вто-
ром ходу пустим в ход одну из уже взвешенных гирь, то легко убе-
диться, что в зависимости от результата у нас останется либо 20,
либо 40 вариантов (либо A> B>C, либо A> B и A>C). Во втором
случае задача, очевидно, не решается за 5 взвешиваний. Точно та
же ситуация возникает на третьем и четвёртом ходах.

114. Ответ. Не обязательно. Если веса гирь –– все чётные числа
от 2 до 100, то он прав. В самом деле, тогда сумма весов, как легко
сообразить, имеет вид 4k+2, следовательно, весы были бы в равно-
весии только если бы на каждой чашке были гири суммарным весом
2k+1, а это невозможно.

Дополнительный вопрос. Верно ли, что этот пример –– един-

ственный? Иными словами, верно ли такое утверждение: если име-

ется 50 гирь, весом от 1 до 100, которые нельзя разложить на

две чашки весов –– то набор весов всех гирь определён однозначно:
2, 4, 6, …, 100?

115. Решение. Пусть ak –– веса гирь, расположенные по убыва-
нию:

a1 > a2 >… > a12.

Тогда из условия следует, что a1−a7¾6, аналогично для a2−a8,
и т. д. Таким образом, если на левую чашку весов положить гири
a1, …, a5 а на правую –– a7, …, a11, то левая чашка весит, как мини-
мум, на 30 граммов больше. С другой стороны, добавив на правую
ещё и гирю a12, мы получим перевес правой чашки. Следовательно,
a12>31. Отсюда a1>42. Взяв гири весом 32, 33, …, 43, мы убежда-
емся, что оценка точная.

116. а) Это возможно тогда и только тогда, когда α¶2.
В самом деле, если α> 2, то последняя гиря по весу более чем

на 1 превышает сумму всех остальных, так что та часть набора, в ко-
торую она входит, заведомо слишком тяжёлая.

Пусть α¶2. Начнём раскладывать гири по двум кучам, начиная
с самой тяжёлой. Кладём её в одну кучу, а каждую следующую –– в ту
кучу, которая в данный момент легче.
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Тогда очевидно, что после того, как положена очередная гиря,
разность весов двух куч не больше, чем вес только что положенной
гири. В частности, после того, как положена последняя, разность
весов не больше 1, что и требуется.

б) Если α>
3
2

, то опять-таки вес последней гири слишком ве-
лик –– больше половины веса всех остальных гирь.

С другой стороны, если α ощутимо меньше
3
2

, например, если
α ¶ 1,3, то задача имеет решение. Нужно опять-таки начать рас-
кладку с самой тяжёлой гири, и затем класть каждую следующую
в самую лёгкую из трёх куч. (Указание: докажите сначала, что по-
сле того, как вы положите три или меньше гири, самая тяжёлая
куча перестанет быть таковой. Для доказательства используйте для
неравенство α3<α+1.)

Может быть, читателям удастся получить более точную оценку.
Что касается пункта в), мы опять-таки предлагаем читателям по-

лучить какие-нибудь оценки (пусть не точные).

Игры

117. Ответ. Нет.
Решение. Бегая только по диагоналям, мышка находится в опас-

ности только в те моменты, когда она прибегает в одну из вершин;
но перед этим она обязательно пробегает центр. Чтобы избежать
лап кошки, ей нужно только правильно выбрать, в какую вершину
бежать. Дело в том, что за время, которое ей нужно, чтобы добежать
из центра до вершины (t= 2,5), кошка пробегает путь, равный 25;
легко убедиться, что из исходного положения (какого угодно) она
может, пройдя путь S= 25, попасть, самое большее, в 2 вершины
прямоугольника, лежащие на одной из длинных сторон, тогда как
две другие безопасны.

118. Решение. Начинающий выиграет, если съест кучку в 
конфеты, а вторую разделит на кучи в  и  конфет. В дальнейшем
он должен играть так, чтобы всё время оставлять противнику кучи
с числом конфет 5k+ 2 или 5k+ 3 (проверьте, что он может этого
добиться). Таким образом, его партнёр в конце концов должен будет
делить кучку в 2 или  конфеты –– и проиграет.

119. Решение. Наиболее естественные стратегии (их иногда на-
зывают «жадными» стратегиями) здесь являются и наилучшими.
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Именно, на первом шаге первый мудрец должен вычеркнуть 512 чи-
сел с одного из концов; либо от 513 до 1024, либо от 0 до 511. Тем
самым его проигрыш будет не больше 512. На втором шаге он дол-
жен опять вычеркнуть числа с одного из концов оставшейся после-
довательности –– либо 128 наибольших, либо 128 наименьших и т. д.
Эта стратегия гарантирует, что ему придётся платить не больше 32,
как бы ни играл второй. С другой стороны, второй мудрец может
обеспечить себе выигрыш не меньше 32 при следующей стратегии:
на первом ходу вычеркнуть из оставшихся чисел каждое второе (тем
самым он обеспечивает себе выигрыш не меньше 2) и т. д. Детали
мы оставляем читателю; заметим только, что число 32 (которое
может гарантировать себе каждый из игроков, но только «с разных
сторон») называется «ценой игры».

120. Решение. Ошибкой со стороны Пети было бы взять самое
большое яблоко; в этом случае Вася успевает быстро съесть два ма-
леньких и приняться за третье; Пете достанется только 600 г.

Оптимальное решение для Пети: начать с маленького яблока
в 250 г, тогда если Вася возьмётся за самое большое, то Пете доста-
нутся 250+300+400=950 г, а если нет –– Петя получит, во всяком
случае, 250+600=850 г.

Оптимальная стратегия для Васи, таким образом, –– также не
брать самое большое яблоко, а взять любое из двух других: 300 г
или 400 г.

121. Ответ. Сможет, если будет постоянно делать ходы парал-
лельно диагонали первого квадранта.

122. Ответ. Первый может обеспечить себе 499 очков, второй ––
501.

Решение. Будем говорить, что один набор из k карт «не мень-
ше» другого, если каждой карте первого можно сопоставить карту
второго, которая не меньше. Будем говорить, что один набор из k

карточек «строго больше» другого, если каждой карточке первого
можно сопоставить карточку второго, которая строго больше.

Заметим, что если в некоторый момент игры набор карточек за-
менить на «не меньший», то при правильной игре можно сыграть
не хуже, чем имея первоначальный (т. е. можно набрать не меньше
очков).

Тогда верно следующее утверждение: если карточку соперника
бить наименьшей из карточек, которыми её можно побить, либо сбра-
сывать самую маленькую карточку, то при правильной игре можно
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получить не меньше очков, чем при любом другом ходе (так как набор
карточек, который получается при этом варианте хода, «не меньше»).
Поэтому можно считать, что оба игрока ходят именно так.

Докажем сначала утверждение про второго игрока. Набор его
карточек без наименьшей карточки «строго больше», чем набор
карточек соперника. Теперь, пусть после k-го хода это свойство вер-
но, тогда если он будет ходить каждый раз наименьшей карточкой,
то второй отобьётся наименьшей своей карточкой. При этом на-
бор карточек без наименьшей по-прежнему у первого игрока будет
строго больше. Пусть первый сделает так 500 ходов.

На 501-м ходу у него останется 2 карточки. Пусть он ходит с боль-
шей.

Тогда у него ровно 501 очко.
У первого игрока набор «строго больше» набора второго игро-

ка без самой большой карты. До того момента, как второй игрок
положит наибольшую свою карточку, первый может сохранять это
свойство следующим образом: будет ходить с наименьшей из сво-
их карточек (свойство при этом сохранится). Карту соперника он
также будет бить так, чтобы свойство сохранилось. После того как
соперник пойдёт своей самой большой карточкой, первый пусть по-
ложит самую маленькую. Тогда его набор будет больше, чем набор
второго без наименьшей карты, а значит, продолжая действовать
по своей тактике, первый игрок при каждом ходе соперника будет
получать очко. Таким образом он обеспечит 499 очков.

123. Ответ. При наилучшей игре X выигрывает 30 очков.
На первый взгляд кажется, что X должен стремиться создать по-

больше единиц, а Y –– минус единиц.
Однако это не так, поскольку X в любой момент может переме-

нить знак любого количества чисел (даже всех, или уж по меньшей
мере 59-ти).

Следовательно, интерес Y состоит в том, чтобы на любом отрез-
ке, по возможности, встречались как плюс, так и минус единицы
(наличие одних только минус единиц для X столь же выгодно, как
и наличие одних только плюс единиц).

Это значит, что оба партнёра вплоть до последнего хода должны
следить не столько за количеством плюс и минус единиц, сколько за
количеством перемен знака в ряду.

Поэтому рассмотрим сначала вспомогательную задачу о переме-
нах знака.
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А именно, рассмотрим вместо данных чисел всевозможные про-
изведения двух соседних чисел (каждое число умножается на своего
соседа по часовой стрелке; например, если исходные числа были:
1,−1,−1,−1, 1, 1,−1, …, то новые будут: −1, 1, 1,−1, 1,−1, …). Но-
вых чисел будет также 60, и минус единицы стоят там и только там,
где поначалу знак менялся. Заметим при этом, что минусов (а сле-
довательно, и плюсов) непременно будет чётное число.

Очевидно, что когда X делает свой ход, то меняются ровно два
новых числа, притом –– любые, по его выбору (там, где начинается
и кончается выбранный им ряд), а когда делает ход Y , то меняются
любые два рядом стоящие числа.

В начальный момент все новые числа –– минус единицы.
Докажем теперь, что Y всегда может добиться того, что среди

них не более 30 плюс единиц, и что X может добиться того, что
среди новых чисел будет не менее 30 плюс единиц.

а) Поначалу Y может играть как угодно. Но в тот момент, когда
число плюсов стало больше 30 (это значит, что их стало 32), где-то
есть два плюса, стоящих рядом. Заменив их на минусы, он умень-
шает число плюсов до 30.

б) Действия X таковы: он заменяет на плюс единицы все числа,
стоящие на чётных местах. Y своим ходом может испортить только
одну из этих плюс единиц. Поэтому самое позднее на 29-м ходу X

окажется, что на всех чётных местах стоят плюс единицы. Теперь
ходит Y ; имеется две возможности:

(∗) если хоть на одном нечётном месте также стоит плюс едини-
ца, то всего есть не менее 32 плюсов (по соображениям чётности)
и после хода Y будет не менее 30 плюсов;

(∗∗) если же на всех нечётных местах стоят минус единицы, то
Y своим ходом не может изменить число плюсов, и следовательно,
после его хода так и останется 30 плюсов.

Итак, X может достичь ситуации, когда число плюсов равно 30.
Теперь вернёмся к исходной задаче; для неё это означает, что чис-
ла стоят по кругу так, что имеется 30 мест перемены знака, т. е.
имеется 15 групп подряд стоящих плюс единиц, и 15 групп минус
единиц.

Теперь X 15-ю ходами заменяет все группы минус единиц на
плюсы. Таким образом, если бы ходов Y не было, то оказалось бы,
что все числа –– плюс единицы. Но Y тем временем делает 15 ходов,
которыми он может восстановить 15 минус единиц.
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Дальнейшая игра, по сути, не нужна; из сказанного видно, что
лучшее, что могут делать X и Y –– это превращать по одному знаку:
минус единицу в единицу или наоборот. После 100 ходов ситуация
будет точно та же, что после 44-х: будет 45 единиц и 15 минус еди-
ниц.

124. а) Докажем, что Петя может выиграть, если n есть степень
двойки, и только в этом случае.

В самом деле, пусть n= 2k. Будем считать, что лунки занумеро-
ваны по часовой стрелке от 1 до 2k, причём номер 2k имеет отме-
ченная лунка. Стратегия Пети очень проста: если шарик находится
в лунке номер s, он называет число s.

Если Вася сдвинет шарик против часовой стрелки, то он немед-
ленно попадёт в отмеченную лунку. Значит, он вынужден сдвинуть
шарик по часовой стрелке, т. е. в лунку номер 2s.

Таким образом, после первого шага шарик обязательно находит-
ся в лунке с чётным номером. На следующем шаге номер лунки бу-
дет обязательно делиться на 4, и т. д. Поэтому не позже чем на k-м
шаге номер лунки будет делиться на 2k, а такая лунка только одна ––
отмеченная, что и требуется.

Пусть теперь n не является степенью двойки, т. е. имеет нечёт-
ный множитель, n= (2r+1) ·2k.

Пусть для начала k=0, т. е. n –– нечётно. Тогда Вася может для на-
чала положить шарик в любую лунку (кроме отмеченной). Действи-
тельно, в этом случае расстояние между этой лункой и отмеченной
будет чётным, считая по часовой стрелке, и нечётным в противном
случае (или наоборот). Поэтому, назовёт ли Петя чётное число или
нечётное, Вася в любом случае может сдвинуть шарик так, чтобы он
не попал в отмеченную лунку –– а больше ничего и не требуется.

То же самое верно и в том случае, если n чётно, но имеет нечёт-
ный множитель (т. е. n= (2r+1) ·2k , k>0) с одним отличием: Вася
должен положить шарик в лунку, номер которой s не делится на
2r+ 1. В этом случае опять-таки, какое бы число t ни назвал Петя,
либо s+ t, либо s− t не делится на 2k, что и позволит Васе положить
шарик в подходящую лунку.

Если же Вася по неосторожности положит шарик, например,
в лунку номер 2r+ 1, то Петя выиграет по той же схеме, что была
приведена выше.

б) Выясним вначале, куда нужно положить шарик, чтобы Петя
мог выиграть не более чем в 1 ход.
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Рис. 

Пусть опять-таки лунки пронумерованы
от 1 до n, и отмечена лунка n. Тогда искомое
множество (мы обозначим его Ф1) состоит
из двух групп лунок: во-первых, три лунки
подряд с номерами (n−1), n, 1 (шарик уже
лежит в нужной лунке, и требуется 0 ходов),
а во-вторых, две или три лунки напротив
этих. Конкретно, если n чётно, n = 2k, то
в Ф1 входят три лунки с номерами k − 1,
k, k + 1, если же n нечётно, n= 2k + 1, то
годятся только две лунки с номерами k, k+1. Во всех случаях Петя
выигрывает в 1 ход, назвав число k (см. рис. ).

Теперь пусть уже найдено множество Фr тех лунок, начиная с ко-
торых Петя выигрывает не более чем в r ходов. В это множество,
во всяком случае, входят две найденные нами группы, в каждой не
менее двух лунок подряд.

Разделим пополам интервал между какими-нибудь двумя лунка-
ми, входящими в Фr; например, пусть в Фr входят 37-я и 49-я лун-
ки –– рассмотрим 43-ю. Если шарик лежит в ней, то Петя может на-
звать число , и куда бы Вася ни двинул шарик, он попадает в мно-
жество Фr, так что 43-я лунка входит в Фr+1.

Правда, это невозможно, если расстояние между лунками нечётно
(например, 12-я и 17-я); именно поэтому в задаче а) Петя выигрывает
не всегда, а только при некоторых n. Но поскольку в Фr входят группы
в две и три лунки (достаточно было бы и двух), то всегда можно найти
пару лунок в Фr, расстояние между которыми чётно.

Это значит, что Фr+1 всегда строго больше, чем Фr (есть лунки,
которые ещё не входят в Фr, но уже входят в Фr+1), т. е. множество Фr

всё время увеличивается, и через некоторое время совпадёт с мно-
жеством всех лунок.

Это значит, что в игре б) Петя выигрывает всегда.

Таблицы

125. Решение и анализ. Будем считать, что ничьих в турнире
не было (ясно, что заменив ничью выигрышем любой из команд,
мы не испортим таблицу).

Условимся теперь о терминологии. Если команда А выиграла
у команд B, C, …, E, то такую команду мы будем называть «общим
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победителем» группы B, …, E. Если для n команд можно составить
турнирную таблицу, в которой любые s команд имеют общего по-
бедителя, мы назовём такую таблицу решением задачи типа (n, s).
Сама же наша задача, очевидно, может быть сформулирована для
произвольных n, s таким образом: существует ли турнирная таб-
лица, которая является решением задачи типа (n, s)? Исходная за-
дача а) тогда переформулируется так: доказать, что задача типа

(n, 2) не имеет решений при n¶6.
Заметим прежде всего, что задача типа (2, 1) не имеет решений:

если команды всего две, то одна из них выиграла у другой, и для
команды-победительницы нет команды, которая у неё выиграла.

Далее, очевиден следующий факт: если задача (n, s) не име-

ет решения, то и задача (2n+2, s+1) также не имеет решения.
В самом деле, при 2n+ 2 командах неизбежно имеется команда A,
у которой выиграло не более n команд. С другой стороны, предпо-
лагается, что существует команда, выигравшая у A и, сверх того,
у любых данных s команд; такую команду придётся искать среди
этих n или менее команд, т. е. придётся решать задачу типа (n, s),
которая, по предположению, решения не имеет.

Отсюда сразу вытекает решение задачи а). Более того, это озна-
чает, что задача (n, 3) может иметь решение только при n¾15, за-
дача (n, 4) –– только при n¾31 и т. д.

Прежде чем пойти дальше, разберёмся подробнее в ситуации
для семи команд. Мы утверждаем: во-первых, решение (турнирная
таблица) в этом случае единственное с точностью до перенуме-
ровки команд, во-вторых, это решение даёт следующая конструк-
ция.

(К) Командам присваивается номер –– вычет по модулю 7, и x

выиграла у z, если x− z –– квадратичный вычет.
Докажем сначала, что (К) даёт решение. Возьмём любые две ко-

манды x, y. Поскольку из двух чисел x− y, y− x одно является квад-
ратичным вычетом, а другое нет, будем для определённости счи-
тать, что вычетом является y− x.

Если z –– общий победитель для x и y, то при произвольном a

z−a –– общий победитель для x−a, y−a. Поэтому достаточно рас-
смотреть случай, когда x=0.

Поскольку, далее, конструкция не меняется также и в случае, ко-
гда x, y заменяются на xb, yb, где b –– квадратичный вычет, и по-
скольку мы уже условились считать x = 0, можно умножить y на
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квадратичный вычет, в частности на 1/y, что позволяет свести за-
дачу к одному-единственному случаю x=0, y=1.

Ясно, что нетрудно указать общего победителя для этой пары
(это будет z= 2). Замечательно, впрочем, то, что можно не подби-
рать общего победителя даже и в этом случае, а рассудить так: по-
скольку каждая команда выиграла 3 матча, то имеется пара команд
с общим победителем. А так как только что было доказано, что все
пары равноправны, то общего победителя имеет также и пара (0, 1),
и вообще любая пара.

Наметим теперь доказательство того, что решение единственно
с точностью до перенумерации.

Из приведённых выше рассуждений следует, что решение воз-
можно только в том случае, если каждая команда проиграла не ме-
нее трёх матчей; но при 7 командах это означает, что каждая выиг-
рала и проиграла ровно по 3 матча. Тогда для каждой команды име-
ется ровно 3 пары команд, у которых она выиграла; а так как всего
есть 21 пара, то конструкция возможна, только если для каждой

пары А, В имеется единственная команда С, которая выиграла

у А и В.
Рассмотрим теперь произвольную команду А, и пусть B, C, D ––

команды, которым она проиграла. Допустим для определённости,
что В выиграла у С. Тогда D –– единственная команда, которая могла
выиграть у А и В; следовательно D выиграла у В и (по аналогичной
причине) С выиграла у D. Остаётся выяснить, как сыграли свои мат-
чи три команды E, F, G, у которых А выиграла. Каждая из команд
B, C, D выиграла у них по одному матчу и по два проиграла. Допу-
стим, что В и С выиграли у одной и той же команды Е; тогда обе
они выиграли у пары (А, Е), что противоречит сказанному выше.
Следовательно каждая из команд B, C, D выиграла ровно у одной из
этих команд: B –– у E, C –– у F, D –– у G. Разобраться в том, как сыграли
между собой E, F, G, мы предоставляем читателю.

Теперь перейдём к числам, большим 7.
Приведённый выше метод позволяет без особого труда решить за-

дачу б). В самом деле, рассмотрим конструкцию, аналогичную (К),
для p команд, где p –– достаточно большое простое число вида 4k+3
(если p=4k+1, то не выполняется очевидное условие «если коман-
да x выиграла у z, то команда z проиграла x»). Рассуждая как вы-
ше, мы убеждаемся, что для того чтобы доказать утверждение: «для
любых трёх команд x, y, z существует четвёртая команда t, которая
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выиграла у всех трёх», достаточно доказать его для случая x = 0,
y=1 и произвольного z.

Эту задачу приходится уже решать перебором; однако он уже
невелик. Для p = 19 перебор показывает, что утверждение верно.
С другой стороны, как мы видели, p не может быть меньше 15. Чис-
ла между 15 и 18 остаются под сомнением.

Даёт ли конструкция (К) решение для произвольного s, если p

достаточно велико? Мне неизвестен ответ, но правдоподобно, что
он положителен. Похоже на то, что квадратичные вычеты по моду-
лю p ведут себя примерно так же, как орлы и решки при бросании
монеты. А именно, если начать со случайно выбранного числа n,
0<n<m, то вычеты чисел n, n+1, n+2, … есть набор единиц и ми-
нус единиц, который ведёт себя как случайный (в нём около поло-
вины единиц и т. д.)

Чтобы получить корректное решение задачи в), применим наме-
ченный выше подход «случайной таблицы». А именно, пусть имеет-
ся N команд и результат каждой встречи (выигрыш или проигрыш)
распределён случайно. Пусть для определённости s=5; рассмотрим
произвольную пятёрку команд A, B, C, D, E и найдём вероятность
того, что ни одна команда Z не выиграла у всех пяти. Для одной

команды такая вероятность составляет, очевидно, 1− 1
32

. Поэтому
вероятность, что ни одна из M (M = N − 5) команд не выиграла,

равна
�

1− 1
32

�M

. С ростом N эта вероятность стремится к нулю

как экспонента; с другой стороны, число пятёрок (A, B, C, D, E) рас-
тёт всего лишь как степенная функция, и потому при больших N

с ненулевой вероятностью для любой пятёрки существует общий
победитель.

Для того чтобы превратить это рассуждение в строгое доказа-
тельство, надо лишь перейти от теории вероятностей к комбинато-
рике. Рассмотрим всевозможные таблицы, описывающие турнир N

команд; выберем произвольную пятёрку (A, B, C, D, E), тогда доля
таблиц, в которых эта пятёрка не имеет общего победителя, со-

ставляет
�

1− 1
32

�M

. Поэтому доля таблиц, в которых любые 5 ко-

манд имеют общего победителя, не меньше, чем 1−C5
N ·
�

1− 1
32

�M

,

и при больших N эта величина положительна, т. е. искомая таблица
существует. Тем самым решена (в положительном смысле) зада-
ча в).
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126. Решение. Как ни странно, такая ситуация возможна.
Например: в турнире участвует 11 команд, т. е. играется 10 мат-

чей по 2 партии в матче, всего 20 партий.
В команде A первый номер играл все 10 партий и набрал в них

6,5 очков (65 %), а второй и запасной –– по 5 партий, и каждый из них
набрал по 4,5 очка (по 90 %).

Итого команда A набрала 15,5 очков.
В команде B игрок №  набрал 2,5 из 4 (62,5 %), а номера вто-

рой и третий –– по 7 из 8 (по 87,5 %). В результате команда B набра-
ла 16,5 очков.

Но это ещё не самое интересное. Допустим, что проводится не тур-
нир, а матч двух команд, но в несколько кругов. Оказывается, что
даже здесь возможен случай, когда команда A на каждой доске на-
брала процент очков больше, чем команда B, но тем не менее ко-
манда B выиграла матч.

На первый взгляд, это абсурдно, ведь чтобы победить, надо, что-
бы у вас было больше 50 %, а у противника, соответственно, мень-
ше. Тем не менее...

Допустим, что в команде три участника (один запасной), и матч
проходит в 8 кругов. Таким образом, играется 16 партий.

Команда A: игроки А, Б, В.
Команда B: игроки а, б, в.

1 тур: А 0,5 : 0,5 а Б 0 : 1 в

2 тур: А 0,5 : 0,5 а Б 0,5 : 0,5 в

3 тур: А 1 : 0 б Б 0,5 : 0,5 в

4 тур: Б 0 : 1 а В 1 : 0 б

5 тур: Б 0 : 1 а В 0,5 : 0,5 б

6 тур: Б 0,5 : 0,5 а В 0,5 : 0,5 в

7 тур: Б 0,5 : 0,5 а В 0,5 : 0,5 в

8 тур: Б 0,5 : 0,5 а В 0,5 : 0,5 в

В итоге команда A:

А набрал 2 из 3 67 %

Б набрал 2,5 из 8 31 %

В набрал 3 из 5 60 %

всего 7,5 из 16



Таблицы 

Команда B:

а набрал 4,5 из 7 64 %

б набрал 0,5 из 3 17 %

в набрал 3,5 из 6 58 %

всего 8,5 из 16

127. Да, могло. Пусть, например, n = 4, и таблица до турнира
выглядела так:

А Б В Г Рейтинг до турнира

А ∗∗ 2 из 4 2 из 3 2 из 3 6 из 10, или 60

Б 2 из 4 ∗∗ 2 из 3 2 из 3 6 из 10, или 60

В 1 из 3 1 из 3 ∗∗ 12 из 24 14 из 30, или 46,666

Г 1 из 3 1 из 3 12 из 24 ∗∗ 14 из 30, или 46,666

а таблица турнира выглядела так:

А Б В Г

Рейтинг

по результатам

турнира

Окончательный

(суммарный)

рейтинг

А ∗∗ 1
2

1
2

1
2

1
2

1
1
2

1
2

1
2

1
1
2

1
2

1
2

58,333 59,0909…

Б
1
2

1
2

1
2

1
2

∗∗ 1
1
2

1
2

1
2

1
1
2

1
2

1
2

58,333 59,0909…

В 0
1
2

1
2

1
2

0
1
2

1
2

1
2

∗∗ 1
2

1
2

1
2

1
2

41,667 45,238…

Г 0
1
2

1
2

1
2

0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

∗∗ 41,667 45,238…

Причина в том, что участники до турнира могли встречаться
каждый с каждым неравное число раз (как оно практически всегда
и бывает на практике). Если бы к условию задачи было добавлено
условие «до турнира каждый встречался с каждым одно и то же
число раз», такая ситуация была бы невозможна. Докажите это!

128. Прежде всего переменим знак у всех чисел последней стро-
ки, а затем –– также у всех чисел последнего столбца (т. е. у всех
сумм). При этом последнее число остаётся без изменений (мы два-
жды меняли его знак). Теперь таблица обладает следующим свой-
ством: сумма чисел в любом ряду («рядом» мы будем называть стро-
ку или столбец) равна 0. Будем округлять так, чтобы это свойство
соблюдалось.
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Если один из рядов таблицы (строка или столбец –– безразлич-
но) целиком состоит из целых чисел, то его трогать, во-первых, за-
прещено, а во-вторых, не нужно. Поэтому мы будем рассматривать
только те ряды, в которых есть нецелые числа; очевидно, таких чи-
сел всегда не менее двух в ряду.

Применим индукцию по количеству нецелых чисел в таблице
(если их ноль, то опять-таки доказывать нечего). Пусть в данный
момент в таблице N нецелых чисел. Будем считать, что всё доказано
для всех таблиц данного размера, в которых нецелых чисел меньше
чем N .

Построим граф, вершинами которого являются ряды данной таб-
лицы (при этом ряды, состоящие из целых чисел, мы не рассматри-
ваем), а рёбра соединяют строку и столбец, если число, стоящее на
их пересечении –– нецелое. (Таким образом, все вершины разбиты
на две группы, и любое ребро соединяет вершину первой группы
с вершиной второй.) По предположению, из каждой вершины исхо-
дит не менее 2 рёбер. Отсюда сразу следует, что в графе есть цикл.
Без ограничения общности можно считать, что этот цикл имеет
следующий вид: 1––1; 1––2; 2––2; 2––3; 3––3; …, (n−n); (n−1).

a1 b1

a2 b2

a3 b3

a4 b4

b5 a5

Рис. 

Это значит, что нецелые числа, вхо-
дящие в цикл, расставлены так, как по-
казано на рис. .

Теперь заставим эти числа «ползти»
к целым. А именно, мы будем умень-
шать числа ai и увеличивать числа bi на
одно и то же число: тем самым сумма
по строкам и по столбцам остаётся неиз-
менной.

Будем увеличивать до тех пор, пока
хотя бы одно число не станет целым.
(Тот же процесс можно описать и несколько иначе: рассмотрим чис-
ла {a1}, {a2}, …, {an}, а также числа {1− b1}, {1− b2}, …, {1− bn}.
Пусть ǫ –– наименьшее из этих чисел, тогда надо уменьшить ai и уве-
личить bi именно на ǫ.)

Теперь в таблице стало, как минимум, на одно целое число боль-
ше, и остаётся применить индукцию.

129. Решение. Рассмотрим двух участников X и Y . Если X одер-
жал меньше побед, чем Y (по крайней мере, на одну), но при этом
набрал больше очков, то «дополнительные» очки он мог набрать
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только на ничьих. Ему требовалось набрать на ничьих хотя бы на
полтора очка больше; следовательно, X сделал, как минимум, на
три ничьи больше, чем Y .

Следовательно, A сделал по крайней мере на 3 ничьи больше,
чем B. Но эти «лишние» ничьи он мог сделать, только играя с C.
Следовательно, C сыграл не менее 3 партий вничью (притом с A),
тогда как A сделал, следовательно, не менее 6 ничьих. Поскольку
эти 6 ничьих не совпадают с упомянутыми тремя, в сумме как раз
и получается 9.

Осталось ещё доказать, что можно ограничиться 9-ю ничьими.
Вот пример: пусть турнир проходил в 6 кругов, т. е. было сыграно
18 партий. A выиграл 2 партии (обе у C) и проиграл одну (ему же),
тогда как B и C сыграли 3:3 (без ничьих): каждый выиграл у дру-
гого по  партии. Таким образом, A выиграл  партии и проиграл
одну, B выиграл 3 и проиграл тоже 3, а C выиграл 4 и проиграл 5.
Всего было 9 выигранных партий и, соответственно, 9 ничьих, что
и требуется.

Комбинаторика; разное

130. Ответ. Да, можно.
Решение. Возьмём все номера, сумма цифр которых делится

на 10. Любые два таких номера, очевидно, различаются не менее
чем в двух местах, поэтому при вычёркивании одной цифры ника-
кие два не совпадают.

Это решение, разумеется, не единственно. Пусть, например, x1, …
…, x6 –– цифры номера, зададим какие-нибудь целые числа a1, …
…, a6, b и возьмём все те номера, для которых a1 x1+…+ a6 x6+ b

делится на 10. Докажите сами, что если a1, …, a6 взаимно просты
с 10, а b произвольно, то получающийся набор содержит ровно
100 000 номеров, удовлетворяющих условию задачи. Наше исход-
ное условие соответствует случаю a1=…=a6=1, b=0. Подумайте,
что произойдёт, если ai не будут взаимно просты с 10, например,
если a1=2.

Замечание. Задачи этого типа возникают в теории кодов. На-
зовём расстоянием между двумя телефонными номерами d(A, B)
число мест, на которых эти два номера различаются (например
d(012345, 212365) = 2, так как номера различаются на -м и -м
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местах). Множество телефонных номеров называется кодом; основ-
ная задача теории кодов состоит в том, чтобы выбрать код, имеющий
как можно больше номеров, но так, чтобы расстояние между любыми
двумя номерами было не меньше d. Число d называется кодовым
расстоянием; построенный нами код имеет кодовое расстояние d=2.

131. Решение. За 11 сеансов школьники совершили 22 «сеансо-
посещения». Если все 11 сеансов в кинотеатре №  были посещены,
то на остальные 6 кинотеатров пришлось не более 11 посещений.
Но тогда хотя бы в одном из них был посещён только 1 сеанс. Сле-
довательно, кто-то из школьников (тот, кто был в это время в кино-
театре № ) в нём вообще не побывал, что противоречит условию.

132. Решение . Тривиальное решение состоит в том, что если
все слагаемые привести к общему знаменателю 1996!, то все числи-
тели заведомо делятся на 1995, кроме двух последних. А два послед-
них числителя равны соответственно 1996 и 1; поэтому их разность
делится на 1995.

Решение . Задача имеет, однако, и гораздо более интересное
решение. Дело в том, что выписанная дробь есть не что иное, как
вероятность того, что при случайном раскладывании 1996 писем по
1996 конвертам ни одно письмо не будет вложено в нужный конверт
(докажите это!) Знаменатель 1996! есть полное число способов рас-
кладки, а числитель, стало быть, –– число всех «плохих» способов.

Но при любом «плохом» способе письмо адресату №  должно
быть вложено в один из остальных 1995 конвертов; и ясно, что чис-
ло способов во всех этих 1995 случаях одинаково. Вот потому-то
число «плохих» способов раскладки обязано делиться на 1995.

133. Решение. Доказательство этого факта связано с прямым
вычислением чисел N и M . Именно, известно, что

N = n!
�

1−1+
1
2!
− 1

3!
+

1
4!
−…± 1

n!

�

,

а отсюда следует, что для M справедлива сходная формула с заме-
ной n на n−1 :

M
n
= (n−1)!
�

1−1+…± 1
(n−1)!

�

Из них немедленно следует нужный результат.
Интереснее было бы найти доказательство, устанавливающее

напрямую «почти точное» взаимно однозначное соответствие меж-
ду перестановками первого и второго типа. Попытайтесь сделать
это самостоятельно.
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134. Решение. Заметим прежде всего, что номер любого фиоле-
тового билета делится на 11, а поэтому и искомое максимальное
расстояние d делится на 11. Далее, нетрудно заметить, что между
билетами 908 919 и 909 909 нет ни одного фиолетового; это значит,
что d¾990. С другой стороны, билеты вида abcabc всегда фиолето-
вые (будем в дальнейшем называть их ультрафиолетами), а рассто-
яние между двумя соседними ультрафиолетами равно 1001.

Поэтому 990¶d¶1001, а поскольку d делится на 11, возможны
лишь два ответа: либо d=990, либо d=1001. Что же верно?

Докажем, что между любыми двумя ультрафиолетами есть ещё хо-
тя бы один фиолетовый билет, откуда, очевидно, следует, что d=990.
В самом деле, пусть abcabc –– очередной ультрафиолет, отличный от
999 999. Пусть сначала b< 9. Если ещё и c< 9, то фиолетовым бу-
дет билет abca(b+1)(c+1), номер которого увеличен на 11; если
a< 9, то фиолетовым будет билет abc(a+1)(b+1)c. Остаётся рас-
смотреть билеты вида 9b99b9; нетрудно убедиться, что между ним
и следующим ультрафиолетом имеется, например, фиолетовый би-
лет 9(b+1)000(8− b). (Например, между билетом 929 929 и следу-
ющим ультрафиолетом 930 930 имеется билет 930 006.)

Случай b=9 разбирается аналогично. Сделайте это сами.
135. Ответ. Это возможно тогда и только тогда, когда n чётно.

В этом случае легко строится пример нужной расстановки; мы при-
водим его для n=6 (рис. ).

     1

−1     

−1 −1    1

−1 −1 −1   

−1 −1 −1 −1  

−1 −1 −1 −1 −1 

Рис. 

Решение. Докажем, что при нечётном n требуемой расстанов-
ки не существует. Пусть в квадрате n× n числа расставлены про-
извольным образом, и пусть a1, …, an –– суммы чисел по строкам,
а b1, …, bn –– по столбцам. Предположим, что все они различны.

Заметим, что при перестановке в таблице каких-нибудь двух
строк или столбцов эти суммы (а только они нас интересуют) не
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меняются; поэтому, переставив, если нужно, строки и столбцы, мы
сможем считать, что

a1 > a2 >… > an и b1 > b2 >… > bn.

Кроме того, очевидно, a1 ¶ n, an ¾−n и b1 ¶ n, bn ¾−n. Таким об-
разом, наши числа могут принимать лишь 2n + 1 значений: −n,
−n+ 1, …, −1, 0, 1, 2, …, n. Поэтому среди чисел ai, bi встречаются
ВСЕ эти числа, кроме одного. Предположим для определённости,
что единственное отсутствующее число неположительно; таким об-
разом, среди чисел ai, bi имеется n положительных и n неположи-
тельных.

Пусть r –– наибольший номер, для которого ar>0, а s –– наиболь-
ший из номеров, для которых bs>0; таким образом,

a1 > a2 >… > ar > 0 ¾ ar+1 >… > an,

и аналогично

b1 > b2 >… > bs > 0 ¾ bs+1 >… > bn.

A B

C D

Рис. 

Разобьём таблицу на  части (рис. ) таким образом,
что суммы верхних строк и первых столбцов (строки
А, В и столбцы А, С) –– положительные числа, а нижние
и последние суммы –– неположительны.

Матрица А –– размера r × s. Из наших предположений следует,
что r+ s= n, и набор чисел {a1, a2, …ar, b1, …bs} совпадает с мно-
жеством {1, 2, …, n}, тогда как набор {ar+1, …, an, bs+1, …, bn} отли-
чается от множества {0,−1, …,−n} лишь тем, что недостаёт одного
элемента.

Поэтому можно следующим образом оценить сумму S1 всех по-
ложительных и сумму S2 всех неположительных строк и столбцов
таблицы:

S1 = a1+a2+…+ar+ b1+…+ bs = 1+2+…+n =
n(n+1)

2
,

а

S2 = ar+1+…+an+ bs+1+…+ bn ¶

¶ 0+ (−1)+ (−2)+…+ (−n+1) = −n(n−1)
2

.

Отсюда S1−S2¾n2.
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Докажем теперь, что при нечётном n последнее неравенство
невозможно. В самом деле, пусть TA, TB, TC , TD –– суммы чисел в ча-
стях таблицы, указанных на рисунке, тогда

S1 = 2TA+TB+TC , а S2 = TB+TC +2TD,

так что

S1−S2 = 2(TA−TD).

Эта разность максимальна, если прямоугольник A заполнен еди-
ницами, а прямоугольник D –– минус единицами, и тогда она равна
удвоенной сумме площадей этих прямоугольников:

S1−S2 ¶ 2(SA+SD) = 2[rs+ (n− r)(n− s)]= 4r(n− r).

Но это последнее выражение максимально, если r=
n
2

и в этом слу-

чае равно n2 (как нам требуется), тогда как при нечётном n равен-
ство невозможно, что и требовалось доказать.

136. Ответ. Нельзя.
Решение. Отметим первую, третью, пятую, седьмую и девятую

монеты. При каждой операции переворачиваются две из них.

137. Решение. Очевидно, было сыграно
24+28+38

2
= 45 пар-

тий. Игрок пропускает одну партию после проигрыша, а C пропу-
стил ещё и первую партию; следовательно, из первых 44 партий A

проиграл 21 партию, B –– 17 и C –– 6. Итак, B проиграл 17, а выиграл,
следовательно, 11 партий.

138. Решение. Пусть y= tg x. Тогда

tg 3x =
3 y− y3

1−3 y2 ,

и наше уравнение приобретает вид

11 y(1−3 y2) = 3 y− y3.

Отсюда y=0, т. е. x=πk, или

3− y2
= 11−33 y2, y = ±1

2
, x = ±arctg

1
2
+πn.

139. Решение. Очевидна оценка S<100. Чтобы её улучшить, до-
множим и разделим сумму на sin

x
2

, и положим t=50x. Тогда стан-
дартные тригонометрические преобразования приводят её к виду

S =
sin 50x · sin 50,5x

sin 0,5x
=

sin 1,01t · sin t

sin 0,01t
.
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Оценим эту дробь. Если | sin 0,01t|> 1
50

, то, очевидно, S<50. Но,

как нетрудно проверить, S>50, например при t=
π
2

. Следовательно
достаточно рассмотреть случай t<2, т. е. 0,01t<0,02. Но для малых
аргументов sin z≈ z, мы можем в знаменателе приближённо заме-
нить sin 0,01t на 0,01t, и получаем:

S ≈ 100 sin 1,01t · sin t
t
≈ 100

sin2 t
t

.

Экстремум правой части можно найти обычным способом –– при
помощи дифференцирования. Производная равна 0, если 2t= tg t;
решая это уравнение приближённо, мы увидим, что t≈1,1657, и при
этом значении S≈72,46.

Исходя из этих соображений уже не так трудно доказать, напри-
мер, что S<80 при любом t.

Указание. Рассмотрите по отдельности три случая: t довольно
мало (в этом случае наша формула действует плохо, но зато легко
убедиться, что первые 30––40 членов суммы малы); t сравнительно
близко к 1,1; t значительно больше, чем 1,1.

140. Решение. Подобный набор (x1, x2, …, x100) можно изобра-
зить системой столбиков соответствующей высоты. (На рис.  они

Рис. 

закрашены.) Столбики умещаются в квадра-
те 100× 100, и незакрашенные строки так-
же образуют систему чисел ( y1, y2, …, y100).
Очевидно, y100 = 100 тогда и только тогда,
когда x100 < 100, что и даёт взаимно одно-
значное соответствие между наборами, в ко-
торых последнее число меньше 100, и рав-
но 100; при этом если одна сумма делится
на 10, то и другая тоже.

Рисунок соответствует набору из шести
чисел 1, 1, 2, 2, 3, 5; дополнительный набор –– 0, 2, 4, 5, 5, 6.

141. Доказательство. Предположим, что это не так. Тогда числа
a1, …, d1 не все равны 0; кроме того, очевидно, их сумма равна 0.
Аналогично для любого n an+…+dn=0.

Рассмотрим теперь алгебраическую сумму

Sr = ar− br+ cr−dr.

Легко убедиться, что Sr+2=2Sr, откуда S100=249S2. Из условия

a100, …, d100 < 1 000 000 000
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следует, что S2=0, т. е. a2+ c2= b2+ d2. Поскольку, сверх того, a2+

+ b2+ c2+d2=0, можно сделать вывод, что a2=−c2, b2=−d2.
Но тогда нетрудно убедиться, что a4=−2b2, b4=−2c2 и т. д. Дру-

гими словами, за 2 шага все 4 числа удваиваются (и меняют поря-
док, что для нас несущественно). Отсюда ясно, что если хоть одно
из них не равно 0, то за 100 шагов они вырастут слишком сильно.

142. Указание. Воспользуйтесь тем, что

a =
a1+ b1

2
, b =

b1+ c1

2
и т. д.

143. Ответ. Уравнение имеет бесконечно много решений.
Решение.

Лемма. Уравнение x2
=2 y2

+1 имеет бесконечно много решений

в целых числах.

Доказательство. Простейшее доказательство этого (довольно
известного) факта таково. Очевидно, что пара чисел (1, 0) –– реше-
ние. Из него можно получить, одно за другим, бесконечное число
других решений таким способом: если (x, y) –– решение, то непо-
средственно проверяется, что пара (3x+ 4 y, 2x+ 3 y) –– тоже реше-
ние. Таким образом мы последовательно получаем решения (1, 0),
(3, 2), (17, 12), (99, 70), …

Вернёмся к нашей задаче. Данное уравнение можно переписать

в виде
n
m
=

2(m+1)
n+1

.

Предположим, что обе части равны
p

q
. Тогда

n =
p

q
m, n+1 =

2q

p
(m+1),

откуда элементарными преобразованиями получаем

m(p2−2q2) = 2q2− pq.

Теперь, предполагая, что p2−2q2
=1, мы видим, что m, а вместе

с ним и n, являются целыми числами, а именно:

m = q(2q− p), n = p(2q− p).

Пусть, например, (p, q)= (17, 12). Тогда m=84, n=119.
144. Ответ.

а) Y2=399 (212
=441>399), а Y3=69 999 (423

=74 088>69 999).
б) Ответ неизвестен.
145. Решение. Суммарное число решений уравнения xy=n для

всех n<N равно числу решений неравенства xy<N . Для простоты
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будем решать более слабое неравенство xy¶N , что изменит общее
число решений на 49 (для наших целей это несущественно).

Зафиксируем x, тогда y должно удовлетворять неравенству y¶
N
x

,

т. е. число решений неравенства при данном x равно
h

N
x

i

.

Отсюда следует, что число решений равно
h

N
1

i

+

�

N
2

�

+…+
h

N
N

i

≈ N
�

1+
1
2
+

1
3
+…+

1
N

�

.

Чтобы получить более точную оценку, примем во внимание, что
из двух множителей всегда один меньше, чем корень из N (т. е. 1000
при N = 1 000 000). Отсюда легко видеть, что число решений при-
ближённо равно

1 000 000 ·
�

2
�

1+
1
2
+

1
3
+…+

1
1000

�

−1
�

.

Так как в каждом слагаемом ошибка меньше 1 (разность между чис-
лом и его целой частью), то суммарная ошибка меньше 2000.

Сумма в круглых скобках приближённо равна C + ln 1000, где
C=0,577… –– константа Эйлера.

Поскольку ln 10=2,30…, то искомое число приближённо равно

2C+6 · ln 10−1 ≈ 6 ·2,3+2 ·0,577−1 ≈ 13,95,

т. е. среднее число делителей близко к 14.

Замечание. Из решения видно, что при N →∞ среднее число
делителей числа n, n<N , растёт примерно как логарифм N .

146. Ответ. Нельзя.
Решение. Пусть существуют натуральные a, b, n, для которых

верно
n2 < a3 < b3 < (n+1)2.

Заметим, что a<a+1¶ b. Имеем:

n2 < a3 < (a+1)3
¶ b3 < (n+1)2.

Из этого следует, что

(n+1)2−n2 > (a+1)3−a3,

т. е. 2n+ 1> 3a2
+ 3a+ 1, откуда 2n> 3a2

+ 3a. Возводя в квадрат,
получаем

4n2 > 9a4
+18a3

+9a2 > 4a3,

откуда n2>a3. Но n2<a3 –– противоречие.
Значит, таких чисел нет.
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Замечание. Условие задачи равносильно следующему: между

любыми двумя кубами лежит, по меньшей мере, один квадрат.

В действительности верно и более сильное утверждение: между

любыми двумя кубами лежит не менее двух квадратов (есть един-
ственное исключение между 13

=1 и 23
=8, но и его можно «обой-

ти», если трактовать слово «между» как нестрогое неравенство: то-
гда между 1 и 8 лежат квадраты 1 и 4).

Доказательство аналогично приведённому, с одним отличием:
указанный метод доказывает наличие противоречия только для до-
статочно больших n, тогда как для n< 6 существование двух про-
межуточных квадратов надо проверить прямым перебором (напри-
мер, между 27 и 64 лежат числа 36 и 49).

147. Решение основано на следующей лемме.

Лемма. Если f (x)∈ [−1; 7], то и x∈ [−1; 7].

Доказательство. Проще всего поглядеть на график функции
y = f (x) и заметить, что он проходит через точки (−1, 24) и (7, 8),
а вершина параболы лежит в точке (4,−1).

Отсюда ясно, что для любого y∈ [−1; 7] уравнение f (x)= y име-
ет два вещественных корня, причём эти корни опять лежат на том
же отрезке.

Теперь решение сразу проводится индукцией по n (первый шаг
индукции состоит в том, чтобы заметить, что решения уравнения
y=0 принадлежит промежутку [−1; 7]).

Замечание. Эта задача была предложена на XXVI Турнире горо-
дов (весенний тур, –– классы) в несколько иной формулировке:
«Существует ли такой многочлен f (x), что...».

В этой формулировке задача, естественно, имеет много реше-
ний, наиболее идейное из которых таково.

Возьмём f (x)= T2(x)= 2x2− 1= cos(2 arccos x) –– многочлен Ле-
жандра.

Тогда очевидно, что

f ( f …( f (x)…) = cos(2n arccos x).

Корнями этого многочлена являются все решения уравнения

2n arccos x =
π
2
+πk,

причём k может принимать 2n значений от 0 до 2n−1. Таким обра-
зом, здесь можно предъявить все корни, и даже в явном виде; они
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равны

±1
2

È

2±

Ç

2±
q

2±
p

2…±
p

2.

Надо, впрочем, проверить, что разным комбинациям плюсов
и минусов в формуле соответствуют разные числа, что несложно,
но всё-таки не вполне очевидно.

148. Решение. а) Из приведённых неравенств следует, что сум-
ма кубов по меньшей мере в 4 раза больше, чем сумма квадратов.
Отсюда легко понять, что хотя бы одно из чисел x1, …, xk больше 4;
обозначим это число A.

Очевидно, 2A2− A>28.
Поэтому для выполнения первого неравенства необходимо, что-

бы выполнялось неравенство:

(x1−2x2
1)+…+ (xk−2x2

k
) > 28.

Но каждое слагаемое в этой сумме, как легко проверить, не пре-

восходит
1
8

(равенство достигается при x=
1
4

).

Отсюда число слагаемых не может быть меньше 8 ·28+1=225,
что значительно превышает требование задачи.

б) Из первого пункта видно, что целесообразно взять одно срав-
нительно большое число и много малых, причём малые лучше брать
равными между собой. Подбор показывает, что хорошее решение
можно получить, например, взяв 600 чисел, равных 0,1, и ещё одно,
равное 5,125.

в) Ответ. 516 чисел. Этот пункт оказался значительно труднее,
чем казалось поначалу автору.

План решения следующий:
1) Заметить, что среди чисел должны быть как числа, которые

больше 1, так и числа меньше 1.
2) Если имеется два числа a> b>1, то можно заменить их на два

равных друг другу числа d и d так, что неравенства сохранятся и да-
же усилятся.

3) То же самое для чисел, которые меньше 1.
Отсюда следует, что в оптимальном наборе могут присутство-

вать только два различных числа: A > 1 и a< 1, оба с некоторой
кратностью. (В действительности здесь придётся ещё воспользо-
ваться существованием оптимума.)
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4) Доказать, что число A встречается только 1 раз. Кроме того,
для удобства обозначим m=n−1; число a, таким образом, встреча-
ется m раз.

5) После этого наши неравенства принимают вид

A+ma > 2(A2
+ma2), m >

2A2− A

a−2a2 ,

A3
+ma3 > 2(A+ma), m <

A3−2A

2a−a3 .

Числа A и a должны быть такими, чтобы между дробями, огра-
ничивающими m, умещалось хотя бы одно целое число; при этом
требуется, чтобы это целое число было как можно меньше.

Оказывается, минимум достигается при

a =
8−
p

58
3
≈ 0,128,

тогда можно положить A=5,169, и при этом m равно 515.
149. Ответ. 2004 способа.
Указание. Для любого k, 1¶ k¶ n, существует ровно один спо-

соб разбить данное число n на k приблизительно равных слагаемых.

При этом каждое слагаемое равно либо
h

n
k

i

, либо
h

n
k

i

+1.

150. а) Ответы. Да; нет.
Решение. Для построения примера, когда число камней всегда

будет больше 120, достаточно заметить, что данное число N=1001
нечётно и делится на 7. Из первого следует, что собрать все камни
в одну кучу никогда не удастся. Теперь предположим, что в одной из
куч лежит несколько седьмых долей от общего числа камней (или,
иными словами, число камней в куче кратно 143), тогда то же верно
для другой кучи и ясно, что эта ситуация будет сохраняться постоянно.
Следовательно, число камней в каждой из куч будет не меньше 143.

Теперь докажем, что в первом случае ответ положительный: рано
или поздно в одной из куч окажется менее пятой части всех камней.

Заметим сначала, что не позднее чем после первого переклады-
вания в одной из куч окажется менее трети камней (при этом суще-
ственно то, что N не делится на три!). В самом деле, пусть в мень-

шей из куч количество камней равно
N
3
+ r, тогда либо r<0 и утвер-

ждение верно после нуля перекладываний, либо 0< r<
N
6

, и тогда

после первого перекладывания во второй куче будет
N
3
−2r камней.
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Итак, пусть в меньшей из куч число камней равно
N
3
− r, причём

r>0. Рассмотрим два случая. Если r>
N
12

, то число камней в этой ку-

че меньше
N
4

. Если же 0< r<
N
12

, то после двух перекладываний, как

нетрудно убедиться, в этой же куче будет
N
3
−4r камней, т. е. «недо-

статок» увеличится в 4 раза. Проделав такие операции несколько

раз, мы неизбежно придём к ситуации, когда r станет больше
N
12

,
т. е. число камней в куче станет меньше, чем четверть от общего
числа.

Наконец, чтобы от четверти перейти к одной пятой, нужно опять-
таки рассмотреть две возможности, но на сей раз достаточно двух
перекладываний независимо от числа камней. В самом деле, пусть

в меньшей из куч число камней равно
N
4
− r. Если r>

N
20

, то это чис-

ло уже меньше одной пятой (т. е. не превосходит 200), если же нет,
то после двух перекладываний в этой куче будет N −4r камней, а в
другой, соответственно, 4r камней, что меньше, чем пятая часть N .

Замечание. Применённые нами методы существенно использу-
ют тот факт, что у числа N = 1001 нет слишком маленьких делите-
лей (все делители не менее семи). Если бы, к примеру, общее число
камней делилось на 3, то можно было бы в одну кучу положить тре-
тью часть камней, в другую –– две трети. При этом перекладывание
сводилось бы в тому, что две кучи менялись бы ролями.

Отсюда читателю уже понятно, почему в данной задаче особую
роль играет наличие простых делителей у числа камней N –– притом
маленьких простых делителей.

Задача для исследования. Пусть M –– число, у которого нет ма-
леньких простых делителей (скажем, нет делителей, меньших мил-
лиона). Какого результата можно добиться в этом случае, т. е. для
какого γ<1 можно гарантировать, что доля камней в одной из куч
станет меньше γ, и для каких γ это неверно?

Заметим, однако, что ответ зависит от того, каковы именно боль-
шие делители M , и потому такая задача намного сложнее, чем за-
дача б), к которой мы и переходим.

б) Решение. Прежде всего заметим, что эта задача вполне ана-
логична задаче а), поскольку перекладывание камней означает, что
в меньшей куче число (а следовательно и доля) камней удваивается,
а в другой, если там доля камней равнялась β, составит 2β−1.
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Разница лишь в том, что в первой задаче доля (от общего числа
камней в каждой куче) была рациональным числом со знаменате-
лем 1001, а в задаче б) доли от единицы иррациональны.

Тем же способом, что в пункте а), мы можем легко доказать, что

на некотором шаге αn станет меньше
1
5

. Можно применять тот же
метод и дальше; при этом последовательно доказывается, что αn

станет меньше
1
5
− 1

80
=

3
16

;

затем точно также можно получить оценку
3

17
и т. д. Но что, соб-

ственно, значит «и т. д.»? Можно ли таким способом дойти до нуля?
А если нет, то как получить оценку снизу?

Для этого, очевидно, нужно предъявить иррациональное чис-
ло α, для которого любое αn окажется не слишком малым. Мы сде-
лаем несколько больше.

Назовём иррациональное число α минимальным, если при всех n

αn > α, βn > α.

Ниже будут предъявлены минимальные числа.
Для этого запишем искомое число α в виде бесконечной непе-

риодической дроби, но не десятичной, а двоичной. Как и в десятич-
ном случае, число иррационально тогда и только тогда, когда дробь
непериодична.

Для начала укажем, что рациональные числа, которые у нас встре-
чались раньше, в двоичной записи имеют такой вид:

1
3
= 0,010101…

1
4
= 0,01

1
5
= 0,001100110011…

3
17
= 0,00101101…

(Для дроби
3

17
указан период, дальнейшие цифры идут в том же

порядке.)
Очевидно, удвоение числа означает, что запятая в двоичной дро-

би переносится на одно место вправо. Поскольку в числе βмы, сверх
того, отбрасываем единицу (т. е. целую часть), то можно сказать,
что у обоих чисел α, β запятая переносится на 1 разряд и целая часть
(если она есть) отбрасывается.

Но отсюда ясно, что после n шагов происходит то же самое:
у обоих чисел запятые переносится на n разрядов, и отбрасываются
целые части.
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Поэтому наша задача может быть переформулирована в следую-
щей форме.

Имеются две бесконечные непериодические последовательности,
состоящие из нулей и единиц. Известно, что они дополняют друг

друга (там, где в одной стоит нуль, в другой –– единица). Разрешает-

ся взять любую из них и отбросить в ней любое число знаков спере-

ди, а затем поставить впереди нуль, запятую и объявить то, что

получится, бесконечной двоичной дробью. Какое наименьшее число

при этом может получиться (в том же смысле, что и раньше)?
Прежде чем двигаться дальше, предъявим два минимальных

числа.
Таковыми являются, например, числа

δ = 0,0010101…0100101…01001…

(«внутрь» числа
1
3
=0,010101… время от времени непериодическим

образом вставляется комбинация цифр 001) и

ǫ = 0,001011001100…1100101100…

(«внутрь» числа
1
5
= 0,00110011… время от времени вставляется

комбинация 10).
Доказательство. В первом случае ясно, прежде всего, что в чис-

ле 1−δ никогда не встречается два нуля подряд, и потому (1−δ)n

заведомо больше
1
4

. А для того чтобы δn было при всех n боль-

ше δ, достаточно, чтобы количество групп 01 после первой комби-
нации 001 было меньше, чем после всех остальных, чего, естествен-
но, нетрудно достичь.

Таким образом, δ минимально. При этом число δ можно сделать

сколь угодно близким к
1
6

, взяв уже в первый раз достаточно много

групп (01) (равенство было бы достигнуто для числа

1
6
= 0,001010101…,

где группы 01 идут до бесконечности).
Доказательство минимальности числа ǫ аналогично, причём ǫ

можно сделать сколь угодно близким к числу
7

40
.

Следствие. Наибольшее из минимальных чисел γ принадлежит

отрезку
h

7
40

;
3

17

i

= [0,175; 0,1764…].

Ниже будет показано, что γ≈0,1750919…
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Для дальнейшего нам будет удобно такое обозначение. Пусть a ––
произвольный набор нулей и единиц, конечный или бесконечный.
Тогда через ¯̄a обозначается набор, дополнительный к нему (там, где
нули –– стоят единицы, и наоборот).

Например, если a=001011, то ¯̄a=110100 и т. п.
В частности, β=α.
Естественно, конечные наборы мы можем рассматривать как

числа, записанные в двоичной системе.

Лемма. Пусть α –– минимальное число. Рассмотрим число a, со-

ставленное из первых k цифр, и число b, состоящее из следующих k

цифр того же числа α. Тогда b< ¯̄a.

Доказательство. Допустим сначала, что b> ¯̄a, тогда b< a. По-
скольку α= ab…, то β= ab… Отбрасывая в числе β первые k зна-
ков, мы получаем число, которое меньше α, что противоречит ми-
нимальности α.

Пусть теперь b= ¯̄a. Таким образом, α= a¯̄a… и, соответственно,
β= ¯̄aa… Отбросим в числе β первые k знаков, тогда βk = a… По
предположению, βk ¾α, следовательно следующие k цифр числа β
не меньше, чем ¯̄a. Соответственно следующие k цифр числа α не
больше, чем a, и так как меньше они быть заведомо не могут, то
α= a¯̄aa…, β= ¯̄aa¯̄a… Продолжая те же рассуждения, мы видим, что
α= a¯̄aa¯̄aa¯̄a… и β= ¯̄aa¯̄aa¯̄aa¯̄a… –– периодические дроби, что опять-
таки противоречит предположению.

Отсюда легко вытекают все оценки, полученные нами ранее.
Так, если k= 1, то a= 0, ¯̄a= 1; поскольку b< a, то b= 0, α= 0,00…
Теперь примем k = 2, тогда a= 00, ¯̄a= 11. Из условия b< a полу-
чаем b¶ 10, α¶ 0,0010… Принимая затем k= 4, мы получим, что
α¶0,00101100… и т. д.

Возникает естественная

Гитотеза. Число, составленное из следующих k цифр, должно

быть на единицу меньше, чем ¯̄a; в обозначениях леммы b= ¯̄a−1.

Вообще говоря, это неверно, как будет показано чуть ниже. Од-
нако это верно в случае, когда k есть степень двойки; и именно по
этой формуле выписывается искомое число γ.

Ответ. Число γ имеет в двоичной записи вид

γ = 0,0010110011010010…

и может быть определено любым из следующих двух способов.
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1. Первая цифра числа γ равна нулю. Если уже выписано 2n пер-
вых цифр этого числа, которые образуют некоторое число a, то сле-
дующие 2n цифр образуют число b= ¯̄a−1.

2. Находим k-ю цифру числа γ по следующему правилу: число k

записывается в двоичной системе, и подсчитывается число единиц
в записи. Если оно чётно, то цифра равна 1, если нечётно –– то нуль.

Например, на восьмом месте стоит нуль (8= 10002), а на девя-
том –– единица (9=10012).

Десятичная запись числа γ была приведена выше.
Замечание. Из вида числа γ следует, что сформулированная выше

гипотеза неверна, например, для k=3 или k=5. Действительно, пер-
вые 3 цифры числа γ составляют 001, а следующие три –– не 101, как
должно быть по гипотезе, а только 011; аналогично для пяти цифр.

Доказательство. Докажем вначале, что оба определения приво-
дят к одному и тому же числу. Согласно определению 1, если k<2n,
то цифры с номерами k и k+2n дополнительны друг к другу (одна
равна нулю, другая единице), тогда как при k=2n обе цифры равны
нулю.

Но то же верно, если исходить из определения 2. Действительно,
по определению 2 цифра с номером 2n, так же как цифра с номером
2n+1, равна нулю (в двоичной записи этих чисел есть только одна еди-
ница), тогда как при k<2n двоичная запись чисел k и k+2n различа-
ется на единицу на (n+1)-м месте (в одном эта единица присутству-
ет, в другом нет), так что эти цифры дополняют друг друга.

Далее, докажем, что γ иррационально. В самом деле, допустим
противное. Тогда цифры числа γ, начиная с некоторого места, по-
вторяются с некоторым периодом A. Запишем число A в двоичной
системе: A=1xy…z (x, y, …, z –– нули или единицы), и пусть A име-
ет m цифр. Рассмотрим теперь (также в двоичной записи) следую-
щие два числа:

v = 100…0100…0

(число нулей между единицами в первой группе равно некоторому l,
которое мы выберем чуть позже, а во второй группе равно m−1) и

w = 100…01100…0

(число нулей в первой группе l−1, во второй по-прежнему m−1).
В первом числе 2 единицы, а во втором три. Поэтому в числе γ на

месте с номером v стоит единица, а на месте с номером w –– нуль. Но
v+ A=100…10xy…z, w+ A=100…100xy…z (число нулей в первом
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случае l − 1, во втором l − 2). Поэтому у обоих чисел v + A, w + A

поровну единиц, и на соответствующих местах стоит одна и та же
цифра.

Остаётся выбрать l настолько большим, чтобы к этому моменту
непериодическая часть, которая может быть в начале рационально-
го числа, уже закончилась.

Докажем теперь, что γ является минимальным числом. Для это-
го воспользуемся определением 2. Докажем сначала, что γn>γ для
любого n. Для этого запишем число n в двоичной записи:

n = xy…z (x, y, …, z –– нули или единицы).

Естественно, мы будем считать, что в числе n нечётное число еди-
ниц, в противном случае γn начинается с единицы и заведомо боль-
ше γ.

1. Пусть сначала последняя цифра числа n равна 0. Тогда в чис-
лах n и n+1 число единиц различается на 1 (в числе n+1 последняя
цифра 1, а остальные цифры совпадают).

Следовательно, в числе n+1 число единиц чётно, и

γn = 0,01… > γ = 0,00…,

что и требовалось.
2. Пусть, далее, число n заканчивается чётным числом единиц:

n =…011…1.

Тогда n + 1=…100…0 и в числах n, n + 1 опять-таки количество
единиц разной чётности, как и в случае 1.

3. Пусть n заканчивается нечётным числом единиц, причём их
больше одной. Тогда

n =…011…1,

n+1 =…100…00,

n+2 =…100…01,

n+3 =…100…10.

В числах n и n + 1 количество единиц нечётно, а в числах n + 2
и n+3 оно на единицу больше, чем в числе n+1, т. е. чётно. Отсюда
γn=0,0011…>γ=0,0010…

4. Случай, когда n заканчивается только одной единицей, т. е.

n =…1000…001,

исследуется аналогичным образом, но требует более длинных рассуж-
дений. Причина этого понятна: в первых трёх случаях γn и γ различа-
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ются уже, в худшем случае, в четвёртом знаке, тогда как в последнем
случае разность между γn и γ может быть сколь угодно мала.

Мы предоставляем читателю самому разобрать этот случай; за-
метим только, что необходимо прежде всего выписать последние
цифры числа в форме …011…100…01 (последняя цифра –– единица,
перед ней s нулей, перед которыми, в свою очередь, стоит t единиц)
и рассмотреть по отдельности случаи, когда s+ t чётно или нечётно.

Наконец, требуется ещё доказать, что βn>γ при всех n, где β=
= 1− γ. Но это доказательство полностью аналогично уже приве-
дённому. В самом деле, очевидно, что дополнительное к γ число
β= 1− γ строится точно по тому же закону, что γ, с одной лишь
разницей: в нём k-я цифра равна единице, если число единиц в за-
писи k нечётно, и равна нулю, если оно чётно. Приведённые выше
рассуждения проходят с минимальными изменениями.

Наконец, тот факт, что γ является наибольшим из всех минималь-
ных чисел, будет уже прямым следствием его определения в первом
варианте, так как индукция по k=2n в совокупности с леммой пока-
зывает, что первые 2n цифр числа γ –– наибольшие из всех возможных.

Заключительное замечание. Мы доказали, что число γ является
предельным; если β>γ, то можно за несколько операций получить
число, меньшее чем β.

Однако в действительности число γ не достигается. Придумайте са-
ми пример числа, начав с которого мы никогда не достигнем значения
γ или меньшего (хотя и сможем неограниченно приблизиться к γ).

151. Ответ. Фокус удаётся.
Это можно сделать, например, таким образом. Три карты из 5 идут

либо подряд (например 234 или 451), либо две рядом, одна в стороне.
В первом случае помощник забирает себе среднюю карту (оста-

ются две карты не подряд).
Во втором помощник берёт себе ту карту, которая идёт не подряд

(остаются две подряд).
При этом фокусник легко угадывает взятую карту.
Есть и другие решения.
152. Ответ. а) Да; б) нет.
Решение задачи а). Тройку показателей за год можно рассмат-

ривать как координаты точки в трёхмерном пространстве; тогда со-
ответствующие 4 точки являются вершинами некоторого тетраэд-
ра. (Если они лежат на одной прямой или на одной плоскости, это
можно поправить за счёт «уточнения» цифр.)
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Очевидно, тетраэдр ABCD всегда можно спроектировать на под-
ходящую прямую таким образом, чтобы проекции его вершин рас-
положились в заданном порядке (например, в порядке A, B, C, D).
Простейший способ сделать это таков: сначала спроектируем парал-
лельно плоскости BCD, тогда три вершины спроектируются в од-
ну точку, а четвёртая будет лежать в стороне; затем чуть-чуть по-
двинем эту плоскость так, чтобы проекции точек B, C, D разъедини-
лись; при этом точка A по-прежнему будет первой, а три других –– за
ней. Для того, чтобы также и точки B, C, D расположились в нужном
порядке, можно применить аналогичный приём.

Остаётся заметить, что вычисление значений линейной функ-
ции есть в точности то же самое, что проецирование точек в подхо-
дящем направлении на числовую ось.

Построение контрпримера в случае б). Рассуждаем, как вы-
ше, только теперь мы имеем не 4, а 5 точек A, B, C, D, E. Предпо-
ложим, что точка E находится внутри тетраэдра ABCD. Тогда оче-
видно, что и проекция точки E, как ни проектируй, окажется где-
то между остальными четырьмя точками, тогда как нам требует-
ся, чтобы она оказалась крайней. Ясно также, что малое уточнение
здесь, вообще говоря, ничем помочь не сможет.

Замечание. Если бы в условии не было разрешения «уточнять»
цифры, то задача была бы неразрешима, даже если бы речь шла
только о трёх годах. Почему?

153. Указание. Полного доказательства этого ответа у автора
нет. Однако есть очень веские аргументы в его пользу: с одной сто-
роны, экспериментальная проверка (об этом ниже), с другой, что
еще важнее –– следующие соображения.

Можно рассмотреть случайную величину X –– сумму ста независи-

мых случайных величин, где k-я величина с вероятностью
1
2

принима-
ет значение 0 или k. Исходная задача сведется к поиску самого веро-
ятного значения X или моды распределения случайной величины X.

Сумма X ста независимых случайных величин распределена при-
близительно по нормальному закону  с матожиданием

M =
1+2+…+100

2
= 2525,

 Строго говоря, когда для обоснования нормальности применяют центральную
предельную теорему требуется ограниченность дисперсий складываемых случайных
величин; в данном случае это условие не выполнено. –– Прим. ред.
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откуда следует, что самым вероятным является именно это значе-
ние.

Конечно, слова «отсюда следует» надо понимать не в точном ма-
тематическом, а в эвристическом смысле слова.

Но и прямая проверка показывает, что если число 100 заме-
нить на какое-нибудь меньшее число r, то максимум действительно

всегда достигается при M =
1+2+…+ r

2
(проверка проведена до

r = 20). Впрочем, вначале (до r= 9) максимум чаще всего нестро-
гий. Например, при r=2 принимаются по разу значения 0, 1, 2, 3;
при r=4 шесть значений принимаются по одному разу, и пять –– по
дав раза, и т. д.

154. Решение неизвестно. Можно лишь указать примеры:
а) 120=C2

16=C3
10.

б) Имеется бесконечная серия чисел вида Ck+1
n =Ck

n+1.
Действительно, сократив одинаковые члены в равенстве

n!
(k+1)!(n−k−1)!

=
(n+1)!

k!(n−k+1)!
,

мы получим диофантово уравнение на числа n, k вида

n2−3nk+ k2−2k−1 = 0,

которое поддаётся решению. Первое решение имеет вид n = 14,
k = 5, а соответствующее целое число имеет даже не два, а три
принципиально разных представления:

3003 = C6
14 = C5

15 = C2
78.

Второе решение диофантова уравнения имеет вид n=4894, k=

=1869 (выписывать само число Ck
n нет желания, поскольку оно име-

ет несколько тысяч цифр).
О других повторениях мне ничего не известно.
155. Ответ. а), б) Количество куч должно равняться двум; в од-

ной куче –– 3 белые фишки и 7 чёрных, во второй –– все остальные.
Решение. Во-первых, независимо от числа белых и чёрных фи-

шек, куч должно быть две (ещё лучше одна, но это запрещено усло-
вием).

В самом деле, если куч больше двух, то можно объединить ку-
чу, где доля белых наибольшая, с кучей, где она наименьшая. При
этом доля белых в объединённой куче будет равна медиане соответ-
ствующих дробей, т. е. вместо двух чисел мы получим некое среднее
между ними, и ситуация улучшится.
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Теперь рассмотрим задачу а). Как сказано, имеется только 2 ку-
чи, и в одной из них (будем её называть первой) доля белых боль-

ше, чем
20
67

, а в другой меньше. Если в первой куче некоторое чис-

ло m белых фишек, то число чёрных, очевидно, должно быть равно
h

47m
20

i

. Пусть m=3, тогда дробная часть числа
47m
20

равна
1

20
. Мень-

ше она, очевидно, быть не может, и более того, при любом другом

m она уже не может равняться
1

20
(иначе оказалось бы, что (m−3)

делится на 20). Следовательно, это и есть ответ.
Решение задачи б) для чисел 50 и 117 полностью аналогично.
156. Решение. а) На первый взгляд кажется, что должно полу-

читься распределение, сходное с нормальным, т.е. наименее веро-
ятно распределение (N − 1, 1), а наиболее вероятно распределение
пополам.

Однако здесь интуиция даёт неверный ответ. На самом деле все

распределения равновероятны, с оговоркой, что именно равное рас-
пределение вдвое менее вероятно, чем остальные. Например, если

N=100, то вероятность распределения (50, 50) равна
1

99
, а вероят-

ность каждого из остальных 49 распределений ––
2

99
.

Перейдём к решению. Первый шаг состоит в том, что нужно
немного видоизменить условие задачи, и искать не вероятность,
а число способов получить то или иное распределение орехов по
корзинам. (Ясно, что суть задачи от этого не изменится, поскольку
вероятность получится, если мы полученное число способов разде-
лим на общее число способов.)

Пронумеруем корзины от 1 до N , затем выставим их в ряд (в про-
извольном порядке!), выложим орехи из корзин и положим каждый
орех перед соответствующей корзиной. Между орехами положим
белые палочки, которые призваны отделять одну кучку орехов от
другой. В начальном положении N кучек по одному ореху. Вместо
того, чтобы перекладывать орехи из одной корзины в другую, мы
будем убирать одну из палочек, подразумевая при этом, что соот-
ветствующие кучки объединяются.

Тут можно возразить: ведь при этом вопреки условию объеди-
няются не любые корзины, а только соседние. Это совершенно вер-
но; но поскольку мы располагаем корзины всеми возможными спо-
собами (число таких способов равно N!), то во-первых, мы можем
объединить любые две корзины, и во-вторых, число распределений,
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Рис. 

в которых можно объединить, скажем, корзины с номерами a и b ––
одно и то же для всех a, b.

Теперь положим, к примеру, что N=6, и мы хотим найти число
способов получить распределение (4, 2). Отметим это распределе-
ние, закрасив в чёрный цвет 4-ю палочку (см. рис. ).

Чтобы получить такое распределение, требуется убрать в любом
порядке все белые палочки, не трогая чёрную. Понятно, что коли-
чество способов будет одно и то же, независимо от того, какой по
счёту лежит чёрная палочка –– что и требовалось.

Понятно также, почему распределение поровну имеет вдвое мень-
шую вероятность: чтобы получить распределение (4, 2), можно по-
ложить чёрную палочку либо на 4-е, либо на 2-е место, тогда как
(3, 3) получается только одним способом.

Если N нечётно, то никакие оговорки не требуются и ответ со-
стоит в том, что все распределения равновероятны.

б) Эту задачу разберите сами. И здесь также все распределения

(a, b, c) имеют равную вероятность, если все числа (a, b, c) разные;
вероятность получить распределение вида (a, a, b), вдвое меньше,
а если N делится на 3, то надо ещё учесть и вариант (a, a, a).

Способ решения аналогичен.
157. Определения из п. ii), iii) предполагают построение в не-

сколько шагов. Поэтому удобно сначала заменить построение, опи-
санное в п. i), другим, более замысловатым, но тоже проходящим
в несколько шагов.

Итак, опишем, как можно построить последовательность точек
на луче OL не сразу, а шаг за шагом.

Отметим на OL две точки L1 и L2; L1 –– на пересечении луча OL

с k-й по счёту вертикалью, а L2 –– на пересечении OL с k-й по счёту
горизонталью. Очевидно, отрезок OL2 длиннее OL1, и на OL1 стоит
k букв A и несколько букв B, тогда как на OL2 имеется k букв B

и несколько букв A.
Теперь построим ещё отрезок OM , симметричный OL1 относи-

тельно биссектрисы угла O (того, в котором начинается луч), и рас-
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ставим на OM буквы согласно правилу. Симметрия относительно
диагонали, переводящая отрезок OL1 в OM , переставляет буквы: A

переводит в B, а B –– в A. (См. рис. ; здесь k=3, точка L1 совпадает
с одной из точек A, а точки L2 и M –– с некоторыми точками B.)

До сих пор угол наклона лучей мог быть произвольным, и это
никак не влияло на ход построения. Теперь необходимо вспомнить,
что тангенсы углов, под которыми наклонены лучи OL и OM , равны

соответственно τ и
1
τ

. Число τ удовлетворяет тождеству
1
τ
−τ= 1,

поэтому расстояние между двумя точками B (на отрезках OM и OL2)
на первой горизонтали равно 1, между следующими двумя (на вто-
рой по счёту горизонтали) равно 2, и т. д.

Это означает, что на отрезке OL1 ровно столько же точек B, сколь-
ко на отрезке OM , но точек A имеется на k штук больше, поскольку
OL1 пересекает больше вертикалей. Понятно также, что если мы,
двигаясь параллельно горизонтали, сместим эти точки A на отре-
зок OM , то там появится ровно по одной точке A перед каждой точ-
кой B (см. рис. ).

Итак, зная расположение точек на «коротком» отрезке OL1, мы
можем установить их расположение на «длинном» отрезке OL2 по
следующему правилу:

• сначала поменять все буквы местами: A→ B, B→ A,
• а затем перед каждой буквой B поставить букву A.
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Это как раз и означает, что преобразование происходит по зако-
ну, описанному в п. ii).

Перейдём теперь к способу iii). Здесь прежде всего понадобится
ключевое утверждение.

Лемма. При любом n среди отрезков деления имеется не более

трёх, различающихся по длине .

Доказательство леммы. Склеим конец отрезка с началом. Тогда
он превращается в окружность длины 1, на которой отмечены точки
τ, 2τ и т. д. Занумеруем их именно в этом порядке: нулевая –– это
точка 0, она же 1, первая –– τ, вторая –– 2τ и т. д.

Рассмотрим какой-нибудь из полученных отрезков; если его кон-
цы –– это k-я и l-я точки, то обозначим его [k, l]. Очевидно, длина
[k, l] такая же, как длины отрезков [k + 1, l + 1] и [k − 1, l − 1].
Поэтому все отрезки делятся на несколько серий; в каждую серию
входит по несколько отрезков одинаковой длины, а именно [k, l],
[k+1, l+1], [k+2, l+2], …, [k−1, l−1], …

Поскольку число точек конечно, то и каждая из серий конечна,
в частности, имеет последний элемент. Будем считать, что именно

 Именно такая задача предлагалась на XXXI ММО ( год), причём факт верен
независимо от того, берём мы в качестве τ золотое сечение или любое другое число.
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элемент [k, l] последний, т. е. элемента [k+ 1, l+ 1] не существует.
Но почему же?

На это может быть только три причины, а именно:
1) k=n;
2) l=n;
3) если ни первое, ни второе неверно, то отрезок [k+1, l+1] су-

ществует, но на нём лежит одна из точек деления. Пусть это точка r,
тогда на отрезке [k, l] должна была бы лежать точка r−1. Поскольку
это, по предположению, не так, то имеется единственная возмож-
ность: r=0.

Таким образом, любой отрезок входит в одну из этих серий, при-
чём, очевидно, первая и вторая серии существуют всегда, тогда как
третья может и не существовать. Например, нетрудно проверить, что
при n=6 существуют все три серии, а при n=7 –– только первые две.

Меньше двух серий быть не может, так как это означало бы, что
все отрезки имеют равную длину (а именно,

1
n

), тогда как по усло-
вию длины отрезков иррациональны.

Дальнейший ход рассуждений мы только наметим вкратце. Нуж-
но доказать следующие факты:

– если имеются три разные длины a> b> c, то всегда a= b+ c,
– если имеются три разные длины a> b> c, то очередная точка

деления всегда делит отрезок a на две части b и c, и так продолжа-
ется, пока есть хоть один отрезок длины a,

– длина любого отрезка равна τk для некоторого k, причём од-
новременно встречаются либо две длины τk и τk+1, либо три длины
τk, τk+1, τk+2,

Теперь утверждение задачи легко доказывается по индукции.
А именно, начнём индукцию с n=5; это означает, что имеется 4 точ-
ки деления, которые, как легко проверить непосредственно, делят
отрезок [0, 1] на 5 частей, которые соответственно равны a, a, b, a,
b, причём a=τ3, b=τ4.

Очередная точка деления может делить только отрезок a. Это
можно либо проверить непосредственно, либо воспользоваться тем,
что если бы делился отрезок b, то получилось бы четыре различные
по длине части, а это, как мы знаем, невозможно.

Таким образом, следующие три точки делят все три отрезка a на
отрезки b и c= a− b= τ5. После этого у нас не осталось отрезков
длины a; согласно условию задачи, это означает, что мы должны пе-
ременить обозначения, и «бывший» отрезок b обозначить буквой a,
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а отрезок c –– буквой b. Учитывая, что «бывший» отрезок a превра-
тился в два отрезка, которые мы теперь обозначаем a и b, мы опять
видим, что получилось всё то же преобразование, и способ iii) также
равносилен ii).

Остаётся заметить, что мы совершили переход от n=5 к n=8, но
точно так же происходят дальнейшие переходы к следующим значе-
ниям. Можно также проверить (хотя условие задачи этого не требу-
ет), что нужные нам числа n, для которых имеется не три, а только
две разные длины отрезков –– это числа Фибоначчи.



Что такое математика, или

Метаматематика для нематематиков

О той пользе, которую математика приносит обществу, знают
все. Любое предисловие к любой книге по математике начинает-
ся именно с этой, в общем-то совершенно справедливой, мысли.
Говорится о том, как математика помогает рассчитать траекторию
ракеты, построить мост, оценить размер страховых платежей. На
крайний случай, говорят о том, как математика позволяет позна-
вать законы природы.

Всё это совершенная правда. Но гораздо реже и меньше говорят
о той пользе, которую математика приносит человеку –– и тому, кто
собирается посвятить ей жизнь, и тому, кто только немного постоит
на границе великой страны, называемой Математика.

∗ ∗ ∗
Широкая публика обычно представляет себе учёного-математи-

ка либо в виде скучного рассеянного сухаря, который вечно, выходя
из дома, забывает то калоши, то зонтик, –– либо как некоего средне-
векового мага (смотри американские фильмы типа «Изгоняющий
дьявола»), который вещает, орудуя таинственными знаками, недо-
ступными простым смертным.

(Замечу в скобках, что злоупотребление «таинственными зна-
ками» –– интегралами, алефами, кванторами и так далее –– нехарак-
терно для серьёзных математиков. Они куда выше ценят работу,
в которой удалось обойтись наиболее простым математическим ап-
паратом –– другое дело, что это удаётся сравнительно редко.)

И потому я хотел бы начать с анекдота об А. Н. Колмогорове,
услышанного мною около 30 лет назад. Слово «анекдот» я употреб-
ляю здесь не в современном, а в классическом смысле: анекдот есть
случай, иногда смешной, иногда серьёзный, но непременно взятый
из реальной жизни.

Итак, мой знакомый М. С. рассказал мне, как ему довелось присутство-
вать на каком-то военном совещании.

«Выступил полковник; трижды исписал всю доску формулами. Потом
вышел Андрей Николаевич [Колмогоров]; он не написал ничего, но коротко



 Что такое математика

и внятно объяснил собравшимся, о чём, собственно, говорил предыдущий
докладчик.

И выходя с заседания, –– закончил М. С., –– я услышал такой обрывок
разговора двух генералов:

–– Этот штатский, видно, в математике не шибко силён, но в нашем деле
здорово разбирается».

Можно было бы добродушно посмеяться над генералами: как же
они ошиблись, приняв одного из величайших математиков XX в.
за «штатского, который не шибко силён в математике». Но в дей-
ствительности генералы не виноваты. Их слова –– это довольно-таки
типичная реакция непрофессионала на настоящую математику.

∗ ∗ ∗
Что же собой представляет настоящая математика? Позвольте

мне сначала сказать, чем она НЕ является.
Математика, в сущности, не наука. А если наука –– то все прочие

науки –– не науки. Слишком уж велика разница. Математика ближе
к музыке, чем к физике. И пропасть между математикой и физикой
глубже, чем между физикой и социологией. Математика –– это образ
мысли, это человеческий характер. И математик –– это не просто че-
ловек, окончивший мехмат. Это прежде всего определённый склад
ума и, не побоюсь сказать, определённое состояние души.

А те, кто применяют математику, чаще всего просто подстав-
ляют полученные из опыта параметры в известные формулы. Речь
идёт, таким образом, всего лишь о том, что некоторые люди (на-
пример, социологи или экономисты) выучили некоторое количе-
ство алгоритмов и умеют эти алгоритмы применять. Это не совсем
бесполезно. Но математика тут почти что и ни при чём.

Для иллюстрации приведу такой пример.
• Психолог Д. Канеман в своей книге «Думай медленно... Решай быстро»

утверждает, что люди очень часто принимают нерациональные решения.
С этим спорить, пожалуй, невозможно. Однако все ли приводимые им при-
меры убедительны?

Вот один нелогичный, по мнению психолога, поступок. Участникам экс-
перимента предлагают на выбор: либо получить 46 долларов, либо бросить
монетку и в случае успеха получить 100 долларов. Что лучше? Эксперимент
показывает, что «лучше синица в руке, чем журавль в небе: большинство
предпочитает получить гарантированные 46 долларов, чем 50 %-й шанс на
получение 100 долларов».
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Психолог думает, что такое поведение нелогично или, по меньшей мере,
нерационально. Согласимся ли мы с этим?

На первый взгляд, надо согласиться: ведь если вы идёте на риск, то по-
лучите (в математическом ожидании) не 46, а целых 50 долларов. Так и рас-
суждал психолог.

Но математик рассудит по-другому.
Ведь «математического ожидания» вы отнюдь не получите; вместо этого

вы получите то ли ноль, то ли 100 долларов. Получить ноль явно обидно.
Ну, а получить сто? Это-то хорошо? Да, конечно; но надо ещё подумать:
действительно ли вы, получив сто долларов, испытаете вдвое больше удо-
вольствия, чем от получения сорока шести? Это далеко не очевидно...

Психолог исходит здесь из не сформулированного (и заведомо неверно-
го, причём именно с точки зрения психологии) догмата о том, что получа-
емое человеком удовольствие находится в прямой (подчёркиваю: прямой)
пропорциональной зависимости от полученной суммы. И, конечно, не учи-
тывает обиды, которую испытает неудачник, который мог получить деньги,
а вместо этого получил шиш.

Он правильно применил формулу; но он забыл, что результат надо ещё
правильно истолковать.

∗ ∗ ∗
Многие думают также, что математики –– это люди, которые по-

стоянно что-то вычисляют. Помнится, мой отец был сильно удив-
лён, обнаружив, что я умею считать интегралы гораздо хуже, чем
он. И он тоже, хотя был достаточно сведущ в математике (он был
физиком-теоретиком высокого класса), он тоже был уверен, что ма-
тематик должен главным образом уметь вычислять. Конечно, такое
умение непременно входит, как один из важнейших компонентов,
в образование математика и в его «минимальный запас», но всё же
суть работы математика отнюдь не в этом.

Я бы даже сказал, что дело обстоит как раз наоборот . Математик
часто вынужден вычислять (об этом ещё будет говорится ниже). Но
он всегда стремится вычислять как можно меньше.

 В -е годы мой друг прислал мне из Израиля калькулятор –– по тогдашним
понятиям, передовая техника. И пользовался ли я им?

Да, один раз. Он понадобился мне, когда я ездил со студентами на картошку,
и мне нужно было рассчитать, кто из них сколько заработал. Конечно, я мог бы
это сделать и с карандашиком, но складывать десяток чисел с калькулятором проще
и надёжнее, чем в столбик.

И это, повторяю, был единственный случай, когда я воспользовался калькулято-
ром для дела, а не так просто, для развлечения. В своей математической деятельно-
сти мне им так и не пришлось воспользоваться: он не был мне нужен.
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Тут весьма уместно припомнить характерную ошибку, сделан-
ную при переводе «Очерков по истории математики» (одного из то-
мов фундаментального труда Н. Бурбаки).

Последняя (и следовательно, особенно важная) фраза книги в пе-
реводе заканчивается словами:

«...которые, подобно всем великим математикам, стремились за-
менить идеи –– вычислениями».

Ошибка переводчика (или, что вероятнее, редакторов и коррек-
торов) состоит в том, что два ключевых слова поменялись местами.
В оригинале говорилось: «...заменить вычисления –– идеями».

Ошибка не случайная, ох, не случайная! Она, как и обмолвка ге-
нералов, показывает, какая пропасть лежит между математикой ––
и досужими представлениями о ней.

Математика и Буратино

Алексей Толстой не любил математику. Её не любит ни Буратино
(о глубоком философском смысле диалога Буратино с Мальвиной
я поговорю чуть ниже), ни герой автобиографической повести «Дет-
ство Никиты», который с тоской представляет себе того купца, кото-
рый купил (или продал) столько-то аршин синего и чёрного сукна;
или те поезда, которые вышли из пунктов A и B, чтобы встретиться

на расстоянии
3
4

от A... Да. Мнение о том, что математика –– очень

скучная наука –– не то чтобы доминирующее, но достаточно распро-
странённое. Сплошные бассейны, в которые вода через одну трубу
вливается, а в то же время (непонятно зачем) выливается через дру-
гую...

Я мог бы возразить, что на математических олимпиадах очень
часто даются задачи с весьма занятными формулировками: «Коро-
ли ездили друг к другу пировать, а вечером слуги развозили их по
домам...», «Мудрый таракан решил отыскать Истину...» Но вначале
позвольте мне защитить именно «математическую скуку»: в ней за-
ложен глубокий научный смысл.

Если нам предлагается решить скучную задачу о том, как купец
продал 138 аршин синего и чёрного сукна за 477 рублей, причём
синее стоило 5 рублей за аршин, а чёрное –– 3, нам не требуется
знать, не было ли это сукно, случайно, гнилым. Неважно и то, у кого
купец его перед этим купил и какую прибыль получил (это, впро-
чем, могло бы стать темой другой задачи –– но именно ДРУГОЙ).
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Поэтому перед тем, как поговорить о задачах с увлекательными
(или, по крайней мере, с занятными) формулировками, признаем,
что хулители в немалой степени правы. Большинство математиче-
ских задач по формулировке скучны; но отчего?

Вспомним, как «девочка с голубыми волосами» пытается учить
Буратино математике. Результат, что называется, «значительно ни-
же среднего»:

«–– У вас в кармане два яблока...
Буратино полез в карман.
–– Врёте, ни одного.
–– Я говорю, –– терпеливо продолжала девочка, –– предположим, у вас

в кармане два яблока. Некто взял у вас одно яблоко. Сколько у вас осталось?
–– Два.
–– Подумайте хорошенько.
Буратино сморщился –– так он здорово подумал.
–– Два.
–– Почему же?
–– Я же не отдам Некту яблока, хоть он дерись!
–– У вас нет никаких способностей к математике, –– огорчённо сказала

девочка...»

(А. Толстой. «Золотой ключик, или приключения Буратино»)

Мальвина права: своим ответом Буратино продемонстрировал
свою неспособность отвлечься от конкретной ситуации. Математи-
ка всегда основана на «предположим это», и обсуждать вопрос «а по-
чему бы не предположить другое», не принято .

В качестве иллюстрации к моему тезису приведу очередной анек-
дот.

• Корреспондент спрашивает директора сумасшедшего дома, как врачи
проверяют, действительно ли пациент излечился. Директор отвечает:

–– Мы напускаем полную ванну воды, кладём рядом чайную ложечку,
рядом ставим кружку и предлагаем освободить ванну от воды.

Корреспондент. Ну, понятно: всякий нормальный человек возьмёт
кружку.

Директор. Нет. Нормальный человек вынет пробку.

 Правда, знаменитый английский математик Дж. Литлвуд приводил такой пример:
«Учитель. Предположим, что x есть число овец. –– Ученик. Но, господин учитель,

предположим, что x не есть число овец. –– Я спросил у Витгенштейна, имеет ли эта шут-
ка глубокий философский смысл, и он ответил, что имеет». («Математическая смесь»).

Но, во всяком случае, математического смысла шутка, вроде бы, не имеет.
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Этот анекдот неплохо иллюстрирует суть математического подхо-
да к проблеме. Дело в том, что математик-то как раз поступит, веро-
ятнее всего, как предлагал корреспондент: возьмёт кружку. Ведь ма-
тематик привык решать задачи, в которых круг допустимых средств
жёстко ограничен (и это важно!). А в задаче не сказано, разрешается
ли вынимать пробку. Значит, наверно, нельзя.

В математике всегда говорится: «Дано то-то и то-то. Какие из
этого можно сделать выводы?»

Вообще говоря, из этого можно сделать множество разнообраз-
ных выводов (так и проступает Буратино, проявляя тем свою отвагу,
но уж никак не математический талант). И если мы хотим получить
определённый вывод, нам необходимо прежде всего отбросить все
посторонние соображения. Данный случай показывает это доста-
точно отчётливо.

В реальной ситуации не мешало бы знать и то, большие ли ябло-
ки лежат в кармане или маленькие; и кто такой этот Некто, и каким
путём он взял яблоко –– попросил, потребовал или просто украл. В по-
следнем случае надо не считать оставшиеся яблоки, а надавать ему по
шее, что и предлагает сделать персонаж другой детской повести.

«–– Слушай, –– говорю, –– Костя, мальчик и девочка собрали вместе 120
орехов, мальчик взял вдвое больше, чем девочка. Что делать, по-твоему?

–– Надавать, –– говорит, –– ему по шее, чтоб не обижал девочек!
–– Да я не про то...»

Это ключевая фраза для понимания математики как науки; она
всегда «не про то». Но послушаем беседу мальчиков дальше.

«–– Да я не про то спрашиваю. Как им разделить, чтобы у него было
вдвое?

–– Да что ты ко мне пристал? Пусть делят, как сами хотят. Пусть поровну
делят.

–– Да нельзя поровну. Это задача такая.
–– Какая ещё задача?
–– Ну, задача по арифметике.
–– Тьфу! –– говорит Шишкин. –– У меня морская свинка подохла, я её

только позавчера купил, а он тут с задачами лезет!»

(Н. Носов. «Витя Малеев в школе и дома»)

Этот разговор, так же как и разговор Буратино с Мальвиной,
имеет глубокий философский смысл. Советы Кости Шишкина («на-
давать по шее»; «пусть поровну делят») вполне разумны с обще-
человеческой точки зрения, но для задачи никак не подходят. И,
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соответственно, позиция Вити Малеева («как им разделить, чтобы
у него было вдвое?») никак не сообразуется с жизненной мудро-
стью. В самом деле, зачем им делить так, чтобы было вдвое? Витя
и Костя говорят на разных языках.

После того, как сказано «дано то-то и то-то» –– то, что дано, уже
не обсуждается. Эти условия можно и должно обсуждать либо ДО,
либо ПОСЛЕ того, как задача решена. Но не в процессе решения.
Первое, чему необходимо научиться, занимаясь математикой –– ис-
кусству полностью забыть о нематематическом содержании задачи,
оставить от жизненной ситуации лишь голый скелет формальных
данных. Неспециалист скажет: видите, какая математика скверная,
как она оторвана от жизни... Отнюдь! Просто это лишь половина де-
ла, и притом вторая половина; для настоящих занятий математикой
необходимо предварительно уметь в обычной жизненной ситуации
понять: можно ли здесь вообще применить математику?

Очень часто это возможно –– поскольку математический аппарат
очень разнообразен, могуч, и «школьная математика» даёт пред-
ставление о реальных возможностях математики не большее, чем
капля воды –– об Атлантическом океане. И к очень многим ситуаци-
ям можно тем или иным боком присобачить математическую тео-
рию (или создать новую математическую теорию, специально для
этой ситуации), затем выделить чистую математическую задачу ––
и уж потом переходить ко второй части: решение этой задачи. Как
заметил У. Сойер, математику надо всё объяснять, «как ребёнку или
Сократу» («Прелюдия к математике»). Но научить этому –– как выде-
лить математическую сторону в ситуации, где математикой вроде
бы и не пахнет, –– много трудней, чем решить задачу про бассейн
с двумя трубами. И школа, вполне естественно и разумно, начинает
с того, что легче.

Школьнику же остаётся задача попроще: вышелушить математи-
ческое ядро задачи там, где оно уже почти видно.

Но и здесь это не совсем тривиально. И чем скучнее условие за-
дачи –– тем легче это сделать. Унылые, однообразные условия задач
даются именно для того, чтобы это было легче.

А теперь –– как обстоит дело на олимпиадах? Математическая
олимпиада –– совсем другой случай. Туда приходят люди, для кото-
рых вышелушить математическое содержание –– проще простого,
как бы замысловато задача ни была сформулирована. И для них
необходимость понять чисто математическое содержание задачи,
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исключив из неё мудрого таракана и королей, –– не в тягость, а в ра-
дость. Это некий дополнительный аттракцион.

Это примерно так же, как в анекдотах: в них обычно что-то не договари-
вается. Дело не в том, что догадаться о недоговорённом трудно –– наоборот,
это очень легко. И рассказывающий и слушающий улыбаются друг другу
улыбкой авгуров, «посвящённых» в недоговорённое.

∗ ∗ ∗
Но как же на самом деле работают математики?
Иной раз представляют дело так: для математики, дескать, нуж-

но, чтоб всё было просто: «тут белые, там чёрные, по эту сторону
свободные, по ту –– рабы», а жизнь, мол, сложнее.

Так ли это? Отчасти.
Действительно, математики хотят иметь теории попроще и це-

нят такие теории. Однако работает математик всё-таки совершенно
иначе. Поскольку приходится, хочешь не хочешь, опираться на фак-
ты. Да, вначале он обычно строит какую-нибудь совсем простую ра-
бочую гипотезу; но тут же выясняется, что факты ей противоречат.
Он начинает её менять. Даже пиджак шьётся не с одной примерки ––
а тут всё много сложнее. Переделываешь раз, другой, третий. На
десятый раз начинаешь примерно понимать, какая именно теория
имеет шанс оказаться верной –– причём обычно нечто совершенно
непохожее на то, что собирался сделать: думал, что шьёшь штаны,
а вышла штормовка.

И всё-таки при этом теория должна быть простой. Под очень
сложную теорию можно подогнать всё, что угодно (появился новый
факт –– вводишь в основное уравнение ещё один член); но слишком
сложная теория никому не нужна. Вот и вертись, как знаешь.

Можно ещё это изобразить таким образом: допустим, есть ряд
экспериментальных точек, и надо придумать кривую, на которую
они все, хотя бы приблизительно, ложатся.

Вообще-то есть совсем простая теорема, которая гласит: для любо-
го набора точек существует многочлен, на графике которого все они
лежат. Ну так что: берём этот многочлен, и вперёд? Как бы не так!

Берём сначала две точки и бодро проводим через них прямую
(иначе говоря, строим график многочлена 1 степени). Но третья
точка, вот досада, на график не попадает. Не беда: вместо прямой
возьмём параболу (вместо уравнения первой степени –– уравнение
второй) и проведём её через 3 точки.
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Но для четвёртой придётся брать уравнение третьей степени, по-
том четвёртой, и так далее. Для 40 точек придётся взять уравнение
39-й степени. Однако мало того, что его долго искать, главное ––
даже уравнение 9-й степени, не говоря уж о 39-й, никому не нужно.

Начинаем химичить. Будем считать, что измерения проведены
неточно, и теория тоже не совсем точная –– значит, пусть искомая
кривая пройдёт не через наши точки, а поблизости от них. Вот эти
две точки, которые не лезут ни в какие ворота –– долой; условимся,
что они из другой науки. После этого попробуем подобрать что-то
приемлемое... А потом понимаешь, что точки довольно хорошо ля-
гут на кривую, –– но надо брать не многочлен, а сумму трёх синусо-
ид. Впрочем, две точки всё-таки придётся выбросить... Только не те,
которые я выбрасывал раньше, а две другие.

Вот примерно так и работаем. А вы говорите «простая теория»...

Зачем нужно уметь считать?

Г-жа Простакова (Правдину). Как, батюшка, назвал ты науку-то?
Правдин. География.
Г-жа Простакова (Митрофану). Слышишь, еоргафия.
Митрофан. Да что такое! Господи боже мой! Пристали с ножом

к горлу.
Г-жа Простакова (Правдину). И ведомо, батюшка. Да скажи

ему, сделай милость, какая это наука-то, он её и расскажет.
Правдин. Описание земли.
Г-жа Простакова (Стародуму). А к чему бы это служило на

первый случай?
Стародум. На первый случай сгодилось бы и к тому, что ежели б

случилось ехать, так знаешь, куда едешь.
Г-жа Простакова. Ах, мой батюшка! Да извозчики-то на что ж?

Это их дело. Это-таки и наука-то не дворянская. Дворянин только
скажи: повези меня туда, свезут, куда изволишь. Мне поверь, ба-
тюшка, что, конечно, то вздор, чего не знает Митрофанушка.

Д. Фонвизин. «Недоросль»

Выше я сказал о том, что математики стараются считать помень-
ше. Теперь я хочу выдвинуть дополнительный тезис: всем нематема-
тикам (не только физикам) необходимо уметь считать. Или, говоря
точнее, –– уметь работать с цифрами.

Ведь очень многие склонны думать, что такое умение требуется
только математикам (ну, может быть, физикам, или ещё в каких-
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то точных науках). Во всех прочих случаях, если нужны цифры –– то
«извозчик довезёт», пусть кто-нибудь сосчитает за нас.

А результат получается печальный: они приводят цифры, но не
понимают, что именно из этих цифр можно извлечь. Притом –– под-
черкну –– речь отнюдь не о том, что математики обладают какими-то
особенно хитрыми приёмами, позволяющими извлечь из имеющихся
цифр нечто, недоступное простым смертным. Да, такие приёмы дей-
ствительно существуют, математики ими владеют и изредка применя-
ют. Но, как правило, речь идёт о совершенно элементарном умении
не просто смотреть на цифры, а сопоставлять их. Здесь не требуется
знание специальных разделов математики. А требуется некое владе-
ние духом математики –– т. е. тем, что необходимо каждому человеку.

Приведу несколько примеров.

• Американская исследовательница Энн Эпплбаум в своей книге «ГУЛАГ»
приводит данные о числе его узников.

Данные, надо сказать, достаточно удивительные.
Во-первых, эти цифры заметно меньше тех, которые мы привыкли счи-

тать оценочными. Согласно этим данным, в начале -х годов общее чис-
ло узников ГУЛАГа составляло около 300 тысяч, и дальше росло медленно,
но верно. (Кстати сказать, в  г. не было какого-то резкого скачка; цифра
выросла, да, но не так уж заметно.) Максимум был достигнут в  г. ––
несколько больше 2,5 миллионов. Кстати, это примерно равняется числу
заключённых в тюрьмах США в наши дни (правда, надо сделать поправку:
население США примерно вдвое больше, следовательно, процент заключён-
ных в нынешних США примерно вдвое меньше).

Но более странно другое. Суммируя число заключённых по годам (этого
мисс Эпплбаум не сосчитала), мы получаем приблизительно 36 миллионов.
Между тем она пишет, что общее число людей составляет примерно 18 мил-
лионов.

Расхождение? Да. Но совсем не в ту сторону, как кажется на первый
взгляд. Первая цифра и должна быть заметно больше: ведь человек, про-
сидевший, скажем, 8 лет, в первом случае учитывается 8 раз.

А вышло, что каждый заключённый ГУЛАГа учитывался в среднем толь-
ко два раза.

Отсюда математически неизбежный вывод: либо цифры фальшивые,
либо средний срок заключения составлял около 2 лет.

Предположим, что цифры не фальшивые (это предположение косвенно
подтверждается тем фактом, что мисс Эпплбаум, во всяком случае, НЕ стре-
милась оправдывать советский режим). Тогда –– как их объяснить?

Может быть, высокой смертностью? Нет. Конечно, высокая смертность
несколько корректирует эти цифры, но «списать» это противоречие на её
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счёт, как легко сосчитать, не удаётся. (Для того, чтобы объяснить такую
ситуацию только высокой смертностью, нужно было бы, чтобы по крайней
мере 80 % заключённых умирало в течение первого года, а реальная цифра
заведомо меньше в несколько раз –– или даже в десятки раз.)

Между тем буквально все авторы пишут, что все сроки составляли 8––10
лет и более; о ком ни прочтёшь –– узнаешь, что он провёл в лагерях 10 лет
и более. Даже делая поправку на «добросовестность» сегодняшних журна-
листов, трудно сделать так, чтобы данные сходились.

По моей грубой прикидке, высокая смертность в лагерях может «сбли-
зить» две приведённые цифры –– 10 лет (обычные сроки) и 2 года (цифра,
выведенная выше) процентов на 20, может быть –– 30. От силы –– 50, но это
уж с колоссальными натяжками. Так или иначе, требуется ещё и другое,
дополнительное объяснение.

Может быть, оно состоит в том, что «астрономические» сроки относятся
к известным людям (старым большевикам или интеллигенции и т. п.), тогда
как простых людей и воров выпускали быстро.

Я говорю «возможно»; никак не настаиваю на такой версии. Для целей
настоящей статьи важно другое: никого эти расхождения в цифрах не сму-
щают. Зачем «дворянину» знать математику? Или хотя бы арифметику?

И исследователи приводят очень интересные цифры, решительно не по-
нимая, что же из них можно извлечь.

Но оставим этот пример, где мы неизбежно оказываемся в лапах
самой низменной политики. Рассмотрим другой пример, который
сегодня не имеет уж ровно никакого политического подтекста; ав-
тора не обвинишь в том, что он нарочно, в каких-то низких целях,
завысил или занизил цифры. Тем не менее...

• Вот данные о богатых и бедных дворянах в Российской империи. (Таб-
лица взята из книги Миронов Б. «Социальная история России периода им-
перии (XVIII –– начало XX в.)». СПб., . Т. . С. .)

И опять –– автор книги не очень умеет считать, а вернее –– не понимает,
зачем нужно это уметь. В результате в таблице есть странности.

А именно, рассмотрим частное от деления чисел четвёртого столбца на
соответствующие числа второго. Это частное показывает, сколько крепост-
ных в среднем приходится на одного дворянина малого, среднего или боль-
шого достатка.

Например, посмотрим, сколько же крепостных приходится на одного
дворянина с 4––20 крестьянами. Делим 327,5 тысяч на 190,2 тысячи... так...
выходит... это ещё что?!

Выходит, что в среднем на помещика с 4––20 крестьянами приходилось
по 1,7 крепостного.
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Стратификация дворянства Европейской России

без Польши и Финляндии в  г.

Число дворян
обоего пола

Число крепостных
мужского пола у дворян

Тысяч % Тысяч %

Личные 276,8 31,3 0 0
Потомственные 612,0 68,9
Без земли и крепостных 33,9 3,8 0 0
С землёй и крепостными 96,6 10,9 0 0
Без земли, с крепостными, до 4 16,8 1,9 12,0 0,1
Без земли, с крепостными, до 20 190,2 21,4 327,5 3,1
С землёй и с крепостными, 20––100 164,5 18,5 1666,1 15,8
С землёй и с крепостными, 101––500 92,4 10,4 3925,1 37,2
С землёй и с крепостными, 501––1000 11,2 1,3 1569,9 14,9
С землёй и с крепостными, >1000 6,4 0,7 3050,6 28,9
Итого 888,8 100 10 551,2 100

Это как понимать? Может быть, принять во внимание, что в таблице
учтены только мужики, а не бабы? Увы, это не поможет; если даже допу-
стить, что во втором столбце, в отличие от четвёртого, учитывались кре-
стьянки (а это не факт), то число лишь удвоится, выйдет 3,4 крепостных.

То же самое получается и дальше. На помещика с 20––100 крестьяна-
ми в среднем приходится по 1666 : 164=10,1 крестьянина –– вдвое меньше,
чем допускает нижняя граница. И так далее.

Поразмыслив, я всё-таки нашёл правдоподобное объяснение этому па-
радоксу. Вероятно, помещики учтены ВСЕ –– обоего пола и с учётом детей.
Если принять, что в дворянской семье пять душ (скажем, помещик, жена
и трое детей), и на каждого из них приходится эти самые 1,7 крепостного ––
то на всю семью приходилось в среднем 8,5 крепостных, что уже нормально
укладывается в интервал от 4 до 20.

Возможно, именно так и было. Может быть, тут какое-то другое объяс-
нение. Во всяком случае, автору безусловно следовало бы разъяснить этот
момент.

Но автор совершенно не интересовался такими пустяками. Ему нужны
цифры –– он привёл цифры. Ну, и хватит с вас...

Вот вам ещё пример, на этот раз довольно грустный.

• Читаем бодрое сообщение (от ..). Шапка: «ВИЧ в мире всё
меньше». Это ведь хорошо, не правда ли? Прочтём:

Количество новых случаев ВИЧ в мире снизилось с 3,1 миллиона в  г.
до 2,6 миллиона в  г., или на 19 %, сообщил директор агентства ООН по
борьбе со СПИДом. В настоящее время в мире живёт 33,3 миллиона ВИЧ-
инфицированных –– на сто тысяч меньше, чем год назад.
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Так вот, господа. Если заразилось 2,6 миллиона, а инфицированных ста-
ло меньше на 100 тысяч, то куда же делись 2,7 миллиона? Ответ, к сожале-
нию, очевиден: умерли.

Однако этого журналисты не видят. И излагают эти печальные факты
в мажорном духе.

• А вот обратный случай. Согласно сообщению пресс-службы Счётной
палаты Украины, смертность в этой стране «превышает соответствующие
показатели в Европе в 3––5 раз...»

Более чем странно, если принять во внимание, что до сих пор смерт-
ность во всех странах составляла ровно 100 %.

Конечно, и здесь можно обсуждать, как получилась такая удивительная
цифра. Сказать, что смертность в настоящее время (именно в настоящее)
втрое выше? Тоже не получается, тоже цифирь не сходится. Потому что
это должно было бы означать, что продолжительность жизни на Украине
примерно в три раза меньше, чем в Европе; она действительно меньше, но
никак не втрое. Поэтому фактор продолжительности жизни может объяс-
нить такой феномен лишь на 20––30 %. А где остальные 70 %?

Можно, конечно, допустить, что речь идёт о случайном «всплеске» смерт-
ности. Но тогда он должен был бы привести к тому, что через год-два всё
нормализуется, и смертность на Украине станет примерно такой же, как
в Европе (должна бы –– меньше, но как сказано, надо учесть, что продолжи-
тельность жизни меньше).

А ещё можно допустить, что играет роль такой фактор: значительная
часть активного населения выехала на заработки. Их смертность (допу-
стим) не учитывается. И в результате учитывается смертность только сре-
ди тех, кто остался, т. е. среди людей постарше. Это автоматически даст
некоторое увеличение смертности –– хотя опять-таки недостаточное, чтобы
объяснить подобные цифры.

В общем, какие-то объяснения этим откровенно абсурдным цифрам
придумать можно. Но вновь повторю: это никому не интересно. Прежде
всего –– потому, что никто не замечает абсурдности цифр.

До сих пор я говорил о том, что нематематики не умеют обра-
щаться с цифрами. Но увы! И у людей, прямо связанных с матема-
тикой, есть проблемы.

• Знаменитый, а может быть, великий математик современно-
сти Уильям Пол Тёрстон (W. P. Thurston) пишет в своей статье :

«Помню, как в пятом классе я пришёл к поразившему меня пониманию,

что ответ на вопрос «сколько будет 134 делённое на 29» –– просто
134
29

. Это

же удивительно, от какого количества работы можно освободиться! Для ме-

 Переведено в журнале «Математическое просвещение» (М., . Т. ).
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ня деление 134 на 29 было утомительным заданием, тогда как за таким

предметом, как
134
29

, никакого труда не стояло. В радостном возбуждении

я прибежал к отцу и рассказал о своём замечательном открытии. Он мне
ответил: да, да, конечно, так и есть:

a

b
и a, делённое на b, –– это просто

синонимы. Для него это был всего лишь ещё один вариант обозначений».
Мысль поучительная, но... способный мальчик-пятиклассник был не со-

всем прав. Он не понимал, что таким образом мы выигрываем в одном,
чтобы потерять в другом. При таком обозначении вы, скажем, не очень

ясно понимаете: а вот это самое число
134
29

–– оно, к примеру, больше трёх

или меньше? И по этому случаю хочу рассказать ещё один анекдот. Опять
«анекдот» в классическом смысле слова; на этот раз –– из моих собственных
наблюдений.

Когда-то я пытался давать на вступительных экзаменах в КПИ (т. е. в од-
ном из лучших вузов Киева) несложную задачу «на пятёрку». И потерпел пол-
ное поражение. Никто из претендентов на пятёрку не знал, как её решать.

Задача такова.
Даны 4 положительных числа a, b, c, d. Рассматриваются три дроби:

a

b
,

c

d
и

a+ c

b+d
.

Как они могут располагаться по возрастанию (и как –– не могут)?
Ответ состоит в том, что третья дробь (она называется медианой) все-

гда находится посредине между двумя другими. Доказательство более чем
элементарно, но... его не проходят в школе. Результат, как сказано, печален.

И причина, вероятно, именно в том, что школьники слишком много
внимания уделяют формальным обозначениям и явно недостаточно пони-
мают, что именно они должны обозначать.

Напоследок приведу ещё два примера, где уже не будет никаких
цифр, но суть проблемы та же. Оба взяты из книги Н. Константи-
нова, в обоих идёт речь –– подчеркну это –– о школьниках из специ-
альных школ, глубоко изучавших математику и физику. И тем не
менее...

• Как-то раз группа школьников плыла на лодках. Один из школьников
захотел перепрыгнуть из одной лодки в другую, шедшую в кильватере сле-
дом. «Я просто подпрыгну, –– объявил он, –– и пока я поднимусь и опущусь,
та лодка как раз подойдёт».

А ведь ему рассказывали в школе об относительности движения. И был
это не двоечник, не хорошист, а один из лучших и талантливейших школь-
ников (других в константиновском лагере не было). Но он всё равно был
уверен: то, что он учит в школе –– это так, наука, не имеющая отношения
к реальности. И ему таки понадобилось подпрыгнуть и опуститься на то
же место (то же, разумеется, в лодке; в неподвижной системе координат он
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двигался вниз по течению вместе с лодкой), чтобы понять, что относитель-

ность движения есть физический факт.

Другой подобный случай.

• Школьник оставил на берегу Белого моря свой рюкзак. Вернувшись,
он с удивлением обнаружил, что его на берегу и близко нет. Украли? Нет;
рюкзак стоял там же, где стоял. Но теперь он стоял в воде, далеко от берега.
Ушёл берег: начался прилив.

А ведь опять же –– в школе он учил про приливы...

Зачем балерине математика?

Допустим, однако, что человек не собирается возиться с цифра-
ми вообще. Ни извлекать из них что-либо, ни вообще что-то делать.
Так, наверно, он прекрасно обойдётся и без математики?

Обойтись –– обойдётся. Можно, как известно, обойтись без од-
ной ноги (или даже без двух) и прожить жизнь; можно даже быть
при этом счастливым. Но никто не станет спорить, что с обеими
ногами как-то предпочтительней.

Так вот, зададим себе вопрос: зачем математика балерине или
художнику? Неужели им так необходимо уметь решать квадратные
неравенства?

Тут я для начала хочу привести точку зрения телекритика газеты
«Известия» и возразить ей.

Ирина Петровская, критик, вообще-то, очень и очень неглупый,
рассуждая о современной полу-развлекательной, полу-образователь-
ной телепередаче («Известия», ..), не удержалась, чтобы не
лягнуть советскую систему образования.

«А на канале СТС с недавних пор существует своё интеллектуальное шоу
под названием «Кто умнее пятиклассника?» Разного рода знаменитостям
предлагают ответить на вопросы школьной программы –– классов. Темы:
литература, история, география, математика, природоведение... Подсказ-
чиками выступают как раз пятиклассники, готовые прийти на помощь пла-
вающей в школьной программе знаменитости. Тот, кто всё-таки провали-
вает экзамен, должен публично признаться: «Я не умнее пятиклассника».
Почти все произносят эту фразу ещё до начала испытания. И это, в свою
очередь, развенчивает миф о невероятной мощи советского школьного об-
разования, якобы дававшего ученикам такой багаж знаний, что хоть ночью
разбуди и спроси –– от зубов отскакивать будет.

Да, вдалбливать знания в школе действительно умели. Вот только не за-
держались эти насильно вбитые знания в бедных головушках бывших совет-
ских школьников. А может, многие из них и не нужны были, вот время и стёр-
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ло их из памяти словно ластиком. Но нынешним школярам по-прежнему при-
ходится зубрить то, что в будущем им совершенно не пригодится...»

Аргументация, мягко говоря, сомнительная. И. Петровская не по-
нимает, что идеал, к которому должна стремиться школа –– в том, что-
бы научить человека учиться; если он это умеет, то впоследствии все-
гда сумеет за несколько месяцев «доучить» то, что ему понадобится.
Достигается ли этот идеал –– другой вопрос; но важно понимать, что
цель образования именно в этом, а совсем не в том, чтобы «вдол-
бить» знания, которые якобы пригодятся в дальнейшем .

Не понимает она и того, что если большая часть полученных зна-
ний потом благополучно выветривается из головы –– тут нет беды.
Большую часть знаний человек приобретает для того, чтобы потом
забыть. Отчасти потому, что для того, чтобы запомнить хоть что-
то –– надо выучить вдесятеро больше (если выучите только необхо-
димое –– забудете из него девять десятых). А отчасти ещё и потому,
что в принципе есть вещи, которые нужно выучить именно для

того, чтобы потом забыть.

Эта очень важная и глубокая мысль встретилась мне в воспоминани-
ях Сергея Прокофьева. В них он, среди прочего, описывает свои занятия
с Р. Глиэром, когда -летний композитор учил -летнего, но уже много
обещавшего Серёжу Прокофьева, и как Глиэр просветил его в отношении
«квадрата», секвенций и отклонений в шестую ступень. Что это такое –– для
нас не особенно важно, скажу лишь, что «квадрат» –– это построение музы-
кального произведения четвёрками: 4 такта, потом следующие 4, и так далее.

Однако музыканту (пишет Прокофьев) не следует слишком строго дер-
жаться квадрата; он вносит в мысль порядок, но если вся пьеса будет напи-
сана как 4+4+4, то она станет монотонной, и 4+4+5 повеет, как свежий
воздух. Квадрат надо было выучить –– а потом забыть. «Этого мне Глиэр не
объяснил, может быть, потому, что сам неясно сознавал, и я надолго попал
в объятья квадрата».

Это очень важная мысль.
Действительно, есть много вещей, которые надо не просто вы-

учить, а выучить и потом забыть. Вот аналогия: говорят, что человеку
надо прочесть 10 книг, но эти 10 книг надо искать всю жизнь. Это не
означает, что остальные действительно можно не читать. Это значит,

 Для примера: если вы хотите научиться решать неравенства или брать интегра-
лы –– вам необходимо решить много неравенств; взять много интегралов. Но вам нет
никакой необходимости помнить решённые вами задачи –– ни их решений, ни даже
их условий. Всё это выветривается из памяти –– туда ему и дорога; вам же остаётся
приобретённое искусство решать эти задачи.
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что надо прочесть очень много других книг, после чего (но только
после этого!!) ты поймёшь, что это всё –– не обязательно. Это можно
уже забыть. Но всё равно все эти знания остаются где-то в подкорке .

Вернёмся, однако, к нашей балерине. Наверно, многие со мной
согласятся, что и ей (как каждому из нас) следует знать побольше.
Большинство моих современников с этим тезисом, конечно, не со-
гласны –– но эти люди читать мою статью не будут, а потому и я
могу их мнение игнорировать; моих же читателей, я полагаю, убеж-
дать в этом –– значит ломиться в открытую дверь. Но мои читатели
выдвинут иное возражение: конечно, балерине тоже нужно знать
побольше (в частности –– чтобы потом забыть), но всего ведь всё
равно не выучишь. Зачем же ей математика, именно математика?
Может быть, пусть лучше учит, чтобы забыть, что-нибудь другое?

На такую постановку вопроса, вообще говоря, ответить нечего:
есть и другие полезные вещи. Но есть вещи, входящие в обязатель-
ный культурный багаж –– об этом речь пойдёт ниже –– и сверх то-
го, есть вещи, которые необходимы всякому. И прежде всего –– это
некоторые свойства души.

Потому позвольте мне поговорить немного подробнее о тех ве-
щах, которые вполне можно забыть, но с которыми надо ознако-
миться –– и потом всю жизнь держать в подкорке.

Математические понятия

Лет 30 назад в мехматской стенгазете была опубликована статья
о Всесоюзной алгебраической конференции «Кольца и модули». Она
начиналась со слов о том, что плакат на местном вокзале с названи-
ем конференции вызвал некоторое смущение, поскольку «хотя что
такое кольцо, знает каждый, то о модулях знают лишь те, кто ещё
помнит программу шестого класса...» 

И в самом деле: считается, что культурный человек не может
не знать, кто такая Мона Лиза и что Героическую симфонию на-
писал Бетховен, а не Моцарт. В то же время предполагается, что

 Во времена Низами, чтобы стать поэтом, нужно было знать на память столько-то
тысяч строк классиков, столько-то –– современников; а сверх того, требовалось ещё
знать наизусть и забыть 10 000 строк –– чтобы они порождали подтекст.

 Несведущим читателям поясню: это была шутка. На самом деле и кольцо, и мо-
дуль –– не те, о которых знают все или хотя бы все шестиклассники; это понятия из
современной алгебры, довольно простые, но всё же входящие в университетский,
а не школьный «багаж знаний».
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культурному человеку вовсе не обязательно знать, что такое кольцо,
или что такое дифференциальное уравнение. Это не входит в «обя-
зательный багаж».

Я охотно соглашаюсь с первой половиной, которая является (или,
увы, являлась до недавнего времени) общепризнанной, но не могу
согласиться со вторым. Дело, разумеется, не в том, чтобы непре-
менно выучить какие-то формулы, или чтобы знать, как именно ре-
шается КдФ-уравнение  –– этого, в самом деле, знать не обязательно
(я и сам-то не знаю).

Можно не знать, как именно решать дифференциальные уравне-
ния и как следует работать с бесконечно малыми. Но понимать, что
это такое, необходимо.

Необходимо знать, что такое «общее положение»; что такое контр-
пример, зачем он нужен и как он строится.

Не пытаясь представить читателю какую-то общую картину, я ог-
раничусь тремя-четырьмя этюдами на эту тему.

С точки зрения методики преподавания мне, вероятно, следова-
ло бы начать с темы «доказательства, контрпример и понятие об-
щего положения». Но эти вещи немного навязли в зубах, и я хочу
начать с философии матанализа и философии дифуров.

Да, каждый раздел математики имеет некую собственную филосо-
фию. Философия алгебры состоит в том, что надо изучать инвариан-
ты; философия теории вероятностей –– в том, что маловероятные со-
бытия не происходят. А вот названные мной науки... с них и начнём.

Математический анализ и дифференциальные уравнения

Философия математического анализа –– в том, что всё происходя-

щее приблизительно линейно. Знаем ли мы это? Да, это знает каждый.
Каждый уверен в том, что если он будет идти не один час, а два, то
пройдёт вдвое большее расстояние; если получит в полтора раза де-
нег, то и купит в полтора раза больше, и так далее, и тому подобное.

И поэтому, пожалуй, важнее обсудить даже не то, почему это
верно (это, повторю, и так все знают), а как раз обратное: почему
это неверно.

Допустим, вы –– американский пионер XVIII в., вышли в густой
лес и решили обосноваться в этом месте. Вы вырубаете участок, что-

 Уравнение Кортевега –– де Фриза, описывающее распространение волны в мел-
ком бассейне.
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бы поставить там свой дом, и ещё участок –– чтобы засеять поле.
Поставили; засеяли; сняли урожай.

Допустим теперь, что на следующий год у вас появились допол-
нительные силы, дополнительные рабочие руки, и вы решили: вам
есть смысл вдвое увеличить свой участок, чтобы получить урожай
вдвое больше.

Каким будет результат? Да именно таким он и будет (есть, ко-
нечно, разные привходящие обстоятельства, вроде возможной засу-
хи или, наоборот, благоприятной погоды, которая вам даст урожай
не вдвое, а втрое больше –– но это не имеет к делу отношения; это
вы предвидели заранее). Результат линейно или приблизительно ли-
нейно зависит от вложенных усилий и расходов.

Но если вы продолжаете увеличивать вырубки –– что тогда?
Тогда через некоторое время вы неожиданно для себя обнару-

жите, что климат местности стал меняться. Что ручьи пересохли,
и поля страждут от засухи. Что начались пыльные бури... да мало
ли что ещё. Словом, возникли внушительные нелинейные эффекты,
которые были совершенно незаметны до сих пор. «Линейный» под-
ход оказался непригодным, когда изменения слишком велики.

Понимать это чрезвычайно важно. Но теперь (вернёмся назад)
давайте поймём и другое: «линейная философия», т. е. философия
матанализа, тем не менее очень часто позволяет правильно смот-
реть на вещи, она крайне полезна. Но совершенно необходимо так-
же понимать, что́ именно вы делаете, когда предсказываете «линей-
ный» эффект –– и понимать, до каких пор ваш расчёт достаточно ра-
зумен, обоснован –– и где он становится весьма опасен.

К примеру, что будет, если продолжать выкачивать из недр Зем-
ли газ и нефть? Все считают, что будет то же самое, что и сейчас,
только лучше; хорошо бы выкачивать ещё больше, чтобы нам жи-
лось лучше.

Между тем, вроде бы, всякому понятно, что запасы нефти и газа
в природе ограничены. Тем не менее все политики твёрдо уверены,
что надо продолжать добывать больше нефти, больше газа. А что
будет, когда всё выкачаем? А, оставьте; нам не до этого. Мы живём
«линейно»: сегодня качаем 100 миллионов баррелей, завтра будем
качать 150 миллионов, и будем жить в полтора раза лучше...

Но не будем говорить о грустном и постараемся понять хотя бы,
что следует делать, если «линейная философия», философия матана-
лиза, даёт сбой.
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Как быть тогда? Тут может помочь практика (уже не философия)
дифуров. Наука об обыкновенных дифференциальных уравнениях
как раз изучает, как протекают процессы во времени. И она говорит,
что мы можем предсказать течение процесса в целом, если знаем,
как он протекает в малом. Это уже не анализ (анализ даёт прими-
тивный, хотя и очень полезный прогноз: всё будет линейно), это
более совершенный способ изучения. Как всякий более совершен-
ный способ, он имеет тот минус, что каждый случай надо рассмат-
ривать по отдельности (в анализе всё всегда одинаково), да к тому
же в большинстве случаев оказывается, что составить дифференци-
альное уравнение кое-как удаётся, но решить его нельзя .

Иногда решить уравнение удаётся. Простейший пример такого
рода –– процесс ядерного распада. Мы знаем, что за очень корот-
кий срок распадается определённая доля атомов, скажем, урана-238
(для урана-235 верно то же, но доля распадающихся атомов другая).

Это то, что происходит «в малом», скажем, за долю секунды. От-
сюда можно вывести, что количество оставшегося урана будет убы-
вать по экспоненте, т. е. нужно определённое время, чтобы от име-
ющегося количества осталась половина; ровно столько же для того,
чтобы от этой половины осталась половина (т. е. одна четверть ис-
ходного количества), потом половина от этого, и т. д.

Значительно сложнее явление солитона (уединённой волны),
для которого было совсем непросто и написать дифференциальное
уравнение, а уж тем более –– разобраться с его решениями.

Тем не менее на первом, самом примитивном уровне, можно го-
ворить, что и здесь то же самое: мы знаем, что именно происходит
за минимальный отрезок времени (скажем, за долю секунды), и по-
этому мы можем предсказать поведение волны надолго вперёд.

И вот такие вещи обязан понимать каждый.

Пределы

Отступим немного назад. Дифференциальное уравнение –– вещь
непростая. Предел, вроде бы, намного проще: понятие предела изу-
чается в школе. Школьники что-то выучивают... и ничегошеньки не

 И поэтому математики шутят о себе так: «Если математику задают вопрос, будет
ли устойчивым стол на четырёх ножках, он довольно быстро принесёт вам первые ре-
зультаты –– касающиеся стола с одной ножкой и стола с бесконечным числом ножек.
Всю остальную жизнь он безуспешно пытается решить задачу о столе с произволь-
ным числом ножек».
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понимают. (Я сам-то только совсем недавно понял, что это такое ––
и спешу поделиться с читателем.)

Несколько лет назад я вёл дискуссию с математиком К. Он утвер-
ждал, что из школьной программы вполне можно выбросить тео-
рию пределов –– ведь «всем понятно, что производная –– это просто-
напросто касательная».

Я возразил: касательная –– ладно, а как быть с рядами?
К: Так что же? Можно прекрасно сосчитать сумму геометриче-

ской прогрессии алгебраическими методами.
Я: Ну нет. А число e?
И вот тут-то до меня дошло, что самое вредное, что можно сде-

лать –– это привить человеку мысль, будто сумму ряда можно сосчи-
тать.

Наоборот. Он должен понимать, что в абсолютном большинстве

случаев (для того же числа e= 1+ 1+
1
2!
+

1
3!
+

1
4!
+…) единствен-

ное, что можно сделать –– это «вручную» сложить достаточно много
членов, а потом бросить это занятие и сказать, что мы вычислили
сумму ряда довольно точно.

Точно так же, в большинстве случаев, вычисляется предел. Тут,
конечно, возникает масса тонкостей –– скажем, лучше было бы не
просто «бросить» сложение членов ряда, а сверх того ещё прибли-
зительно оценить сумму оставшихся, и тому подобное... но эти тон-
кости уже, и в самом деле, балерине или даже физику знать не обя-
зательно. Но каждому надо понимать, что предел последовательно-
сти –– это «на самом деле» просто-напросто его достаточно далёкий
член, а сумма ряда –– это сумма его первых десяти (может быть, ста
или двухсот) членов.

Неточно? Конечно, неточно. Но для того чтобы понимать, как
устроен мир, надо иметь в голове именно его неточную картину;
точная уж слишком сложна.

Неравенства и теоремы о среднем

А ещё есть такая наука: теория неравенств. Она вполне элемен-
тарна, её изучают не в университетах, а в школах. Но недостаточно
объясняют, зачем она нужна.

Для начала приведу один совсем простой пример.

Утверждение. Если дано некоторое множество чисел, оно раз-

бито на подмножества, и среднее значение в каждой группе мень-

ше A, то и среднее значение по всему множеству меньше A.
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Очевидно?
Для всякого, кто понимает, –– очевидно .
Для любого выпускника средней школы –– трудная задача. И труд-

на она именно потому, что у него нет ни понимания о том, что такое
«среднее», ни представления о том, что наука и жизнь как-то между
собой связаны.

А зачем такие вещи нужны?
Ну, хотя бы для того, чтобы на важных заседаниях не произноси-

лись с умным видом слова: «к сожалению, имеются ещё недостатки,
к примеру, в 9 областях наши показатели ниже, чем в среднем по
стране...»

Или чтобы не оказывалось, что такие-то области в прошлом году
были передовыми, а теперь, к сожалению, отстают...

• Пример из жизни: с учёным видом сообщают, что в прошлом году
Полтавская область была по темпам роста на 21-м месте (т. е. среди наихуд-
ших), а в нынешнем достигла огромного успеха, перейдя на второе место.

Это что: резкое улучшение ситуации? –– Ничего подобного. Это значит,
что область начинала с очень низких показателей, и благодаря этому её
небольшой прогресс сразу дал «высокие» темпы роста. А другие области,
те, которые добились прогресса раньше –– те исчерпали резервы роста, и те-
перь уже растут медленнее, оказываются на «плохих» местах.

Знание тонких фактов и методов решения неравенств совершен-
но не обязательно. Но знать, во сколько раз отличаются, к примеру,
разные расстояния, необходимо. Иначе получается то, что мне при-
шлось однажды читать в газете:

«... Крым есть замечательная точка Земли, поскольку именно на Крым
льётся с расстояния 15 000 световых лет непрерывный поток информации
из Космоса...»

Писавший явно не представлял себе, что такое неравенства. Прикиньте,
пожалуйста, размеры Крыма и световые годы .

Перейдём к другому, но тесно связанному с первым вопросу. Что
такое «среднее»? Вы уверены, что вы знаете это?

 Для тех, кого смущает абстрактная формулировка, приведу другую, в точности
равносильную. В мире есть много стран, но в каждой стране средняя зарплата

меньше 100 долларов в месяц. Тогда и по всему миру средняя зарплата меньше

100 долларов.

Или ещё один вариант, опять-таки строго равносильный. В мире есть много

стран, средняя зарплата в мире больше 100 долларов в месяц. Тогда есть хотя

бы одна страна, в которой средняя зарплата тоже больше 100 долларов в месяц.

 Для справки: 1 световой год составляет около 10 триллионов километров.
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К примеру: известно, что мужчины, в общем, выше женщин. Это извест-
но всякому. А вот что именно это означает?

Что каждый мужчина, даже самый низкорослый, выше самой высокой
женщины? Разумеется, нет.

А что же? То, что мужчины выше «в среднем». А что это означает ––
«в среднем»?

Что средний рост мужчины больше, чем средний рост женщины? По-
жалуй, так... Вот только нехорошо, что нельзя понять, что такое «сред-
ний рост». Надо ли, к примеру, учитывать младенцев? (Вероятно, нет.)
А -летних? Где граница?

А может быть, вообще надо говорить не о усреднённом росте, а о так
называемой медиане: выбрать из всех мужчин одного мужчину среднего
роста (т. е. такого, что ровно половина мужчин выше его и половина –– ни-
же), соответственно выбрать женщину среднего роста –– и сравнить?

Или брать по-другому? Счесть, что «среднее» значение –– это значение,
которое встречается чаще всего? Среднее геометрическое? Среднее гармо-
ническое? Или, может быть, взвешенное среднее, о котором речь пойдёт
чуть ниже?

Мне, вероятно, скажут: стоит ли так разбираться? –– В данном
вопросе, бесспорно, не стоит. А если речь идёт не о таком академи-
ческом вопросе, как «средний рост мужчин», а о среднем росте цен
на товары? Тогда как его вычислять, и что правильнее?

Как известно, «средний» рост цен называется инфляцией (или
индексом инфляции). Но дав ему название (или даже предложив
формулу для его вычисления), мы никак не объяснили, что же это
такое.

И в каком именно из перечисленных смыслов берётся среднее:
среднее арифметическое, среднее гармоническое или взвешенное
среднее (т. е. среднее арифметическое, но с некими коэффициента-
ми «взвешивания»)?

На самом деле экономисты используют последнюю из перечис-
ленных формул, причём коэффициенты вычисляют путём тщатель-
ного разглядывания потолка. Но правильный ответ о том, как вы-
числять инфляцию, таков: ни один из них, или же все сразу. То есть:
ни один из этих показателей, строго говоря, не годится, величина
не может быть измерена ОДНИМ числом, и надо пользоваться более
сложными приёмами.

Этого, однако, никто делать не будет, поскольку более сложные
показатели не удастся вставить в пропагандистскую статью (хва-
лебную или хулительную –– всё равно).
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Однако не надо впадать в обратную крайность и утверждать, что
«ничего мы не знаем и знать не можем». Нет. Именно в связи с про-
блемой «наилучшего среднего» стоит сказать, что в исключительно
важном и очень часто встречающемся случае нормального распре-

деления ВСЕ перечисленные выше показатели СОВПАДАЮТ. Иными
словами –– можно пользоваться любым из них, и все они хороши.

Не всё безнадёжно. Но и не всё просто.

Алгебра. Инварианты. О множественности миров

Современная математика занимается в основном преобразова-
ниями. И алгебра –– тот раздел, который смотрит на них с позиции
инвариантов.

Философия алгебры состоит в том, что надо изучать инварианты,
т. е. то, что не меняется в ходе преобразований. Так сказать, «всё ме-
няется в этом мире, но есть и что-то прочное, неизменное; именно на
это нетленное надо обращать внимание, всё остальное –– пустяки».

Конечно, этот подход –– тоже ущербный; не только нетленное за-
служивает внимания. Но поскольку алгебра –– не вся математика,
а только один крупный её раздел, такой подход более чем оправдан.

А что же такое «нетленное» в смысле алгебры?

Пример. В левый нижний угол шахматной доски 8× 8 постав-
лено в форме квадрата 3× 3 девять фишек. Фишка может прыгать
на свободное поле через рядом стоящую фишку, т. е. симметрично
отражаться относительно её центра (прыгать можно по вертикали,
горизонтали и диагонали). Можно ли за некоторое количество та-
ких ходов поставить все фишки вновь в форме квадрата 3× 3, но
в другом углу?

Ответ: нет, невозможно. Дело в том, что вначале в нечётных ря-
дах вначале стоит 6 фишек, тогда как если поставить фишки в верх-
ний угол, то в нечётных рядах будет только 3 фишки. Но фишка пры-
гает из нечётного ряда только в нечётный (и никогда –– в чётный);
раз вначале в нечётных рядах стояло 6 фишек –– так оно и будет до
конца времён.

Такова философия алгебры. А задачи алгебры совсем другие. Ал-
гебра создаёт новые миры.

Их множество. Можно заниматься кольцом натуральных чисел;
но можно вместо этого взять какое-нибудь глобальное кольцо. Этих
колец бесчисленное множество; они в основном похожи друг на дру-
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га, но каждое имеет свои особенности, точно так же, как имеют
свои особенности Франция, Германия или Италия –– при том, что
все они –– крупные европейские страны, и в этом смысле противо-
стоят Венесуэле или Китаю.

А можно взять уже кольца совсем другого типа: скажем, кольца
Ли. Или изучать теорию луп. Продолжая приведённую аналогию,
мы скажем, что это будут уже «алгебраический Китай», «алгебраи-
ческая Индия». И всё это –– отдельные миры.

Но...
Современная алгебра кое в чём похожа на жизнь во Вселенной.

Планет много, но есть ли на них жизнь? Судя по всему –– где-то, воз-
можно, есть, но редко.

Сравнение покажется неожиданным, но сходство есть.
Современная алгебра (не путать со школьной алгеброй: школь-

ная –– тоже наука, тоже очень важная и полезная –– но совсем дру-
гая, имеющая мало общего с современной) –– наука, которая прежде
всего учит чёткости. Предельно ясно сказано, «что мы знаем –– что
требуется доказать».

А что именно мы знаем? Согласно философии современной ал-
гебры, мы знаем некий набор аксиом. Отбросьте любую, замените её
чем-нибудь –– и вы получите новую теорию, так сказать, новый мир.

Много миров. Но среди них очень мало разумных. Так же мало,
как мало во Вселенной миров, где есть жизнь.

Вот потому-то по окончании доклада принято спрашивать до-
кладчика: «А зачем нужна эта теория?» И чаще всего оказывается,
что она вовсе не нужна.

Помню, как на одном семинаре известный математик К. спрашивал
у молодых докладчиков:

–– Ну, а зачем нужен этот метод?
Докладчик: Сначала нужно его довести до совершенства.
К. (иронически): А уж после этого выбросить.

Смысл этой дискуссии в том, что нередко бывает именно так:
математик (в особенности –– алгебраист) сам придумывает задачу,
сам придумывает для неё метод, который только для неё и годится...
и тут, конечно, возникает вопрос: «а какая от этого польза?»

Ещё одну иллюстрацию к этому принципу даёт известный анек-
дот.

• Два воздухоплавателя отправились в путешествие на воздушном ша-
ре. Вдруг –– ураган, шар уносит неведомо куда, за тысячу миль. Наконец,
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ураган начинает стихать, шар уже не мчится, а просто летит очень быстро,
и снизился настолько, что можно даже слышать, что происходит внизу.

Внизу идёт какой-то человек; воздухоплаватели кричат ему:
–– Э-эй! Где мы находимся?
Человек внизу после краткого раздумья отвечает:
–– Вы находитесь на воздушном шаре.
Больше сказать они ничего не успевают, шар несёт дальше. Один из

воздухоплавателей говорит другому:
–– По-моему, это был математик.
–– А почему ты так думаешь?
–– По трём причинам. Во-первых, он немного подумал, прежде чем от-

ветить. Во-вторых, его ответ был абсолютно правильным. А в-третьих, со-
вершенно непонятно, зачем такой ответ нужен.

И всё же (эту притчу приводил Станислав Лем в своей знаме-
нитой «Сумме технологии»), если вы сшили множество разных ко-
стюмов (с тремя рукавами, с восемью штанинами и так далее), то
у вас возникает неплохой шанс найти кого-нибудь, кому один из
ваших костюмов подойдёт. Может быть, стрекозе или осьминогу,
а может –– глубоководной рыбе, которую ещё никто не видел. Так
было в истории математики много раз. Знаменитый немецкий ма-
тематик Эдмунд Ландау (которого не надо путать со знаменитым
советским физиком Львом Ландау) на вопрос о том, зачем нужна
теория чисел, иронически отвечал:

–– Как зачем? А диссертации?
Это был принципиальный ответ: математика не должна зани-

маться только тем, что «нужно» . Но с другой стороны, в наши дни
выяснилось, что Ландау был неправ: теория чисел оказалась совер-
шенно необходима для построения надёжных кодов.

Другой классический пример –– матричное и тензорное исчисле-
ние: их придумали «просто так», а они оказались совершенно необ-
ходимыми для создания общей теории относительности и кванто-
вой механики.

Доказательство

Чему должна учить математика? Поставим вопрос несколько
уже: чему должна учить человека школьная математика?

 О том же на много веков раньше говорил Евклид. Когда некий молодой человек
спросил его, какая польза от геометрии, Евклид подозвал своего раба и презрительно
сказал ему:

–– Он ищет пользы. Дай ему медный грош.
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Прежде всего, разумеется –– умению думать и доказывать.
То, что человеку необходимо умение доказывать –– факт, очевид-

ный не для всех, и к этому я вернусь чуть ниже. То, что необходимо
умение думать –– вероятно, можно принять без аргументации, но за-
то надо объяснить, почему речь идёт именно о математике.

Ответ: просто потому, что математика даёт в этом смысле самый
благодарный материал.

Само собой разумеется, что учитель физики или другой точной
науки также может и должен учить думать. И то же самое можно
сказать даже об учителе литературы. Но в других науках гораздо
больший акцент делается на других (тоже, разумеется, весьма по-
лезных) качествах: память, фантазия. К примеру, в географии на-
до знать целый ряд фактов, которые ниоткуда не вытекают. То, что
Джомолунгма –– высочайшая из вершин мира, и что её высота со-
ставляет столько-то метров –– нельзя ни понять, ни объяснить. Мож-
но только выучить.

В математике тоже есть факты, которые надо запомнить без объ-
яснения (к примеру, ряд фактов из истории математики). Но мыс-
лить надо всё время, постоянно. Притом задачи есть на любой вкус,
от совсем лёгких до трансцендентно трудных. Только трудись! Каж-
дая наука развивает умение думать, но математика даёт для этого
самые лучшие возможности.

Что же касается умения доказывать, тут, понятное дело матема-
тика вне конкуренции. Но действительно ли человеку так это важ-
но?

Разумеется, для 99,99 % людей совершенно не обязательно знать,
как именно доказывается, к примеру, формула Стирлинга. Но вся-
кому нужно –– хотя бы для того, чтобы не быть игрушкой в руках
демагогов –– понимать, что такое доказательство, и чем доказатель-
ство отличается от правдоподобного аргумента, а аргумент –– от го-
лословного утверждения, или демагогии.

И так как ничему нельзя научиться, не попробовав самому –– так
нельзя понять, что такое доказательство, не проведя его самостоя-
тельно, пусть хотя бы на таком примитивном материале, как «в рав-
нобедренном треугольнике высота и биссектриса совпадают»...

Да. Чтобы понять, что такое доказательство, надо самому на-
учиться доказывать. Это лучше всего сделать в школе. Потом можно
это умение забыть; без него большинство может обойтись. Но это
тот самый случай, когда надо «научиться, чтобы потом забыть».
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А теперь позвольте немного поговорить об обратной стороне до-
казательства: о теоремах существования.

Теоремы существования и контрпримеры

Доказательство утверждает: ВСЕГДА верно то-то (ну, скажем:
диагонали ромба всегда перпендикулярны; не существует ромба,
у которого угол между диагоналями равен 89◦). Теорема существо-
вания (будь она верна) говорила бы, напротив: существует ромб
с углом 89◦; имеется контрпример, вот он...

Зачем это нужно?
Сегодня очень модно издеваться над формулой «я Пастернака не

читал, но осуждаю...»
В принципе эти издёвки обоснованы. Но они (этого сейчас не

желают понимать) обоснованы только в некоторых, довольно спе-
циальных обстоятельствах. А чаще всего подобная аналогия, напро-
тив, доказывает лишь невысокий умственный уровень насмешника.

Отчего? Ну, я мог бы сослаться на ответную цитату. Из Михаила
Булгакова:

«–– А вам что же, мои стихи не нравятся?
–– Ужасно не нравятся!
–– А вы какие читали?
–– Никаких я ваших стихов не читал! –– нервно воскликнул посетитель.
–– А как же вы говорите?» –– не без оснований спрашивает Иван Бездом-

ный. Но и у Мастера есть свои резоны:
«–– Ну что ж тут такого, –– ответил гость, –– как будто я других не читал...»

(М. Булгаков. «Мастер и Маргарита»)

Этот аргумент многим покажется довольно убедительным. Но
в действительности это –– всего лишь цитата против цитаты.

Гораздо важнее то, что во многих обстоятельствах, действитель-
но, мы ИМЕЕМ ПРАВО, не читая говорить: «Это чушь».

Отчего? Да именно оттого, что есть такая вещь, как теоремы
существования.

Если вам доказывают, что 11=12 (есть такие софизмы), или ес-
ли автор, к примеру, приводит решение задачи о трисекции угла, то
я могу НЕ ЧИТАЯ сказать, что в решении есть ошибка.

«Где? –– спросят меня. –– Найдите её и укажите!»
«Нет, –– отвечаю я (и все математики поддержат меня безогово-

рочно). –– Мне не нужно искать ошибку –– я и так знаю, что она есть.
У меня есть теорема о её существовании. И нет ни малейшего же-
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лания копаться на десяти (а бывает, что и тридцати) страницах, вы-
искивая, где именно автор поставил минус вместо плюса».

Тут справедлива, так сказать, «теорема существования ошиб-
ки». Можно привести целый ряд других примеров, где достаточно
ЗНАТЬ, что такой-то объект существует; но для простоты остано-
вимся только на возможности ДОКАЗАТЬ наличие ошибки, дока-
зать, что такое-то «доказательство», такой-то аргумент неверен да-
же не потому, что мы нашли в нём ошибку –– он неверен априори,
потому что быть верным он не может.

И попробуем эту аргументацию перенести из математики –– в дру-
гие науки.

И мы увидим, что очень многие утверждения заведомо неверны.
Приведу пару примеров из истории.

Марк Твен в своём романе «Янки при дворе короля Артура» изображает
средневековые темницы, в которых десятилетиями томятся узники.

Могло ли такое быть?
Нет. Ситуации, которую изобразил Марк Твен, быть не могло.
А почему? Казалось бы, во-первых, можно привести примеры подобных

узников. И темницы были (а в старинных замках и сохранились). А во-
вторых, даже если б не так –– мой тезис голословный, ведь я не могу дока-
зать, что ни одного такого случая не было.

То и другое верно. И тем не менее я настаиваю на своём тезисе: такого
быть не могло. И вот почему.

Если вы держите узника в тюрьме 10, 20 (не говорю уж: больше) лет...
А за какие шиши?

Узники, изображённые в романе, –– бедные люди. И, что ещё важнее, ––
дело происходит в бедные времена. Кто же это будет хотя бы год кормить
дармоеда; содержать тюремщика, который должен, хотя бы, принести ему
еду; наконец, просто держать человека в клетке или камере, которую мож-
но было бы использовать с толком?

Но ведь такие случаи были? –– Да, и немало. Но все –– не такие.
Часто случалось, к примеру, что знатного пленника держали –– может

быть, и долгие годы –– ради выкупа. Бывало и так, что на выкуп не рас-
считывали, а человека всё-таки держали много лет в тюрьме: к примеру,
французский король Людовик XI был сильно разгневан на своего бывшего
любимого советника кардинала Балю, но пролить кровь прелата боялся ––
и засадил его в тюрьму на долгие годы. Но это уж случай особый.

А бедняка... Если он сильно проштрафился –– его попросту вешали, или
казнили более изощрённым способом –– но не держали в тюрьме. Если про-
штрафился не очень сильно –– его можно было выпороть, или посадить в ко-
лодки. Это дешёвый способ наказания –– в отличие от тюрьмы.
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После того, как европейцы обзавелись галерным флотом, казнить кого
ни попадя перестали: к чему такой непроизводительный расход человече-
ского материала, когда можно его (этот материал) послать грести на гале-
рах? Но и тут экономический смысл очевиден.

А что, простых людей так-таки и не сажали? –– Сажали, а как же. Но
ненадолго, и с практической целью: взять деньги (своего рода рэкет про-
шлых столетий). Если какой-то крестьянин –– как предполагалось, зажиточ-
ный –– не платил подать феодалу и ссылался на то, что денег нет ни гроша, ––
его сажали на неделю-другую в сырой подвал (я сам видел такие подвалы).
Дня через три он обычно вспоминал, что деньги у него есть...

Думаю, из сказанного понятно, почему я, не имея под рукой ре-
шительно никаких исторических трудов, берусь утверждать: ситуа-
ция, описанная в романе, не могла иметь место.

Но то же можно сказать и о других ситуациях.

К примеру, сейчас очень популярно утверждение, что «в начале войны
советские люди не имели особой охоты воевать, и только когда они уви-
дели, что́ представляет собой Гитлер –– ну, тут уже пошла иная, народная
война...».

И здесь я, точно так же, без всяких материалов берусь утверждать, что
это неверно. Мне не нужно искать ошибки в данных, которые собрали ис-
торики. Достаточно того, что в утверждении есть явная логическая ошибка.

Можно ли допустить, что перелом в ходе войны был связан целиком,
или хотя бы в основном с тем, что вначале люди воевать не хотели, а потом
увидели истинное лицо нацизма?

Рассуждаем от противного: примем пока что этот тезис, как верный,
и посмотрим, что из него вытекает.

А следствие очевидно. Кто именно увидел истинное лицо нацизма? Мо-
жет быть, солдаты сибирских дивизий, переброшенные под Москву в декаб-
ре -го?

А что именно они могли увидеть? Они знали о Гитлере только то, что
им говорила советская пропаганда. Была ли эта пропаганда истинной или
лживой –– в контексте обсуждаемого вопроса не имеет ровно никакого зна-
чения. Либо они верили этой пропаганде –– но тогда они должны были бы
верить ей в июне -го так же точно, как в ноябре. Либо они советской
пропаганде раньше не доверяли –– но тогда у них не было особых причин
довериться ей осенью.

А вот жители оккупированной территории, напротив, видели и знали,
каков новый порядок, уже не из сообщений радио, а непосредственно. Со-
гласно этой логике, именно они должны были стать основной силой сопро-
тивления нацизму.

Было так? Не было.
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Партизанские отряды сыграли определённую роль в войне. Но (никто
этого не оспаривает) роль эта была всё-таки второстепенной. Кстати ска-
зать, в истории случалось и иначе: когда Наполеон воевал в Испании, ос-
новной силой сопротивления стали именно испанские партизаны, и имен-
но из-за них, а не из-за британского корпуса, Испания стала незаживающей
язвой наполеоновской империи.

Но к войне –– гг. это никак не подойдёт. Здесь решающую роль
сыграла регулярная армия, состоявшая из тех, кто, собственно говоря, на-
цистских зверств и не видел –– по крайней мере, до тех пор, пока не нача-
лось масштабное контрнаступление. Но это масштабное контрнаступление
началось уже в связи с переломом в ходе войны, т. е. после того, как про-
изошло то, чего (по принятой нами теории) быть не должно.

Следовательно, теория неверна.

∗ ∗ ∗
Контрпример –– важнейшее понятие математической культуры,

которое, кстати сказать, катастрофически недооценивается не только
нематематиками, но также и профессиональными математиками.

В любой книге, в любом школьном или университетском курсе
излагаются теоремы «то-то верно» (подразумевается: «верно всегда,
без исключений»). Но крайне редко вы встретите в книге утвержде-
ние «то-то верно не всегда –– вот вам контрпример».

Приведу простенький пример.

• Задача . Выпуклое тело плавает в воде, причём 90 % его объёма на-
ходится под водой. Докажите, что не менее 60 % его поверхности также
находится под водой.

Ответ. Задача неверна. Контрпримером является плоская коробка, пла-
вающая таким образом, что над водой выступает только крышка и мини-
мальная часть боковых поверхностей (согласно условию –– менее 10 % вы-
соты). Если при этом высота намного меньше длины и ширины, условие
задачи не выполнено, над водой находится почти 50 % поверхности.

Заодно уж замечу: приведённый пример можно модифицировать так,
чтобы над водой находилось даже больше 50 % поверхности.

А вот вам совершенно иной пример контрпримера.

• Утверждение. Многие математические теории –– такие, например,

как теория чисел –– представляют интерес только для самих математи-

ков, но не имеют и не могут иметь практических приложений.

Контрпример. В XX веке оказалось, что теория кодирования –– и, глав-
ное, практика кодирования –– требует, к примеру, умения находить очень
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большие (порядка 10100) простые числа. Это как раз одна из классических
задач теории чисел.

Ждать приложений пришлось долго, но они появились.

Третий случай.

• Выше я говорил, что невозможно себе представить, чтобы простолю-
дина долго держали в тюрьме; что это бессмысленно.

А может быть, я всё-таки ошибаюсь?
Ведь есть контрпример. Согласно Библии, Иосифа довольно долго дер-

жали в темнице, при том, что он был простым рабом, и не было никаких
причин, почему бы его, как сказано, не казнить (или выпороть, или просто
отпустить).

Конечно, я могу сослаться на то, что это –– явная сказка, легенда.
Но ведь в легендах, как правило, реалии жизни отражаются правиль-

но –– если нет причин для противного.

Не знаю.
А вот ещё один пример контрпримера.

• Дело было давно, лет 50, а может, и 60 тому назад. В Киеве проходил
какой-то очередной диспут по генетике: генетики против лысенковцев.

Выступал один из сторонников Лысенко. Объясняя, почему приобретён-
ные признаки могут и должны наследоваться, он привёл примерно такой
пример:

«Допустим, что на некой делянке у ёлок систематически обрубают вет-
ви. Такой опыт, конечно, трудно поставить –– но если бы на протяжении
ряда поколений так делали, то, несомненно, в конце концов ёлки стали бы
иными: с короткими ветвями...»

На этом месте выступающего прервала реплика из зала. Известный ки-
евский физик П. заявил: «Такой эксперимент был поставлен. На протяже-
нии многих поколений все женщины рождаются девственными».

Последовало полторы секунды молчания –– пока слушатели соображали,
что имел в виду П. –– а затем взрыв хохота.

И напоследок –– пример «доказательства существования».

• Задача . Фома и Ерёма делят кучу из 25 монет в 1, 2, 3, …, 25 алты-
нов. На каждом ходу один из них выбирает монету из кучи, а другой гово-
рит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас
больше алтынов, при равенстве –– тот же, кто в прошлый раз. Кто выиграет
(получит больше денег, чем другой), если оба играют наилучшим образом?

Найти наилучший способ игры («выигрышную стратегию») в этой иг-
ре достаточно сложно; по-видимому, даже и невозможно без применения
компьютеров. Тем не менее ответить на вопрос задачи не так уж сложно.

Ответ: выигрывает Ерёма.
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В самом деле, после первого хода один из игроков получил не-
сколько алтынов, и он же выбирает монету. Обозначим этого игро-
ка А, а другого В. Поскольку в игре нет ничьей (суммарное число
денег нечётно), в этот момент либо у А, либо у В есть выигрышная
стратегия. Но первым своим действием Ерёма решает, кому из них
быть в роли А, а кому –– в роли В. Следовательно, у Ерёмы есть вы-
игрышная стратегия.

Чистое «доказательство существования». Оно никак не помогает
найти выигрышную стратегию.

Нужно ли среднему человеку (условно говоря –– «балерине») знать
приведённые мной примеры? –– Конечно, нет. Нужно ли понимать,
о чём шла речь в предыдущих абзацах? Непременно.

Математика и этические принципы

Понятно, что решение математических задач полезно всякому,
просто потому, что ум требует упражнений –– независимо от то-
го, чем вы собираетесь заниматься. Достаточно часто говорят и о
чёткости мысли, о том, что математика «ум в порядок приводит»
(М. В. Ломоносов). Но крайне редко говорят об этическом аспекте.

А между тем в науке вообще, и в математике прежде всего, очень
силён этический элемент. Он состоит не в том, что наука пропове-
дует какие-то этические нормы. Во-первых, не проповедует, а во-
вторых, подобная проповедь редко приносит какой-то эффект. Она
делает гораздо более важную вещь; заставляет быть честным.

Всякому человеку следует быть честным. Можно проповедовать
честность (дело малополезное, в особенности потому, что чаще все-
го проповедники сами не без греха). Можно подавать пример чест-
ности; это несколько полезнее, но тоже не самое лучшее.

А можно принуждать к честности: не угрозами, а силой необхо-
димости. Математика именно это и делает: она принуждает быть
честным. И это много лучше рассказов о хороших и плохих детях,
или даже личного примера.

В классической математике, если ты утверждаешь, что получил
такой-то результат, ты обязан предъявить доказательство. Если оно
у тебя есть –– значит, ты сказал правду. Если у тебя его нет –– тебя
просто не будут слушать. Дело не в том, что врать опасно –– врать
бессмысленно, врать невозможно: журнал не опубликует результат
без доказательства.
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Сверх того, математика учит самоцензуре, а точнее, требует от
каждого жёсткой самоцензуры.

Делая столь провокационное утверждение, я, конечно же, вызы-
ваю на себя шквал возмущённых возгласов: ведь сегодня принято
без всяких доказательств и без всяких аргументов утверждать, что
цензура вообще крайне вредна, а уж самоцензура –– едва ли не са-
мый опасный вид цензуры.

Тем не менее, я настаиваю на своём утверждении: математика
учит всякого самоцензуре, и это одно из важнейших её достоинств.

Что получается из свободы без самоцензуры –– это все видят на
заборах и на интернет-форумах. А в математике –– пишете ли вы
текст для публикации, или, пока что, просто набросок своих идей ––
вы всё равно считаетесь, не можете не считаться с тем, что в какой-
то момент сказанное придётся доказывать... или отказаться от сво-
их слов, как необоснованных.

Но самоцензура важна ещё и по другой причине. Да, она необ-
ходима, чтобы быть ответственным человеком; необходима, чтобы
быть честным и не болтать что в голову взбредёт, не заботясь об
аргументах. Но сверх того, она крайне полезна ещё и тем, что она
развивает фантазию.

Та мысль, что математика развивает фантазию, далеко не ориги-
нальна. Я могу сослаться на авторитет одного из величайших мате-
матиков XIX––XX вв. Давида Гильберта: «Ах, вы про этого моего быв-
шего ученика? Вы знаете, он стал поэтом. Для математика у него
недоставало воображения».

Так оно и есть.
Поэту, писателю-фантасту чересчур богатое воображение иметь

не обязательно –– что и демонстрируют современные фантастиче-
ские романы . Всякий может написать что-то вроде: «я сел в ма-
шину времени, перелетел на миллион лет назад, оказался в другой
галактике и охотился там на огненных драконов». Но подобное на-
громождение никак друг с другом не связанных допущений –– явное
доказательство отсутствия воображения.

А как ведёт себя человек, наделённый воображением?
Вспомним для примера Уэллса. Он вводит совершенно фанта-

стическое предположение: человека можно сделать невидимым. Но

 Есть, конечно, исключения вроде Станислава Лема, которого уж никак не обви-
нишь в бедности фантазии, –– но как мало таких исключений!
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никаких других нелепых предположений он уже не делает; он вы-
жимает из своей идеи всё. Это и есть фантазия.

Неплохое описание такого фантазёра (или, если угодно, лжеца)
даёт Джером К. Джером.

Его герой рассуждает о рыболовах. Все они врут. Но ведь врать –– это
тоже искусство. Каждый, мол, может войти в пивную и сказать: я вчера
поймал пять дюжин рыб. Это свидетельствует только о наглости. Настоя-
щий рыболов ведёт себя не так. –– И далее герой Джерома рассказывает, как
настоящий рыболов (врун, фантазёр) приходит в пивную, не спеша садится,
слушает других, потом вскользь замечает: «Н-да... о том, что я поймал вче-
ра, пожалуй, и рассказывать не стоит... поскольку мне всё равно никто не
поверит», –– и начинает обстоятельный рассказ, как он за весь день практи-
чески ничего не поймал –– «десятка два щучек и две дюжины подлещиков не
в счёт», и наконец, уже под вечер, леса натянулась, «я понял, что клюнуло
что-то стоящее»... –– ну, и так далее. Фантазия –– не в количестве идей, а в
умении выжать из своей идеи всё, что возможно.

Если говорить о современной литературе, то в качестве «контрпримера»
к моему утверждению можно привести хотя бы роман Хайнлайна «Пасын-
ки Вселенной». Хайнлайн не просто строит роман о путешествии в огром-
ном космическом корабле –– этот корабль за несколько столетий стал об-
ществом, культурой со своими священными текстами, своей мифологией:
роль бога-творца играет некий Джордан (на самом деле, как выясняется по
ходу романа, Джордан –– просто меценат, создатель Фонда Джордана, кото-
рый отправил корабль), Хафф –– в роли дьявола, виновного в Грехопадении
и пр., и так далее. Хайнлайн не просто придумал идею; он сумел интерес-
но её развернуть. Но это, повторяю, исключение. Как правило же, автор
просто выстреливает идеями –– одной за другой. Это не фантазия, это вещь,
прямо ей противоположная.

Столь же бедна фантазия нынешних авторов детективов. И опять-таки
бедность их фантазии видна из того, сколько параллельных линий они на-
громождают в одной книге.

В «Лунном камне» Уилки Коллинза (я привожу его как положительный
пример, для контраста) всё вертится вокруг одного-единственного вопроса.
И автору хватило фантазии, чтобы написать вокруг этого довольно толстый
роман.

А нынешние авторы на это не способны, и потому накручивают пять,
шесть разных сюжетов в один роман. Тут одно убийство, там второе (никак
с первым не связанное), а тут ещё ограбление, тоже чисто случайно про-
изошедшее здесь же и в то же время. И все они намечены лишь пунктиром,
потому что развить сюжет как следует у автора не хватает умения, не хва-
тает фантазии.
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Но вернёмся к математике.
Математик вынужден быть фантазёром: без фантазии не приду-

мать никакого доказательства. При этом он не может просто бро-
сить в мир какую-нибудь идею.

Идея должна, во-первых, «проходить»: я нафантазировал какой-то
факт, но я теперь обязан доказать, что он верен, что моя идея прохо-
дит. А во-вторых, это ещё должно быть кому-то нужно. Второй крите-
рий трудно чётко сформулировать, но на математических семинарах
любят по окончании доклада говорить примерно такую фразу:

–– Очень интересно... Но я не понял, какая от этого польза может
быть для народного хозяйства.

Слова «народное хозяйство» надо, разумеется, понимать в пере-
носном или уж, во всяком случае, в предельно расширительном смыс-
ле. Тем не менее это не просто шутка. Подразумевается, что действи-
тельно, от предложенной теории должен быть какой-то прок, пусть не
«для народного хозяйства». Если вводится новый метод, новая идея,
то весьма желательно, к примеру, чтобы она годилась не только для
данной задачи.

Но главное всё-таки –– что надо не просто вообразить себе ка-
кую-то идею, а суметь придумать такую идею, которую ещё и до-
казать можно. А это, конечно, гораздо более сильное требование
к фантазии, чем те требования, которые предъявляются к поэту.

Математика и истина

Математика вводит и ещё один запрет. Вам запрещается сомне-
ваться в установленных истинах.

Здесь я опять иду против течения. Ибо сегодня крайне модно,
напротив, говорить об «альтернативных теориях», и издеваться над
той школой, которая даёт истину в окончательном виде.

Разумеется, можно согласиться с тем, что после того, как моло-
дой человек выучился и понял, что именно верно, а что неверно ––
ему не помешает понять также и то, что наука может далеко не всё,
и что есть очень много вопросов (собственно говоря –– большин-
ство вопросов), где истина пока ещё не установлена; может быть,
и никогда не будет установлена; где существуют разные версии,
каждая из которых заслуживает внимания. Это верно, но... этому
нужно учиться ПОТОМ. После того, как он понял, что окончатель-
ная, непреложно установленная истина существует (этому опять-
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таки учит математика), и именно такие истины надо знать в первую
очередь. Тогда уже можно и полезно вносить антитезис, слегка кор-
ректирующий этот тезис.

Но начинать обучение с того, что истина, якобы, не окончатель-
на, не абсолютна –– в высшей степени вредно. Прежде всего потому,
что это неверно.

А как же, –– спросит кто-нибудь, –– Эйнштейн, который поправил
Ньютона? Ответ прост: этого не было.

Ньютон установил законы природы. Эйнштейн ничего в них не
пересматривал; это невозможно. А в чём же он, в таком случае, по-
правил Ньютона?

Дело в том, что помимо законов, которые Ньютон чётко сформу-
лировал (и в которых не требуется никаких «уточнений»), были ещё
и некоторые утверждения, которые ни Ньютон, ни другие физики ни-
когда не формулировали ввиду их полной очевидности. Прежде всего
это принцип «время не зависит от выбора системы координат».

Вот эти-то само собой разумеющиеся принципы и оказались невер-
ны (или не совсем точны) и потребовали изменений. Вполне веро-
ятно, что и в дальнейшем будет замечено, что современная физика
подразумевает некоторые «совершенно очевидные» вещи, которые,
тем не менее, неверны; и новый Эйнштейн внесёт соответствующие
поправки. Но это не будут поправки в установленные законы.

∗ ∗ ∗
Незнание математики, в известном смысле (и если не гнаться

за точностью выражения), равнозначно вере в абсолютную свободу.
«Ну и что из того, –– говорят невежественные люди, –– что скорость
света –– предел всех скоростей? Вот наука чего-нибудь придумает,
и мы будем летать быстрее...»

Точно так же ферматисты твёрдо уверены: что из того, что нераз-
решимость проблемы трисекции угла строго доказана, а невозмож-
ность найти мало-мальски элементарное (близкое к элементарно-
му) решение проблемы Ферма продемонстрирована трудами деся-
ти поколений великих? Надо просто не быть «научным сухарём»,
проявить кое-какую фантазию, свободу мысли, и задача как-нибудь
решится. Потом они присылают эти решения в университеты, в гор-
совет, в ЦК партии... Впрочем, к чести советских чиновников я хочу
сказать, что они, как правило, игнорировали ферматистов, хотя со-
чинять отписки на их жалобы всё-таки приходилось.



 Что такое математика

По той же причине люди, не знающие математики, любят гово-
рить о «неевклидовом разуме». Они представляют себе дело примерно
так: евклидова геометрия утверждает, что параллельные не могут пе-
ресечься, а мне это не нравится. Это ограничивает мою свободу. Так,
наверно, можно придумать другую, неевклидову геометрию (геомет-
рию Лобачевского), в которой они могут также и пересечься...

Прежде всего, это фактически неверно. Это знает каждый мате-
матик. Но я хотел бы подчеркнуть другое.

Я не разделяю мнения об евклидовой геометрии как о клетке,
ограничивающей нашу свободу; но если бы разделял –– то обязан
был бы сказать о неевклидовой словами Ежи Леца: «Ну, пробил го-
ловой стену. И что ты будешь делать в соседней камере?»

Если Дания –– тюрьма, то и весь мир тюрьма; если евклидова гео-
метрия –– клетка, из которой надо вырваться, то неевклидова гео-
метрия –– это другая клетка. А невежды верят не в то, что есть другая,
неевклидова геометрия (это-то чистая правда), а в то, что в этой дру-
гой, «альтернативной» геометрии законы математики не обязательны.

Им хочется, чтобы параллельные где-нибудь пересеклись. Правда,
в неевклидовой геометрии они не пересекаются тем более, но что им
за дело? Им хочется свободы; а в математике (впрочем, как и во всех
других сферах бытия) свобода должна идти рука об руку с необходи-
мостью . Той свободы, которой они хотят, в математике нет.

Мысль, которую я критикую, была в предельно абсурдной форме выра-
жена в одном американском научно-фантастическом рассказе (Джоунс Р.

Уровень шума // Библиотека современной фантастики. . Т. ). Содер-
жание рассказа вкратце таково. Собирают группу выдающихся учёных; им
сообщают, что недавно некий изобретатель продемонстрировал антиграви-
тационный аппарат; к несчастью, в ходе эксперимента аппарат взорвался,
изобретатель погиб, и теперь надо как-то восстановить его изобретение.

Учёные вначале несколько смущены: они ведь знают, что антигравита-
ция невозможна. Однако поскольку им убедительно продемонстрировано,
что она существует, они начинают искать решение, и через некоторое вре-
мя его успешно находят. Изобретают антигравитацию. После этого им со-

 Тут уместно вспомнить формулу Энгельса о том, что свобода, мол, есть осознан-
ная необходимость. Раньше этой формулой полагалось восхищаться, теперь положе-
но над ней хихикать. Но разумный смысл ей, во всяком случае, придать можно. Он
состоит в том, что всякий человек, да и всякое живое существо отчасти свободно,
отчасти нет. Но ваша свобода будет тем больше, чем яснее вы понимаете, каковы
наложенные на неё ограничения. Если же вы не хотите учиться, не хотите ничего
знать об этих ограничениях –– вы не станете от этого свободнее.
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общают, что на самом деле никакого изобретения не было: это был просто-
напросто психологический приём, чтобы «избавить их от мусора в голове»,
т. е. от знаний, что какая-то задача неразрешима.

«Всё, что необходимо сделать, –– утверждает ничтоже сумняшеся герой
рассказа в финале, –– это избавиться от лишнего груза предрассудков, от
окаменевшего мусора в голове... и тогда удастся найти нужный ответ на
любую проблему...» (курсив мой –– А. Т.).

Разумеется, это антинаучный бред. Наука (в отличие от журна-
листов) знает то, что следует знать каждому: что есть окончательно
установленные научные истины, причём чаще всего эти истины вы-
ражены как раз в форме запрета. Невозможно построить «вечный
двигатель». Параллельные прямые не могут пересечься. Не может
быть скорости выше скорости света.

Впрочем, хочу оговориться. В той постановке вопроса, которая
дана в рассказике, всё-таки есть некоторый смысл. Всякий матема-
тик знает: задачу много легче решать, если уверен, что решение
существует; в противном случае всё время колеблешься, что, соб-
ственно, делать: решать или доказывать несуществование решения;
доказывать теорему или строить к ней контрпример.

Но это относится к случаям, где истина в последней инстанции
пока что не установлена.

А журналисты считают, что «если нельзя, но очень хочется, то
можно». И наперебой издеваются над советской школой, которая,
дескать, «учила единственно верной истине». Как, –– говорят журна-
листы, –– может быть «единственно верная»?

Между тем цель науки (любой точной науки, а прежде всего,
разумеется, математики) именно в том, чтобы установить истину
в последней инстанции, ту, которая уже не пересматривается.

А как же новое познание?
Не беспокойтесь!
Выдающийся российский филолог М. Гаспаров писал, что когда

в университете один из преподавателей мимоходом сказал им: «по
этому вопросу одни думают так-то, другие так-то, а общего мнения
нет» –– для студентов-филологов это было откровением, «это было
ошеломляюще», поскольку до того им с кафедры объявляли только
истины в последней инстанции.

Математикам это не грозило никогда. И не только потому, что
в математике полагается не вещать, а доказывать, но ещё и пото-
му, что математика, как никакая наука, переполнена нерешённы-
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ми проблемами. И чтение любой математической книги подобно
блужданию в темноте по чулану, битком набитому мебелью с ост-
рыми углами: стоит вам чуть отклониться от своего пути или просто
неосторожно выставить локоть –– и вы тут же больно ушибётесь об
острый угол очередной нерешённой проблемы.

Новое познание безгранично. Слишком много есть в мире неиз-
вестного, такого, где мы пока что не знаем истину в последней ин-
станции (или вообще ничего не знаем). Пока что, во всяком случае,
нет причин опасаться, что такие вопросы будут исчерпаны.



Магазин «Математическая книга»

Книги издательства МЦНМО можно приобрести в магазине «Матема-
тическая книга» в Москве по адресу: Б. Власьевский пер., д. ; тел.
() --; biblio.mccme.ru

Книга –– почтой: http://biblio.mccme.ru/shop/order
Книги в электронном виде: http://www.litres.ru/mcnmo/

Мы сотрудничаем с интернет-магазинами

• Книготорговая компания «Абрис»; тел. () --, () --;
www.umlit.ru, www.textbook.ru, абрис.рф

• Интернет-магазин «Книга.ру»; тел. () --; www.kniga.ru

Наши партнеры в Москве и Подмосковье

• Московский Дом Книги и его филиалы (работает интернет-магазин);
тел. () --; www.mdk-arbat.ru

• Магазин «Молодая Гвардия» (работает интернет-магазин): ул. Б. Полянка,
д. ; тел. () --, () --; www.bookmg.ru

• Магазин «Библио-Глобус» (работает интернет-магазин): ул. Мясницкая,
д. /, стр. ; тел. () --; www.biblio-globus.ru

• Спорткомплекс «Олимпийский», -й этаж, точка ; тел. () --
• Сеть киосков «Аргумент» в МГУ; тел. () --, () --;

www.arg.ru
• Сеть магазинов «Мир школьника» (работает интернет-магазин);

тел. () --, () --, () --, () --;
www.uchebnik.com

• Сеть магазинов «Шаг к пятерке»; тел. () --, () --;
www.shkolkniga.ru

• Издательская группа URSS, Нахимовский проспект, д. , Выставочный
зал «Науку –– Всем», тел. () --, www.urss.ru

• Книжный магазин издательского дома «Интеллект» в г. Долгопрудный:
МФТИ (новый корпус); тел. () --

Наши партнеры в Санкт-Петербурге

• Санкт-Петербургский Дом книги: Невский пр-т, д. ; тел. () --
• Магазин «Мир науки и медицины»: Литейный пр-т, д. ; тел. () --
• Магазин «Новая техническая книга»: Измайловский пр-т, д. ;

тел. () --
• Информационно-книготорговый центр «Академическая литература»:

Васильевский остров, Менделеевская линия, д. 
• Киоск в здании физического факультета СПбГУ в Петергофе;

тел. () --, () --, () --
• Издательство «Петроглиф»: Фарфоровская, , к. ; тел. () --,

() --; k_i_@bk.ru, k_i_@petroglyph.ru
• Сеть магазинов «Учебная литература»; тел. () --,

тел. () --, тел. () -- (доб. )

Наши партнеры в Челябинске

• Магазин «Библио-Глобус», ул. Молдавская, д. , www.biblio-globus.ru

Наши партнеры в Украине

• Александр Елисаветский. Рассылка книг наложенным платежом по
Украине: тел. ---; df-al-el@bk.ru






