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Лекция 1.

Традиционные задачи линейной алгебры

11 12 1n 1

21 22 2n 2n
ij i,j 1

n1 n2 nn n

a a a x

a a a x
A (a )матрица, x вектор

a a a x

=

   
  
  = = − = −
  
  

   

K

K

M M K M M

K

Задачи: Методы (теория определителей):
решение  системы 
уравнений

Ax b=

метод Крамера:

i
i i ix , det{A , b}

∆= ∆ =
∆

вычисление  обратной 
матрицы:

AX XA E= =

определение  столбца  ( j)x  матрицы 
X :

ji( j)
j ijAx e , x

∆
= =

∆
вычисление определителя

det A∆ =
по определению

1 n

1 n

r
1i ni

(i , ,i )

( 1) a ... a∆ = − ⋅ ⋅ ⋅∑
K

спектральная задача:

Ax x= λ ⋅

собственные  значения  –  корни 
полинома

nP ( ) det (A E)λ = − λ ⋅
собственные  векторы  –  решения 
систем
(A E)x 0− λ ⋅ =
r  линейно  независимых  решений, 
где
r dim{Ker(A E)}= − λ ⋅

Непригодность этих методов:

количество  умножений 
при  вычислении  одного 
определителя:
(n 1) n!− ⋅
если  производительность 
ЭВМ 910  оп/сек, то

ошибки округления:
6a a |a|, 10−= + ε⋅ ε ≤%

если n 6= , i j|a | 10≥ , 1∆ = ,

1 ni 1i nia a ... a= ⋅ ⋅ , то i ia a O(1)− =%

n! O(1) O(1)∆ − ∆ = ⋅ =%
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n время 
вычисления

10 410−:  сек.
20 > 17 мин.
30 >  400  тыс. 

лет

т.е.  определитель  вычисляется  с 
большой  ошибкой  и, 
следовательно,  решения 
поставленных задач вычисляются с 
такой же ошибкой.
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Векторные и матричные нормы

Векторные Матричные
n nx R (C )∀ ∈

||x || 0, x 0> ≠
||x || 0, x 0= =

|| x || | | ||x ||α ⋅ = α ⋅

||x y|| ||x || ||y||+ ≤ +

Примеры:

i||x || max|x |∞ =
–  кубическая  или 
равномерная

1 1 n||x || |x | ... |x |= + +
– октаэдрическая

2 2
2 1 n||x || |x | ... |x |= + +

–сферическая  или 
евклидова

n n n nA R (C )× ×∀ ∈

аксиомы  1. – 3. 
– аддитивная

4. 
||AB|| ||A || ||B||≤ ⋅
–
мультипликатив
ная

согласованная с 
векторной, если
||Ax || ||A || ||x ||≤ ⋅
подчиненная 
векторной, если

||Ax ||
||A || sup

||x ||
=

Примеры  подчиненных  матричных 
норм:

n

i j
i

j 1

||Ax ||
||A || sup max |a |

||x ||
∞

∞
=∞

= = ∑
n

1
1 i j

j
i 11

||Ax||
||A || sup max |a |

||x || =

= = ∑
2

2
2

||Ax ||
||A || sup (A A)

||x ||
∗= = ρ

Теорема
. 

Любые две нормы ||x ||∗  и ||x ||∗∗  
в  конечномерном 
пространстве 
эквивалентны: 
 

, : x ||x || ||x || ||x ||∗ ∗∗ ∗∃ α β ∀ α⋅ ≤ ≤ β⋅

Примеры: n nx R (C )∀ ∈
1||x || ||x || n ||x ||∞ ∞≤ ≤ ⋅

2||x || ||x || n ||x ||∞ ∞≤ ≤ ⋅

2 1 2||x || ||x || n ||x ||≤ ≤ ⋅

!!!   Константы  эквивалентности  зависят  от  размерности 
пространства   !!!

При решении системы линейных уравнений  Ax b=  могут быть 
неточно  заданы  либо  правая  часть  b b b= + δ%  либо  матрица 
A A A= + δ% , где компоненты вектора bδ  и элементы матрицы Aδ  
малы по сравнению с соответствующими элементами исходных 
вектора и матрицы. Тогда вместо решения  x мы получим его 
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приближение x x x= + δ% , причем компоненты вектора–ошибки xδ  
могут быть большими.
Оценим норму ошибки через нормы возмущений правой части 
и матрицы системы, считая, что матричная норма подчинена 
векторной норме. 
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Число обусловленности

Определение. 1condA ||A || ||A ||−= ⋅
1.  condA 1≥      т.к. 

1 1||x || ||AA x|| ||A || ||A || ||x ||− −= ≤ ⋅ ⋅
2.  cond(AB) condA condB≤ ⋅     т.к. 

1 1 1||AB|| ||(AB) || ||A || ||B|| ||B || ||A ||− − −⋅ ≤ ⋅ ⋅ ⋅

Теоре
ма.

Ax b, detA 0

A(x x) b b

= ≠
+ δ = + δ         ⇒          

|| x || || b||
condA

||x || ||b||
δ δ≤ ⋅

Док–
во.

1 1|| x || ||A b|| ||A || || b||

||A || ||x || ||Ax|| ||b||

− −δ = δ ≤ ⋅ δ
⋅ ≥ =

⇒          
|| x || || b||

condA
||x || ||b||
δ δ≤ ⋅ .

Теоре
ма.

1Ax b, detA 0, (A A)(x x) b b, ||A || || A || 1−= ≠ + δ + δ = + δ ⋅ δ <

⇒
|| x || condA || b|| || A ||

( )
|| A ||||x || ||b|| ||A ||1 condA
||A ||

δ δ δ≤ ⋅ +δ− ⋅

Док–
во. 1.  1(A A)−∃ + δ  и  

1
1

1

||A ||
||(A A) ||

1 ||A || || A ||

−
−

−+ δ ≤
− ⋅ δ

,  т.к.

1

1 1 1

(A A) A(E A A)

||(E A A)z|| ||z|| ||A A z|| ||z|| ||A || || A || ||z|| 0

−

− − −

+ δ = + ⋅ δ
+ δ ≥ − ⋅ δ ⋅ ≥ − ⋅ δ ⋅ >

1 1 1 1 2

1 1 1 1 2

1 1

(E A A) E ( A A) ( A A) ...

||(E A A) || 1 ||A A || ||(A A) || ...

1 1
1 ||A A || 1 ||A || || A ||

− − − −

− − − −

− −

∃ + δ = + − δ + − δ +
+ δ = + δ + δ +

− δ − δ
2.  Т.к.  1 1x (A A) [b b Ax A x] (A A) [ b A x]− −δ = + δ + δ − − δ ⋅ = + δ δ − δ ⋅ , 
то
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1

1

1

1

1

|| x || ||(A A) || (|| b|| || A || ||x ||)

|| x || || b||
||(A A) || ( || A ||)

||x || ||x ||

|| b|| ||A ||
||(A A) || ( || A || )

||b||/ ||A || ||A ||

|| b|| || A ||
||(A A) || ||A || ( )

||b|| ||A ||

||A || ||A ||

−

−

−

−

−

δ ≤ + δ ⋅ δ + δ ⋅
δ δ⇒ ≤ + δ ⋅ + δ ≤

δ≤ + δ ⋅ + δ ⋅ ≤

δ δ≤ + δ ⋅ ⋅ + ≤

⋅≤ 1

|| b|| || A ||
( )

1 ||A || || A || ||b|| ||A ||

condA || b|| || A ||
( )

|| A || ||b|| ||A ||1 condA
||A ||

−

δ δ⋅ + =
− ⋅ δ

δ δ= ⋅ +δ− ⋅
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Лекция 2. Прямые методы решения линейных 
уравнений

Метод исключения Гаусса – схема единственного 
деления

11 1k

k

k1 kk

a a A LU

Ax b, detA det 0, k 1,...,n Ly b

a a Ux y

  =
 = ≡ ≠ = ⇒ = 
  = 

K

K K K

K

Схема единственного деления на примере системы третьего 
порядка:

Прямой ход: Матричная формулировка:
11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

+ + =
+ + =
+ + =

Ax b,=

1 11detA a 0,= ≠     
11

1 21 11

31 11

1/a 0 0

L a /a 1 0

a /a 0 1

 
 = − 
 − 

1 12 2 13 3 1
(1) (1) (1)
22 2 23 3 2
(1) (1) (1)
32 2 33 3 3

x u x u x y

a x a x b

a x a x b

+ + =
+ =
+ =

(1) (1)A x b ,=    (1) (1)
1 1A L A, b L b= =

(1)
2detA 0,≠    (1)

2 22
(1) (1)
32 22

1 0 0

L 0 1/a 0

0 a /a 1

 
 =  
 − 

1 12 2 13 3 1

2 23 3 2
(2) (2)
33 3 3

x u x u x y

x u x y

a x b

+ + =
+ =

=

(2) (2)A x b ,=    (2) (1) (2) (1)
2 2A L A , b L b= =

(2)
3detA 0,≠    3

(2)
33

1 0 0

L 0 1 0

0 0 1/a

 
 =  
  

1 12 2 13 3 1

2 23 3 2

3 3

x u x u x y

x u x y

x y

+ + =
+ =

=

(3) (3)Ux A x b y,≡ = ≡    (3) (2) (3) (2)
3 3A L A , b L b= =

12 13

23

1 u u

U 0 1 u

0 0 1

 
 =  
  

,    1 1 1
1 2 3A (L L L ) U L U− − −= ⋅ ⋅ ⋅ = ⋅

Обратный ход:
3 3 2 2 23 3 3 1 12 2 13 3x y , x y u x , x y u x u x= = − = − −

Матричная 
формулировка:

1x U y−=

Формулы схемы единственного деления (доказать):
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k–ый шаг прямого хода: 

(k 1) (k 1) (k) (k)

(k) (k 1) (k) (k 1)
k k

A x b A x b ,

A L A , b L b

− −

− −

= ⇒ =
= =

(n)A U=  – верхняя треуг. 
матрица

(k 1)
kkk (k 1) (k 1)

k 1k kk

(k 1) (k 1)
n k kk

1 0 0 0 0

0 1 0 0 0
0 0 1/a 0 0L
0 0 a /a 1 0

0 0 a /a 0 1

−

− −
+

− −

 
 
 
 =  − 
 

−  

K K
M K M M M K M

K K
K K
K K

M K M M M K M
K K

11
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Теорема об LU разложении

Если  kk detA 0∀ ≠ , то  L U: A LU∃ ∃ = , где  L – нижняя,  U – 
верхняя треугольные матрицы.
Доказательство.
Если A LU= , то k k kA L U= , k k k 11 kk 11 kkdetA detL detU l ... l u ... u 0= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ≠ , 

т.к. 
k k,n k k k,n k k k,n k

' ' '
n k,k n k n k,k n k n k,k n k

A B L O U U

C A L L O U
− − −

− − − − − −

     
= ⋅     

     
.

Предположим,  что  разложение  k k kA L U=  найдено  (

1 11 1 1 11 11A a L U l u 0≡ = ≡ ⋅ ≠ ). Вычислим k 1 k 1 k 1A L U+ + +=
(т.е. последние строку матрицы k 1L +  и столбец матрицы k 1U + ):

т.к. 

1,k 1 1,k 1

kk k

k,k 1 k,k 1

k 1,1 k 1,k k 1,k 1 k 1,k 1k 1,1 k 1,k k 1,k 1

0a u

LA U

0a u

a a a 0 0 ul l l

+ +

+ +

+ + + + + ++ + + +

    
    
    = ⋅    
    
        

MM M

K KK

то 
1,k 1 1,k 1

k k 1,1 k 1,k k k 1,1 k 1,k

k,k 1 k,k 1

u a

L , l l U a a

u a

+ +

+ + + +

+ +

   
       = =      
      

M M K K  – системы 

с треугольными неособенными матрицами (решения !∃ ), и

1,k 1

k 1,k 1 k 1,k 1 k 1,k 1 k 1,1 k 1,k

k,k 1

u

l u a l l

u

+

+ + + + + + + +

+

 
  ⋅ = − ⋅   
  

K M ,

очевидно,  что  решение  этого  уравнения  существует,  но  не 
единственно.
(так как k 1 k 1 k 10 detA detL detU+ + +≠ = ⋅ , то  k 1 k 1detL 0, detU 0+ +≠ ≠ .)
И, наконец, n n nA A L U LU≡ = ≡ .

Объем вычислений.
Так  как  для  решения  системы  уравнений  с  треугольной 
матрицей порядка k достаточно выполнить k(k 1)/2+  умножений 
и делений, то полагая на каждом шаге  k 1,k 1u 1+ + = , получим, что 
число  таких  операций  для  вычисления  последних  строки  и 
столбца  матриц  k 1L +  и  k 1U +  равно  k(k 2)+ ,  а  для  вычисления 

матриц  L и  U достаточно  
n 1 3

1
k(k 2) n /3

− + ≈∑  умножений  или 

делений.

Замечание.

12
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Если  построено  LU–разложение  матрицы  A ,  то  ее 
определитель  вычисляется  за  2(n 1)−  умножений 
(перемножаются диагональные (ведущие) элементы).

13
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Теорема  (об  LDU – 
разложении).
Если kdetA 0 k≠ ∀ ,
то разложение A LDU= , где

kk kkl u 1 k= = ∀ , единственно.

Док–во.
Пусть (1) (1) (1) (2) (2) (2)A L D U L D U= = , тогда

(2) 1 (1) (2) (2) (1) (1) 1[L ] L D U [D U ] diag E− −= = = ,

(т.к. (2) 1 (1)[L ] L−  – нижняя треуг. м–ца 
с единицами на диагонали)

(1) (2)L L⇒ =
(2) 1 (1) (2) (1) 1[D ] D U [U ] diag E− −⇒ = = =

(1) (2) (1) (2)U U & D D⇒ = = .

Разложение Холесского
Теоре
ма.

Если A A 0∗= >  (т.е. (Ax,x) 0 x 0> ∀ ≠ ),

то A L D L∗= ⋅ ⋅ , kk kl 1 0 k, d= > ∀ .

Док–
во. Т.к. 

k
k k

k

x
0 (Ax,x) (A x ,x ) x 0

0

 
< = ∀ = ≠ 

 
, то kdetA 0 k≠ ∀

A LDU A U D L LDL∗ ∗ ∗ ∗ ∗⇒ = = = = .

Т.к. (k) 1
ky [L ] e 0 & A 0∗ −∃ = ≠ > , то

k k k k k k
k(Ay ,y ) (LDL y ,y ) (DL y ,L y ) d 0 k∗ ∗ ∗= = = > ∀ .

Метод квадратного корня
Теоре
ма.

Если  A A 0∗= > ,  то  A BB∗= ,  где  B –  нижняя 
треугольная м–ца, и

2 2 2cond B cond B cond A∗= = .

Док–
во.

Из теоремы о разложении Холесского имеем
1/2 1/2 1/2 1/2 1/2A LDL L(D D )L (LD )(LD ) B LD∗ ∗ ∗= = = ⇒ = .

Т.к.  Sp(B B) Sp(BB ) Sp(A)∗ ∗= ≡ ,  то 

2 2 2||B|| ||B || (A) ||A ||∗= = ρ = .

Аналогично 1 1 1 1
2 2 2||B || ||(B ) || (A ) ||A ||− ∗ − − −= = ρ = .

2 2 2cond B cond B cond A∗⇒ = = .

Решение  системы  уравнений  Ax b=  с  помощью  разложения 
A BB∗=  называется методом квадратного корня. Так как

11 11 21 31 11 21 31

21 22 22 32 21 22 32

31 32 33 33 31 32 33

b 0 0 b b b a a a

b b 0 0 b b a a a

b b b 0 0 b a a a

    
    ⋅ =    
        

⇒  

2
11 11 21 11 21 31 11 31

2
22 22 21 21 32 22 32 21 31

2
33 33 31 31 32 32

b a , b b a , b b a

b a b b , b b a b b

b a b b b b

= = =

= − = −

= − −
то элементы матрицы B вычисляются по следующим формулам:

14
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{ }k 1 k 12
kk kk k j k i,k k i,k k i, j k, j kkj 1 j 1

n

k 1
b a |b | , b (a b b )/b , i 1,...,n k

− −
+ + += = =

= − = − = −∑ ∑

15
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Лекция 3.

Метод исключения с выбором главного элемента 
по столбцу

Напомним  1–ый  шаг  схемы  единственного  деления  для 
решения Ax b= :

(1) (1) (1)
11 12 1n 12 1n1 1 1 1

(1) (1) (1)
21 22 2n 22 2n2 2 2 2

(1) (1) (1)
n1 n2 nn n2 nnn n n n

a a a 1 a ax b x b
a a a 0 a ax b x b

a a a 0 a aax b x b

         
          
          ⋅ = ⇒ ⋅ =          
                        

K K
K K

M M L M M M L MM M M M
K K 

,

где (1) (1)
1j 1j 11 1 1 11a a /a , b b /a= = , (1)

i j i j i1 1j 11a a a a /a (i, j 2, ..., n)= − ⋅ = .

Эти операции выполнимы, если (главный элемент шага) 11a 0≠ .

Ошибки округления будут меньше, если 11 1j|a | |a |≥  или 11 i1|a | |a |≥ .
Матрица перестановок

in
i j i,j 1 i j

i

1, j k
P (p ) , p

0, j k=

=
= =  ≠

, где 1 2 n(k ,k , ..., k ) – перестановка (1, 2, ..., n).

Доказать, что PP P P E∗ ∗= = , т.е. P – ортогональная матрица.
Доказать, что 2cond (P) 1= .
Элементарная матрица перестановок

klP  – матрица перестановок k и l элементов в n–ке (1, 2, ..., n).

Доказать, что 1
k,l k,l k,lP P P∗ −= = .

Доказать,  что умножение на матрицу  k,lP  матрицы  A  слева (

k,lP A )  –  это  перестановка  k и  l строк,  справа  ( k,lAP )  –
перестановка k и l столбцов матрицы A .

Выбор главного элемента по столбцу.

1–й 
шаг:

находим 11 i 1 i1
i 1,...,n

i : |a | max|a |
=

≥  ( 0≠ , если detA 0≠ );

меняем местами 1 и 1i  строки: 
1 1

(1/2) (1/2)
1,i 1,iA P A, b P b= = ;

обнуляем  в  1–ом  столбце  элементы: 
(1) (1/2) (1) (1/2)

1 1A L A , b L b= = ,

16
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(1/2)
21
(1/2)
11

1

(1/2)
n1
(1/2)
11

1 0 0

a
1 0

a
L

a
0 1

a

 
 
 − 
 =
 
 
 −  

K

K

M M L M

K

, 

(1/2) (1/2) (1/2) (1/2)
11 12 1n 1

(1) (1) (1)
22 2n(1) (1) 2

(1) (1) (1)
n2 nn n

a a a b
0 a a b

A , b

0 a a b

   
   
   = =   
        

K

K

M M L M M
K

(1)detA 0 detA 0≠ ⇒ ≠ .

17
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После k шагов имеем (k) (k)A x b= , где (k)detA 0≠ , если detA 0≠
(k)

k k,n k

(k) (k) (k)
k 1,k 1 k 1,n k 1(k) (k)

(k) (k) (k)
n,k 1 n,n n

U U y

a a b
A , b

0

a a b

−

+ + + +

+

  
  
  = =   
  
     

K

M L M M
K

(k 1+ )–й шаг:

находим k 1

(k)
k 1 i k 1 i k 1

i k 1,...,n
i : |a | max |a |

++ + += +
≥ ;

меняем местами k 1+  и k 1i +  строки: 

k 1

k 1

k
(n k)k 1,i
1,i k

E 0
P

0 P+
+

−+
−

 
=  

 
,        

k 1 k 1

(k 1/2) (k) (k 1/2) (k)
k 1,i k 1,iA P A , b P b

+ +

+ +
+ += = ;

обнуляем в (k 1+ )–ом столбце элементы:

k
k 1 (n k)

1

E 0
L

0 L+ −

 
=  

 
,     

(k 1/2)
k 2,k 1
(k 1/2)
k 1,k 1(n k)

1

(k 1/2)
n,k 1
(k 1/2)
k 1,k 1

1 0 0

a
1 0

a
L

a
0 1

a

+
+ +
+

+ +−

+
+

+
+ +

 
 
 − 
 =
 
 
 −  

K

K

M M L M

K

,       

(k 1) (k 1/2) (k 1) (k 1/2)
k 1 k 1A L A , b L b+ + + +

+ += = :

(k)
k k,n k

(k 1/2) (k 1/2) (k 1/2) (k 1/2)
k 1,k 1 k 1,k 2 k 1,n k 1

(k 1) (k 1) (k 1)(k 1) (k 1)
k 2,k 2 k 2,n k 2

(k 1) (k 1) (k 1)
n,k 2 n,n n

U U y

a a a b

0 a a bA , b
0

0 a a b

−
+ + + +

+ + + + + +
+ + ++ +

+ + + +

+ + +
+

  
  
  
  = =   
  
  
     

K

K

M M L M M
K

.

(k) (k 1)detA 0 detA 0+≠ ⇒ ≠ .

Очевидно,  что,  если  detA 0≠ ,  то  выполнив  n 1−  шаг,  получим 
систему с верхней треугольной матрицей: (n 1) (n 1)A x Ux b y− −≡ = ≡ .
Теоре
ма.

Если  detA 0≠ ,  то  PA LU= ,  где  n 1 1n 1,i 1,iP P ... P
−−= ⋅ ⋅ , 

1
n 1 1L L ... L−

−= ⋅ ⋅% %,

n 1 k 1 k 1 n 1k n 1,i k 1,i k k 1,i n 1,iL P ... P L P ... P
− + + −− + + −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅%

Доказать  эту  теорему  в  качестве  упражнения,  проверив,  что 
матрицы kL  и kL% имеют одинаковую структуру.
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Метод вращений решения системы уравнений
Элементарная матрица вращения

k 1

k,l k,l

k,l l k 1 k,l k,l k,l k,l

k,l k,l

n l

E 0 0

c 0 s kя строка

Q 0 0 E 0 0 , (k l).c c s s 1

s 0 c lя строка

0 0 E

−

− −

−

 
 

− − − 
 = <⋅ + ⋅ = 
  − −
 
  

Доказать,  что  k,lQ  –  унитарная  матрица,  т.е. 
* *

k,l k,l k,l k,lQ (Q ) (Q ) Q E= = .

Доказать, что k,ldetQ 1= .

Доказать, что при умножении на матрицу k,lQ  матрицы A  слева 

( k,lQ A) изменяются только k и l строки матрицы A .

k–ый шаг метода вращений
Предположим, что после  k 1−  шага система  Ax b=  с помощью 
умножения слева на ортогональную матрицу приведена к виду 

(k 1) (k 1)A x b− −= , где
(k 1)

k 1 k 1,n k 1

(k 1) (k 1) (k 1)
k,k k,n k(k 1) (k 1) (0) (0)

(k 1) (k 1) (k 1)
n,k n,n n

R R y

a a b
A , b (A A, b b)

0

a a b

−
− − − +

− − −
− −

− − −

   
   
   = = = =   
   
     

K

M L M M
K

.

Тогда  k–ый  шаг  состоит  из  умножения  системы  (k 1) (k 1)A x b− −=  
слева на элементарные матрицы вращений k,k 1 k,nQ , ..., Q+ :

k 1 (k 1,i) (k 1,i 1) (k 1,i) (k 1,i 1)
(n k 1)k,k i k,k i k,k i
1,1 i

E 0
Q , A Q A , b Q b

0 Q
− − − − − − −

− ++ + +
+

 
= = = 

 
, где

(k 1,i 1) (k 1,i 1)
k,k k i,k

k,k i k,k i
k,k i k,k i

a a
c , s

r r

− − − −
+

+ +
+ +

= = − , если (k 1,i 1) 2 (k 1,i 1) 2
k,k i k,k k i,kr |a | |a | 0− − − −

+ += + ≠ ,

k,k iQ E+ = , если k,k ir 0+ = .

В  результате  получим  (k) (k 1) (k) (k 1)
k kA Q A , b Q b− −= = ,  где 

k k,n k,k 2 k,k 1Q Q ...Q Q+ += .

Выполнив  n 1−  шаг,  получим систему  с  верхней  треугольной 
матрицей:  (n 1) (n 1)A x Rx b y− −≡ = ≡  (заметим, что, если  detA 0≠ ,  то и 
detR 0≠ ).
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Если  определить  унитарную  матрицу  *
n 1 1Q Q ... Q−= ⋅ ⋅ ,  то 

справедлива
Теорема. A A Q R∀ ∃ = ⋅ .

Доказать, что 2 2 2 2cond A cond Q cond R cond R= ⋅ = .
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Лекция 4.

Метод отражений решения системы уравнений
Матрица отражения

2

если заданы векторы и , то

Ha a 2(a,w) w (E 2 w w )a

a Ha

a Ha
w

||a Ha||

∗= − ⋅ = − ⋅ ⋅

−=
−

Доказать,  что  * 1H H H−= = , 
detH 1= − .  

k–ый шаг метода отражений
Предположим, что после  k 1−  шага система  Ax b=  с помощью 
умножения слева на ортогональную матрицу приведена к виду 

(k 1) (k 1)A x b− −= , где
(k 1)

k 1 k 1,n k 1

(k 1) (k 1) (k 1)
k,k k,n k(k 1) (k 1) (0) (0)

(k 1) (k 1) (k 1)
n,k n,n n

R R y

a a b
A , b (A A, b b)

0

a a b

−
− − − +

− − −
− −

− − −

   
   
   = = = =   
   
     

K

M L M M
K

.

Тогда  k–ый  шаг  состоит  из  умножения  системы  (k 1) (k 1)A x b− −=  
слева на ортогональную матрицу вращения kH :

k 1 (k) (k 1) (k) (k 1)
(n k 1) (n k 1)k k k

n k 1 1 1

E 0
H , A H A , b H b

0 E 2w [w ]
− − −

− + − + ∗
− +

 
= = = − ⋅ 

,

гд
е (n k 1)

1w 0− + =
если (k 1) 2 (k 1) 2

k k,k n,kr |a | ... |a | 0− −= + + =

или  (k 1) (k 1)
k 1,k n,ka ... a 0− −

+ = = = ,

(k 1) (k 1)
(n k 1) 1 k 1
1 (k 1) (k 1)

1 k 1 2

a r e
w

||a r e ||

− −
− +

− −

− ⋅=
− ⋅

если (k 1)
k k,kr 0 & a 0−≠ =

(здесь  

(k 1)
k,k

(k 1)
1

(k 1)
n,k

a

a

a

−

−

−

 
 =  
  

M ,   (k 1)
1e

−  – первый 

орт),

(k 1) (k 1)
(n k 1) 1 k k 1
1 (k 1) (k 1)

1 k k 1 2

a r e
w

||a r e ||

− −
− +

− −

− β ⋅=
− β ⋅

если (k 1)
k k,kr 0 & a 0−≠ ≠

(здесь 
(k 1)
k,k

k (k 1)
k,k

a

|a |

−

−β = − ).
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Выполнив  n 1−  шаг,  получим систему  с  верхней  треугольной 
матрицей:  (n 1) (n 1)A x Rx b y− −≡ = ≡  (заметим, что, если  detA 0≠ ,  то и 
detR 0≠ ).
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Решение системы с вырожденной матрицей
HR–разложение с перестановками столбцов матрицы A
1–  ый 
шаг.

Определим номер столбца 1j  матрицы 1 nA [a , ..., a ]=  из 
условия

1j 2 j 2||a || max ||a ||=  и матрицу перестановок 11,jP .

Для  матрицы  
1

(1/2)
1,jA AP=  определим  матрицу 

отражения 1H :

1

1 1,n 1

(1) (1)
2,2 2,n(1) (1/2)

1 1 1,j 11 1

(1) (1)
n,2 n,n

R R

a a
A HA HAP , r R

0

a a

− 
 
 = = = = 
 
  

%

K

M L M

K

.

Доказать: (1)
11 j i j|r | ||a || |a | i, j≥ ≥ ∀

k–ый 
шаг.

После k 1−  шага имеем 
(k 1)

k 1 k 1,n k 1 k 1,j
(k 1) (k 1) (k 1)
k,k k,n k, j(k 1) (k 1)

k 1,k 1 i,j
k 1 i,j n

(k 1) (k 1) (k 1)
n,k n,n n, j 2

R R a
a a a

A , |r | max |a |
0

a a a

−
− − − + −

− − −
− −

− − − ≤ ≤

− − −

 
 
 = ≥ ≥ 
 
  

%

K

M L M M
K

.

Определяем  номер  столбца  kj  из  условия 

k

k

(k 1) (k 1)
k,j k,j

k j n
(k 1) (k 1)
n,j n,j 22

a a

max

a a

− −

≤ ≤
− −

=M M

и для 
k

(k 1/2) (k 1)
k,jA A P− −=  определяем матрицу отражения 

kH :

k

k k,n k

(k) (k)
k 1,k 1 k 1,n(k) (k 1/2) (k 1)

k k k,j

(k) (k)
n,k 1 n,n

R R

a a
A H A H A P

0

a a

−

+ + +− −

+

 
 
 = = =  
 
  

%

K

M L M

K

.

Доказать: 

(k)
k,j

(k)
k 1, j (k)

k,k i,j
k j n k i,j n

(k)
n, j 2

a

a
|r | max max |a |

a

+

≤ ≤ ≤ ≤
≥ ≥

M
.

Ответ: Если t dim(kerA)= , то после n t−  шагов имеем
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1 n t

n t n t,t
n t 1 1,j n t,j

R R
(H ... H )A(P ... P ) HAP R

0 0−

− −
− −

 
⋅ ⋅ ⋅ ⋅ = = =  

 
,

где H и P – ортогональные матрицы.
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Совместность системы с вырожденной матрицей
Система  Ax b=  называется  совместной,  если  она  имеет 
решение. Следовательно, система совместна ⇔  b ImA∈ .
{x* y y kerA}+ ∀ ∈ –  общее  решение  системы,  где  x*–  любое ее 
решение.

Теоре
ма.

Если система Ax b=  совместна (b ImA∈ ),
то  B: detB 0∀ ≠  совместна  система  (BA)x (Bb)=  и 
множества решений этих систем совпадают.

Система Ax b=  несовместна, если b ImA∉ . 
В  этом  случае  ее  обобщенным  решением  (относительно 

векторной нормы || ||⋅ ) называют вектор y
x: ||Ax b|| min||Ay b||− = − .

Доказать:  общее  решение  совместной  системы  совпадает  с 
множеством ее обобщенных решений.

Доказать:  множество  обобщенных  решений 
2 2{x: ||Ax b|| min||Ay b|| }− = −  совпадает  с  общим  решением 

системы A Ax A b∗ ∗= .

Применение HR–разложения с перестановками столбцов 
для решения совместной системы
Выполним эквивалентное преобразование совместной системы 
Ax b= :

Ry g: R HAP, y P x, g Hb∗= = = = .
Из–за ошибок округления эта система будет иметь вид:

(n t) (n t)
n t n t,t

(t) (t)
t

R R y g

0 y

− −
− −     

=       ε δ    
,

где матрица  tε  и вектор  (t)δ  должны иметь малые по модулю 
элементы.  Заменяем  их  на  нулевые  матрицу  и  вектор 
(диагональные элементы матрицы  R по модулю мажорируют 
все  левее  и  ниже лежащие элементы,  как  только очередной 
диагональный элемент стал “намного” меньше предыдущего, то 
и остальные элементы почти нулевые):

(n t) (n t)
n t n t,t

(t)

R R y g
0 0 0y

− −
− −     

=         
,

очевидно,  что  общее  решение  этой  системы  определяется 
формулой

1 (n t) (t)(n t)
n t n t,t (t) t

(t) (t)

R (g R y )y
y R

y y

− −−
− − − 

= ∀ ∈        
,
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а решение исходной системы x Py= .
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Метод прогонки решения систем с 
трехдиагональной матрицей

LU–разложение трехдиагональной матрицы A :

1 1 1 1

2 2 2 2 2 2

n 1 n 1 n 1 n 1 n 1 n 1

n n n n

b c 0 d 0 0 1 u 0

a b c a d 0 0 1 u

a b c a d 0 0 1 u

0 0 a b 0 0 a d 0 0 0 1
− − − − − −

     
     
     
     = ⋅
     
     
         

O O O O O O O O O

где (проверить)
1 1d b= 1

1 1 1u d c−=  

2 2 2 1d b a u= − 1
2 2 2u d c−=

   .....    ......
i i i i 1d b au−= − 1

i i iu d c−=
   ......    .......

n 1 n 1 n 1 n 2d b a u− − − −= − 1
n 1 n 1 n 1u d c−

− − −=
n n n n 1d b a u −= −

Формулы метода прогонки для системы Ax f= :
сначала вычисляем (рекуррентно):

1 1 1 1
1 1 1 2 2 2 1 2 i i i i 1 i n 1 n 1 n 1 n 2 n 1u b c , u (b a u ) c , ..., u (b au ) c , ..., u (b a u ) c− − − −

− − − − − −= = − = − = −
и решаем систему с матрицей L (прямой ход):

1 1
1 1 1 1 1 1 1 1

1
2 2 2 2 i i i i i 1

1
i i i 1 i i i 1

n 1 n 1 n 1 n 1

1
n n n n n n n n 1 n n n 1

d 0 0 y f y d f b f
a d 0 y f y d (f ay )

, (b au ) (f ay )
a d 0 y f i 2, ...,n 1

0 0 a d y f y (b a u ) (f a y )

− −

−
−
−

− −

− − − −
−

− −

= =    
     = − =    
     = = − −
     = −    
     = − −    

O O O M M

и, наконец, решаем систему Ux y=  (обратный ход):

n n n 1 n 1 n i i i 1 1 1 2x y , x u x , ..., x ux , ..., x u x− − += = − = − = − .

Теоре
ма.

Если i i i 1 ni |b | |a | |c | (a c 0)∀ > + = = , то kdetA 0 k≠ ∀
(т.е.  LU–разложение  существует  и  метод  прогонки 
применим).

Док–
во.

(от противного) Пусть kk: detA 0∃ = , 

тогда (k) (k)
kx 0: A x 0∃ ≠ =  и 

(k) (k)
i j

1 j k
i: |x | max|x | 0

≤ ≤
∃ = > .

Разделим  равенство  (k) (k) (k)
i i 1 i i i i 1ax bx cx 0− ++ + =  на  (k)

ix  и 
оценим ib :
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(k) (k)
i 1 i 1

i i i i i(k) (k)
i i

|x | |x |
|b | |a | |c | |a | |c |

|x | |x |
− −≤ ⋅ + ⋅ ≤ +  –  противоречие 

условию.
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Лекция 5. Итерационные методы решения 
линейных уравнений

Мы  будем  рассматривать  только  вещественные  системы 
линейных  алгебраических  уравнений,  так  как  система 
уравнений  Ax b=  над  полем  комплексных  чисел  сводится 
(доказать) к системе

ReA ImA Rex Reb

ImA ReA Imx Imb

−    =    
    

с вещественными коэффициентами.

Пример и основные определения
Пример:
пусть  для  матрицы  системы  Ax b=  построена  обратная 

1 1A (LU)− −= . Из–за ошибок округления мы получим не обратную 
матрицу, а к ней близкую: 1A−% . Тогда 1x A x x−= ≠%% , а для разности 
x x−%  имеем уравнение  A(x x) Ax b− = −% % ,  приближенное решение 
которого ╡ 1(x x) A (Ax b)−− = −%% %  ⇒  1x x A (Ax b)−= − −% %% % %  или итерационное 
уточнение

k 1 k 1 kx x A (Ax b), k 0,1, ...+ −= − − =% .
Одношаговый (двухслойный) итерационный метод 
решения Ax b= :

k 1 k k
k

0
kзадан, заданныематрицы.

x x H (Ax b)

x k 0,1, 2, ...; H

+ = − −

− = −
kx  – k-тое приближение (к решению системы),
k kz x x= −

– ошибка k-той 
итерации

k 1 k k k
k kz z H Az (E H A)z+ = − = −

– процесс для ошибки,
k kS E H A= −  – матрица шага для ошибки;

k k kr Ax b Az= − =
– невязка k-той 

итерации

k 1 k k k
k kr r H Ar (E AH )r+ = − = −

– процесс для невязки,
k kT E AH= −  – матрица шага для невязки;

Метод называется сходящимся, если 
k 0 n

k
lim||z || 0 x R

→∞
= ∀ ∈ .

(Так  как  в  nR  все  нормы  эквивалентны,  то  определение 
сходимости от нормы не зависит.)
Стационарный одношаговый итерационный метод 
решения Ax b= :

k 1 k k

0 задан, заданнаяматрица.

x x H(Ax b)

x k 0,1, 2, ...; H

+ = − −
− = −

Впредь мы будем предполагать, что detA 0≠  и detH 0≠ .
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Условия сходимости стационарного 
итерационного метода

k 1 k k 0 задан, заданнаяматрица.x x H(Ax b), x k 0,1, 2, ...; H+ = − − − = −
Достаточные условия:
Теорем
а.

Если ||S|| ||E HA || 1= − < , то k||z || 0→ , т.е. k 0 nx x x R→ ∀ ∈ .

Док–во. k k k 1 k 1 k 2

2 k 2 k 0

||x x || ||z || ||Sz || ||S|| ||z || ||S|| ||Sz ||

||S|| ||z || ||S|| ||z || 0.

− − −

−

− = = ≤ ⋅ = ⋅ ≤
≤ ⋅ ≤ ⋅ →

Теорем
а.

Если ||T|| ||E AH|| 1= − < , то k||z || 0→ , т.е. k 0 nx x x R→ ∀ ∈ .

Док–во. k k k 1 k 1 k 2

2 k 2 k 0

||Ax b|| ||r || ||Tr || ||T|| ||r || ||T|| ||Tr ||

||T|| ||r || ||T|| ||r || 0.

− − −

−

− = = ≤ ⋅ = ⋅ ≤
≤ ⋅ ≤ ⋅ →

k k 1 k 1 k||x x|| ||z || ||A r || ||A || ||r || 0− −⇒ − = = ≤ ⋅ → .

Необходимое и достаточное условие:
Теорем
а.

k 0 nx x x R (S) 1→ ∀ ∈ ⇔ ρ < .

Док–во. Необходимость. 
Пусть k k k 0 0 nx x z S z 0 z R− = = → ∀ ∈ , т.е. метод сходится.

Так  как  0 0 0Sp(S) z 0: Sz z∀ λ∈ ∃ ≠ = λ ⋅ ,  то,  выбрав 
0 0x x z= + ,  получим,  что 

k k 0 k 0 k 0||z || ||S z || || z || | | ||z || 0= = λ = λ ⋅ →
k| | 0 | | 1 (S) 1⇒ λ → ⇒ λ < ⇒ ρ < .

Достаточность.
Если  докажем,  что  k(S) 1 S 0ρ < ⇒ →  (нулевой 
матрице),
то k k k 0 0 nx x z S z 0 z R− = = → ∀ ∈ , т.е. метод сходится.
Итак,  пусть  1 mJ diag{J , ..., J }=  –  жорданова  форма 
матрицы S, т.е.

1S QJQ−= ,  

i

i
i

i

0

1
J

0 1

λ 
 λ =
 
 λ  

O O
,  i Sp(S)λ ∈ ,  i| | 1λ < .

Практически очевидно, что k k
iS 0 J 0 i→ ⇔ → ∀ .

Пусть  ik n>  – порядка блока  iJ  и  i 0λ ≠ , тогда (бином 
Ньютона)
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in 1k
k k t k t t t k t t
i i i i k i i k i i

t 0 t 0

J ( E P) C P C P
−

− −

= =

≡ λ + = λ = λ∑ ∑ , т.к. t
i iP 0 t n= ∀ ≥ .

Т.к.  
t

t n
k

k! (k t 1)...k k
C k

t! (k t)! t! t!
− += = ≤ ≤

⋅ −
, 

n k
i ik

limk 0 | | 1
→∞

λ = ∀ λ <
t k t k
k i i ik

limC 0 t n J 0−

→∞
⇒ λ = ∀ < ⇒ → , что и тр.док.
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Асимптотическая скорость сходимости
Сколько  нужно  сделать  итераций,  чтобы  ошибка  kz  
итерационного процесса

k 1 k k 0 задан, заданнаяматрица.x x H(Ax b), x k 0,1, 2, ...; H+ = − − − = −
уменьшилась в 1−ε  раз: k 0k k( ) ?: ||z ||/ ||z ||= ε = ≤ ε .
Теорем

а.  
Если ||S|| ||E HA || 1= − < , то 

ln
k( ) 1

ln||S||
 − εε = + − 

.

Док–во. При k k( )≥ ε  имеем k k 0 k 0 0||z || ||S z || ||S|| ||z || ||z ||= ≤ ⋅ ≤ ε ⋅ .

Средняя скорость за k итераций:  kk
kR ln ||S ||= −  (Доказать: 

kR ln||S||≥ − )

kkRk||S || e−⇒ = ≤ ε , если 
k

ln
k

R
− ε≥ .

Асимптотическая  скорость  сходимости: 

{ }kk
kk k

R limR ln lim ||S ||∞ →∞ →∞
= = − .

Теорем
а. 

Если (S) (E HA) 1ρ = ρ − < , то R ln (S)∞ = − ρ .

Док–во. Из  док–ва  теоремы  о  необходимом  и  достаточном 
условии  сходимости  ⇒  k n k||S || ck [ (S)] k n∞ ≤ ρ ∀ ≥
Из  эквивалентности  норм  ⇒  k k||S || ||S ||∞≤ β
⇒  

( ) n
k kk k

k k
lim ||S || lim c k (S) (S)

→∞ →∞

 ≤ β ρ = ρ  
.

Т.к. k k k||S || (S ) [ (S)]≥ ρ = ρ , то 
kk

k
lim ||S || (S)

→∞
≥ ρ .

⇒  
k kk k

kk
lim ||S || lim ||S || (S)

→∞→∞
= = ρ , т.е. R ln (S)∞ = − ρ .

Принято считать, что из двух итерационных процессов лучше 
тот, у которого асимптотическая скорость сходимости больше.
Но  использовать  асимптотическую  скорость  сходимости  для 
оценки  числа  итераций,  необходимых  для  уменьшения 
начальной ошибки в 1−ε  раз, можно только в случае kR R k∞= ∀ .
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Лекция 6.
Один из способов построения итерационного метода решения 
системы линейных алгебраических уравнений Ax b=  состоит из 
представления матрицы в  виде  A B C= − ,  переписи системы в 
виде Bx Cx b= +  и определении очередного приближения k 1x +  по 
известному приближению kx  из решения системы k 1 kBx Cx b+ = + .
Доказать: k 1 k k 1 k 1 kBx Cx b x x B (Ax b)+ + −= + ⇒ = − − .

Метод Якоби

Если 11 22 nnD diagA diag{a , a , ..., a }= = , то итерационный процесс 
k 1 k 1 kx x D (Ax b)+ −= − −

называется методом Якоби для решения системы Ax b= .

Сходимость в случае диагонального преобладания по 
строкам

Теорем

а.

Если 
n

ii i j
j 1, j i

|a | |a | i
= ≠

> ∀∑ , то метод Якоби сходится.

Док–во. i–тая  строка  матрицы  1S E D A−= − : 

i1 i,i 1 i,i 1 in

ii ii ii ii

a a a a
, ..., , 0, , ...,

a a a a
− + 

 
  

.  Из  условия  теоремы  ⇒  

i1 i,i 1 i,i 1 in

ii ii ii ii

a a a a
... ... 1

a a a a
− ++ + + + + <  ⇒  ||S|| 1∞ < ,  т.е. 

выполняется достаточное условие сходимости.

Сходимость в случае диагонального преобладания по 
столбцам

Теорем

а.

Если 
n

j j i j
i 1, i j

|a | |a | j
= ≠

> ∀∑ , то метод Якоби сходится.

Док–во. j–ый  столбец  матрицы  1T E AD−= − : 

1j j 1, j j 1, j n j

j j j j j j j j

a a a a
, ..., , 0, , ...,

a a a a
− + 

 
  

.  Из  условия  теоремы  ⇒  

1j njj 1,j j 1,j

j j j j j j j j

a aa a
... ... 1

a a a a
− ++ + + + + <  ⇒  

1 1
1(S) (E D A) (DTD ) (T) ||T|| 1− −ρ = ρ − = ρ = ρ ≤ < ,  т.е. 

выполняется необходимое условие сходимости.
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Необходимое и достаточное условие сходимости метода 
Якоби в случае симметричной матрицы с положительной 
главной диагональю

Теорем

а.

Если A A & D 0∗= > , то 
1(S) (E D A) 1−ρ = ρ − <  (т.е. метод Якоби сходится) ⇔

⇔  A 0 & 2D A 0> − > .

Док–во. 
1.  собственные  значения  матрицы  1S E D A−= −  – 
вещественные:

1 1/2 1 1/2 1/2 1/2(S) 1 (D A) 1 (D [D A]D ) 1 (D AD )− − − − −λ = − λ = − λ = − λ ,
1/2 1/2(D AD )− −λ  – вещественны, т.к. 1/2 1/2 1/2 1/2D AD [D AD ]− − − − ∗=

.
2. ⇒  1(S) 1 (D A) (0, 2)−ρ < ⇔ λ ∈
    2.1. 1(D A) 0 A 0−λ > ⇔ > :
      т.к. 

1/2 1/2 1/2 1/2 1/2 1/2(Ay,y) ({D AD }[D y], [D y]) ({D AD }z,z)− − − −≡ =
              и minB B (Bx,x) (B) (x,x)∗∀ = ≥ λ ⋅ ,

      то 1 1/2 1/2(D A) (D AD ) 0 A 0− − −λ = λ > ⇒ > ;

    1/2 1/2 1 1/2 1/2A 0 ({D AD }z,z) 0 (D A) (D AD ) 0− − − − −> ⇒ > ⇒ λ = λ >
;
    2.2. 1(D A) 2 2D A 0−λ < ⇔ − > :

           
1 1 1

1

(D A) 2 (2E D A) (D [2D A]) 0,

(D [2D A]) 0 [2D A] 0.

− − −

−

λ < ⇔ λ − = λ − >
λ − > ⇔ − >

Метод Зейделя (Гаусса–Зейделя, Некрасова)
Если матрицу системы Ax b=  представить в виде суммы 

A L D R= − + − , где 11 22 nnD diagA diag{a , a , ..., a }= =

12 1n

21

n 1,n

n1 n,n 1

0 0 a a
a 0 0 0

L , R
0 0 0 a

a a 0 0
−

−

   
   
   
   = − = −
   
   
     

O O

O O O
O O O O O O
O O O

O O

 

то итерационный процесс 
k 1 k 1 kx x (D L) (Ax b)+ −= − − −

называется методом Зейделя для решения системы Ax b= .
Доказать: 1 1 1S E (D L) A E (A R) A (A R) R− − −= − − = − + = + .
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Необходимое и достаточное условие сходимости метода 
Зейделя в случае симметричной матрицы с 
положительной главной диагональю

Теорем

а.

Если A A & D 0∗= > , то 
1(S) (E (D L) A) 1−ρ = ρ − − <  (т.е.  метод  Зейделя  сходится) 

⇔ A 0> .

Док–во. Необходимость:
Пусть  1(S) (E (D L) A) 1−ρ = ρ − − < ,  но  A 0▐ ,  т.е. 

: (A , ) 0∃ ϕ ϕ ϕ <
(A A∗=  ⇒  все (A)λ  вещественны,
A 0▐  ⇒  min(A) 0λ ≤ , иначе min(Ay,y) (A) (y,y) 0≥ λ ⋅ > ,
detA 0≠  ⇒  min(A) 0λ ≠  ⇒  min(A) 0λ <  ⇒  min: A (A)ϕ ϕ = λ ϕ ).
Зададим 0z = ϕ  и оценим k 1 k 1(Az ,z )+ + :

k 1 k 1 1 k 1 k

k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k

(Az ,z ) (A{E [A R] A}z ,{E [A R] A}z )

(Az Ay , z y )

(Az ,z ) (Az ,y ) (Ay ,z ) (Ay ,y )

(Az ,z ) ([A R]y ,y ) (y ,[A R]y ) (Ay ,y )

(Az ,z ) ([A R]y ,y ) ([A L]y ,y ) (Ay ,y )

(Az ,z )

+ + − −= − + − + =
= − − =
= − − + =

= − + − + + =
= − + − + + =
= − k k k k 0 0(Dy ,y ) (Az ,z ) ... (Az ,z ) 0.≤ ≤ ≤ <

klim||z || 0⇒ ≠ ,  метод  не  сходится,  что  противоречит 
(S) 1ρ < .

Достаточность.
Докажем,  что  A 0>  ⇒ 1(S) ([A R] R) 1−ρ = ρ + < ,  т.е.  метод 
сходится.

1
2Sp(S) : || || 1, S [A R] R−λ∈ ⇒ ∃ ϕ ϕ = ϕ ≡ + ϕ = λϕ

⇒  
(R , ) [(A , ) (R , )]

r i [a (r i )]

ϕ ϕ = λ ϕ ϕ + ϕ ϕ
+ ⋅µ = λ + + ⋅µ  ⇒

2 2
2

2 2

r
| |

a(a 2r) r
+ µλ =

+ + + µ
.

⇒  если a(a 2r) 0+ > , то | | 1λ < :
1. min mina (A , ) (A) ( , ) (A) 0= ϕ ϕ ≥ λ ⋅ ϕ ϕ = λ > .
2. (A , ) (D , ) (R , ) (R , )∗ϕ ϕ = ϕ ϕ − ϕ ϕ − ϕ ϕ =
                 (D , ) (R , ) (R , ) d 2r= ϕ ϕ − ϕ ϕ − ϕ ϕ = −
     ⇒  a 2r d (D , ) 0+ = ≡ ϕ ϕ >
Из 1.–2. ⇒  (S) 1ρ < .        Но, более того, т.к.

• 2 2 2 2 2 2
2 2 2r |(R , )| ||R|| || || ||R|| (R R)∗+ µ = ϕ ϕ ≤ ⋅ ϕ = ≡ ρ ,

• min min min min mind (D , ) d ( , ) d (Ae ,e ) (A)= ϕ ϕ ≥ ⋅ ϕ ϕ = = ≥ λ
(здесь min min,min iid a min{a } 0= = > , mine  – орт),
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то 
2 2 2 2

2
2 2 2 2 2 20 x (R R)

min min

r r x
| | max

a(a 2r) r (A) r (A) x∗< ≤ρ

+ µ + µλ = ≤ ≤ =
+ + + µ λ + + µ λ +

           2
min

(R R)
(A) (R R)

∗

∗

ρ=
λ + ρ

, т.е. 2
min

(R R)
(S)

(A) (R R)

∗

∗

ρρ ≤
λ + ρ

.
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Лекция 7.

Функционал ошибки
Второй из способов построения итерационного метода решения 
системы линейных алгебраических уравнений  Ax b=  (detA 0≠ ) 
состоит из построения последовательности приближений k

k 0{x }∞
=  

такой, что  k 1 k||z || ||z ||+ < , т.е. строгого убывания на каждом шаге 

функционала ошибки k kf(x ) ||x x ||≡ − .
Теорем
а.

Если k 1 k 1 k k kf(x ) ||z || f (x ) ||z || x x+ += < = ∀ ≠   ( kz 0≠ )

и отображение n nS: R R→  (оператор шага для ошибки: 
k 1 kz S(z )+ = )  непрерывно  при  z 0≠ ,  то  kx x→ ,  т.е. 

k||z || 0→ .
Док–во. Т.к. k 1 k0 ||z || ||z ||+≤ < , то k||z || 0→ α ≥ . 

Предположим, что 0α > .
Т.к. k 0||z || ||z ||< , то m mk k{z }: z z, ||z||∃ → = α .

Т.к. z 0≠ , то mk||S(z)|| ||z|| & S(z ) S(z)< → .
Тогда, выполнив предельный переход в соотношениях

m m mk 1 k k||z || ||S(z )|| ||z ||

||S(z)|| ||z||

+ = <
↓ ↓ ↓
α = < = α

получим противоречие: α < α  ⇒  k||z || 0→ α = .

Обычно  используют  нормы,  порождаемые  симметричной 
положительно определенной матрицей: C||z|| (Cz, z)= .
Доказать:  если 
C C 0∗= > , то

C(x,y) (C x,y)≡  –  скалярное 
произведение,

C||z|| (Cz, z)=  – норма в nR .

Метод полной релаксации

для решения системы  Ax b=  с матрицей  A A 0∗= >  – очередное 
приближение k 1x +  определяется по известному приближению kx  
за n шагов:
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k 1
1

k 1
i 1

k i/n k (i 1)/n k
k,i i k,i

k
i 1

k
n

i

x

x
x x , i 1, 2, ..., n,x

x

x

e

+

+
−

+ + −

+

 
 
 
 
 = − α ⋅ = =− α 
 
 
 
  

M

M

где параметр k,iα  выбирается из условия минимума k i/n
A||z ||+ .
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Теоре

ма.

k 1 k 1 k kk (i 1)/n
i,1 1 i,i 1 i 1 i,i i i,n n ii

k,i
ii ii

a x ... a x a x ... a x br
a a

+ ++ −
− −+ + + + + −

α = ≡

и kx x→ .

Док–
во.

Т.к. A A 0∗= > , то имеем
k i/n 2 k i/n k i/n

A

k (i 1)/n k (i 1)/n
k,i i k,i i

||z || (Az , z )

(A[z e],[z e ])

+ + +

+ − + −

= =

= − α − α =
k (i 1)/n 2 k (i 1)/n 2

A k,i i k,i i i

k (i 1)/n 2 k (i 1)/n 2
A k,i i k,i i,i

||z || 2 (Az , e ) (Ae, e)

||z || 2 r a

+ − + −

+ − + −

= − α + α =

= − α ⋅ + α ⋅ =
k (i 1)/n 2 k (i 1)/n 2
i k,i i,i ik (i 1)/n 2

A
i,i

(r ) ( a r )
||z ||

a

+ − + −
+ − − α ⋅ −

= − .

Очевидно,  что  при  k (i 1)/n
k,i i,i ia r 0+ −α ⋅ − =  будет 

максимальное  уменьшение  ошибки  (полная 
релаксация):

 
k (i 1)/n 2
ik i/n 2 k (i 1)/n 2

A A
i,i

(r )
||z || ||z ||

a

+ −
+ + −= − .

⇒   
k 2 k 1/n 2 k (n 1)/n 2
1 2 nk 1 2 k 2 k 2

A A A
1,1 2,2 n,n

(r ) (r ) (r )
||z || ||z || ... ||z ||

a a a

+ + −
+ = − − − − < ,

если хотя бы одна из компонент невязки k (i 1)/n
ir 0+ − ≠

(в противном случае k i/n k (i 1)/n k kx x x , r 0+ + −= = = , т.е. kx x= ).
Итак, функционал ошибки строго убывает.
Найдем оператор шага для ошибки:
имеем (проверить!): 

k 1 k 1 k k
i,1 1 i,i 1 i 1 i,i i i,n n ik 1 k k

i i k,i i
ii

a x ... a x a x ... a x b
x x x

a

+ +
− −+ + + + + + −

= − α = −

или k 1 k 1 k 1 k 1 k 1 kx x D ( Lx (D R)x b) D (Lx Rx b)+ − + − += − − + − − = + −
⇒   k 1 k 1 kx x (D L) (Ax b)+ −= − − −  –  метод  Зейделя  (он 
сходится)
⇒   1S E (D L) A−= − −  –  непрерывный  (всюду)  оператор 
шага
⇒   kx x→  по теореме о функционале ошибки.

Метод неполной релаксации

для решения системы  Ax b=  с матрицей  A A 0∗= >  – очередное 
приближение k 1x +  определяется по известному приближению kx  
за n шагов:
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k i/n k (i 1)/n
k,i ix x , i 1, 2, ..., n,e+ + −= − α ⋅ =

где параметр  
k (i 1)/n
i

k,i
ii

r
a

+ −

α = ω⋅ ,  т.е. ошибка уменьшается меньше, 

чем в методе полной релаксации ( 1ω = ):
k (i 1)/n 2 k (i 1)/n 2
i k,i i,i ik i /n 2 k (i 1)/n 2

A A
i,i

k (i 1)/n 2
ik (i 1)/n 2 2 k (i 1)/n 2 k (i 1)/n

A A i
i,i

(r ) ( a r )
||z || ||z ||

a

(r )
||z || [1 ( 1) ] ||z || (0, 2), r 0.

a

+ − + −
+ + −

+ −
+ − + − + −

− α ⋅ −
= − =

= − − ω − < ∀ ω∈ ≠

Расчетные формулы имеют вид (проверить!): 
k 1 k 1 k k

i,1 1 i,i 1 i 1 i,i i i,n n ik 1 k k
i i k,i i

ii

a x ... a x a x ... a x b
x x x

a

+ +
− −+ + + + + + −

= − α = − ω

или 
k 1 k 1 k 1 k

k 1 k k k

k k k k k

k k

x x D ( Lx (D R)x b)

(D L)x Dx Dx (Rx b)

Dx Lx Lx Dx (Rx b)

(D L)x (Ax b)

+ − +

+

= − ω − + − −
⇒ − ω = − ω + ω + =

= − ω + ω − ω + ω + =
= − ω − ω −

Теоре
ма.

Если  A A 0∗= > ,  то  метод  неполной  релаксации 
сходится (0, 2)∀ ω∈ .

Док–
во

практически совпадает с доказательством сходимости 
метода полной релаксации.

Оценка сходимости методов релаксации

Итак,  ошибка  k 1 k 1 kz Sz (E (D L) A)z+ −= ≡ − ω − ω  монотонно убывает в 

норме A||z|| (Az,z)= . Оценим 
2
A

z 0

(ASz,Sz)
||S|| max

(Az,z)≠
= .

Т. к.
1 1 1

1 1

2 2
(D L) [D (R 0.5D)] (D R )

2 2
− − −ω ωω − ω = ω + ω − = +

− ω − ω
, где 1

1
R D L 0

2
= − >

, то 1 1
1

2
S E (D R ) A E B A, (0, )

2
− − ω= − τ + τ ≡ − τ τ = ∈ ∞

− ω
, если (0, 2)ω∈ .

1 1 1
2 2
A

z 0

(B Az,Az) (AB Az,B Az)
||S|| max 1 2

(Az,z) (Az,z)

− − −

≠

 
⇒ = − τ + τ 

 
.

Т.к. 1 1 1(Ay,y) ([R R ]y,y) 2( R y,y) 2([B D]y,y)∗τ = τ + = τ = − , то
2 1 1 1 1 1 1

1 1 1

(A[B Az],[B Az]) 2 (B[B Az],[B Az]) 2 (D[B Az],[B Az])

2 (B Az,Az) 2 (DB Az,B Az)

− − − − − −

− − −

τ = τ − τ
= τ − τ
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1 1 1 1
2
A z 0z 0

1/2 1 1 1/2 1/2 1/2

1/2 1/2z 0

(DB Az,B Az) (DB Az,B Az)
||S|| max 1 2 1 2 min

(Az,z) (Az,z)

([A (B ) DB A ]A z,A z)
1 2 min 1 2 ,

(A z,A z)

− − − −

≠≠

− ∗ −

≠

 
⇒ = − τ = − τ ⋅ = 

 

= − τ ⋅ = − τγ

где 1/2 1 1 1/2
min(A (B ) DB A )− ∗ −γ = λ .

41



Мацокин А.М. “Вычислительные методы линейной алгебры.” Лекция 7.

Пусть 1/2 1 1 1/2 1 1/2A (B ) DB A y y Av BD B v, v A y− ∗ − − ∗ −= γ ⋅ ⇒ = γ ⋅ = .

Т.к. 1 1 2 1
1 1 1 1BD B (D R )D (D R ) D A R D R− ∗ − ∗ − ∗= + τ + τ = + τ + τ ,

то 2 1
1 1

(Av,v)
(Dv,v) (Av,v) (R D R v,v)− ∗γ =

+ τ + τ .

Теоре
ма. 2 2

2
2
A 2

1
,

1/ 1

1
||S|| g( ) 1 0,

1

δγ ≥ =
δ + τ + τ ∆ + τδ + τ δ∆

− τδ + τ δ∆≤ τ = < ∀ τ >
+ τδ + τ δ∆

где постоянные 0δ >  и 0∆ >  таковы, что
1

1 1(Dv,v) (Av,v), (R D R v,v) (Av,v) v− ∗δ ⋅ ≤ ≤ ∆ ⋅ ∀  

( 1
minD A, (D A)−δ ≤ δ ≤ λ , 1 1 1

1 1 max 1 1R D R A, (A R D R )− ∗ − − ∗≤ ∆ ⋅ ∆ ≥ λ )
Док–
во

очевидно.

Доказать: * *0

1 /(4 ) 1
ming( ) g( ) ,

1 /(4 )τ>

− δ ∆
τ = τ = τ =

+ δ ∆ δ∆
.

Доказать: *

2

1 2
ω =

+ δ∆
.

Пример

1 1

2 1 0 1 0 0 1 1 0

1 2 1 1 1 0 0 1 1

A R R

1 2 1 1 1 0 0 1 1

0 1 2 0 1 1 0 0 1

∗

− −     
     − − − −     
     = = + = +
     − − − −     
     − −     

O O O O O O O O O ,

1 2 2
min(D A) 0.5 4 sin ( /(2(n 1))) /[2(n 1) ] 1−δ = λ = π + π + = ,

т.к. 1
1 1A 2 R D R diag{1, 0, ..., 0}− ∗= ⋅ + , то 1

1 10.5 A R D R− ∗⋅ ≥  и 0.5∆ = ,
тогда (проверить):

верхняя 
релаксац
ия

* *

1 2
2(n 1)/ , 1

1 /(n 1)
τ = + π ω = >

+ π +δ∆
,

* Ag( ) 1 , ||S|| 1 1
n 1 n 1 2(n 1)

π π πτ − − −
+ + +

, 
2(n 1) 1

k( ) ln
+ε =

π ε
полная 
релаксац
ия

2 2

A2 2

2
g(2) 1 , ||S|| g(2) 1

(n 1) (n 1)
π π− −
+ +

, 

2

2

(n 1) 1
k( ) ln

+ε =
π ε
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т.е. метод верхней релаксации в (n 1)/(2 )+ π  раз дешевле.
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лекций.

Лекция 8.

Градиент, метод наискорейшего спуска
Как выбирать вектор y при построении итерационного метода 

k 1 kx x y+ = + α ⋅  из  условия  минимизации  ошибки: 
k 1 2 k 2||z || min||z y||+

α
= + α ⋅ ? 

Если 2f(z) ||z|| (Az,z), A A 0∗≡ = = > , то 
k k k

k 1 k 2 k 2
1 n

1 n

k 2 k 2 k 2 2

k 2 k k 2 k k

df(z ) f(z ) f(z )
f(z ) f(z ) O( ) f(z ) y ... y O( )

d z z

f(z ) ( f,y) O( ) ||z || 2 (Az ,y) ||y||

||z || 2 (Az ,y) ||z || 2| | (Az ,Az ).

+  ∂ ∂= + α + α = + + + α + α = α ∂ ∂ 
= + ∇ ⋅ α + α = + α ⋅ + α ⋅ ≈
≈ + α ⋅ ≥ − α ⋅

Следовательно, k ky f 2Az 2r , 0= −∇ = − = − α > .
Теоре
ма.

Метод  наискорейшего 
спуска
сходится  ,  если 
A A 0∗= > .

k 1 k k
kx x (Ax b)+ = − τ −

k k

k k k

(r ,r )
, k 0,1, ....

(Ar ,r )
τ = =

Док–

во.

k 1 2 k k k k k 2 k k 2 k k
A k k A k k||z || (A[z Az ],z Az ) ||z || 2 (r ,r ) (Ar ,r )+ = − τ − τ = − τ + τ

минимум  правой  части  достигается  при 
k k k k

k (r ,r )/(Ar ,r )τ = :
k k 2

k 1 2 k 2 k 2
A A Ak k

|(r ,r )|
||z || ||z || ||z ||

(Ar ,r )
+ = − < , если k kr Az 0= ≠ .

Очевидно, что оператор S: k 1 k k k k
kz S(z ) z (z ) Az+ = = − τ ⋅

непрерывен всюду, кроме , быть может, 0. kz 0⇒ → .

Метод минимальных невязок

В итерационном процессе k 1 k k
kx x (Ax b)+ = − τ −  параметр kτ  будем 

выбирать  из  условия  минимизации  невязки: 
k 1 k 1 k k k k(r , r ) min(r Ar , r Ar )+ +

τ
= − τ − τ .

Теоре
ма.

Метод  минимальных 
невязок
сходится , если A 0> .

  k 1 k k
kx x (Ax b)+ = − τ −

k k

k k k

(Ar ,r )
, k 0,1, ....

(Ar ,Ar )
τ = =

Док–

во.

k 1 2 k k k k k k k k
k k k kA A

k 2 k k 2 k k
k kA A

||z || (A A[z Az ],z Az ) (r Ar ,r Ar )

||z || 2 (Ar ,r ) (Ar ,Ar )

∗

∗

+ ∗= − τ − τ = − τ − τ =

= − τ + τ
минимум  правой  части  достигается  при 

k k k k
k (Ar ,r )/(Ar ,Ar )τ = :

44



Мацокин А.М. “Вычислительные методы линейной алгебры.” Конспект 
лекций.

k k 2
k 1 2 k 2 k 2

A A Ak k

|(Ar ,r )|
||z || ||z || ||z ||

(Ar ,Ar )
+ = − < ,  если 

k k kr 0 & (Ar ,r ) 0≠ ≠ .

Очевидно, что оператор S: k 1 k k k k
kz S(z ) z (z ) Az+ = = − τ ⋅

непрерывен всюду, кроме , быть может, 0. kz 0⇒ → .
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Метод простой итерации
В методах наискорейшего спуска и минимальных невязок для 
определения параметра  kτ  на каждом шаге нужно вычислять 
два  скалярных  произведения  (с  умножением  невязки  на 
матрицу системы). Использование постоянного параметра kτ ≡ τ  
существенно уменьшает объем вычислений на каждом шаге.

Теоре

ма.

Если A A 0∗= > , то
метод  простой 
итерации
сходится при

 
2

(0, )
(A)

∀ τ∈
ρ ,

  k 1 k kx x (Ax b), k 0,1, ...+ = − τ ⋅ − =
k k 0

2 2||z || [ ] ||z ||τ≤ ρ ⋅

min maxmax{|1 (A)|, |1 (A)|}τρ = − τ ⋅λ − τ ⋅λ

При          опт
min max

2τ =
λ + λ  

max min
опт

max min

0τ
λ − λρ = ≤ ρ ∀ τ >
λ + λ .

Док–

во.
k k 1 k 1

2 2 2 2

k 0 k 0
2 2 2

||z || ||(E A)z || ||E A || ||z ||

(||E A || ) ||z || (E A) ||z ||

− −= − τ ⋅ ≤ − τ ⋅ ⋅ ≤

≤ − τ ⋅ ⋅ = ρ − τ ⋅ ⋅

min max
Sp(A)

(E A) max |1 | max{|1 (A)|, |1 (A)|}τ λ∈
ρ ≡ ρ − τ ⋅ = − τ ⋅λ = − τ ⋅λ − τ ⋅λ

т.к. функция g |1 |τ = − τ ⋅λ  выпукла вниз.

max|1 | 1 1 1 1 Sp(A) 0 2/− τ ⋅λ < ⇔ − < τ ⋅λ − < ∀ λ ∈ ⇔ < τ < λ

2||S|| 1τ⇒ ρ = <     
2

(0, )
(A)

∀ τ∈
ρ

, метод сходится.

Оптимальный параметр выбираем из условия
опт опт 2 20 0

||E A || min||E A || min ττ> τ>
ρ ≡ − τ ⋅ = − τ ⋅ ≡ ρ

легко проверить, что

minопт

maxопт
max

1 , 0

2
1,τ

− τ ⋅λ < τ ≤ τ
ρ = τ ⋅λ − τ ≤ τ < λ

  опт
min max

2⇒ τ =
λ + λ

, 

max min
опт

max min

λ − λρ =
λ + λ
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Оценки сходимости МНС и ММН

Теоре

ма.

Если  A A 0∗= > ,  то  для  ошибки  k||z || метода 
наискорейшего спуска:

k k
k 1 k k

k k k k

(r ,r )
x x (Ax b), , k 0,1, ...,

(Ar ,r )
+ = − τ − τ = =

справедливы оценки:
k

k 0max min
A A

max min

||z || ||z ||
 λ − λ≤  λ + λ 

 , 

k

k 0max max min
2 2

min max min

||z || ||z ||
 λ λ − λ≤  λ λ + λ 

Док-
во.

Так как

 
k 1 k k k k k

A Aопт A опт A A||z || inf ||z Az || ||z Az || ||E A || ||z ||+

τ
= − τ ≤ − τ ≤ − τ ⋅

и 
2 опт опт

опт A
z 0

(A[E A]z,[E A]z)
||E A || sup

(Az,z)≠

− τ − τ− τ = =

0.5 0.5
2 2опт опт

опт 2 опт0.5 0.5
z 0

([E A]A z,[E A]A z)
sup ||E A ||

(A z,A z)≠

− τ − τ= = − τ = ρ ,

то [ ] kk 0
Aопт A||z || ||z ||≤ ρ .

Т.к.  min max(z,z) (Az,z) (z,z)λ ≤ ≤ λ   ⇒  

min 2 A max 2||z || ||z || ||z ||λ ≤ ≤ λ

то [ ] kk 0
A max minопт A||z || / ||z ||≤ λ λ ρ .

Теоре

ма.

Если A A 0∗= > , то для метода минимальных невязок:
k k

k 1 k k
k k k k

(Ar ,r )
x x (Ax b), , k 0,1, ...,

(Ar ,Ar )
+ = − τ − τ = =

справедливы оценки:
k

k 0max min
2 2

max min

||r || ||r ||
 λ − λ≤  λ + λ 

 ,     
k

k 0max max min
2 2

min max min

||z || ||z ||
 λ λ − λ≤  λ λ + λ 

Док-
во.

Так как

 
k 1 k k k k k

2 2опт 2 опт 2 2||r || inf ||r Ar || ||r Ar || ||E A || ||r ||+

τ
= − τ ≤ − τ ≤ − τ ⋅

и     опт 2 опт||E A ||− τ = ρ ,     то      [ ] kk 0
2опт 2||r || ||r ||≤ ρ .

Т.к. k k
2 2||r || ||Az ||=    и   2 2

min max| | (z,z) (Az,Az) | | (z,z)λ ≤ ≤ λ   
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⇒   k k k
min 2 2 max 2||z || ||r || ||z ||λ ≤ ≤ λ   ⇒    [ ] kk 0max

2опт 2
min

||z || ||z ||
λ≤ ρ
λ .
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Лекция 9. Метод Ричардсона с чебышевскими 
параметрами

Задача оптимизации параметров

Параметры  kτ  в  итерационном  методе  k 1 k k
k 1x x (Ax b)+

+= − τ −  
можно  выбирать  из  условия  минимизации  спектрального 
радиуса  m,(S (A))τρ  матрицы  (оператора)  ошибки  за  m шагов: 

m 0 0
m, m 1z S (A)z (E A)...(E A)zτ= ≡ − τ − τ .

Если все параметры взять одинаковыми, то мы получим метод 
простой итерации и он сходится при известных условиях, т.е. 
предлагаемый способ построения итерационного метода может 
привести только к лучшему методу.

Мы  будем  предполагать,  что  Sp(A) [ , ], 0⊆ α β α > ,  т.е.  все 
собственные значения матрицы системы линейных уравнений 
Ax b=  положительны.

Т.к.  
1 m 1 m 1 m

m, m, m,,..., ,..., ,...,Sp(A) [ , ]
min (S (A)) min{max |S ( )|} min{max |S ( )|}τ τ ττ τ τ τ τ τλ∈ λ∈ α β

ρ = λ ≤ λ ,  а 

последнюю минимаксную задачу решать проще (почему?), мы 
будем искать 1 2 m, , ...,∗ ∗ ∗τ τ τ :

1 m
m, mm, ,...,[ , ] [ , ]

max |S ( ) | min{max |S ( ) |}∗ ττ τ τλ∈ α β λ∈ α β
λ = λ = ρ ,

т.е.  решать  задачу  о  поиске  полинома  m,
S ( )∗τ

λ  степени  m, 
наименее уклоняющегося от нуля на отрезке [ , ]α β  при условии 

m,
S (0) 1∗τ

= .

Тогда,  т.к.  
m

m 1 1 mm,
1 m

( 1)
S ( ) (1 )...(1 ) ( )...( )

...
∗

∗ ∗
∗ ∗τ

−λ ≡ − τ λ − τ λ = λ − µ λ − µ
τ τ

,  где  iµ  – 

корни полинома m,
S ( )∗τ

λ , k
k

1∗τ =
µ  и mm, m,[ , ]

(S (A)) max |S ( ) |∗ ∗τ τλ∈ α β
ρ ≤ λ = ρ .

Если A A∗= , то 2 mm, m,
||S (A)|| (S (A))∗ ∗τ τ

= ρ ≤ ρ  и, следовательно,
mk k 0

2 m 2||z || [ ] ||z ||⋅ ≤ ρ ⋅
– оценка сходимости метода.

Полином Чебышева mT (x) cos(m arccosx), x [ 1,1]≡ ⋅ ∈ −  
и решение задачи оптимизации параметров

Очевидно, что 0T (x) 1= , 1T (x) x=  – полиномы.
Т.к.  cos((k 1) ) cos((k 1) ) 2cos( ) cos(k )+ ϕ + − ϕ = ϕ ⋅ ϕ ,  то  при  arccosxϕ =  
имеем k 1 1 k k 1T (x) 2 T (x) T (x) T (x)+ −= ⋅ ⋅ −  – полином при любом k 1 1+ > .
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Точки  экстремумов  mT (x) cos(m arccosx)≡ ⋅ : 

k

k
x̂ cos , k 0,1, ..., m

m
π= = :

m m 1 1 0ˆ ˆ ˆ ˆ1 x x ... x x 1−− = < < < < = ,       k
m kˆT (x ) ( 1)= − − .

Корни  полинома  mT (x) cos(m arccosx)≡ ⋅ : 

k

(2k 1)
x cos , k 1, ..., m

2m
− π= = :

k k k 1ˆ ˆ1 x x x 1−− ≤ < < ≤ ,          mT (x) 0 x [ 1,1]≠ ∀ ∉ − .
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Линейное  преобразование  [ , ] x [ 1,1]λ ∈ α β → ∈ − : 
2 ( )

x( )
λ − β + αλ =

β − α .

Рассмотрим полином:   ( ) ( )m m
m

1
S ( ) T x( )

T x(0)
λ = ⋅ λ .

Очевидно,  что  mS (0) 1= ,     k
k

( ) x ( )
[ , ]

2
β − α ⋅ + β + αµ = ∈ α β  –   корни 

полинома.
Покажем, что этот полином наименее уклоняется от нуля на 
интервале  [ , ]α β  среди  всех  полиномов  m mP ( ), P (0) 1λ = ,  т.е. 

m m 1P ( ) 1 Q ( )−λ = − λ ⋅ λ .

Теоре
ма.

Если 0α > ,     то      
m 1

m C[ , ] m 1 C[ , ]Q ( )
||S ( ) || inf ||1 Q ( )||

−
α β − α βλ

λ = − λ λ .

Док-
во.

Пусть 
m 1

m C[ , ] m 1 C[ , ]Q ( )
||S ( ) || inf ||1 Q ( )||

−
α β − α βλ

λ > − λ λ , 

тогда m 1Q ( )−∃ λ :    m C[ , ] m 1 C[ , ]||S ( ) || ||1 Q ( )||α β − α βλ > − λ λ .
Так как
• полином  m mS ( ) 1 P ( )λ = − λ λ  имеет  экстремумы 

(одинаковые  по  модулю)  в  точках  kˆ [ , ]µ ∈ α β : 

k
k

ˆ2 ( )
x̂

µ − β + α =
β − α ,  k 0,1, ..., m= :

m k m C[ , ]ˆ|S ( )| ||S ( )|| α βµ = λ , и m
m k k 0ˆ{S ( )} =µ  знакопеременна:

то разность m m m 1 m 1 m 1R ( ) S ( ) [1 Q ( )] Q ( ) P ( )− − −λ ≡ λ − − λ λ = λ λ − λ λ
• полином степени m,
• последовательность  m

m k k 0ˆ{R ( )} =µ  знакопеременна  ⇒  в 
интервале  [ , ]α β  имеется  m попарно  различных 
корней  полинома  mR ( )λ  (т.к.  внутри  интервала 

k k 1ˆ ˆ[ , ]−µ µ  имеется хотя бы один корень),
• 0 [ , ]λ = ∉ α β  –  корень  ((m 1)+ –ый)  полинома  mR ( )λ  

(именно здесь мы использовали условие 0α > ).
⇒  mR ( ) 0λ ≡ ,  т.е.  m C[ , ] m 1 C[ , ]||S ( )|| ||1 Q ( )||α β − α βλ = − λ λ  – 
противоречие.

Следовательно, 
m 1

m C[ , ] m 1 C[ , ]Q ( )
||S ( ) || inf ||1 Q ( )||

−
α β − α βλ

λ = − λ λ .

Осталось вычислить m m C[ , ]||S ( )|| α βρ = λ .

Теоре

ма.

Если  0α > ,    то     
m

m m C[ , ] 2m

2
||S ( )|| 1

1α β
γρ = λ = <

+ γ
,    где 
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β − αγ =
β + α

.

Док-

во.

Очевидно,  1
m m C[ , ] m||S ( )|| |T (x(0)) | , x(0) 1−

α β
β + α

β − α
ρ = λ = = − < −

.
Для вычисления mT (x(0)) воспользуемся формулой

2 m 2 m

m

(x x 1) (x x 1)
T (x)

2
+ − + − −=  при |x | 1> .
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Заметим, что
2 2

2 ( ) 2 ( )
x(0) x (0) 1 ,

( ) ( )

− β + β α − α β − α
+ − = = − = −γ

β + α ⋅ β − α β + α
2

2

1 1
x(0) x (0) 1

x(0) x (0) 1
− − = = −

γ+ −
.

Тогда 
m 1 m 2m m

m
m mm 2m

( ) ( ) 1 2
T (x(0)) ( 1) 1

2 2 1

−−γ + −γ + γ γ= = − ⇒ ρ = <
γ + γ

.

Док-во  формулы  2 k 2 k
kT (x) 0.5[(x x 1) (x x 1) ]= + − + − − при 

|x | 1> .
Действительно, 0T (x) 1=  и 1T (x) x= .
Осталось проверить, что k 1 1 k k 1T (x) 2 T (x) T (x) T (x)+ −= ⋅ ⋅ −  или

2 k 1 2 k 1(x x 1) (x x 1)+ ++ − + − − =
2 k 2 k 2 k 1 2 k 12x[(x x 1) (x x 1) ] [(x x 1) (x x 1) ]− −= + − + − − − + − + − −

.
Пусть 2y x 1= − , тогда

k 1 k 1 k k k k(x y) (x y) x [(x y) (x y) ] y [(x y) (x y) ]+ ++ + − = ⋅ + + − + ⋅ + − − =
k k

k 1 k 1 k 1 k 1

x [(x y) (x y) ]

y [x {(x y) (x y) } y {(x y) (x y) }]− − − −

= ⋅ + + − +
+ ⋅ ⋅ + − − + ⋅ + + − =

k k

k 1 k 1 2 k 1 k 1

k k k 1 k 1

2 2 k 1 2 2 k 1

x [(x y) (x y) ]

y x {(x y) (x y) } (x 1) {(x y) (x y) }

2x [(x y) (x y) ] {(x y) (x y) }

( x xy yx x ) (x y) ( x xy yx x ) (x y)

− − − −

− −

− −

= ⋅ + + − +
+ ⋅ ⋅ + − − + − ⋅ + + − =
= ⋅ + + − − + + − +
+ − − + + ⋅ + + − + − + ⋅ − =

k k k 1 k 12x [(x y) (x y) ] {(x y) (x y) }− −= ⋅ + + − − + + − , что и тр. док.

Итак,  mm,
S ( ) S ( )∗τ

λ = λ  – решение задачи оптимизации параметров 
за m шагов.

Циклический метод Ричардсона: формулы и 
сходимость 

Теоре
ма.

Если  A A 0∗= >  и  известны  оценки  ее  спектра: 
SpA [ , ], 0∈ α β α > ,  то циклический метод Ричардсона (с 
длиной  цикла  m)  решения  системы  Ax b= : 

k 1 k k
k 1

1 m m 1 1 2m m m j j

x x (Ax b), k 0,1, ... ,

, ..., , , ..., , ... ( ),

+
+

+ +

 = − τ − =
τ τ τ = τ τ = τ τ = τ
с  чебышевскими  параметрами 
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1

k

(2k 1)
2 ( ) ( ) cos

2m

−− π τ = β + α + β − α ⋅  

сходится и  
km

mk k 0 0
2 m 2 22m

2
||z || [ ] ||z || ||z || ,

1
⋅ β − α γ≤ ρ = γ = + γ β + α 

 

.
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Об устойчивости метода Ричардсона
Из–за  ошибок  округления  реализация  формул 

k 1 k k
k 1x x (Ax b)+

+= − τ −  неустойчива,  т.к.  норма  оператора  шага 

k 1 2||E A ||+− τ  для  ошибки  может  быть  значительно  больше 1  (в 
методе простой итерации эта норма меньше 1).
Рассмотрим модельный пример, в котором ошибка округления 
возникает только на шаге с mτ = τ  ( 4m 10 1= ? ): 

m 0 0 m 0
m m 1 1 m

1 0
z (E A)[(E A)...(E A)z z ] z (E A)z , A .

0 m−
 = − τ − τ − τ + ε = + ε − τ =  
 

%

Проверить: 200
m 2e−ρ ≈ m 200 0

2 2||z || 2e ||z || 0−⇒ ≤ ≈ .

Проверить: m 1τ ≈ , m

0 0
E A

0 1 m
 

− τ ≈  − 
m 0 4 0 0

2 2 2 2||z || m|z | 10 |z | |z |⇒ ≈ ε = ε ≈% , если 410−ε = , т.е. фактически 
ошибка не уменьшилась.

Изменим упорядочение параметров: 2 3 m 1 m 1, , ..., , ,−τ τ τ τ τ :
m 0 0

1 m m 1 2

m 0
1 m

ẑ (E A)(E A)[(E A)...(E A)z z ]

z (E A)(E A)z .
−= − τ − τ − τ − τ + ε =

= + ε − τ − τ

Проверить:  2
1 1 m

0 01
O(m ), (E A)(E A)

0 O(1)m
−  

τ = + − τ − τ ≈  
 

m 0
2 2ˆ||z || O(|z |)⇒ ≈ ε ⋅ ,

т.е. реализация с точностью до ошибок округления.

Из этого примера следует, что переупорядочение параметров 
существенно  влияет  на  устойчивость  вычислений  в  методе 
Ричардсона. Задача об оптимальном упорядочении параметров 
ставится следующим образом.

Пуст
ь

p [p(1), ..., p(m)]=  – перестановка m–ки (1, ..., m),

j p( j) p(m)(p) [(E A)...(E A)]ν = ρ − τ − τ , 
m 1

p(j) j 1 p(m)j 1
(p) (p)

−
+=

ν = τ ν + τ∑ .

Найт

и

оптp : опт p
(p ) inf (p)ν = ν .

Решением  этой  задачи  для  tm 2=  является  следующая 
процедура:                                

1 2 m 1 m, , ..., ,−τ τ τ τ
⇓
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1 1 1
1 m 1 2 m 1 2 m/2 m/2 1 m/2 1r ( , ), r ( , ), ..., r ( , )− + −= τ τ = τ τ = τ τ

⇓
2 1 1 2 1 1 2 1 1

1 m/2 1 2 m/2 1 2 m/4 m/4 1 m/4 1r (r , r ), r (r , r ), ..., r (r , r )− + −= = =
⇓.................................

t
опт 1p r=
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Трехчленные формулы реализации 
метода Ричардсона с чебышевскими параметрами
Для  решения  системы  Ax b=  попытаемся  построить 
приближения k{x }:

k 0
kz S (A)z k 0= ∀ ≥ .

Т.к. 0S (A) E=  и 1

2
S (A) E A= −

β + α
 (проверить!), то

1 0 0 0 02 2
x x (Ax b) x r= − − ≡ −

β + α β + α
.

Если ввести обозначение k k kt T (x(0)) T ( [ ]/[ ])= = − β + α β − α , то

k 1 k 1 k 1 k k 1 k 1

k k k 1 k k 1 k 1

2
t S (A) 2t T A E S (A) t S (A)

2
2t AS (A) 2t tS (A) t S (A)

+ + − −

− −

 β + α= − − = β − α β − α 

= + −
β − α

k 1 k k k 1
k 1 k k 1 k 1

k k k k 1
k k 1 k 1 k 1

k k k k 1
k k 1 k 1

2
t z 2t r 2t t z t z

2
2t r (2t t t )z t (z z )

2
2t r t z t (z z )

+ −
+ −

−
− −

−
+ −

⇒ = + − =
β − α

= + − + − =
β − α

= + + −
β − α

k 1 k k k k 1
k 1 k k 1 k 1

2
t x 2t r t x t (x x )+ −

+ + −⇒ = + + −
β − α

 k
k 0{x }∞

=⇒  построена:

k 1 k k k k 1k k 1 k

k 1 k k 1

t 2 t t
x 2 r x (x x ), k 1, 2, ... .

t t t
+ −−

+ +

= + + − =
β − α

Преобразуем эту формулу:
k k 1 k 1 k 1 k 1 k

k 1 k 1 k 1 k k 1

t 2 2t t 2 t t 2 t t 2
2 (1 )

t t t t t
+ − −

+ + + +

+= − = − = − +
β − α β + α β + α β + α .

Введем обозначение k k 1 kt / t−ω = , т.к. k 1 1 k k 1t 2t t t+ −= − , то 

1 k 1 1
1 k 1 k

1 1
, , k 1, 2, ... .

2t 2( )+ −

β − αω = − ω = = =
β + α − ω ω − ω

Тогда
k 1 k k k 1 k

k k 1 k k 1

2
x x (x x ) (1 ) (Ax b), k 1, 2, ... ,+ −

+ += + ω ω − − + ω ω ⋅ − =
β + α

– двухшаговый (трехслойный) итерационный процесс.
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Лекция 10. 

Многошаговые методы. Вариационная 
оптимизация

Для  определения  параметров  метода  Ричардсона  (простой 
итерации  при  m 1= )  для  решения  системы  Ax b=  необходимо 
предварительное  вычисление  (точное  или  приближенное) 
границ  спектра  матрицы  A ,  чего  не  требуется  в  методах 
наискорейшего  спуска  и  минимальных  невязок.  Попытаемся 
выбрать параметры метода k k 1 k 1

kx x (Ax b)− −= − τ −  из условия 
t m (t) (t) (t 1)m (t 1)m

m 1 m 1||z || ||(E A)...(E A)z || min||(E A)...(E A)z ||⋅ − −

γ
≡ − τ − τ = − γ − γ .

Решим эту задачу при  t 1=  (т.к. при других  t решение задачи 
будет  таким  же  с  точностью  до  обозначений),  определив 

2 2
D||z || ||z || (Dz,z)≡ = , где D D 0∗= > .

Т.к. 
m 0 0 0 m 0

m 1 1 m

0
1 1 m m

z (E A)...(E A)z z q ( )Az ... q ( )A z

z ( )g ... ( )g ,

≡ − τ − τ = − τ − − τ =

= − α τ − − α τ
 

где 0 m 0
1 m mL{g , ..., g } L{Az , ..., A z } L= ≡ , 

то
m 0 0

D m 1 D 1 1 m m D||z || min||(E A)...(E A)z || min||z g ... g ||
γ α

= − γ − γ = − α − − α .

Параметры 1 m, ...,α α  удовлетворяют системе уравнений
m m m

m 0
i 1 1 m m

i i

1 (Dz ,z ) z
(D ,z ) (Dg , z g ... g ) 0, i 1, ..., m

2
∂ ∂= ≡ − α − − α = =

∂α ∂α
,

или
0

1 1 1 2 1 m 1 1
0

2 1 2 2 2 m 2 2

0
m 1 m 2 m m m m

(Dg ,g ) (Dg ,g ) ... (Dg ,g ) (Dz ,g )
(Dg ,g ) (Dg ,g ) ... (Dg ,g ) (Dz ,g )

...

(Dg ,g ) (Dg ,g ) ... (Dg ,g ) (Dz ,g )

α    
    α     =    
     α    

M M M M M
.

Матрица этой системы – матрица Грамма базиса m
i i 1{g}=  в mL .

Для того, чтобы был известен вектор правой части, достаточно 
выбрать D A HA∗=  с любой матрицей H H 0∗= > .
Если  базис  m

i i 1{g}=  является  D–ортогональным,  т.е. 

i j(Dg ,g ) 0, i j= ≠ , то
0

m 0k
k 1 1 2 2 m m

k k

(Dz ,g )
, x x g g ... g

(Dg ,g )
α = = − α − α − − α ,

58



Мацокин А.М. “Вычислительные методы линейной алгебры.” Конспект 
лекций.

а вычисление 2m 3mx , x , ...  осуществляется аналогично.
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Метод сопряженных градиентов
Пусть матрица системы  Ax b=  симметрична и положительно 
определена. Построим (D A= )  A–ортогональный базис  m

i i 1{g}=  в 
0 m 0

mL L{Az , ..., A z }= .

1. 0 0
1g Az r= ≡

– базис в 1L

0
1

1
1 1

(r ,g )
(Ag ,g )

⇒ α = ,   1 0 1 0
1 1 1 1x x g , r r Ag= − α = − α .

Заметим, что     
1 0 2 0 1

1 2

1 1
1 1

r Az A z r L

(r ,g ) 0 r L

 = − α ∈ ⇒ 
= ⊥  

Предположим,  что  выполнили  k шагов:  k 1 kL {g , ..., g }=  и 
k

k 1

k
k

r L

r L
+ ∈


⊥

.

Определим k
k 1 1 1 k kg r g ... g+ = − γ − − γ : k 1 i(Ag ,g ) 0, i 1, ..., k+ = = ,

т.е. k
i i i i(Ar ,g )/(Ag ,g )γ = , т.к. j i(Ag ,g ) 0, i j= ≠ . 

Заметим, что i i 1Ag L +∈  и k
i 1 kr L L+⊥ ⊂  

k k
i i(Ar ,g ) (r ,Ag ) 0 i k 1⇒ = = ∀ ≤ − ⇒

k 1+ –шаг.
 k

k 1 k kg r g+ = − γ
k

k
k

k k

(r ,Ag )
(Ag ,g )

γ =

1 k 1{g , ..., g }+  

– базис в k 1L +

0 1
k 1 1 1 k 1

k 1
k 1 k 1 k 1 k 1

k
k 1

k 1 k 1

(r ,g ) (r Ag ,g )
...

(Ag ,g ) (Ag ,g )

(r ,g )
,

(Ag ,g )

+ +
+

+ + + +

+

+ +

+ α⇒ α = = =

=
   

k 1 k k 1 k
k 1 k 1 k 1 k 1x x g , r r Ag+ +

+ + + += − α = − α .
k 1

k 1r L+
+⊥ , 

т.к. k k 1
k k k k 1r L & Ag L & (r ,g ) 0+

+⊥ ⊥ = .

Т.к. k k 0 k 1 0
k 1 1 k 1r L r a Az ... a A z+

+ +∈ ⇒ = + +
и 0 k 1 0

k 1 k 1 k 1 1 k 1g L g bAz ... b A z+
+ + + +∈ ⇒ = + + , то

k 1 0 k 1 0 k 2 0
1 k 1 k 2 k 2r c Az ... c A z c A z L+ + +

+ + += + + + ∈
⇒ предположения  мат.  индукции 
выполнены,
мы  построили  метод  сопряженных 
градиентов.

Теорема.
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Если  A A 0∗= > ,  то  метод  сопряженных  градиентов 
продолжается до получения решения системы Ax b=  за  m n≤  
итераций (пока kr 0≠ ) и

k
max mink 0

A A2k
max min

2
||z || ||z || ,

1

λ − λγ≤ γ =
+ γ λ + λ

.

Доказать теорему в качестве упражнения.
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Переобуславливатель
Для решения системы Ax b=  рассмотрим итерационный метод

k 1 k 1 kx x B (Ax b)+ −= − τ − ,
где матрица B (переобуславливатель) эквивалентна по спектру 
матрице A  с постоянными 1 0 0γ ≥ γ > :

n
0 1(Bv,v) (Av,v) (Bv,v) v Rγ ≤ ≤ γ ∀ ∈ .

Теоре
ма.

1
0 1A A 0 & B B 0 (B A)∗ ∗ −= > = > ⇒ γ ≤ λ ≤ γ .

Док–
во.

1 1/2 1/2 1/2 1/2B Av v [B AB ](B v) (B v)− − −= λ ⇒ = λ .
1/2 1/2 1/2 1/2 * 1/2[B AB ] [B AB ] w B v− − − −= ⇒ ∃ =  – 

вещественный
1/2 1/2

0 1

(B AB w,w) (Av,v)
(w,w) (Bv,v)

− −

⇒ γ ≤ λ = = ≤ γ .

Следств
ие.

1
1

1/2 1/2 1/2 1/2
B 2

1/2 1/2 1/2 1/2
A 2

A A 0 & B B 0

(S ) (E B A) 1 (0,2/ )

||S || ||B S B || (B S B ) (S ) 1

||S || ||A S A || (A S A ) (S ) 1

∗ ∗

−
τ

− −
τ τ τ τ

− −
τ τ τ τ

= > = >

ρ = ρ − τ < ∀ τ∈ γ


⇒ = = ρ = ρ <
 = = ρ = ρ <

т.к.  1/2 1/2 1/2 1/2 *B S B [B S B ]− −
τ τ=  и 

1/2 1/2 1/2 1/2 *A S A [A S A ]− −
τ τ= .

Теоре
ма.

A A 0 & B 0.5 A∗= > > τ  ( 0τ > ), тогда (S ) 1τρ < .

Док–
во.

k 1 k 1 k 1 k k
A

k k 1 k k 2 1 k 1 k

k k k k 2 k k

k k k k k
A

||z || (Az ,z ) (AS z ,S z )

(Az ,z ) 2 (AB Az ,z ) (AB Az ,B Az )

(Az ,z ) 2 (Bw ,w ) (Aw ,w )

(Az ,z ) 2 ([B 0.5 A]w ,w ) ||z ||

+ + +
τ τ

− − −

= = =

= − τ + τ =
= − τ + τ =
= − τ − τ <

⇒  функционал  ошибки  строго  убывает  и,  т.к. 
оператор  Sτ  непрерывен,  то  итерационный  процесс 

сходится (S ) 1τ⇒ ρ < .
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Положительно определенные матрицы
n n n nA 0в C (или R ) (Ax,x) 0 x C (R ), x 0> ⇔ > ∀ ∈ ≠

Теорема 1. n *(Ax,x) Re(Ax,x) x C A A= ∀ ∈ ⇔ = .

Теорема 2. *A A= ⇒

  
n n

n n
min max

A 0в C (R ) (A) 0,

(x,x) (Ax,x) (x,x) x C (R ).

 > ⇔ ∀ λ >

λ ≤ ≤ λ ∀ ∈

Теорема 3. *A A= ⇒   { }n n
kA 0в C (R ) det(A ) 0> ⇔ ∀ >

(т.к.  *A LDL=  –  разложение  Холесского)  –  это  критерий 
Сильвестра  положительной  определенности  или 
положительности  всех  собственных  значений  симметричной 
(самосопряженной) матрицы.

Теорема 4. n * nA 0в R A A 0 в R .> ⇔ + >

Теорема  5. *A A= −  –  веществ.  кососимметричная  матрица 
nA 0в R⇒ = .

Теорема 6. nA 0в R Re (A) 0> ⇒ λ > .

Доказать эти утверждения в качестве упражнений.
Построить  пример  вещественной  несимметричной,  но 
положительно определенной в nR  матрицы.
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Лекция 11. Проблема собственных значений
Для  матрицы  n

i j i, j 1A {a } ==  нужно  найти  числа  λ  и  ненулевые 

векторы  x такие, что  Ax x= λ :  λ  – собственное значение,  x – 
собственный вектор.

Корректность задачи на собственные значения
Известно, что все собственные значения матрицы A  являются 
корнями характеристического полинома

n n n 1
n n 1 1 0P ( ) det(A E) ( 1) p ... p p−

−λ = − λ = − λ + λ + + λ + ,

а коэффициенты  0 n 1p , ..., p −  – непрерывные функции элементов 
матрицы A .
Пусть  Aδ  –  матрица  с  “малыми”  по  величине  элементами, 

,nP ( )δ λ  –  характеристический  полином  матрицы  A A+ δ . 

Следствием непрерывности det(A A)+ δ  как функции элементов 
матрицы A A+ δ  является

Лемма 1. ,n nA 0
limP ( ) P ( ) Cδδ →

λ = λ ∀ λ ∈ .

Лемма 
2.

В любом круге на комплексной плоскости с центром в 

точке  cλ  и  радиуса  
n c

n
|P ( )|λ  лежит  хотя  бы  один 

корень полинома nP ( )λ .
Док–
во.

Разложим nP ( )λ  в ряд Тейлора в точке cλ :
(n)

nn c n c
n n c c c

P ( ) P ( )
P ( ) P ( ) ( ) ... ( ) Q(z)

1! n!

′ λ λλ = λ + λ − λ + + λ − λ ≡ , 

где cz = λ − λ .

Пусть 1 nz , ..., z  – корни полинома Q(z) , среди которых 
корень с минимальной абсолютной величиной имеет 
номер min.
Так  как 

n n
n c 1 n min min c|P ( )| |Q(0)| |z ... z | |z | | |λ = = ⋅ ⋅ ≥ = λ − λ ,   то 

minλ  (корень полинома  nP ( )λ )  лежит в круге радиуса 

n c

n
|P ( )|λ .

Лемма 
3.

Если 1 n, ...,λ λ  – корни полинома nP ( )λ , то ∃ нумерация 

корней  ,1 ,n, ...,δ δλ λ  полинома  ,nP ( )δ λ :  ,k k kδλ → λ ∀  
при A 0δ → .
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Док–
во

методом матиндукции по степени полинома.

,1 ,0 0 1n 1 p pδ δ= ⇒ λ = → = λ .
Пусть лемма верна при n k< .

n k= : из леммы 2 ,1 ,1 1 ,n 1

n
: | | |P ( )| 0δ δ δ⇒ ∃ λ λ − λ ≤ λ → .

Т.к. n 1 n 1 ,n ,1 ,n 1P ( ) ( )R ( ), P ( ) ( )R ( )− δ δ δ −λ = λ − λ λ λ = λ − λ λ
и ,n 1 n 1R ( ) R ( )δ − −λ → λ , то ,2 2 ,n n, ...,δ δλ → λ λ → λ .
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Степенной метод вычисления максимального 
собственного значения матрицы A A 0∗= ≥

Идея метода:  для заданного вектора  0x  рассмотрим его  k–ю 
итерацию k 0A x , 

если  1 2 n 1 n0 ... (A)−≤ λ ≤ λ ≤ ≤ λ < λ = ρ  –  собственные 
значения,

(1) (2) (n)q , q , ..., q  –  соответствующие  им  собственные 
векторы, то

k 0 k (n) k (1) k (n 1) k (n)1 n 1
n 1 n 1 n

k 1 0
k 1 0 (n)

k 0 k 0

A x [ q ( ) q ... ( ) q ] q ,

||A x || 1
, A x q ,

||A x || ||A x ||

−−
−

+
+

λ λ= ρ α + α + + α ≈ ρ α
ρ ρ

≈ ρ ≈ ρ⋅

где 1 2 n, , ...,α α α  – коэффициенты (неизвестные!)

разложения вектора 0x  по базису (1) (2) (n)q , q , ..., q .
Итерационный процесс

k
0 k 1

k

x
x 0, x A , k 0,1, ...,

||x ||
+≠ = =

называется  степенным  методом  вычисления 
максимального  собственного  значения  матрицы 
A A 0∗= ≥ : 

k||x || (A)→ ρ ,     kx x: Ax x→ = ρ⋅ ,

если проекция начального вектора  0x  на линейную оболочку 
собственных векторов, соответствующих (A)ρ , не равна 0.

Док–во. Пусть  1 r r 1 n0 ... ...+≤ λ ≤ ≤ λ < λ = = λ = ρ  –  собственные 
значения,

(1) (r) (r 1) (n)q , ...,q , q , ..., q+  –  собственные  векторы  матрицы 
A , и 

0 (1) (r) (r 1) (n)
1 r r 1 n

(1) (r)
1 r

x q ... q q ... q

q ... q y, y 0.

+
+= α + + α + α + + α =

= α + + α + ≠
Тогда k 0 k k (1) k (r)

1 1 r rA x [x ( / ) q ... ( / ) q ]= ρ + λ ρ α + + λ ρ α  и, 

т.к. 
k 1 2 k 2 k 0

k
k 1 k 2 k 1 0

Ax A x A x
x ...

||x || ||Ax || ||A x ||

− −

− − −= = = = ,  1 r0 ... 1
λ λ≤ ≤ ≤ <
ρ ρ

,

то 
k (1) k (r)

k 1 1 r r
k 1 (1) k 1 (r)

1 1 r r

||y ( / ) q ... ( / ) q ||
||x ||

||y ( / ) q ... ( / ) q ||− −

+ λ ρ α + + λ ρ α= ρ → ρ
+ λ ρ α + + λ ρ α

,
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k (1) k (r)
k 1 1 r r

k 1 (1) k 1 (r)
1 1 r r

y ( / ) q ... ( / ) q y
x x

||y ( / ) q ... ( / ) q || ||y||− −

+ λ ρ α + + λ ρ α= ρ → = ρ
+ λ ρ α + + λ ρ α

.

Замечание.  Сходимость  степенного  метода  не  зависит  от 
выбора  в  нем  векторной  нормы,  т.к.  все  нормы  в  nR  
эквивалентны.
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Степенной метод вычисления минимального 
собственного значения матрицы A A 0∗= ≥

Задача  вычисления  минимального  собственного  значения 
матрицы  A A 0∗= ≥  легко  сводится  к  задаче  вычисления 
максимального собственного значения матрицы E A 0β ⋅ − ≥ , где 

(A)β ≥ ρ , так как min( E A) (A)ρ β ⋅ − = β − λ .

Оценку для (A)ρ  легко найти: ||A || (A)∞β = ≥ ρ . Тогда
итерационный процесс

k
0 k 1

k

x
x 0, x (||A || E A) , k 0,1, ...,

||x ||
+

∞≠ = − =

называется  степенным  методом  вычисления 
минимального собственного значения матрицы A A 0∗= ≥
:  k

min(||A || ||x ||) (A)∞ − → λ ,

если проекция начального вектора  0x  на линейную оболочку 
собственных векторов, соответствующих min(A)λ , не равна 0.
Справедливость  этого  утверждения  является  следствием 
сходимости  степенного  метода  вычисления  спектрального 
радиуса матрицы B ||A || E A∞= − .

Применение ортогонализации и степенного 
метода для вычисления очередного собственного 

значения

Предположим,  что  собственное  значение  n (A)λ = ρ  и 

соответствующий  ему  собственный  вектор  (какой–то!)  (n)q  

матрицы  A A 0∗= ≥  мы  приближенно  (например  степенным 

методом) вычислили: n nλ ≈ λ% , (n) (n)q q≈% .
Построим  симметричную  положительно  определенную 
матрицу  n 1 n nA P AP− =% % %,  где  матрица  (n) (n) T

nP E q [q ]= −% % %  – 

ортогональный  проектор  на  подпространство  (n)(L{q })⊥% , 

ортогональное вектору (n)q% .

Докажите, что  спектр  матрицы  n 1A −  (т.е.  n nλ = λ% ,  (n) (n)q q=% ) 

состоит  из  собственных  значений  1 n 1... −λ ≤ ≤ λ  матрицы  A  и 

нуля (вектор (n)q  принадлежит ее ядру).

Отсюда следует, что, если (n) (n)q q→%  (а степенной метод такую 

сходимость гарантирует), то n 1 n 1 n 1(A ) (A ) (A)− − −ρ → ρ = λ% .
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Следовательно, применяя степенной метод для матрицы  n 1A −
% , 

мы  получим  приближение  к  n 1(A)−λ  и  (n 1)q −  –  очередным 
собственным значению и вектору матрицы A .
Эту  процедуру  можно  продолжать  до  тех  пор,  пока  мы  не 
получим все собственные значения.
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Лекция 12. Метод деления пополам (бисекций)
Для самосопряженной матрицы n

i j i, j 1A {a } ==  имеет место закон 

инерции:
если  матрицу  A  конгруэнтным  преобразованием  привести  к 
диагональному виду:  *D T AT= ,  где  detT 0≠ ,  то от матрицы  T 
(способа преобразования) не зависит

• (A)−σ  – количество отрицательных элементов,

• 0(A)σ  – количество нулевых элементов,

• (A)+σ  –  количество  положительных  элементов  на 
диагонали D.

Нам известно (из теоремы и алгоритма LDU–разложения), что 
если  все  kdetA 0≠ ,  то 

*
1 n k 1 kA LDL , D diag{d , ..., d }, detA d ... d= = = ⋅ ⋅ .

Следовательно, в этом случае за конечное число действий мы 
можем определить 0 0(A) { (A), (A), (A)}, (A) 0− +σ = σ σ σ σ = .

Матрица  *A A=  преобразованием  подобия  ортогональной 
матрицей  Q (конгруэнтным преобразованием) из собственных 
векторов  приводится  к  диагональному  виду 

*
1 ndiag{ , ..., } Q AQΛ = λ λ = . Следовательно,

• (A)−σ  = количеству отрицательных,

• 0(A)σ  = количеству нулевых,

• (A)+σ  =  количеству  положительных  собственных 
значений матрицы A ,

и,  используя  *LDL –разложение,  мы  можем  эти  числа 
определить.
Подытожим  эти рассуждения в виде следующей леммы.

Лемма 

1.

Если матрица *A A=  и kdetA 0 k≠ ∀ ,
то  количество  ее  отрицательных  собственных 
значений

1 2 n(A)ЧПЗ{1, detA , detA , ..., detA }−σ =
– число перемен знака.

Док–
во

леммы оставляется в виде упражнения.
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Идея метода бисекций вычисления j Sp(A)λ ∈

j 0 0[a ,b ] [ ||A || , ||A || ]∞ ∞λ ∈ = − ,  т.к.  (A) ||A ||∞ρ ≤ ,  т.е.  все 

собственные значения  1 2 n...λ ≤ λ ≤ ≤ λ  матрицы  *A A=  лежат в 
этом интервале.
Определим в какой половине интервала  0 0[a ,b ] лежит  jλ . Для 

этого вычислим 0(A c E)−σ −  – количество собственных значений 

меньших  0 0 0c (a b )/2= + .  Если  0(A c E) j−σ − ≥ ,  то 

j 0 0 1 1[a ,c ] [a ,b ]λ ∈ ≡ , иначе j 0 0 1 1[c ,b ] [a ,b ]λ ∈ ≡ .
Через  k таких  шагов  получим: 

k 1
j k k k k[a ,b ], b a ||A || /2 0−

∞λ ∈ − = → ,  т.е.  мы  можем  получить 

оценку искомого собственного числа с любой точностью.

71



Мацокин А.М. “Вычислительные методы линейной алгебры.” Лекция 12.

Приведение самосопряженной матрицы к 
трехдиагональному виду ортогональным 

преобразованием подобия с помощью матриц 
вращения

Как  и  раньше,  через  i,i kQ +  будем  обозначать  элементарную 
матрицу вращения, отличающуюся от единичной матрицы 
двумя  диагональными  элементами: 

i,i k i,i i,i k i,i k i k,i k i,i k(Q ) c , (Q ) c+ + + + + += = ,  и  двумя  внедиагональными 

элементами: i,i k i,i k i,i k i,i k i k,i i,i k(Q ) s , (Q ) s+ + + + + += − = , 2 2
i,i k i,i k|c | |s | 1+ ++ = .

Выполним и
1–й 
шаг.

Исключение  элементов  1–го  столбца матрицы  A , 
начиная  с  3–его,  с  помощью  последовательного 
умножения  на  унитарные  матрицы  2,3 2,nQ , ..., Q : 

1 2,n 2,3 2,n 2,3 1 1A (Q ... Q )A(Q ... Q ) Q AQ∗ ∗= ⋅ ⋅ ⋅ ⋅ ≡ .

2–й 
шаг.

Исключение  элементов  2–го  столбца матрицы  1A , 
начиная  с  4–ого,  с  помощью  последовательного 
умножения  на  унитарные  матрицы  3,4 3,nQ , ..., Q : 

2 3,n 3,4 1 3,n 3,4 2 1 2A (Q ... Q )A (Q ... Q ) Q A Q∗ ∗= ⋅ ⋅ ⋅ ⋅ ≡ .

… …………………..
k–й 
шаг.

Исключение  элементов  k–го столбца матрицы  k 1A − , 
начиная с  (k+2)–ого,  с  помощью последовательного 
умножения  на  матрицы  k 1,k 2 k 1,nQ , ..., Q+ + + : 

k k 1,n k 1,k 2 k 1 k 1,n k 1,k 2 k k 1 kA (Q ... Q )A (Q ... Q ) Q A Q∗ ∗
+ + + − + + + −= ⋅ ⋅ ⋅ ⋅ ≡ .

… …………………..
(n–2)–й 
шаг.

Исключение  последнего  элемента  (n-2)–го  столбца 
матрицы n 3A −  с помощью умножения на матрицу n 1,nQ − :

 n 2 n 1,n n 3 n 1,n n 2 n 3 n 2A (Q )A (Q ) Q A Q∗ ∗
− − − − − − −= ≡ .

1 1

1 2 2

n 2 n 2 1 n 2 1

n 2 n 1 n 1

n 1 n

T A (Q ... Q )A(Q ... Q )∗
− − −

− − −

−

α β 
 β α β 
 = = ⋅ ⋅ ⋅ ⋅ =
 β α β 
 β α 

O O O ,

Sp(A) Sp(T)= . 
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Если k 0β = , то 
k

n k

T 0
T

ˆ0 T −

 
=  

 
 ⇒  k n k

ˆSp(T) Sp(T ) Sp(T )−= U ,

т.е.  поиск  собственных  значений  самосопряженной  матрицы 
сводится  к  задаче  на  собственные  значения  якобиевых 
трехдиагональных матриц.
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Лемма 
2.

Самосопряженная матрица подобна трехдиагональной 
вещественной матрице.

Док–
во.

Только что мы привели самосопряженную матрицу A  
к  трехдиагональному  виду  ортогональным 
преобразованием  подобия: 

n 2 1 n 2 1 i 1 i iT (Q ... Q )A(Q ... Q ) tridiag{ , , }∗
− − −= ⋅ ⋅ ⋅ ⋅ = β α β .

Определим  матрицу  1 nD diag{d , ..., d }= :  (предполагая 

i 0∀ β ≠ )

1d 1= , 2 1 1d / | |= β β , ... , n 1 1 n 1 n 1d / | | ... / | |− −= β β ⋅ ⋅β β .

Тогда 1D D− ∗= , 1
i 1 i iB DTD tridiag{| |, ,| |}−
−= = β α β .

Якобиевы матрицы
Вещественная матрица

1 1

2 2 2

1 2 2 3 n 1 n

n 1 n 1 n 1

n n

a b

c a b

B , b c 0, b c 0, ..., b c 0

c a b

c a

−

− − −

 
 
 
 = ⋅ > ⋅ > ⋅ >
 
 
  

O O O , 

называется якобиевой (у нас i i 1c b−= ).
Лемма 
3.

Пусть i 1 i iB tridiag{b ,a ,b }−=  – якобиева матрица, тогда

1. 0 1 1detB 1, detB a ,≡ =
2

i 1 i 1 i i i 1detB a detB b detB ,

i 1, ..., n 1.
+ + −= ⋅ − ⋅
= −

2. если  idetB 0 (i n)= < ,  то  i 1 i 1detB detB 0− +⋅ < ,

если ndetB 0= , то n 1detB 0− ≠ .
Док–
во

оставляется читателю в качестве упражнения.

Лемма 
4.

Собственные значения якобиевой матрицы B попарно 
различные (простые). 

Док–
во.

Т.к.  размерность  ядра  симметричной  матрицы 
B B Eλ = − λ  совпадает  с  кратностью  Sp(B)λ ∈ ,  а  из 
леммы  3  следует,  что  у  вырожденной  якобиевой 
матрицы  Bλ  минор  n 1[detB ] 0λ − ≠ ,  то 

rangB n 1, dimKerB 1λ λ= − =  и  λ  простое  собственное 
значение матрицы B.
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Теоре
ма.

Пусть i 1 i iB tridiag{b ,a ,b }−=  – якобиева матрица, тогда

1 2 n(B)ЧПЗ{1, detB , detB , ..., detB }−σ = ,

если kdetB 0=  приписать знак k 1detB − .
Док–
во.

1. Если kdetB 0 k≠ ∀ , то это лемма 1.

2. Пусть kk: detB 0∃ = . Пусть k k 1sign(detB ) sign(detB )−= .

Определим  
i

0 Sp(B ), 0, i 1,...,n
min | | 0

λ∈ λ≠ =
ε = λ >  и  рассмотрим  якобиевы 

матрицы 0B B E, (0, )±ε = ± ε ε∈ ε .

Т.к. i i([B ] ) (B ) 0 i 1,...,n±ελ ≡ λ ± ε ≠ ∀ = , то

а)  idet[B ] 0 i 1,...,n,±ε ≠ ∀ =  (т.к.  определитель  матрицы  равен 
произведению ее собственных значений),
б) i i i isign(det[B ] ) sign(det[B ] ) sign(detB ) detB 0ε −ε= = ∀ ≠ ,

в) k k ksign(det[B ] ) sign(det[B ] ) 0 detB 0ε −ε⋅ < ∀ = ,

(т.к. из леммы 4 следует, что k(B ) 0λ =  простое и отрицательных 

собственных значений у матрицы k[B ]−ε  на одно больше, чем у 

матрицы k[B ]ε ),

г) 0(B ) (B), (B ) (B) (B)− ε − − −ε −σ = σ σ = σ + σ .
Из леммы 1, а) и г) следует, что 

1 2 n(B )ЧПЗ{1, det[B ] , det[B ] , ..., det[B ] } (B)− ε ε ε ε −σ = = σ ,

1 2 n 0(B )ЧПЗ{1, det[B ] , det[B ] , ..., det[B ] } (B) (B)− −ε −ε −ε −ε −σ = = σ + σ ,

1 2 nЧПЗ{1, detB , detB , ..., detB } ?=
Подсчитаем эти числа:
Из  б)  следует,  что  если  jdetB 0≠  и  j 1detB 0+ ≠ ,  то  перемена 
знака  происходит  (или  нет)  одновременно  в  этих 
последовательностях.
Случай kdetB 0, k n= ≠ .

Из леммы 3 имеем  k 1 k 1detB detB 0− +⋅ < ,  отсюда и из б) следует 

k 1 k 1det[B ] det[B ] 0±ε − ±ε +⋅ <  и на участках 

k 1 k k 1

k 1 k k 1

det[B ] , det[B ] , det[B ]

detB , detB , detB
±ε − ±ε ±ε +

− +

по одной перемене знака.
Случай n 0detB 0, (B) 1= σ = . Отсюда, из в) и г) следует, что

n 1 ndet[B ] det[B ] 0ε − ε⋅ > ,      n 1 ndet[B ] det[B ] 0−ε − −ε⋅ < ,

n 1 nsign(detB ) sign(detB ) 0− ⋅ > .
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Следовательно,  (если  kdetB 0=  приписать  знак  k 1detB − ) 

последовательности миноров матриц Bε  и B имеют одинаковые 
знаки. Теорема доказана. 
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О вычислении ЧПЗ

Для  вычисления  1 2 n(B)ЧПЗ{1, detB , detB , ..., detB }−σ =  

якобиевой матрицы i 1 i iB tridiag{b ,a ,b }−=  достаточно знать знак 

каждого kdetB . Если

0 1 1

2
i 1 i 1 i i i 1

k 1 k 1 k k k k

2
i 1 i 1 i i i 1

d 1, d detB ,

d a d b d , i 1, ..., k 1,

d : d / |t |, d : d / |t |,

d a d b d , i k, ..., n 1,

+ + −

− −

+ + −

= =

= ⋅ − ⋅ = −
= =

= ⋅ − ⋅ = −
(обычно  выбирают  k k 1 kt max{|d |, |d |}−= ),  то 

i isign{d} sign{detB} i= ∀  и  1 n(B)ЧПЗ{1, d , ..., d }−σ = .  Нормировку 
можно  применять  неоднократно,  что  позволит  избежать 
быстрого роста (переполнения) чисел i{d}.

О вычислении собственного вектора
Лемма 
5.

Последняя  компонента  собственного  вектора  x 
якобиевой  матрицы  i 1 i iB tridiag{b ,a ,b }−=  не  равна 
нулю.

Док–
во.

Пусть Bx x, x 0= λ ≠ . Предположим, что nx 0= . Тогда

n 1 n n n 1

n i n i 1 n i 1 n i 1 n i 2 n i

x (a ) x /b 0

x [(a ) x b x ]/b 0,

i 2, ..., n 1,

− −

− − + − + − + − + −

= − − λ ⋅ =
= − − λ ⋅ + ⋅ =

= −
x 0⇒ =  – противоречие, значит nx 0≠ .

Собственный вектор x якобиевой матрицы i 1 i iB tridiag{b ,a ,b }−=  

мы можем, положив nx 1= , вычислить по формулам

n 1 n n n 1

n 2 n 1 n 1 n 1 n n 2

1 2 2 2 3 1

x (a ) x /b

x [(a ) x b x ]/b

.................

x [(a ) x b x ]/b

− −

− − − − −

= − − λ ⋅
= − − λ ⋅ + ⋅

= − − λ ⋅ + ⋅
или решив систему 
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1 1 1

1 2 2 2

n 3 n 2 n 2 n 2

n 2 n 1 n 1 n 1

a b x 0

b a b x 0

b a b x 0

b a x b
− − − −

− − − −

− λ     
    − λ     
     =
    − λ     
    − λ −     

O O O M M

с неособенной матрицей.
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Лекция 13. Метод вращений (Якоби)
Для  самосопряженной  матрицы  n

i j i, j 1A {a } ==  существует 

унитарная матрица Q (столбцы которой – собственные векторы 
матрицы A ):

1 nQ AQ diag{ , ..., }∗ = Λ ≡ λ λ

T T E
(Q AQ) min (T AT)

∗

∗ ∗

=
⇒ Φ = Φ , где 

2
i j

i j

(A) |a |
≠

Φ = ∑ .

Идея:
построить  k k k 1 k k k 0{A Q A Q : Q Q E, A A}∗ ∗

−= = = : 

k 1 k(A ) (A ) 0−Φ > Φ → , тогда на диагональные элементы kA  будут 

приближать  собственные  значения,  а  столбцы  0 k 1(Q ...Q )+  – 
собственные векторы матрицы A .

Определим 
n 2

i ji, j 1
S(A) |a |

=
= ∑ .

Лемма 
1.

Для  любых  квадратной  матрицы  A  и  унитарной 
матрицы T имеем

S(TA) S(AT) S(A)= = .

Док–

во.

Если [ ]1 nA a ... a= , то

1 n 1 1 n n

1 1 n n

S(TA) S([Ta ... Ta ]) (Ta ,Ta ) ... (Ta ,Ta )

(a ,a ) ... (a ,a ) S(A).

= = + + =
= + + =

В качестве матриц kQ  будем выбирать элементарные матрицы 
вращения.

Лемма 

2.

Пусть A A∗= , i j i j klA Q AQ {a }∗= =% % ,

где i jQ  –  элементарная матрица вращения, тогда
2 2 2 2

ii j j ii j j(A) (A) |a | |a | |a | |a | Φ = Φ + + − − 
% % % .

Док–

во.

Заметим, что изменились только строки и столбцы с 
номерами i , j.
Тогда, используя лемму 1, получим

n
2 2 2

kk ii j j
k 1

k i,k j

n
2 2 2

kk ii j j
k 1

k i,k j

S(A) (A) |a | |a | |a |

(A) |a | |a | |a | S(A)

=
≠ ≠

=
≠ ≠

≡ Φ + + + ≡

≡ Φ + + + ≡

∑

∑% %% %
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откуда следует утверждение леммы. 
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Выбор вращения
Для простоты будем полагать,  что матрица  A  вещественная. 

Выразим  разность  2 2 2 2
ii j j ii j j(A) (A) |a | |a | |a | |a |Φ − Φ = + − −% % %  

через элементы матрицы A .

Лемма 

3.

Пусть  A A∗= ,  i j i j klA Q AQ {a }∗= =% % ,  где  i jQ  – 

элементарная матрица вращения (α  – угол вращения), 
тогда

22
i j ii j j i j

2 2
i j i j

1
(A) (A) 2|a | (a a )sin2 2a cos2

2
2|a | 2|a | ,

 Φ − Φ = − − α + α = 

= −

%

%
Док–
во.

Требуемые равенства выводятся из соотношения

ii i j ii i j

i j j j i j j j

a a a acos sin cos sin
a a a asin cos sin cos

α − α α α      
=      α α − α α      

% %

% % .

Лемма 

4.

Пусть A A∗= , i j i j klA Q AQ {a }∗= =% % ,

где i jQ  –  элементарная матрица вращения такая, что

i j kl ii j j i j
k l

|a | max|a |, (a a )sin2 2a cos2 0,
≠

= − α + α =

то [ ](A) 1 2/(n(n 1)) (A)Φ ≤ − − ⋅Φ% .

Док–
во.

Требуемое неравенство следует из

равенства  2
i j(A) (A) 2|a |Φ = Φ −%  и  оценки 

2
i j(A) n(n 1)|a |Φ ≤ − .

Следующая лемма обеспечивает существование для леммы 4 
матрицы i jQ .

Лемма 

5.

Решением уравнения  a sin2 2b cos2 0⋅ α + ⋅ α =  при  b 0≠  
является угол α  такой, что

2 2cos 0.5(1 a/r), r |a| 4|b| ,

2b
sin cos .

r a

α = − = +

α = α
−

Док–
во

осуществляется непосредственной проверкой.

Из  последних  двух  лемм  следует  справедливость  теоремы 
сходимости метода.

Теорема 
Последовательность  матриц  k k 0{A }∞

=  метода 
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1.
вращений:

0A A= ,    k k k 1 kA Q A Q∗
−= ,   где  k i(k), j(k)Q Q=  –  матрица 

вращения, определяемая по формулам лемм 4 и 5, 
для  решения  полной  проблемы  на  собственные 
значения  A A∗= , сходится к диагональному виду, т.е. 

k(A ) 0Φ → , причем

[ ] k

k(A ) 1 2/(n(n 1)) (A)Φ ≤ − − ⋅Φ .
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Из теоремы 1 ⇒  0 k:∀ ε > ∃  

k 1 k 1 kA A (Q ...Q ) A(Q ...Q ) Q AQ∗ ∗≡ = ≡% % %,     2(A)Φ ≤ ε% .

Пусть          1 n

1 n

diagA diag{ , ..., },

Q AQ diag{ , ..., }.∗

Λ = = λ λ

Λ = = λ λ

% % %%

Сходимость собственных значений

Лемма 

6.

P( ) det( E)λ ≡ Λ − λ% %  →  P( ) det(A E)λ ≡ − λ  при 0ε → .

Док–
во.

Т.к. 
det( E) det(Q Q E)∗Λ − λ = Λ − λ% %% % ,     Q Q A Q(A )Q∗ ∗Λ = − − Λ% % %% %% % ,

2S(Q(A )Q ) S(A ) (A) 0∗− Λ = − Λ = Φ ≤ ε →%% % % %% %

то Q Q A∗Λ →% %%  ⇒  det( E) det(A E)Λ − λ → − λ% .

Теорема 
2

(оценка приближения собственных значений).

а)  i j(i) i j(i): | | n∀ λ ∃ λ λ − λ ≤ ⋅ε% % ,

б) j i( j) j i( j): | | n∀ λ ∃ λ λ − λ ≤ ⋅ε% % % .

Док–во.
Т.к. Q Q A Q Q Q(A )Q∗ ∗ ∗Λ = = Λ + − Λ% % %% %% % , то

(Q Q) (Q Q) (Q Q)(A )∗ ∗ ∗Λ − Λ = − Λ ≡% % % %% % E ,     2 2
i j| | S( )ε ≤ ≤ εE .

⇒  i i j i j j i jr rλ ⋅ − ⋅λ = ε% ,  где i j{r } R Q Q∗= = % – ортогональная 

м–ца.

а) 
2 2

i j(i) ik
k

i j(i): |r | max |r | 1/n∀ ∃ = ≥ , т.к.  2 2
i1 in|r | ... |r | 1+ + =

.

     ⇒  i j(i) i j i j(i)| | | /r | nλ − λ = ε ≤ ⋅ ε% .

б) доказывается аналогично.

Сходимость собственных векторов

Будем предполагать, что  1 2 n...λ < λ < < λ  и  1 2 n...λ ≤ λ ≤ ≤ λ% % % (этого 

всегда можно добиться, переставив столбцы матриц Q и Q%).

Лемма 

7.

Если 1 2 n...λ < λ < < λ , 1 2 n...λ ≤ λ ≤ ≤ λ% % %, n 0.5 a⋅ ε < ⋅ ,

i j
i j

a min | |
≠

= λ − λ ,

то i i| | nλ − λ ≤ ⋅ε% ,       i j| | 0.5 a i jλ − λ > ⋅ ∀ ≠% .
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Док–
во

оставляется в качестве упражнения.
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Т.к.  собственные  векторы  [ ]1 nQ q ... q=  матрицы  A  
определяются с точностью до их направления, будем считать, 

что  i i(q , q ) 0≥%  ([ ]1 nq ... q Q= %% %  –  приближения  к  собственным 

векторам  матрицы  A ),  т.е.  диагональные  элементы  матрицы 
R Q Q∗= % неотрицательны.

Теорема 
3

(оценка приближения собственных векторов).

В условиях леммы 7    2
2

8
S(Q Q)

a
− ≤ ε% .

Док–во.
Т.к.  S(Q Q) S(E Q Q) S(E R)∗− = − ≡ −% %  и из доказательства 

теоремы 2 ( R R R(A )= Λ − Λ = − Λ%% %E ) и леммы 7 следует, 

что  
i j i j

i j
i j

| | | |
|r | i j

0.5 a| |

ε ε
= < ∀ ≠

⋅λ − λ%
,  то 

2
2 2

4 4
(E R) S( )

a a
Φ − < ≤ εE .

Осталось оценить  
2

n n n2 2
j 1ii i ji 1 i 1 j i

(1 r ) 1 1 |r |== = ≠

 − = − −  
∑ ∑ ∑  

(здесь мы воспользовались условием iir 0≥ ).

Т.к. 2(1 x) 1 x x [0,1]− ≤ − ∀ ∈ , то 
2

n n n n2 2
j 1 j 1i j i ji 1 i 1j i j i

1 1 |r | 1 1 |r |= == =≠ ≠

   − − ≤ − − =      
∑ ∑ ∑ ∑

n 2
j 1 i j

n j i 2
2i 1 n 2

j 1 i j
j i

|r |
4

(R) (E R)
a1 1 |r |

=
≠

=
=
≠

= ≤ Φ = Φ − ≤ ε
+ −

∑
∑

∑
.

Подводя итог, имеем
n 2 2

ii 2i 1

8
S(Q Q) S(E R) (E R) (1 r )

a=
− = − = Φ − + − ≤ ε∑% .
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