

Маркелов А. А.

OpenStack.
Практическое знакомство
с облачной операционной

системой

Четвертое издание, дополненное и исправленное

Москва, 2018

 1 / 30

УДК 004.738.5:004.451.9OpenStack
ББК 32.971.3

М25

М25 Маркелов А. А.
OpenStack. Практическое знакомство с облачной операцион-
ной системой / 4-е изд., доп. и исправ. – М.: ДМК Пресс, 2018. –
306 с.: ил.

 ISBN 978-5-97060-652-0

Книга знакомит читателя с основными сервисами облачной опе-
рационной системы OpenStack на начало 2018 года (версия Queens).
Рассмотрены вопросы интеграции OpenStack и системы работы с
контейнерами Docker, программно-определяемой системы хране-
ния данных Ceph, настройки производительности и высокой до-
ступности сервисов. В четвертое издание добавлен материал по
работе с сетью, настройками производительности и отказоустой-
чивости. В связи с переходом на сервис Gnocchi переработана глава,
посвященная сервису телеметрии.

Издание рассчитано на ИТ-специалистов (системных и сетевых
администраторов, а также администраторов систем хранения дан-
ных), желающих познакомиться с де-факто стандартом в области
открытых продуктов построения облачной инфраструктуры типа
IaaS – OpenStack.

 УДК 004.738.5:004.451.9OpenStack
 ББК 32.972.53

Все права защищены. Любая часть этой книги не может быть воспро-
изведена в какой бы то ни было форме и какими бы то ни было средствами
без письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, по-
скольку вероятность технических ошибок все равно существует, издатель-
ство не может гарантировать абсолютную точность и правильность приво-
димых сведений. В связи с этим издательство не несет ответственности за
возможные ошибки, связанные с использованием книги.

 © Маркелов А. А., 2018.
ISBN 978-5-97060-652-0 © Оформление, издание, ДМК Пресс, 2018

 2 / 30

Оглавление

Предисловие .. 7
Благодарности ...7
Об авторе ...7
Рецензенты .. 8
Предполагаемая аудитория .. 8
О чем эта книга .. 9
Что нового во втором, третьем и четвертом изданиях?12
Что вам необходимо помимо книги ..13

Глава 1. Введение в OpenStack ...15
Что такое облачная инфраструктура? ...15
Что такое облачные приложения?.. 17
История OpenStack ...18
Архитектура OpenStack ...20
Гипервизор KVM и эмулятор QEMU ...23
Дистрибутивы OpenStack ...25

Глава 2. Настройка лабораторного окружения OpenStack29
Подготовка CentOS 7 к использованию дистрибутива OpenStack RDO35
Отличия RDO от «Upstream» ...39
Как установить OpenStack RDO одной командой? ..39
Как установить OpenStack одной командой из исходных кодов?43
Как определить, какую версию OpenStack я использую?45
Установка и настройка брокера сообщений ..46
Установка и настройка базы данных ...50
Переход на использование утилиты OpenStackClient51

Глава 3. Сервис идентификации Keystone ..53
Терминология Keystone...53
Установка и настройка Keystone ...54
Работа с пользователями, ролями и проектами в Keystone61

Глава 4. Сервис хранения образов Glance ..71
Установка и настройка сервиса Glance ..73
Подготовка образов виртуальных машин ...78
Работаем с образами виртуальных машин ..83

 3 / 30

4  Оглавление

Глава 5. Сервис блочного хранилища Cinder ...87
Архитектура Cinder ... 87
Настройка сервисов Cinder ...89
Создание и удаление томов Cinder ..95

Глава 6. Объектное хранилище Swift ..98
Архитектура Swift ..99
Подготовка дополнительных серверов лабораторного окружения 101
Установка сервиса Swift-proxy .. 103
Установка узлов хранения Swift .. 104
Создание сервисных колец Swift ... 108
Завершение настройки .. 110
Работа с сервисом Swift .. 111
Настройка Swift в качестве хранилища для Glance 113
Рекомендации по поиску неисправностей в сервисах Swift 115

Глава 7. Контроллер и вычислительный узел Nova117
Архитектура Nova ..117
Установка контроллера Nova... 118
Установка вычислительных узлов Nova ...127

Глава 8. Службы сети Neutron .. 132
Архитектура Neutron ... 132
Работа Neutron при создании экземпляра виртуальной машины 136
Установка узла управления Neutron .. 136
Установка сетевого узла Neutron ... 144
Установка вычислительного узла Neutron ... 148

Глава 9. Работа с виртуальными машинами из командной строки ... 152
Сеть в OpenStack ... 152
Запускаем экземпляр виртуальной машины ...157
Добавляем к экземпляру виртуальной машины сеть 168
Моментальные снимки и резервные копии .. 173
Шифрование томов Cinder ..177
Квоты на ресурсы ... 178
Зоны доступности и агрегирование вычислительных узлов в Nova ... 180
Зоны доступности в Cinder ... 184
Живая миграция виртуальных машин ... 185
Настройка экземпляров виртуальных машин при помощи
cloud-init .. 189

 4 / 30

Оглавление  5

Глава 10. За фасадом Neutron ... 192
Виртуальный коммутатор Open vSwitch ... 192
Группы безопасности .. 201
Утилита для визуализации сети plotnetcfg .. 203
Зеркалирование трафика на Open vSwitch для мониторинга
сети в OpenStack ... 204
Балансировщик нагрузки как сервис (LBaaS) ... 208

Глава 11. Веб-панель управления Horizon и работа пользователя
из графического интерфейса ... 211

Установка веб-интерфейса ... 211
Работа с OpenStack в интерфейсе Horizon .. 214

Глава 12. Сервис сбора телеметрии .. 221
Установка служб Gnocchi и Ceilometr управляющего узла 223
Установка службы триггеров Aodh .. 228
Установка служб вычислительного узла для отправки сообщений
телеметрии .. 231
Интеграция с сервисами Glance и Cinder ... 232
Работа со службой телеметрии в современных версиях OpenStack .. 233
Работа со службой телеметрии Ceilometer в версиях Newton и ранее238

Глава 13. Сервис оркестрации Heat .. 243
Архитектура сервиса ... 244
Установка сервисов Heat ... 244
Запуск простого стека... 248

Глава 14. Контейнеры и OpenStack ... 254
Краткое знакомство с Docker .. 254
Совместное использование Docker и OpenStack .. 255
Настройка работы драйвера Docker для OpenStack Nova257

Глава 15. Программно-определяемая система хранения
данных Ceph ... 263

Архитектура Ceph ... 265
Быстрая установка кластера Ceph при помощи ceph-deploy 270
Установка кластера ceph вручную ... 274
Интеграция Ceph с сервисами OpenStack .. 279

Глава 16. Отказоустойчивость и производительность OpenStack287
Обзор способов обеспечения высокой доступности сервисов облака287
Выделение вычислительных ресурсов .. 290

 5 / 30

6  Оглавление

Выделение оперативной памяти ... 291
Повышение производительности виртуальных машин 293
Повышение производительности сети .. 298
Определение аппаратных требований к оборудованию......................... 299

Заключение ... 300

Приложение 1. Пример правил брандмауэра, реализующих
группы безопасности на вычислительном узле 301

Приложение 2. Листинг шаблона Heat ... 304
Запуск одной виртуальной машины – test-server.yml 304

Приложение 3. Список основных используемых службами
OpenStack сетевых портов ..305

 6 / 30

Предисловие

Благодарности
В первую очередь я хочу поблагодарить мою жену Лену за терпение
и поддержку, проявленные во время написания этой книги и дора-
ботки текста для новых изданий. Также хотелось бы поблагодарить
рецензентов этой книги – Антона Арапова и Артемия Кропачева,
благодаря ценным замечаниям которых данная книга стала зна-
чительно лучше и избавилась от многих неточностей и опечаток.

Автор приносит благодарность читателям предыдущих изда-
ний, приславшим свои замечания и исправления: Александру Ру-
мянцеву, Владимиру Манькову, Владимиру Белых, Илье Дорохову,
Олегу Бабкину, Ильназу Тарханову и Евгению Дос.

Об авторе
Андрей Маркелов имеет более чем десятилетний опыт преподава-
ния как авторских курсов, так и авторизированных курсов по ИТ-
технологиям таких компаний, как Red Hat и Microsoft.

В настоящее время автор работает в качестве старшего менед-
жера по архитектуре компании Ericsson, специализируясь на об-
лачных технологиях и инфраструктуре виртуализации сетевых
функций (NFV-I). До этого работал в качестве старшего системно-
го архитектора в компании Red Hat, а также в крупных системных
интеграторах России, получив более чем десятилетний опыт про-
даж, проектирования и внедрения сетевых и инфраструктурных
решений.

Около шестидесяти публикаций в отечественных ИТ-журналах
(«Системный администратор», «Linux Format», «PC Week» и др.). Кро-
ме того, является автором книги «Certified OpenStack Administrator
Study Guide», вышедшей в 2016 году в издательстве Apress.

Андрей является сертифицированным архитектором Red Hat
(RHCA Level XI) с 2009 года и имеет сертификаты Red Hat в таких
технологиях, как OpenStack, OpenShift, RHV, CloudForms, Ansible,
Cloud Storage, настройка производительности, безопасности
Linux-систем и др.

 7 / 30

8  Предисловие

Кроме того, автор имеет сертификаты Microsoft Certified System
Engineer, Sun Certified System Administrator, Novell Certified Linux
Professional, Linux Professional Institute Certification (LPIC-1),
Mirantis Certified OpenStack Administrator, OpenStack Foundation
Certified OpenStack Administrator и Cisco Certified Network Associate.

Блог автора располагается по адресу http://markelov.blogspot.ru/.
Его twitter-аккаунт: @amarkelov.

Рецензенты
Антон Арапов – руководит командой, ответственной за разви-

тие инфраструктурных проектов в компании Acision. Помогает
клиентам полностью раскрыть потенциал мобильных каналов
передачи данных, а также является ответственным за эволюци-
онное развитие сервисов в сетях LTE 4G и проекты, способству-
ющие ускорению возврата инвестиций. Сегодня технологии
виртуализации выступают основным средством для достиже-
ния поставленных целей. До Acision Антон руководил группой
разработки виртуализации в ядре Linux в компании Red Hat.
Антон является экспертом в технологиях виртуализации и их
применении.

Артемий Кропачев – DevOps-архитектор в компании Bell
Integrator. Артемий занимается проектированием и внедрени-
ем облачных решений и систем автоматизации инфраструкту-
ры и процессов разработки и тестирования (DevOps), постро-
енных на базе Linux, AWS, OpenStack, OpenShift, Chef и т. п.
Артемий – сертифицированный архитектор Red Hat (RHCA
Level XII) по направлениям Datacenter, Cloud и DevOps. До Bell
Integrator работал системным архитектором в ICL Services.

Предполагаемая аудитория
Данная книга рассчитана на ИТ-специалистов (системных и сете-
вых администраторов, а также администраторов систем хранения
данных), желающих познакомиться с де-факто стандартом в об-
ласти открытых продуктов построения облачной инфраструктуры
типа IaaS – OpenStack.

По аналогии с минимальными требованиями программного
обеспечения к среде выполнения эта книга также предъявляет ми-
нимальные требования к читателю.

 8 / 30

http://markelov.blogspot.ru/
mailto:@amarkelov

О чем эта книга  9

В первую очередь это желание разобраться с описываемым про-
дуктом. Садясь за рукопись, я старался сделать книгу как можно
более ориентированной на практическую работу. Лучше всего
усваивается материал, который вы отработали собственными ру-
ками в лабораторном окружении. Единственной чисто теорети-
ческой главой в книге является первая, посвященная архитекту-
ре продукта. Все остальные главы включают в себя обязательные
практические упражнения.

Отсюда следует, что, прежде чем приступать к изучению про-
дукта, написанного в первую очередь под Linux и для Linux, вам
необходимы навыки работы с операционной системой. Умение ра-
ботать в командной строке и знание базовых команд обязательны.

Также важными будут умение самостоятельно решать задачи
и навык решения проблем – один из основных навыков хороше-
го ИТ-специалиста-практика. Автор сознательно старался сде-
лать изложение большей части материала никак не привязанной
к конкретным версиям операционной системы и дистрибутива
OpenStack. Но почти наверняка к тому моменту, как книга добе-
рется до вас, выйдет следующая версия OpenStack, и вы, естествен-
но, захотите воспроизвести упражнения на актуальной версии.
Также небольшие детали могут отличаться в зависимости от ва-
шего любимого дистрибутива GNU/Linux, версии и дистрибутива
OpenStack. В первую очередь это расположение конфигурацион-
ных файлов, особенности организации репозиториев с пакетами,
названия пакетов и т. п.

Ну и, естественно, от ошибок и опечаток никто не застрахован,
включая вашего покорного слугу.

О чем эта книга
Книга состоит из шестнадцати глав и знакомит читателя с основ-
ными сервисами облачной операционной системы OpenStack.
Кроме того, рассмотрены вопросы интеграции OpenStack и систе-
мы работы с контейнерами Docker, программно-определяемой
системы хранения данных Ceph, настройки производительности и
высокой доступности сервисов.

Глава 1. Введение в OpenStack
 Первая глава вводит читателя в предметную область об-

лачных вычислений. Дается представление об облачных,
горизонтально масштабируемых приложениях, их отличи-

 9 / 30

10  Предисловие

ях от вертикально масштабируемых, традиционных прило-
жений. Рассказывается об истории создания OpenStack, его
основных компонентах и основных дистрибутивах, присут-
ствующих в настоящий момент на рынке.

Глава 2. Настройка лабораторного окружения OpenStack
 В данной главе рассказывается о подготовке виртуальных

машин тестового окружения к установке компонентов
OpenStack. Рассматриваются рекомендуемые настройки
сети дистрибутива GNU/Linux CentOS 7, подключение репо-
зиториев OpenStack RDO, установка и настройка требуемых
для OpenStack компонентов.

Глава 3. Сервис идентификации Keystone
 В этой главе обсуждаются концепции и терминология сер-

виса идентификации OpenStack, а также читатель знако-
мится с Keystone на практике. Читатель установит и на-
строит ключевой сервис облачной операционной системы
и заложит фундамент для настройки остальных служб.

Глава 4. Сервис хранения образов Glance
 Четвертая глава посвящена настройке каталога образов вирту-

альных машин. Читатель познакомится с концепциями и на-
стройкой сервиса Glance. К концу отработки материала главы
в лабораторном окружении должен появиться каталог образов
с загруженным шаблоном для создания виртуальных машин.

Глава 5. Сервис блочного хранилища Cinder
 В данной главе читатель познакомится с тем, как создать

блочное хранилище, которое будут использовать запущен-
ные экземпляры виртуальных машин. Настройка этого оп-
ционального сервиса позволит виртуальным машинам со-
хранять данные между перезагрузками.

Глава 6. Объектное хранилище Swift
 В главе рассматриваются настройка и работа с одним из

двух исторически первых сервисов OpenStack – объектным
хранилищем Swift. Рассматриваются концепции и архитек-
тура сервиса, а также его установка и настройка.

Глава 7. Контроллер и вычислительный узел Nova
 В данной главе рассматриваются установка одного из са-

мых важных сервисов OpenStack, непосредственно зани-

 10 / 30

О чем эта книга  11

мающихся управлением виртуальными машинами. В ходе
практических упражнений мы добавим два вычислитель-
ных узла в наше лабораторное окружение.

Глава 8. Службы сети Neutron
 В главе, посвященной сетевым службам, рассматриваются

концепции программно-определяемой сети. Читатель по-
знакомится с вариантами организации сетевого взаимо-
действия в облаке и настроит на сетевом и вычислительном
узле сервис Neutron.

Глава 9. Работа с виртуальными машинами из командной
строки

 К девятой главе читатель построит свое минимальное ла-
бораторное окружение OpenStack. В этой главе мы рассмот-
рим, как на практике работать с сетями и виртуальными
машинами.

Глава 10. За фасадом Neutron
 В этой главе кратко рассматриваются «внутренности» се-

тевого сервиса OpenStack, а также такие темы, как группы
безопас ности и виртуальный коммутатор Open vSwitch.

Глава 11. Веб-панель управления Horizon и работа пользовате-
ля из графического интерфейса

 Одиннадцатая глава, вероятно, самая дружественная к чи-
тателю. В ней мы, наконец, встанем на место пользователя
облачного сервиса и познакомимся с тем, как в графиче-
ском интерфейсе веб-консоли создать проект и запустить
виртуальную машину.

Глава 12. Сервис мониторинга Ceilometer
 Сервис Ceilometer представляет собой централизованный

источник информации по метрикам облака и данным мо-
ниторинга. Этот компонент обеспечивает возможность бил-
линга для OpenStack. В данной главе читатель познакомится
с настройкой Ceilometer и тем, как снимать и использовать
данные телеметрии OpenStack.

Глава 13. Сервис оркестрации Heat
 В этой главе рассказывается о сервисе Heat – «кольце

всевластия», призванном связать все компоненты облака
OpenStack воедино. Читатель познакомится с шаблоном

 11 / 30

12  Предисловие

формата HOT, при помощи которого Heat может создавать
большинство типов ресурсов (виртуальные машины, тома,
плавающие IP, пользователи, группы безопасности и т. д.)
как единое целое, обеспечивая управление жизненным
цик лом приложения в облачной инфраструктуре.

Глава 14. Контейнеры и OpenStack
 В четырнадцатой главе мы кратко познакомимся с техноло-

гией контейнеров и тем, как она используется совместно с
OpenStack.

Глава 15. Программно-определяемая система хранения дан-
ных Ceph

 Рассматриваются установка и интеграция программной
СХД Ceph, которая становится для OpenStack «выбором по
умолчанию» во многих новых инсталляциях.

Глава 16. Отказоустойчивость и производительность OpenStack
 В этой главе автор дает обзорный материал о том, какими

методами обеспечивается высокая доступность сервисов
OpenStack, и рассматривает вопросы настройки производи-
тельности.

Что нового во втором, третьем
и четвертом изданиях?
Текст книги расширен и обновлен, чтобы соответствовать актуаль-
ным версиям рассматриваемых проектов и компонент OpenStack
на начало 2018 года.

Ниже приведены некоторые изменения четвертого изда-
ния, по сравнению с третьим:

 � Обновлены главы, посвященные основным сервисам
OpenStack, в соответствии с изменениями на начало
2018 года (версия Queens).

 � Добавлен материал в главах, посвященных работе с сетью,
настройками производительности и отказоустойчивости.

 � Переработана глава, посвященная сервису телеметрии,
в связи с переходом на сервис Gnocchi.

 � Примеры большинства команд обновлены с использовани-
ем клиента командной строки openstack.

 12 / 30

Что вам необходимо помимо книги  13

Изменения третьего издания, по сравнению со вторым:

 � Обновлены главы, посвященные основным сервисам
OpenStack, в соответствии с изменениями на начало
2017 года (версия Newton).

 � Переработана глава, посвященная сервису идентификации
Keystone.

 � Расширены главы, посвященные сервису сети Neutron и
порядку работы с виртуальными машинами из командной
строки.

 � Значительно переработана глава, посвященная сервису
телеметрии, в соответствии с тем, что сервис оповещения
(Aodh) выделен в отдельный проект.

Изменения второго издания, по сравнению с первым:

 � Добавлена глава, посвященная программно-определяемой
системе хранения данных Ceph и использованию Ceph сов-
местно с OpenStack.

 � Расширен и переработан материал по работе с виртуальны-
ми машинами и сетью (агрегация узлов, зоны доступности,
живая миграция, создание образов виртуальных машин, ра-
бота с сетью и многое другое). С целью лучшей структуриза-
ции материал разбит на две отдельные главы.

 � При описании настройки тестового окружения разделены
управляющий, сетевой и вычислительный узлы, что позво-
ляет нагляднее познакомиться с типичными ролями серве-
ров при развертывании OpenStack.

 � Значительно переработан материал по работе сети в
OpenStack.

 � Вопросы производительности и отказоустойчивости серви-
сов OpenStack выделены в отдельную главу.

 � Добавлено более пятнадцати новых иллюстраций и сним-
ков с экрана.

Что вам необходимо помимо книги
Поскольку книга называется «Практическое введение», автор под-
разумевает, что читатель будет не просто читать книгу, а, следуя

 13 / 30

14  Предисловие

за изложением материала, воспроизводить представленные при-
меры в лабораторном окружении. Помимо самой книги, вам по-
надобится персональный компьютер с минимальным объемом
оперативной памяти 8 Гб (желательно 16 Гб) и системой виртуа-
лизации по вашему выбору. Автор во время написания книги и
тес тирования примеров использовал Ubuntu Linux с гипервизо-
ром KVM, но эта информация приведена лишь в качестве примера.
Любая современная система виртуализации поддерживает GNU/
Linux – фундамент облака OpenStack. Конечно, никто не мешает
использовать и физическое «железо».

Вам также потребуется доступ в Интернет для обращения к ре-
позиториям с обновлениями и пакетами OpenStack, а также ска-
чанный ISO-образ дистрибутива CentOS 7.

 14 / 30

Глава 1
Введение в OpenStack

Что такое облачная инфраструктура?
Согласно Wikipedia, OpenStack – это свободная и открытая плат-
форма для облачных вычислений. Для начала определимся с
тем, что такое облачная платформа. Устоявшимся в индустрии
определением является определение, данное National Institute of
Standards and Technology (NIST):

Облачные вычисления – это модель предоставления широкодо-
ступного, удобного доступа по сети к общему пулу настраиваемых
вычислительных ресурсов по требованию (к таким, как сети, серве-
ры, системы хранения данных, приложения и сервисы). Эти ресурсы
оперативно выделяются и освобождаются при минимальных усили-
ях, затрачиваемых заказчиком на организацию управления и на вза-
имодействие с поставщиком услуг.

Этой модели присущи пять основных характеристик, три сер-
висные модели и четыре модели внедрения. В число характерис-
тик входят: самообслуживание, универсальный доступ по сети,
общий пул ресурсов, эластичность и учет потребления.

Сервисные модели различаются по границе контроля потреби-
телем услуг предоставляемой инфраструктуры и включают в себя:

 � инфраструктуру как сервис (IaaS) – собственно, этой сервис-
ной модели и посвящена данная книга, поскольку OpenStack
используют в основном именно для развертывания облаков
этого типа. В данном случае пользователь получает контроль
за всеми уровнями стека программного обеспечения, лежа-
щими выше облачной платформы, а именно: виртуальны-
ми машинами, сетями, выделенным пользователю объемом
пространства на системе хранения данных (СХД). В этом
случае пользователь выступает администратором опера-
ционной системы и всего, что работает поверх, вплоть до

 15 / 30

16    Глава 1. Введение в OpenStack

приложений. Примерами платформ, обеспечивающих по-
добную модель, помимо OpenStack, можно назвать Apache
CloudStack, Eucalyptus и OpenNebula;

�� программное обеспечение как сервис (SaaS) – в этом случае
граница контроля пользователя – само приложение. Поль-
зователь в данном случае может даже не знать, что такое
виртуальная машина или операционная система, он просто
работает с приложением. Примеры таких облачных продук-
тов: Google Docs, Office 365 или, например, Яндекс-почта.

Четыре модели внедрения облачной платформы включают в себя:

�� платформу как сервис (PaaS) – облако, построенное по та-
кой модели, вполне может располагаться «внутри» облака
модели IaaS. В этом случае граница контроля пользователя
лежит на уровне платформы построения приложений, на-
пример сервера приложения, библиотек, среды разработки
или базы данных. Пользователь не контролирует и не адми-
нистрирует виртуальные машины и операционные систе-
мы, установленные на них, СХД и сети. Примеры облачных
платформ модели PaaS: Apache Stratos, Cloud Foundry, Deis
и OpenShift Origin;

�� частное облако – вся инфраструктура развернута в центре
обработки данных (ЦОД) и служит подразделением одной
компании или группы компаний;

�� публичное облако – заказчиком облачных услуг может вы-
ступать любая компания или даже частное лицо. Это модель
внедрения, на которой зарабатывают провайдеры облачных
услуг;

�� облако сообщества, или общественное облако. Модель, при
которой потребителем является сообщество потребителей
из организаций, имеющих общие задачи (например, мис-
сии, требований безопасности, политики и соответствия
различным требованиям);

�� гибридное облако – это комбинация из двух или трех вы-
шеописанных облаков, где разная нагрузка может распола-
гаться как в частном, публичном или общественном облаке.
Как правило, гибридное облако – это больше, чем просто
сумма облаков, поскольку ему требуются механизмы и ин-
струменты централизованного управления, распределения
и миграции нагрузки между облачными инфраструктурами.

 16 / 30

Что такое облачные приложения?    17

Что такое облачные приложения?
За время работы в компаниях, занимающихся как внедрением,
так и разработкой облачных решений, автор столкнулся с тем,
что потенциальные заказчики зачастую плохо представляют себе
разницу в области применения облачной платформы, подобной
OpenStack, и традиционных систем виртуализации. Очень часто,
когда заказчик считал, что ему нужен OpenStack, на самом деле
ему нужна была традиционная система промышленной виртуали-
зации типа VMware vSphere или Microsoft Hyper-V, ориентирован-
ная не на облачные приложения, масштабируемые горизонтально,
а на традиционные промышленные приложения, масштабируе-
мые вертикально.

Проще всего объяснить различия между облачными и традици-
онными приложениями можно на примере аналогии.

С одной стороны, есть домашние животные – собака или кош-
ка. Они долго живут с вами, вы знаете, как их зовут, и их характе-
ры. Если домашнее животное болеет, вы ведете его к ветеринару.
Смерть домашнего питомца будет для вас трагедией.

С другой стороны, есть стадо, например коров. Вы знаете их
общее число. Они не имеют индивидуальных имен и все взаимо-
заменяемы. Несчастный случай с одной коровой не означает того,
что вы перестали быть ковбоем и потеряли стадо.

Традиционные приложения, например база данных или почто-
вый сервер, – это «домашние питомцы», они требуют функциона-
ла «системы промышленной виртуализации». Этот функционал
включает в себя, но не ограничивается средствами обеспечения
высокой доступности, живой миграции, резервного копирования,
возможность добавлять в виртуальную машину ресурсы или заби-
рать их. Жизненный цикл таких виртуальных машин – как прави-
ло, годы.

Современные облачные приложения – это аналог «стада» вирту-
альных машин. Они масштабируются горизонтально, добавлени-
ем виртуальных машин. Приложение пишется таким образом, что
каждая виртуальная машина сама по себе не является критичной
для функционирования всего приложения и не требует высокой
доступности. Также вполне возможно, что виртуальные машины
работают без сохранения состояния, что не требует их резервного
копирования. Жизненный цикл подобных виртуальных машин –
как правило, месяцы.

 17 / 30

18    Глава 1. Введение в OpenStack

Именно для обеспечения работы облачных приложений в пер-
вую очередь и создавался OpenStack. В связи с этим не удивляй-
тесь, что в составе функционала OpenStack отсутствует, например,
высокая доступность виртуальных машин.

История OpenStack
Проект по разработке облачной операционной системы OpenStack
появился в июне 2010 года как проект, объединивший разработку
Национального космического агентства США (NASA) для создания
виртуальных серверов Nova и программную систему хранения
данных Swift от американского же хостинг-провайдера Rackspace.
Первая версия под кодовым названием Austin вышла в октябре то-
го же года.

По соглашению версии обозначаются именем, а порядковый но-
мер в латинском алфавите первой буквы имени определяет номер
версии Openstack: A – первая версия, B – вторая и т. д.

Уже в Bexar вдобавок к Nova и Swift появился третий сервис,
предназначенный для хранения образов Glance. В Exssex по-
явились веб-консоль управления Horizon и сервис идентифика-
ции Keystone. В Folsom – сервис сети, первоначально названный
Quantum, но затем поменявший имя, так как оно совпадало с за-
регистрированной торговой маркой, и сервис блочного хранения
Cinder. В Havana добавился сервис оркестрации Heat и мониторин-
га Celiometer.

Важно понимать, что сам по себе OpenStack – это проект по
разработке. Сайт проекта Openstack.org не предоставляет эталон-
ного дистрибутива. Напротив, вендоры на основе кода проекта
OpenStack создают свои дистрибутивы. Обзор некоторых из них
приведен в разделе «Дистрибутивы и вендоры OpenStack».

Нужно отметить, что уже через год после выхода Austin к раз-
работке OpenStack присоединились именитые ИТ-вендоры, как то:
Dell, HP и Cisco.

В настоящий момент OpenStack реализуется под руководством
OpenStack Foundation с числом индивидуальных членов около семи-
десяти тысяч и корпоративных – более шести сотен. OpenStack под-
держивают практически все ИТ-лидеры рынка. Бюджет OpenStack
Foundation – более шестнадцати миллионов долларов в год.

Согласно отчету Linux Foundation, на настоящий момент
OpenStack – это более 20 миллионов строк кода. Основной язык

 18 / 30

История OpenStack    19

программирования – Python (71% от всего объема кода). Сам код
распространяется под лицензией Apache 2.0.

К числу компаний, которые имеют самые большие инсталляции,
относятся Bluehost, Canonical, CloudScaling, EasyStack, eNovance
(куплена Red Hat), HP, IBM, Metacloud, Mirantis, Oracle, Piston,
Rackspace, Red Hat, SUSE, SwiftStack.

Если оценивать вклад компаний в разработку проекта OpenStack,
то проще всего обратиться к сайту http://stackalytics.com. Этот сер-
вис изначально был создан компанией Mirantis для сбора статис
тики и вклада своих инженеров в проект и его отдельные части, а
затем стал использоваться большинством компаний, разрабаты-
вающих OpenStack.

В качестве примера на рис. 1.1 приведена диаграмма, показы-
вающая вклад компаний в проект OpenStack за все время его су-
ществования (по состоянию на март 2018 года). Как мы видим, в
пятерку топ-контрибуторов входят Red Hat, Mirantis, Rackspace,
IBM и HP/HPE.

Рис. 1.1. Статистика в сервисе Stackalitics на март 2018 года

Также интересным, с точки зрения трендов, в использовании
OpenStack можно считать регулярные срезы с опросника пользо-
вателей с сайта проекта https://www.openstack.org/user-survey. На
момент написания книги последним был опрос от ноября 2017 го-

 19 / 30

http://stackalytics.com/
https://www.openstack.org/user-survey

20    Глава 1. Введение в OpenStack

да. Скорее всего, после выхода книги будет доступна информация
по следующему срезу статистики. Какую же интересную информа-
цию оттуда можно получить?

�� 63% принявших участие в опросе используют OpenStack для
размещения производственной нагрузки;

�� подавляющее большинство инсталляций – в IT-компаниях
(55%) и телекоммуникационных компаниях (15%);

�� Азия вышла на первое место в качестве региона прожи-
вания принявших участие в опросе (33% всех принявших
участие). На втором месте – Северная Америка (33%);

�� 85% всех внедрений (промышленных и тестовых) использу-
ют гипервизор KVM;

�� также интересной является статистика по средам развер-
тывания и управления облака: 20% – Puppet, 38% – Ansible,
11% – Fuel, 14% – Chef;

�� 57% используют программную СХД Ceph;
�� дистрибутивы ОС распределились следующим образом:
38% – Ubuntu, 31% – CentOS, 18% – RHEL.

Согласно отчету Forrester Research (http://www.openstack.org/
assets/pdf-downloads/OpenStack-Is-Ready-Are-You.pdf), OpenStack в
настоящее время используют многие компании из списка Fortune
100, такие как BMW, Disney и Wal-Mart.

Ну и, наконец, перед тем как двигаться дальше, возможно, чи-
тателю будет интересно ознакомиться с порталом https://www.
openstack.org/enterprise/, где приведены примеры промышленной
эксплуатации OpenStack на предприятиях.

Архитектура OpenStack
Проект OpenStack, который также называют облачной операци-
онной системой, состоит из ряда отдельных проектов, разрабаты-
вающих отдельные подсистемы. Конкретная установка OpenStack
может включать в себя лишь часть из них. Некоторые подсисте-
мы могут использоваться вообще автономно или как часть других
OpenSource-проектов. В этой книге рассматривается лишь часть
базовых сервисов. Их набор увеличивается от версии к версии про-
екта OpenStack как за счет появления новых, так и за счет разделе-
ния функционала существующих. Например, сервис nova-volume
выделился в отдельный проект Cinder.

 20 / 30

http://www.openstack.org/assets/pdf-downloads/OpenStack-Is-Ready-Are-You.pdf
http://www.openstack.org/assets/pdf-downloads/OpenStack-Is-Ready-Are-You.pdf
https://www.openstack.org/enterprise/
https://www.openstack.org/enterprise/

Архитектура OpenStack    21

Каждый из проектов имеет свой документированный набор
REST API, утилит командной строки и «родные» интерфейсы
Python, предоставляющие набор функций, аналогичных утилитам
командной строки.

Рис. 1.2. Архитектура OpenStack

Одним из базовых сервисов является OpenStack Compute
(Nova). Этот сервис устанавливается на всех вычислительных уз-
лах кластера. Он предоставляет уровень абстракции виртуального
оборудования (процессоры, память, блочные устройства, сетевые
адаптеры). Nova обеспечивает управление экземплярами вирту-
альных машин, обращаясь к гипервизору и отдавая такие коман-
ды, как, например, их запуск и остановку.

Важно отметить, что технологии OpenStack независи-
мы от гипервизора. По адресу https://wiki.openstack.org/wiki/
HypervisorSupportMatrix располагается матрица совместимости
гипервизоров. Поддержка реализуется через соответствующие

 21 / 30

https://wiki.openstack.org/wiki/HypervisorSupportMatrix
https://wiki.openstack.org/wiki/HypervisorSupportMatrix

22    Глава 1. Введение в OpenStack

драйверы в проекте Nova. Разработка и тестирование OpenStack
ведутся в первую очередь для KVM. Большинство внедрений также
завязано на гипервизор KVM.

Следующий сервис под названием OpenStack Networking
(Neutron) отвечает за сетевую связанность. Пользователи могут
самостоятельно создавать виртуальные сети, маршрутизаторы, на-
значать IP-адреса. Один из механизмов, обеспечиваемых Neutron,
называется «плавающие адреса». Благодаря этому механизму вир-
туальные машины могут получать внешние фиксированные IP-
адреса. Через механизм подключаемых модулей можно реализо-
вать такой функционал, как балансировщик сетевой нагрузки как
сервис, брандмауэр как сервис и VPN как сервис.

Служба идентификации OpenStack Keystone представляет со-
бой централизованный каталог пользователей и сервисов, к кото-
рым они имеют доступ. Keystone выступает в виде единой системы
аутентификации облачной операционной системы. Keystone про-
веряет действительность учетных записей пользователей, сопо-
ставление пользователей проектам OpenStack и ролям и в случае
успеха выдает токен на доступ к другим сервисам. Также Keystone
ведет каталог служб.

OpenStack Image Service (Glance) ведет каталог образов вир-
туальных машин, которые пользователи могут использовать как
шаблоны для запуска экземпляров виртуальных машин в облаке.
Также данный сервис предоставляет функционал резервного ко-
пирования и создания моментальных снимков. Glance поддержи-
вает множество различных форматов, включая vhd, vmdk, vdi, iso,
qcow2, ami и др.

Сервис OpenStack Block Storage (Cinder) управляет блочным
хранилищем, которое могут использовать запущенные экземпля-
ры виртуальных машин. Это постоянное хранилище информации
для виртуальных машин. Можно использовать моментальные
снимки для сохранения и восстановления информации или для
целей клонирования. Чаще всего с cinder используют хранилище
на основе Linux-серверов, однако имеются и подключаемые моду-
ли для аппаратных хранилищ.

Сервис OpenStack Object Storage (Swift), помимо Nova, явля-
ется одним из двух первых проектов, появившихся в OpenStack.
Изначально он назывался Rackspace Cloud Files. Сервис представ-
ляет собой объектное хранилище, позволяющее пользователям
хранить файлы. Swift имеет распределенную архитектуру, обеспе-

 22 / 30

Гипервизор KVM и эмулятор QEMU    23

чивая горизонтальное масштабирование, а также избыточность и
репликацию для целей отказоустойчивости. Swift ориентирован
преимущественно на статические данные, такие как образы вир-
туальных машин, резервные копии и архивы.

Сервис OpenStack Telemetry (Celiometer) представляет собой
централизованный источник информации по метрикам облака и
данным мониторинга. Этот компонент обеспечивает возможность
биллинга для OpenStack.

OpenStack Orchestration (Heat) – сервис, задача которого –
обеспечение жизненного цикла приложения в облачной инфра-
структуре. При помощи шаблона формата AWS CloudFormation
сервис управляет остальными сервисами OpenStack, позволяя
создать большинство типов ресурсов (виртуальные машины, то-
ма, плавающие IP, пользователи, группы безопасности и т. д.).
Heat при помощи данных Ceilometer также может осуществлять
автоматическое масштабирование приложения. Шаблоны опи-
сывают отношения между ресурсами, и это позволяет сервису
Heat осуществлять вызовы API OpenStack в правильном поряд-
ке, например сначала создать сервер, а потом подключить к нему
том.

И наконец, самый близкий к пользователю облака сервис
OpenStack Dashboard (Horizon), позволяющий управлять ресур-
сами облака через веб-консоль.

Также существует проект, чей код используется большинством
остальных компонентов OpenStack, – это проект, объединяющий
общие библиотеки компонентов облака OpenStack Oslo.

Гипервизор KVM и эмулятор QEMU
Как уже отмечалось, самым используемым гипервизором совмест-
но с OpenStack является KVM (Kernel-based Virtual Machine). KVM –
часть ядра Linux с 2007 года и требует аппаратной поддержки вир-
туализации на серверах стандартной архитектуры (AMD-V или
Intel VT-x). В настоящее время KVM также адаптирован для ряда
других платформ, например PowerPC. Для эмуляции устройств
ввода/вывода в GNU/Linux используется эмулятор QEMU.

Обратите внимание, что аппаратная поддержка виртуализации
может быть по умолчанию выключена в BIOS. Примеры включе-
ния опций в BIOS для ПК с процессорами AMD и Intel приведены
на рис. 1.3, 1.4 и 1.5.

 23 / 30

24    Глава 1. Введение в OpenStack

Рис. 1.3. Пример включения опции аппаратной поддержки
виртуализации в BIOS (процессор AMD)

Рис. 1.4. Пример включения опции аппаратной поддержки
виртуализации в BIOS ноутбука HP (процессор Intel)

 24 / 30

Дистрибутивы OpenStack    25

Рис. 1.5. Пример включения опции аппаратной поддержки
виртуализации в BIOS ноутбука Dell (процессор Intel)

Проверить, что поддержка включена и процессор поддерживает
одну из технологий, можно командой
$ grep -E 'svm | vmx' /proc/cpuinfo

Вы должны среди поддерживаемых процессором флагов уви-
деть svm или vmx. Также если вы дадите команду:
$ lsmod | grep kvm
kvm_intel 143187 3
kvm 455843 1 kvm_intel

вы должны увидеть два загруженных в оперативную память моду-
ля ядра. kvm – это не зависимый от производителя процессора мо-
дуль, а второй kvm_intel или kvm_amd реализует функционал VT-x
или AMD-V соответственно.

Дистрибутивы OpenStack
Как уже отмечалось выше, OpenStack – это проект по созданию об-
лачной инфраструктуры, но не продукт. Однако множество ком-
паний, участвующих в создании OpenStack, создает на основе его
кода свои продукты или дистрибутивы, зачастую используя свои
проприетарные компоненты. Тут ситуация примерно аналогична
созданию дистрибутивов GNU/Linux. Исходные коды в виде паке-
тов tar.gz доступны по адресу http://tarballs.openstack.org/.

 25 / 30

http://tarballs.openstack.org/

26    Глава 1. Введение в OpenStack

Автор попытался дать очень краткий обзор нескольких дис-
трибутивов OpenStack. Обзор не претендует на всеобъемлющий
охват. Также информация, приведенная ниже, актуальна на мо-
мент написания книги. Достаточно полный список основных дис-
трибутивов приведен в разделе Marketplace официального сайта
OpenStack – https://www.openstack.org/marketplace/distros/.

Книга описывает использование дистрибутива RDO (https://
www.rdoproject.org/), с него и начнем наш краткий обзор. RDO –
спонсируемый Red Hat проект по созданию открытого дистрибути-
ва OpenStack. В противоположность коммерческому дистрибутиву
Red Hat Enterprise OpenStack Platform (RHOSP), для RDO нельзя ку-
пить поддержку. Взаимосвязь между RHOSP и RDO примерно такая
же, как между Red Hat Enterprise Linux (RHEL) и Fedora. RDO призван
создать сообщество вокруг разработок Red Hat. В качестве установ-
щика изначально предлагалось использовать скрипт packstack для
тестов и Foreman для промышленного развертывания. В послед-
них версиях вместо Foreman предлагается RDO Manager, основан-
ный на проектах OpenStack Ironic и OpenStack TripleO. RDO можно
развернуть на RHEL и его производных (CentOS, Oracle Linux и
других).

Второй по популярности коммерческий вендор GNU/Linux так-
же имеет свой собственный дистрибутив OpenStack под названием
SUSE OpenStack Cloud. В качестве дистрибутива операционной
системы используется SUSE Linux Enterprise Server 12. В качес
тве системы хранения данных поддерживается SUSE Enterprise
Storage – собственный вариант сборки программно-определяемо-
го хранилища данных Ceph. В качестве инструмента установки ис-
пользуются проект Crowbar (http://crowbar.github.io) и Chef – один
из распространенных инструментов управления конфигурациями
в мире OpenSource.

Следующий дистрибутив – Mirantis OpenStack (MOS). Как и
RDO, в нем отсутствуют проприетарные компоненты, а отличи-
тельной особенностью Mirantis позиционировал систему уста-
новки Fuel, которая значительно упрощает масштабные развер-
тывания. Также нужно отметить поддержку OpenStack Community
Application Catalog, основанного на каталоге приложений Murano.
В качестве дистрибутива GNU/Linux MOS требует на выбор Ubuntu
или CentOS. С целью упрощения развертывания демостендов или
изучения OpenStack имеются скрипты для быстрого развертыва-
ния на VirtualBox. Относительно недавно Mirantis отказался от ис-

 26 / 30

https://www.openstack.org/marketplace/distros/
https://www.rdoproject.org/
https://www.rdoproject.org/
http://crowbar.github.io/

Дистрибутивы OpenStack    27

пользования Fuel, представив новый дистрибутив Mirantis Cloud
Platform.

VMware Integrated OpenStack (VIO) стоит несколько особня-
ком от остальных рассмотренных в этом разделе, поскольку для
своей работы требует развернутой проприетарной инфраструкту-
ры VMware, включая гипервизор ESXi, платформу виртуализации
сети NSX и систему управления vCenter. Все это делает VIO с уче-
том соответствующих лицензий относительно дорогим решением.
Все компоненты OpenStack развертываются внутри виртуальных
машин на ESXi в заранее созданном кластере Vmware. Посколь-
ку в основе лежит инфраструктура VMware vSphere, то отличи-
тельным преимуществом дистрибутива будет являться «родной»
функционал VMware как корпоративной системы виртуализации:
HA, DRS, vMotion и т. д. Это несколько переориентирует OpenStack
от облачной к традиционной нагрузке. Также VIO снижает порог
вхождения для существующих инфраструктур и обученных адми-
нистраторов VMware. С другой стороны, помимо необходимости
приобретать лицензии на проприетарное программное обеспече-
ние, VIO привязывает пользователя этого дистрибутива к вендору
решения. Также необходимо иметь в виду, что VIO включает в себя
ограниченный набор сервисов OpenStack и поддерживает только
ограниченный набор подключаемых модулей и конфигураций.

Oracle OpenStack for Oracle Linux выделяется заметно недо-
рогой, по сравнению с конкурентами, технической поддержкой в
случае коммерческого использования. Он бесплатен при наличии
премиальной поддержки. Из отличительных особенностей мож-
но отметить поддержку Oracle ZFS. Также в качестве виртуальных
машин поддерживается Solaris x86. Как и в случае других произ-
водителей аппаратного обеспечения, например IBM и HP, Oracle
поддерживает коммерческое использование своей сборки только
на своем «железе».

Ericsson Cloud Execution Environment – дистрибутив, создан-
ный с учетом требований приложений виртуализации сетевых
функций (NFV) и специфики операторов связи. В первую очередь
это означает повышенную производительность сетевой подсисте-
мы и ориентацию на приложения с требованием операций реаль-
ного времени. По сравнению с дистрибутивами традиционных ИТ-
компаний, ориентированный на операторов дистрибутив Ericsson
Cloud Execution Environment отличается гарантированным компа-
нией Ericsson SLA. В качестве примера функционала можно при-

 27 / 30

28    Глава 1. Введение в OpenStack

вести поддержку VLAN Trunking, ускоренный при помощи библио-
теки Intel DPDK виртуальный коммутатор (Ericsson Virtual Switch),
мониторинг, высокую доступность виртуальных машин и многое
другое. Также из отличий можно назвать свой собственный веб-
интерфейс на базе Horizon. Дистрибутив создан на базе Mirantis
OpenStack.

Говоря о дистрибутивах OpenStack, также необходимо упомя-
нуть проект OPNFV (https://www.opnfv.org). OPNFV – это проект
по построению открытой стандартной платформы для виртуали-
зации сетевых функций (NFV). OPNFV объединяет ряд проектов,
включая OpenStack, OpenDaylight, Ceph Storage, KVM, Open vSwitch
и GNU/Linux. В проекте принимают участие крупнейшие телеком-
муникационные компании и вендоры (AT&T, Cisco, EMC, Ericsson,
HP, Huawei, IBM, Intel, NEC, Nokia, Vodafone, ZTE и многие другие).
В настоящий момент проект предоставляет несколько сборок в ви-
де ISO с различными установщиками.

 28 / 30

https://www.opnfv.org

Глава 2
Настройка лабораторного

окружения OpenStack

На момент написания четвертого издания книги последней вер-
сией OpenStack была семнадцатая с момента появления проекта –
Queens. В предыдущих трех изданиях рассматривались версии
Juno, Liberty и Newton. Поскольку эта книга является введением
в OpenStack, различия между релизами с точки зрения изучения
OpenStack не очень велики. В книге по шагам, без использова-
ния средств автоматизации рассмотрены установка и настройка
базового лабораторного окружения с использованием CentOS 7 и
дистрибутива RDO.

В отличие от первого издания книги, где автор рассматривал
установку большинства сервисов на одну виртуальную машину,
мы будем разделять управляющий, сетевой и вычислительный уз-
лы, что позволит нагляднее познакомиться с типичными ролями
серверов при развертывании OpenStack.

С первой по пятую главу вам понадобится только машина
controller минимум с двумя виртуальными процессорами и не ме-
нее чем с 4 Гб оперативной памяти. В шестой главе вам дополни-
тельно понадобятся три виртуальные машины sw1, sw2 и sw3 для
объектного хранилища Swift, каждая с 1 Гб оперативной памяти.
Если ресурсы вашего стенда ограничены, то в последующих главах
эти виртуальные машины можно не использовать. В седьмой главе
вам необходимо будет добавить виртуальную машину compute в
качестве гипервизора. Чем больше оперативной памяти вы выде-
лите для compute, тем лучше. Для большинства примеров в книге c
запуском виртуальных машин Cirros Linux вам хватит 2 Гб. Если у
вас достаточно ресурсов, то вы также можете создать второй опци-
ональный вычислительный узел compute-opt. Он нам понадобится

 29 / 30

30    Глава 2. Настройка лабораторного окружения OpenStack

только для изучения живой миграции виртуальных машин. В сле-
дующей, восьмой главе добавляется виртуальная машина network
для сетевых сервисов. Для нее более чем достаточно 1 Гб опера-
тивной памяти. В пятнадцатой главе, посвященной Ceph, вам до-
полнительно к controller, network и compute понадобятся три вир-
туальные машины: ceph1, ceph2 и ceph3. Эти виртуальные машины
также можно создать с 1 Гб оперативной памяти каждую.

Диски всех учебных виртуальных машин рекомендуется сделать
«тонкими». В этом случае размер реально занятого места на фай-
ловой системе для каждой виртуальной машины будет от 3 до 6 Гб.

Как говорилось во введении, автор во время написания книги
и тестирования примеров использовал CentOS 7 и Ubuntu Linux
14.04 LTS с гипервизором KVM (см. рис. 2.1), но эта информация
приведена лишь в качестве примера.

Рис. 2.1. Virtual Machine Manager с виртуальными машинами стенда в Ubuntu

Одновременно необходимо запускать от шести виртуальных
машин, и для выполнения большинства упражнений книги до-
статочно компьютера с 8 Гб оперативной памяти, однако для ком-
фортной работы рекомендуется 16 Гб. Подготовка операционной

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Дистрибутивы OpenStack    31

системы и настройка репозиториев для всех виртуальных машин
с одинаковым дистрибутивом GNU/Linux будут выполняться оди-
наково.

Кроме того, в табл. 1 для справки приведен список сервисов,
устанавливаемых на каждый узел.

Таблица 1. Список узлов и сервисов лабораторного стенда

Узел Сервис Описание

Управляющий узел

controller.test.local
192.168.122.200

rabbitmq-server RabbitMQ – брокер сообщений
протокола AMQP

mariadb MariaDB – база данных, ис-
пользуется многими сервисами
OpenStack

httpd с mod_wsgi Keystone API, Placement API –
служит для предоставления до-
ступа к API сервиса идентифи-
кации и сервиса Placement API.
Сервис Placement API появился в
OpenStack версии Newton. Он от-
вечает за отслеживание списка ре-
сурсов и их использование

glance-api Glance API – предоставляет доступ к
REST API сервиса образов для поис-
ка, хранения и получения образов

glance-registry Glance Registry – хранит и предо-
ставляет образы виртуальных машин

cinder-api Cinder API – предоставляет доступ к
REST API сервиса Cinder

cinder-scheduler Cinder Scheduler – сервис-плани-
ровщик Cinder

cinder-volume Cinder Volume – отвечает за взаи-
модействие с бэкэндом – блочным
устройством

cinder-backup Cinder Backup – отвечает за созда-
ние резервных копий томов в объ-
ектном хранилище

nova-api Отвечает за обработку вызовов API
клиентов Nova

nova-scheduler Сервис-планировщик. Получает из
очереди запросы на запуск вирту-
альных машин и выбирает узел для
их запуска

 1 / 30

32    Глава 2. Настройка лабораторного окружения OpenStack

Узел Сервис Описание

nova-conductor Сервис выступает в качестве посред-
ника между базой данных и nova-
compute, позволяя осуществлять го-
ризонтальное масштабирование

nova-consoleauth Отвечает за авторизацию для
novncproxy

nova-novncproxy Выступает в роли VNC-прокси и по-
зволяет подключаться к консоли
виртуальных машин при помощи
браузера

neutron-server Центральный управляющий ком-
понент Neutron. Не занимается
непосредственно маршрутизацией
пакетов. С остальными компонен-
тами взаимодействует через бро-
кера сообщений

openstack-aodh-evaluator Сервис, определяющий, сработал ли
триггер при достижении метриками
заданных значений в течение опре-
деленного измеряемого периода

openstack-aodh-notifier Сервис, запускающий те или иные
действия при срабатывании триг-
гера

openstack-aodh-listener Сервис, определяющий, когда триг-
гер сработает

gnocchi-metricd Сервис Gnocchi Metricd

gnocchi-api Отвечает за API сервиса Gnocchi

ceilometer-notification Агент, отправляющий по протоколу
AMQP метрики сборщику от раз-
личных сервисов

ceilometer-central Агент, запускаемый на централь-
ном сервере для запроса статис
тики по загрузке, не связанной с
экземплярами виртуальных машин
или вычислительными узлами

ceilometer-alarm-evaluator Cервис, проверяющий срабатыва-
ние триггеров при достижении мет
риками заданных значений

ceilometer-alarm-notifier Cервис, запускающий те или иные
действия при срабатывании триг-
гера

 2 / 30

Дистрибутивы OpenStack    33

Узел Сервис Описание

httpd Веб-сервер для Horizon. Также мо-
жет использоваться для обеспече-
ния работы Keystone

heat-engine Основной сервис оркестрации,
обеспечивающий обработку шаб
лонов и отправляющий события
пользователям API

heat-api Сервис, отвечающий за предо-
ставление основного REST API
Heat. Сервис взаимодействует с
openstack-heat-engine через вы-
зовы RPC

heat-api-cfn Аналогичен предыдущему сервису,
но обеспечивает работу с API, сов
местимым с AWS CloudFormation.
Также взаимодействует с
openstack-heat-engine

Сетевой узел

network.test.local
192.168.122.220

neutron-openvswitch-agent Openvswitch-agent – взаимодейст
вует с neutron-server через брокер
сообщений и отдает команды OVS
для построения таблицы потоков

neutron-l3-agent Сервис обеспечивает маршрутиза-
цию и NAT, используя технологию
сетевых пространств имен

neutron-dhcp-agent Dhcp-agent – сервис отвечает за
запуск и управление процессами
dnsmasq

neutron-metadata-agent Metadata-agent – данный сервис
позволяет виртуальным машинам
запрашивать данные о себе, такие
как имя узла, открытый ssh-ключ
для аутентификации и др.

neutron-lbaas-agent Подключаемый модуль баланси-
ровщика нагрузки как сервиса

openvswitch Openvswitch – программный комму-
татор, используемый для построе
ния сетей. Не является проектом
OpenStack, но используется им

haproxy Быстрый балансировщик нагрузки,
написанный на языке программи-
рования C. Используется агентом
neutron-lbaas-agent

 3 / 30

34    Глава 2. Настройка лабораторного окружения OpenStack

Узел Сервис Описание

Вычислительные узлы

compute.test.local
192.168.122.210

compute-opt.test.local
192.168.122.215

nova-compute Nova-compute – демон, управляю-
щий виртуальными машинами че-
рез API гипервизора

openvswitch Openvswitch – программный ком-
мутатор

neutron-openvswitch-
agent

Openvswitch-agent – взаимодей-
ствует с neutron-server через бро-
кер сообщений и отдает команды
OVS для построения таблицы по-
токов

ceilometer-compute Агент, запускаемый на всех вычис-
лительных узлах для сбора статис
тики по узлам и экземплярам вир-
туальных машин

Монитор CEPH

ceph1.test.local
192.168.122.11

ceph.service Ceph monitors (MON) – поддер-
живает мастер-копию карты со-
стояния кластера и информацию
о его текущем состоянии. Все узлы
кластера отправляют информацию
мониторам о каждом изменении в
их состоянии

Узлы хранения CEPH

ceph2.test.local
192.168.122.12

ceph3.test.local
192.168.122.13

ceph.service Object Storage Device (OSD) – отве-
чает непосредственно за хранение
данных. Обычно один демон OSD
связан с одним физическим дис-
ком

Прокси Swift

sw1.lest.local
192.168.122.61

openstack-swift-proxy Swift Proxy – отвечает за коммуни-
кацию Swift с клиентами по про-
токолу HTTP/HTTPS и за распреде-
ление запросов на чтение и запись
между узлами

Сервер хранения
Swift

sw2.lest.local
192.168.122.62

openstack-swift-account Swift Account – отвечает за под-
держку баз данных SQLite, со-
держащих информацию о кон-
тейнерах, доступных конкретной
учетной записи

openstack-swift-container Swift Container – отвечает за под-
держку баз данных, содержащих
информацию об объектах, имею-
щихся в каждом контейнере

openstack-swift-object Swift Object – отвечает за хране-
ние, доставку и удаление объектов

 4 / 30

Подготовка CentOS 7 к использованию дистрибутива OpenStack RDO    35

Узел Сервис Описание

Сервер хранения
Swift

sw3.lest.local
192.168.122.63

openstack-swift-account Swift Account – отвечает за под-
держку баз данных SQLite, со-
держащих информацию о кон-
тейнерах, доступных конкретной
учетной записи

openstack-swift-container Swift Container – отвечает за под-
держку баз данных, содержащих
информацию об объектах, имею-
щихся в каждом контейнере

openstack-swift-object Swift Object – отвечает за хране-
ние, доставку и удаление объектов

IP-адресацию вы можете изменить по своему усмотрению, не
ориентируясь на выбор автора. Приведенные адреса выбраны
лишь в качестве примера. Также убедитесь, что все взаимодей-
ствующие виртуальные машины могут разрешать имена друг дру-
га. Можно поднять локальный DNS-сервер или, что намного про-
ще, прописать на всех узлах имена взаимодействующих с ними
лабораторных машин в файл /etc/hosts. Пример для узлов, исполь-
зуемых в этой книге:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.
localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.
localdomain6
192.168.122.200 controller.test.local controller
192.168.122.210 compute.test.local compute
192.168.122.215 compute-opt.test.local compute-opt
192.168.122.220 network.test.local network
192.168.122.11 ceph1.test.local ceph1
192.168.122.12 ceph2.test.local ceph2
192.168.122.13 ceph3.test.local ceph3
192.168.122.61 sw1.test.local sw1
192.168.122.62 sw2.test.local sw2
192.168.122.63 sw3.test.local sw3

Подготовка CentOS 7 к использованию
дистрибутива OpenStack RDO
Процесс подготовки и установки RDO на CentOS 7 не очень сильно
отличается от соответствующих действий для других производных
RHEL.

 5 / 30

36    Глава 2. Настройка лабораторного окружения OpenStack

Первое, что необходимо, – установить саму операционную си-
стему. Предполагается, что это не должно вызвать затруднений у
читателя. В качестве варианта установки можно выбрать Minimal
или Server with GUI.

После установки операционной системы обновите все установ-
ленные пакеты командой

yum -y update

Следующее – это добавление репозиториев с пакетами
OpenStack и дополнительных пакетов. Начнем с необходимого
репозитория Extra Packages for Enterprise Linux (EPEL). Данный
репозиторий содержит пакеты, предназначенные для RHEL и его
производных, коим является CentOS. Как правило, там содержатся
пакеты, которые присутствуют в Fedora, но которые компания Red
Hat не включила в свой промышленный дистрибутив. В CentOS это
максимально упрощено:

yum -y install epel-release

Подключаем репозиторий дистрибутива RDO:

yum install -y https://www.rdoproject.org/repos/rdo-release.rpm

CentOS и Fedora для управления настройками сети по умолча-
нию используют сервис NetworkManager. Он прекрасно подходит
для настольных систем и для большинства применений в качестве
средства управления сетью сервера. Однако в настоящий момент
OpenStack не поддерживает работу с NetworkManager. Для кор-
ректной работы сети нам необходимо использовать традицион-
ные скрипты network.

Отключаем сервис NetworkManager и отключаем его запуск пос
ле перезагрузки:

systemctl stop NetworkManager.service
systemctl disable NetworkManager.service

В конфигурационных файлах сетевых адаптеров ifcfg-eth0 и
ifcfg-eth1 в директории /etc/sysconfig/network-scripts/ необходимо
поправить параметры NM_CONTROLLED и ONBOOT. Также при
необходимости убедитесь, что заданы статические параметры
TCP/IP и правильный MAC-адрес виртуальной сетевой карты. При-
мер файла ifcfg-eth0 после редактирования:

 6 / 30

Подготовка CentOS 7 к использованию дистрибутива OpenStack RDO    37

TYPE="Ethernet"
BOOTPROTO="none"
DEFROUTE="yes"
IPV6INIT="no"
NAME="eth0"
ONBOOT="yes"
HWADDR="52:54:00:30:2F:EF"
IPADDR0="192.168.122.200"
PREFIX0="24"
GATEWAY="192.168.122.1"
DNS1="192.168.122.1"
DOMAIN="test.local"
NM_CONTROLLED=no

Теперь можно включить сервис network:
systemctl start network.service
systemctl enable network.service

Далее для упрощения отладки мы отключим сервис брандмауэ
ра. Если вы не планируете отключать брандмауэр, то список ис-
пользуемых портов по умолчанию приведен в приложении 3 в
конце книги. Начиная с CentOS 7 по умолчанию вместо iptables
используется firewalld:

systemctl stop firewalld.service
systemctl disable firewalld.service

Важно отметить, что такая конфигурация не подходит для про-
мышленного применения. На «боевых» узлах брандмауэр должен
быть обязательно включен. При этом в любом случае в качестве
брандмауэра не поддерживается firewalld. Необходимо использо-
вать iptables. Подробнее – проконсультируйтесь с руководством
по безопасности по адресу http://docs.openstack.org/security-guide/
content/. Та же рекомендация относится и к настройкам системы
мандатного контроля доступа SELinux. В промышленной среде
при использовании производных RHEL необходимо установить
пакет openstack-selinux:
yum -y install openstack-selinux

Автору, в свое время потратившему много времени на про-
паганду SELinux и переведшему man-страницы основных ути-
лит SELinux для Fedora, RHEL и производных, нелегко дались эти
строчки... Но для упрощения отладки в учебных целях вы можете
отключить SELinux. Для этого необходимо отредактировать файл
/etc/sysconfig/selinux, заменив

 7 / 30

http://docs.openstack.org/security-guide/content/
http://docs.openstack.org/security-guide/content/

38    Глава 2. Настройка лабораторного окружения OpenStack

SELINUX=enforcing

на

SELINUX=disabled

Далее необходимо просто перезагрузить систему.
Сервисы OpenStack обычно устанавливаются на несколько от-

дельных узлов, и при этом все системные часы этих узлов должны
быть синхронизированы. Для этого в лабораторном окружении ре-
комендуется использовать службу NTP. У вас не будет проблем с син-
хронизацией времени, если вы запускаете все виртуальные машины
стенда на одном физическом сервере, однако для промышленной
эксплуатации службы NTP необходимы. Множество различных
проблем с функционированием сервисов OpenStack может быть вы-
звано различием времени на узлах, входящих в облако. При этом за-
частую вы не увидите ошибок в журналах, и такие проблемы сложно
диагностировать. В CetnOS 7 у вас есть выбор между использованием
ntpd или более современной реализацией демона NTP chrony:

yum -y install ntp
systemctl start ntpd.service
systemctl enable ntpd.service

или
yum -y install chrony
systemctl start chronyd
systemctl enable chronyd

По умолчанию оба демона уже настроены на использование
внешних источников точного времени serverX.centos.pool.ntp.org.
Если у вас в организации развернут свой NTP-сервер или отсут-
ствует доступ в Интернет с виртуальных машин стенда, то отре-
дактируйте /etc/ntp.conf или /etc/chrony.conf.

В случае ntpd вам необходимо как минимум добавить в конфи-
гурационный файл опции:

restrict 192.168.0.0 mask 255.255.255.0 nomodify notrap
server 127.127.1.0
fudge 127.127.1.0 stratum 10

На клиентах соответственно нужно исправить server на IP-
адрес сервера NTP в локальной сети:
server 192.168.0.1

 8 / 30

Как установить OpenStack RDO одной командой?    39

Проверить, что синхронизация времени работает с клиента,
можно при помощи команды ntpq:

ntpq -p
 remote refid st t when poll reach delay offset jitter
===
*192.168.0.1 LOCAL(0) 11 u 99 1024 377 0.275 -0.021 0.080

Для указания необходимости отредактировать конфигурацион-
ный файл автор в тексте книги использует утилиту crudini (http://
www.pixelbeat.org/programs/crudini/). Имя утилиты представляет
собой аббревиатуру Create, Read, Update, Delete плюс, собствен-
но, к чему применяются данные операции. Утилита crudini ис-
пользуется только для удобства форматирования текста в книге.
Вы, безусловно, для редактирования файлов можете использовать
любой текстовый редактор.

Установка утилиты в CentOS производится командой

yum -y install crudini

Синтаксис команды, который используется в примерах книги:

$ crudini --set /путь/к/конфигурационному/файлу СЕКЦИЯ параметр значение

Отличия RDO от «Upstream»
Upstream, или, как иногда говорят по-русски, используя жаргон
«апстрим», «ванильный код» вследствие отсутствия короткого рус-
ского эквивалента, – это код, в котором ведется разработка, или
стабилизированный вендоронезависимый код на сайте проекта.
В целом RDO не содержит специфических изменений, и отличия
в основном сводятся к конфигурационным файлам. Например,
RDO поставляет файлы с настройками по умолчанию в /usr/share/
имя_сервиса/имя_сервиса-dist.conf. Например, /usr/share/nova/
nova-dist.conf или /usr/share/cinder/cinder-dist.conf.

Как установить OpenStack RDO одной
командой?
Автор книги предполагает, что вы шаг за шагом пройдете вслед за
автором по пути ручной установки и настройки компонентов. Это
позволит вам лучше разобраться с тем, как работает OpenStack и как

 9 / 30

http://www.pixelbeat.org/programs/crudini/
http://www.pixelbeat.org/programs/crudini/

40    Глава 2. Настройка лабораторного окружения OpenStack

связаны между собой отдельные его части. Однако если вы хотите
быстро получить работающую виртуальную машину с установлен-
ными компонентами OpenStack RDO, вы можете воспользоваться
утилитой Packstack. Утилита использует для своей работы Puppet
и позволяет установить все компоненты на один узел. Packstack не
предназначен для развертывания промышленных сред и рекомен-
дуется только для установки лабораторного окружения.

Вам потребуется виртуальная машина, подготовленная в со-
ответствии с инструкциями предыдущего раздела. Установите
Packstack:

yum install -y openstack-packstack

Далее можно отдать команду packstack с ключом --allinone,
но лучше подготовить файл ответов, в котором можно уточнить
параметры установки. Сгенерируем шаблон файла ответов:

packstack --gen-answer-file ~/myfile.txt

Далее можно открыть полученный текстовый файл и при необ-
ходимости изменить опции установки OpenStack. Файл содержит
комментарии, и в нем достаточно просто разобраться. Автор пред-
лагает как минимум изменить следующие параметры:

CONFIG_DEFAULT_PASSWORD=openstack
CONFIG_KEYSTONE_ADMIN_PW=openstack
CONFIG_KEYSTONE_DEMO_PW=openstack

Тем самым вы укажете пароль по умолчанию для сервисов,
пользователя admin и demo, а также необходимость использова-
ния репозитория EPEL. Теперь осталось выполнить команду:

packstack --answer-file ~/myfile.txt

Через 15–30 минут, в зависимости от характеристик лаборатор-
ного окружения, все сервисы будут настроены. Во время работы
утилита выдает сообщения о ходе работы:

Welcome to the Packstack setup utility

The installation log file is available at: /var/tmp/packstack/
20180305-124302-i2vnoU/openstack-setup.log

Installing:
Clean Up [DONE]

 10 / 30

Как установить OpenStack RDO одной командой?    41

Discovering ip protocol version [DONE]
Setting up ssh keys [DONE]
...
Applying Puppet manifests [DONE]
Finalizing [DONE]

 **** Installation completed successfully ******

Additional information:
 * Time synchronization installation was skipped. Please note
that unsynchronized time on server instances might be problem for
some OpenStack components.
 * File /root/keystonerc_admin has been created on OpenStack
client host 10.0.2.11. To use the command line tools you need to
source the file.
 * To access the OpenStack Dashboard browse to http://10.0.2.11/
dashboard .
Please, find your login credentials stored in the keystonerc_admin
in your home directory.
 * The installation log file is available at: /var/tmp/
packstack/20180305-124302-i2vnoU/openstack-setup.log
 * The generated manifests are available at: /var/tmp/
packstack/20180305-124302-i2vnoU/manifests

При повторном запуске Packstack пытается обновить конфи-
гурацию. Так что в случае проблем можно просто перезапустить
команду. Для подробного вывода при необходимости можно до-
бавить опцию -d.

При желании можно разнести роли по разным серверам. Для
указания сетевого узла используется параметр:

CONFIG_NETWORK_HOSTS=IP-адрес

Для указания вычислительных узлов – параметр:

CONFIG_COMPUTE_HOSTS=IP-адрес

В обоих случаях через запятую можно добавить несколько IP-
адресов. В табл. 2 приведены некоторые другие часто используе-
мые параметры файла ответов packstack.

Таблица 2. Параметры файла ответов packstack

Пример параметра Описание

CONFIG_<имя_компонента>_INSTALL=y Устанавливать тот или иной компонент
OpenStack. Например, CONFIG_HEAT_
INSTALL=y означает необходимость
установить Heat

 11 / 30

42    Глава 2. Настройка лабораторного окружения OpenStack

Пример параметра Описание

CONFIG_DEFAULT_PASSWORD=password Пароль по умолчанию для всех сервисов

CONFIG_NTP_
SERVERS=192.168.1.1,192.168.1.2

Список NTP-серверов

CONFIG_CONTROLLER_
HOST=192.168.122.200

Узел, куда устанавливаются управляю-
щие сервисы OpenStack

CONFIG_COMPUTE_
HOSTS=192.168.122.200

Узлы, куда устанавливаются сетевые
сервисы OpenStack

CONFIG_NETWORK_
HOSTS=192.168.122.200

Узлы, играющие роль гипервизоров

CONFIG_AMQP_BACKEND=rabbitmq Какая служба выступает в качестве
брокера AMQP. Обычно это RabbitMQ

CONFIG_USE_EPEL=y Использовать репозиторий Extra
Packages for Enterprise Linux. Необхо-
димо задать «y», если используются
производные от дистрибутива RHEL
(CentOS, Oracle Linux и подобные)

CONFIG_KEYSTONE_ADMIN_PW=password Пароль пользователя admin

CONFIG_KEYSTONE_DEMO_PW=password Пароль пользователя demo (если
установлен параметр CONFIG_
PROVISION_DEMO=y)

CONFIG_GLANCE_BACKEND=file Где хранятся образы службы Glance
(допустимы варианты: file или swift)

CONFIG_CINDER_BACKEND=lvm Что используется в качестве места хра-
нения информации, предоставляемой
сервисом Cinder (допустимы варианты:
lvm, gluster, nfs, vmdk и netapp)

CONFIG_CINDER_VOLUMES_CREATE=y Создавать ли группу LVM для Cinder.
Если да, то packstack создаст файл в
/var/lib/cinder и смонтирует его как
loopback-устройство

CONFIG_CINDER_VOLUMES_SIZE=20G Размер группы LVM

CONFIG_SWIFT_STORAGE_SIZE=2G Размер loopback-файла для хранения
объектов Swift

CONFIG_PROVISION_DEMO=y Создать тестовый проект и пользовате-
ля demo

 12 / 30

Как установить OpenStack одной командой из исходных кодов?    43

Как установить OpenStack одной
командой из исходных кодов?
Второй способ предполагает установку OpenStack из исходных
кодов и подходит не только для CentOS/Fedora, но и для Ubuntu,
OpenSUSE и теоретически для любого дистрибутива. Для этого мы
воспользуемся набором скриптов DevStack (http://devstack.org/).
Обратите внимание, что минимально необходимый объем опера-
тивной памяти для виртуальной машины – 4 Гб.

Установим Git и скачаем DevStack:

yum -y install git
git clone https://github.com/openstack-dev/devstack.git /opt/devstack/
Cloning into '/opt/devstack'...
remote: Counting objects: 35834, done.
remote: Compressing objects: 100% (21/21), done.
remote: Total 35834 (delta 8), reused 0 (delta 0), pack-reused 35813
Receiving objects: 100% (35834/35834), 10.76 MiB | 2.55 MiB/s, done.
Resolving deltas: 100% (25014/25014), done.

Далее при помощи скрипта create-stack-user.sh создадим
пользователя и группу stack:

cd /opt/devstack/
chmod u+x tools/create-stack-user.sh
./tools/create-stack-user.sh
...
Creating a group called stack
Creating a user called stack
Giving stack user passwordless sudo privileges

Теперь изменим владельца директории и переключимся под
нового пользователя:

chown -R stack:stack /opt/devstack/
sudo -i -u stack
$ cd /opt/devstack/

Далее нужно в директории devstack создать файл local.conf. При-
мер минимально достаточного файла local.conf приведен ниже:

[[local|localrc]]

ADMIN_PASSWORD="openstack"
SERVICE_PASSWORD="openstack"
SERVICE_TOKEN="openstack"

 13 / 30

http://devstack.org/

44    Глава 2. Настройка лабораторного окружения OpenStack

MYSQL_PASSWORD="openstack"
RABBIT_TOKEN="openstack"
RABBIT_PASSWORD="openstack"
SWIFT_HASH=s0M3hash1sh3r3

disable_service n-net
enable_service neutron
enable_service q-svc
enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
HOST_IP=192.168.122.200

enable_service ceilometer-acompute
enable_service ceilometer-acentral
enable_service ceilometer-anotification
enable_service ceilometer-collector
enable_service ceilometer-alarm-evaluator
enable_service ceilometer-alarm-notifier
enable_service ceilometer-api

enable_service heat h-api h-api-cfn h-api-cw h-eng
enable_service s-proxy s-object s-container s-account
SWIFT_REPLICAS=1

LOGFILE=/opt/stack/logs/stack.sh.log
SCREEN_LOGDIR=/opt/stack/logs

Осталось только в директории devstack запустить скрипт stack.
sh. В зависимости от производительности виртуальной машины и
скорости доступа в Интернет установка может занять от десятка
минут до получаса. Пример вывода утилиты при успешном завер-
шении процесса:

=========================
DevStack Component Timing
=========================
Total runtime 4185

run_process 110
test_with_retry 5
pip_install 474
restart_apache_server 11
wait_for_service 24
yum_install 837
git_timed 350
=========================

 14 / 30

Как определить, какую версию OpenStack я использую?    45

This is your host IP address: 192.168.122.200
This is your host IPv6 address: ::1
Horizon is now available at http://192.168.122.200/dashboard
Keystone is serving at http://192.168.122.200/identity/
The default users are: admin and demo
The password: openstack

Как определить, какую версию
OpenStack я использую?
До релиза Liberty все компоненты OpenStack, кроме Swift, имели
единую версию вида «год.месяц». Например, для Kilo – 2015.1.x.
Начиная с Liberty каждый компонент имеет свою версию, где
первая цифра остается постоянной в рамках релиза. Определить
версию установленного дистрибутива можно несколькими спосо-
бами, например командами keystone-manage или nova-manage с
опцией --version.

Пример вывода для Queens:

$ keystone-manage --version
2015.1.0
$ nova-manage --version
2015.1.1

Пример вывода для Newton:

$ keystone-manage --version
10.0.0
$ nova-manage --version
14.0.0

Пример вывода для Queens:

$ keystone-manage --version
13.0.0
$ nova-manage --version
17.0.0

В веб-интерфейсе Horizon версию можно увидеть на вкладке
Admin – System Information в правом нижем углу. Пример снимка
с экрана приведен в главе 11 на рис. 11.3. Сопоставление номеров
версий и имен релизов можно определить по ссылкам со страницы
Wiki – http://releases.openstack.org/.

 15 / 30

http://releases.openstack.org/

46    Глава 2. Настройка лабораторного окружения OpenStack

Установка и настройка брокера
сообщений
Вернемся к нашему стенду. В дальнейшем, рассматривая каж-
дый сервис OpenStack, в начале главы автор будет приводить
«карточку сервиса» в качестве справки. Приведем пример для
RabbitMQ:

Название: RabbitMQ
Назначение: брокер сообщений протокола AMQP
Сайт: https://www.rabbitmq.com/
Пакет: rabbitmq-server
Имя сервиса: rabbitmq-server.service
Порты: 5672/tcp (amqp) и 5671/tcp (amqps)
Конфигурационные файлы: /etc/rabbitmq/rabbitmq.config

Одно из предварительных требований перед началом установки
компонентов OpenStack – наличие работающего брокера сообще-
ний. Брокер сообщений используется для координирования опера-
ций и обмена информацией между сервисами OpenStack, такими
как Glance, Cinder, Nova, OpenStack Networking, Heat и Ceilometer.
Как правило, брокер сообщений устанавливается на управляющем
узле вместе с остальными управляющими сервисами OpenStack.
Обмен сообщениями между компонентами производится по про-
токолу AMQP (Advanced Message Queuing Protocol). Совместно с
OpenStack можно использовать несколько конкретных реализаций
AMQP, например Apache Qpid или ZeroMQ.

В книге предполагается использование брокера RabbitMQ, ко-
торый по умолчанию применяется в большинстве дистрибутивов
OpenStack. Информация о том, как настроить другие брокеры,
приведена на сайте OpenStack в разделе документации.

RabbitMQ написан на языке программирования Erlang – функ-
циональном языке программирования, разработанном компа-
нией Ericsson. Erlang был выбран как язык программирования,
поскольку хорошо подходит для создания высоконадежных рас-
пределенных вычислительных систем.

Устанавливаем пакеты RabbitMQ, запускаем сервис и настраи-
ваем автоматический старт после перезагрузки:

[root@controller ~]# yum -y install rabbitmq-server
[root@controller ~]# systemctl start rabbitmq-server.service
[root@controller ~]# systemctl enable rabbitmq-server.service

 16 / 30

Установка и настройка брокера сообщений    47

Аутентификацию в RabbitMQ можно настроить двумя спосо-
бами: с использованием имени и пароля SASL-аутентификации
(Simple Authentication and Security Layer), обеспечиваемой фрейм-
ворком Erlang, и при помощи сертификатов и SSL. Мы будем ис-
пользовать первый вариант, причем для упрощения настройки все
сервисы будут работать под одним пользователем RabbitMQ. Важ-
но отметить, что такая конфигурация не подходит для промыш-
ленных внедрений.

По умолчанию в RabbitMQ разрешены два метода SASL-аутен
тификации: PLAIN и AMQPLAIN (нестандартная версия PLAIN).
Также по умолчанию создан пользователь guest, которому по умол-
чанию заблокирован удаленный доступ.

Можно пойти двумя путями. Первый – это использовать
существующего пользователя guest. Для этого поменяем его па-
роль. В качестве пароля для всех сервисов и учетных записей в
этой книге будет использоваться openstack. При желании выбе-
рите более сложный или более привычный для себя «пароль по
умолчанию»:

[root@controller ~]# rabbitmqctl change_password guest openstack
Changing password for user "guest" ...
...done.

Второе действие, которое необходимо сделать с пользователем
guest, – это разрешить ему удаленный доступ. По умолчанию поль-
зователю guest запрещено подключаться иначе, как с loopback-
интерфейса. Необходимо создать файл /etc/rabbitmq/rabbitmq.
config со следующим содержимым:

[{rabbit, [{loopback_users, []}]}].

После чего следует перезапустить сервис:

[root@controller ~]# systemctl restart rabbitmq-server.service

Проверить состояние сервиса можно командой:

[root@controller ~]# rabbitmqctl status
Status of node rabbit@controller ...
[{pid,1150},
 {running_applications,[{rabbit,"RabbitMQ","3.6.5"},
 {mnesia,"MNESIA CXC 138 12","4.14.3"},
 {os_mon,"CPO CXC 138 46","2.4.2"},
 {rabbit_common,[],"3.6.5"},
 {xmerl,"XML parser","1.3.14"},

 17 / 30

48    Глава 2. Настройка лабораторного окружения OpenStack

 {ranch,"Socket acceptor pool for TCP
 protocols.","1.2.1"},
 {sasl,"SASL CXC 138 11","3.0.3"},
 {stdlib,"ERTS CXC 138 10","3.3"},
 {kernel,"ERTS CXC 138 10","5.2"}]},
 {os,{unix,linux}},
 {erlang_version,"Erlang/OTP 19 [erts-8.3.5.3] [source] [64-bit]
[async-threads:64] [hipe] [kernel-poll:true]\n"},
 {memory,[{total,42765952},
 {connection_readers,0},
 {connection_writers,0},
 {connection_channels,0},
 {connection_other,0},
 {queue_procs,2688},
 {queue_slave_procs,0},
 {plugins,0},
 {other_proc,17355776},
 {mnesia,58976},
 {mgmt_db,0},
 {msg_index,39176},
 {other_ets,919760},
 {binary,19016},
 {code,17749737},
 {atom,752561},
 {other_system,5868262}]},
 {alarms,[]},
 {listeners,[{clustering,25672,"::"},{amqp,5672,"::"}]},
 {vm_memory_high_watermark,0.4},
 {vm_memory_limit,1261810483},
 {disk_free_limit,50000000},
 {disk_free,52476706816},
 {file_descriptors,[{total_limit,924},
 {total_used,2},
 {sockets_limit,829},
 {sockets_used,0}]},
 {processes,[{limit,1048576},{used,137}]},
 {run_queue,0},
 {uptime,202},
 {kernel,{net_ticktime,60}}]

Второй способ – это добавить специального пользователя, кото-
рого будем использовать для настройки сервисов OpenStack:

[root@controller ~]# rabbitmqctl add_user openstack openstack
Creating user "openstack" ...
...done.

В данном случае мы добавили пользователя openstack с паролем
opentsack. Теперь дадим этому пользователю права на настройку,
чтение и запись:

 18 / 30

Установка и настройка брокера сообщений    49

[root@controller ~]# rabbitmqctl set_permissions openstack ".*"
".*" ".*"
Setting permissions for user "openstack" in vhost "/" ...
...done.

В книге для настройки всех сервисов мы будем использовать
именно этого пользователя openstack. Просмотреть список поль-
зователей можно командой

[root@controller ~]# rabbitmqctl list_users
Listing users ...
guest [administrator]
openstack []
...done.

Добавлять пользователей и просматривать информацию о рабо-
те брокера можно через удобную графическую консоль, доступную
через механизм plug-in. Для активации консоли включите под-
ключаемый модуль rabbitmq_management и перезапустите сервис:

[root@controller ~]# /usr/lib/rabbitmq/bin/rabbitmq-plugins enable
rabbitmq_management
[root@controller ~]# systemctl restart rabbitmq-server.service

Далее заходим браузером на порт 15672. Как выглядит веб-
консоль, показано на рис. 2.2. Если вы оставили включенным
SELinux, то необходимо порту присвоить тип amqp_port_t. Также
если вы хотите подключаться к консоли удаленно, добавьте в кон-
фигурацию брандмауэра соответствующее правило для tcp-порта.

Можно отметить, что OpenStack несильно нагружает брокер
сообщений и не рассылает широковещательных сообщений. Для
каждого сервиса создается одна очередь сообщений плюс одна до-
полнительная.

Если далее вас интересует более тесное знакомство с RabbitMQ,
то на сайте проекта находятся подробные статьи, просто и доходчи-
во рассказывающие о применении брокера: http://www.rabbitmq.
com/getstarted.html. При внедрении RabbitMQ также будут полез-
ными еще две ссылки: руководство по сетевому взаимодействию
http://www.rabbitmq.com/n и список основных действий перед вво-
дом RabbitMQ в эксплуатацию http://www.rabbitmq.com/p.

Еще нужно отметить, что в промышленных инсталляциях необ-
ходимо обеспечить высокую доступность сервиса, что чаще всего
делается средствами самого RabbitMQ.

 19 / 30

http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/networking.html
http://www.rabbitmq.com/production-checklist.html

50    Глава 2. Настройка лабораторного окружения OpenStack

Рис. 2.2. Веб-консоль RabbitMQ

Установка и настройка базы данных
Практически все сервисы OpenStack используют базу данных. Ча-
ще всего с OpenStack описывают работы MariaDB или MySQL, в
этой книге мы поступим так же. Устанавливаем пакеты MariaDB и
клиентскую библиотеку PyMySQL:

[root@controller ~]# yum -y install mariadb-server python2-PyMySQL

В OpenStack Liberty и ранее репозитории RDO не содержали па-
кета PyMySQL, поэтому при настройке использовалась библиотека
MySQL-Python. Соответственно, строчка подключения сервисов к
базе данных выглядела как «mysql://».

 20 / 30

Переход на использование утилиты OpenStackClient    51

Создаем конфигурационный файл /etc/my.cnf.d/openstack.cnf
следующего вида:

[mysqld]
bind-address = 192.168.122.200

default-storage-engine = innodb
innodb_file_per_table = on
max_connections = 4096
collation-server = utf8_general_ci
character-set-server = utf8

В опции bind-adress мы указываем IP-адрес нашего контрол-
лера. Запускаем и включаем базу данных MariaDB:

[root@controller ~]# systemctl enable mariadb.service
[root@controller ~]# systemctl start mariadb.service

Запускаем скрипт mysql_secure_installation, который в том
числе задает пароль администратора базы данных:

[root@controller ~]# mysql_secure_installation

Проверить то, что сервис работает, и получить базовую статис
тику можно командой:

[root@controller ~]# mysqladmin -uroot -popenstack status
Uptime: 3318 Threads: 21 Questions: 33979 Slow queries: 0
Opens: 123 Flush tables: 2 Open tables: 149 Queries per second
avg: 10.240

Переход на использование утилиты
OpenStackClient
Одно из изменений в четвертом издании книги, по сравнению
с предыдущими, – использование клиента командной строки
openstack вместо отдельных независимых утилит. В марте 2015
года список официальных проектов OpenStack пополнился еще
одним проектом – OpenStackClient. Утилита командной строки
openstack представляет собой единый унифицированный клиент
для доступа к OpenStack API. В целом OpenStackClient позволя-
ет делать то же самое, что и утилиты каждого сервиса (команды
keystone, nova, neutron и др.), но при помощи единой команды и
унифицированного формата.

 21 / 30

52    Глава 2. Настройка лабораторного окружения OpenStack

Команды строятся по принципу: взять объект1 и произвести над
ним действие при помощи объекта2. Команда openstack help -h
выведет подсказку по командам, или можно ввести help в интер
активном режиме. В интерактивном режиме приглашение меня-
ется на (openstack):

[root@controller ~]# openstack
(openstack) help
...
Application commands (type help <topic>):
===
aggregate add host ip fixed remove server rescue
aggregate create ip floating add server resize
aggregate delete ip floating create server resume
...

Тем не менее традиционные команды (кроме keystone) также
работают, и при желании вы можете пользоваться ими. Докумен-
тация на сайте OpenStack начала меняться, переходя на исполь-
зование команды openstack, начиная с релиза Kilo. Большинство
руководств, статей в Интернете, чей возраст ранее середины
2015 года, не использует клиента openstack.

 22 / 30

Глава 3
Сервис идентификации

Keystone

Название: OpenStack Identity (Keystone)
Назначение: сервис аутентификации и каталог
Пакет: openstack-keystone
Имя сервиса: httpd.service (ранее openstack-keystone.service)
Порты: 5000/tcp и 35357/tcp (openstack-id)
Конфигурационные файлы: /etc/keystone/keystone.conf
Файл журнала: /var/log/keystone/keystone.log, /var/log/httpd/keystone*

Служба идентификации OpenStack Keystone представляет собой
централизованный каталог пользователей и сервисов, к которым
они имеют доступ. Keystone выступает в виде единой системы
аутентификации и авторизации облачной операционной системы.
Сервис поддерживает несколько типов аутентификации, включая
аутентификацию по токенам, аутентификацию при помощи пары
имя пользователя/пароль и AWS-совместимую аутентификацию.
Keystone поддерживает интеграцию с существующими сервиса-
ми каталогов, например LDAP. Помимо этого, Keystone является
каталогом служб, доступных в OpenStack. Keystone поддерживает
справочник реквизитов для обращения к API соответствующих
сервисов, а также реализует политики ролевого контроля доступа.

Терминология Keystone
OpenStack – это облачная операционная система, и, как в каж-
дой операционной системе, в OpenStack есть пользователи. После
аутентификации пользователь получает токен для доступа к тем
или иным ресурсам. Пользователь создается не только для предс
тавления в системе пользователя, обращающегося к ресурсам об-
лака, но также и для сервисов.

 23 / 30

54    Глава 3. Сервис идентификации Keystone

Сервис – это одна из далее рассматриваемых служб OpenStack,
например Nova, Swift или Glance. У каждого сервиса есть одна или
более точек входа (endpoint). Точка входа представляет собой URL,
по которому доступен этот сервис.

Токен – это строка текста, состоящая из букв и цифр и предна-
значенная для доступа к API и ресурсам. Токен выдается на огра-
ниченное время и при необходимости может быть отозван до исте-
чения срока действия. Для того чтобы пользователь получил токен,
он должен либо предоставить имя и пароль, либо имя и ключ для
доступа к API (API key). Токен также содержит список ролей, опре-
деляющих доступные пользователю полномочия.

Ресурсы (виртуальные машины, образы и т. д.) объединяются в
проекты. В документации на английском языке также ранее ис-
пользовался термин tenant, но в настоящее время он заменен на
project, интуитивно более понятный термин. Проект является кон-
тейнером, который может объединять ресурсы отдельной орга-
низации, использующей публичное облако OpenStack, отдельного
приложения или отдельного пользователя, – это вы решаете сами.

Пользователи и группы пользователей сами по себе не принад-
лежат проектам. Они получают доступ к ресурсам проектов через
назначение ролей.

С появлением третьей версии Keystone API проекты объединя-
ются в домены. Домен – это самый крупный контейнер в термино-
логии Keystone. Домены определяют пространство имен – область
видимости объектов. Например, пользователи должны быть уни-
кальны в рамках одного домена. По умолчанию Keystone создает
домен с именем Default.

Установка и настройка Keystone
Теперь после краткого знакомства с теорией перейдем к практике.
Установим пакеты сервиса, клиент openstack и дополнительный
набор скриптов, упрощающих работу openstack-utils:

[root@controller ~]# yum -y install openstack-keystone python-
openstackclient httpd mod_wsgi

Перед тем как настраивать сервис, создадим базу данных
keystone и дадим необходимые привилегии:

[root@controller ~]# mysql -u root -p
MariaDB [(none)]> CREATE DATABASE keystone;

 24 / 30

Установка и настройка Keystone    55

MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO
'keystone'@'localhost' IDENTIFIED BY 'openstack';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO
'keystone'@'%' IDENTIFIED BY 'openstack';
MariaDB [(none)]> exit

Пропишем в конфигурационном файле Keystone строку под-
ключения к базе данных:

[root@controller ~]# crudini --set /etc/keystone/keystone.conf
database connection mysql+pymysql://keystone:openstack@controller.
test.local/keystone

Далее мы должны задать формат и провайдер токенов, генери-
руемых сервисом Keystone. OpenStack поддерживает четыре фор-
мата токенов: UUID, PKI, PKIz и Fernet.

Первыми появились UUID-токены. Они представляют из себя
строку из 32 символов, которую удобно использовать в вызовах
OpenStack API, например применяя команду curl. Преимуществом
этого формата токенов является их небольшой размер, а недостат-
ком – то, что токен не содержит информации, достаточной для то-
го, чтобы произвести локальную авторизацию. Поэтому сервисы
OpenStack каждый раз должны отправлять токен сервису Keystone,
для того чтобы получить информацию, какие операции разре-
шены с этим токеном. Таким образом, постоянные обращения к
Keystone становились «бутылочным горлышком» системы в целом.

Решением этой проблемы должны были стать PKI-токены. Они
содержат всю необходимую для локальной авторизации информа-
цию и, кроме того, содержат в себе цифровую подпись и инфор-
мацию об устаревании. Таким образом, другие сервисы OpenStack
могут локально кэшировать эти токены. Такая архитектура значи-
тельно сократила трафик к Keystone, но увеличила размеры токе-
нов. Их размер мог превышать 8 Kбайт, что создавало проблемы
при работе с некоторыми веб-серверами, поскольку не все из них
по умолчанию поддерживают HTTP-заголовки такого размера, в
которых передается токен. Также большой размер токена делал
неудобным работу с curl. Попытка создать сжатый вариант под на-
званием PKIz тоже не решила проблему.

PKIZ-токены в релизе Mitaka были объявлены устаревшими и
добавлен третий тип – Fernet-токены (https://github.com/fernet/
spec). Они небольшого размера (до 255 символов), но содержат до-
статочно информации для локальной авторизации. Их не требу-

 25 / 30

https://github.com/fernet/spec
https://github.com/fernet/spec

56    Глава 3. Сервис идентификации Keystone

ется синхронизировать между регионами, для них не нужна база
данных (токены без сохранения состояния), и процесс генерации
их быстрее, чем в первых двух реализациях. Дополнительным
плюсом будет отсутствие необходимости настройки memcached.
Именно Fernet-токены мы и будем использовать. Зададим соот-
ветствующий провайдер:

[root@controller ~]# crudini --set /etc/keystone/keystone.conf token
provider fernet

Инициализируем базу данных и репозитории ключей Fernet:

[root@controller ~]# su -s /bin/sh -c "keystone-manage db_sync"
keystone
[root@controller ~]# keystone-manage fernet_setup --keystone-user
keystone --keystone-group keystone
[root@controller ~]# keystone-manage credential_setup --keystone-
user keystone --keystone-group keystone

Важным будет отметить, что по релиз OpenStack Liberty вклю-
чительно сервис идентификации для сетевого взаимодействия ис-
пользовал встроенный сервис Python Eventlet, допуская использо-
вание Apache с mod_wsgi, когда нужны лучшая масштабируемость
и безопасность. Начиная с OpenStack Mitaka (апрель 2016 года)
поддерживается только Apache. В конфигурационном файле веб-
сервера /etc/httpd/conf/httpd.conf указываем имя сервера:

[root@controller ~]# echo 'ServerName controller.test.local' >>
/etc/httpd/conf/httpd.conf

И создаем файл /etc/httpd/conf.d/wsgi-keystone.conf следующего
содержания:

Listen 5000
Listen 35357

<VirtualHost *:5000>
 WSGIDaemonProcess keystone-public processes=5 threads=1
user=keystone group=keystone display-name=%{GROUP}
 WSGIProcessGroup keystone-public
 WSGIScriptAlias / /usr/bin/keystone-wsgi-public
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LimitRequestBody 114688
 <IfVersion >= 2.4>
 ErrorLogFormat "%{cu}t %M"
 </IfVersion>

 26 / 30

Установка и настройка Keystone    57

 ErrorLog /var/log/httpd/keystone.log
 CustomLog /var/log/httpd/keystone_access.log combined

 <Directory /usr/bin>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 </Directory>
</VirtualHost>

<VirtualHost *:35357>
 WSGIDaemonProcess keystone-admin processes=5 threads=1
user=keystone group=keystone display-name=%{GROUP}
 WSGIProcessGroup keystone-admin
 WSGIScriptAlias / /usr/bin/keystone-wsgi-admin
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
 LimitRequestBody 114688
 <IfVersion >= 2.4>
 ErrorLogFormat "%{cu}t %M"
 </IfVersion>
 ErrorLog /var/log/httpd/keystone.log
 CustomLog /var/log/httpd/keystone_access.log combined

 <Directory /usr/bin>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 </Directory>
</VirtualHost>

Alias /identity /usr/bin/keystone-wsgi-public
<Location /identity>
 SetHandler wsgi-script
 Options +ExecCGI

 WSGIProcessGroup keystone-public
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
</Location>

Alias /identity_admin /usr/bin/keystone-wsgi-admin

 27 / 30

58    Глава 3. Сервис идентификации Keystone

<Location /identity_admin>
 SetHandler wsgi-script
 Options +ExecCGI

 WSGIProcessGroup keystone-admin
 WSGIApplicationGroup %{GLOBAL}
 WSGIPassAuthorization On
</Location>

Можно не набирать содержимое конфигурационного файла
вручную, а воспользоваться примером, поставляемым в пакете
openstack-keystone:

[root@controller ~]# ln -s /usr/share/keystone/wsgi-keystone.conf
/etc/httpd/conf.d/

Запускаем веб-сервер, который будет прослушивать порты 5000
и 35357:

[root@controller ~]# systemctl enable httpd.service
[root@controller ~]# systemctl start httpd.service

По команде systemctl status вы должны будете видеть десять
процессов keystone, указанных в директивах WSGIDaemonProcess:

[root@controller ~]# systemctl status httpd.service
 httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled;
vendor preset: disabled)
 Active: active (running) since Fri 2018-03-02 14:26:15 CET; 8s ago
 Docs: man:httpd(8)
 man:apachectl(8)
 Main PID: 14629 (httpd)
 Status: "Processing requests..."
 CGroup: /system.slice/httpd.service
 ├─14629 /usr/sbin/httpd -DFOREGROUND
 ├─14630 (wsgi:keystone- -DFOREGROUND
 ├─14631 (wsgi:keystone- -DFOREGROUND
 ├─14632 (wsgi:keystone- -DFOREGROUND
 ├─14633 (wsgi:keystone- -DFOREGROUND
 ├─14634 (wsgi:keystone- -DFOREGROUND
 ├─14635 (wsgi:keystone- -DFOREGROUND
 ├─14636 (wsgi:keystone- -DFOREGROUND
 ├─14637 (wsgi:keystone- -DFOREGROUND
 ├─14638 (wsgi:keystone- -DFOREGROUND
 ├─14663 (wsgi:keystone- -DFOREGROUND
 ├─14664 /usr/sbin/httpd -DFOREGROUND
 ├─14665 /usr/sbin/httpd -DFOREGROUND
 ├─14666 /usr/sbin/httpd -DFOREGROUND

 28 / 30

Установка и настройка Keystone    59

 ├─14667 /usr/sbin/httpd -DFOREGROUND
 └─14668 /usr/sbin/httpd -DFOREGROUND

Mar 02 14:26:15 controller.test.local systemd[1]: Starting The Apache
HTTP Server...
Mar 02 14:26:15 controller.test.local systemd[1]: Started The Apache
HTTP Server.

Для инициализации Keystone можно пойти двумя путями: ис-
пользовать рекомендованную разработчиками команду keystone-
manage bootstrap, которая выполнит инициализацию за нас, или
пойти более длинным путем, в целях обучения воспользовавшись
авторизационным токеном. При использовании первого варианта
синтаксис команды будет следующим:

[root@controller ~]# keystone-manage bootstrap --bootstrap-password
openstack \
 --bootstrap-admin-url http://controller:35357/v3/ \
 --bootstrap-internal-url http://controller:35357/v3/ \
 --bootstrap-public-url http://controller:5000/v3/ \
 --bootstrap-region-id RegionOne

В этом случае вы можете пропустить все команды до конца раз-
дела.

При выборе второго пути необходимо определить авторизаци-
онный токен, который необходим для первоначальной настройки.
Он будет являться общим секретом между Keystone и другими сер-
висами, а также его можно использовать, если административный
пользователь не был задан или вы забыли его пароль.

Для генерации случайного содержимого токена мы воспользу-
емся OpenSSL, а для работы с конфигурационным файлом сервиса
/etc/keystone/keystone.conf – утилитой crudini:

[root@controller ~]# export ADM_TOKEN=$(openssl rand -hex 10)
[root@controller ~]# crudini --set /etc/keystone/keystone.conf
DEFAULT admin_token $ADM_TOKEN

Обычно доступ к Keystone осуществляется при помощи имени
пользователя и пароля. Однако у нас пока пользователи не созда-
ны, и мы должны воспользоваться авторизационным токеном, соз-
данным ранее. Токен может быть передан через опции команды
keystone или при помощи переменных окружения. Для удобства
создадим скрипт keystonerc_adm, который можно будет исполь-
зовать не только для начальной настройки, но и в дальнейшем для
отладки или работы с Keystone:

 29 / 30

60    Глава 3. Сервис идентификации Keystone

unset OS_USERNAME OS_TENANT_NAME OS_PASSWORD OS_AUTH_URL OS_TOKEN OS_URL
Указываем содержимое $ADM_TOKEN
export OS_TOKEN=79fec7c50bc3ae87db49
Указываем точку входа сервиса Keystone
export OS_URL=http://controller.test.local:35357/v3
Указываем версию API
export OS_IDENTITY_API_VERSION=3

Теперь можно отдать команду:

$ source keystonerc_adm

Как упоминалось ранее, одна из функций Keystone – быть ка-
талогом доступных сервисов OpenStack. Создадим запись о самом
сервисе Keystone:

$ openstack service create --name keystone --description
"OpenStack Identity" identity
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Identity
enabled	True
id	9700a30f8eb74b3b8c96e81b0e89321a
name	keystone
type	identity
+-------------+----------------------------------+

Теперь создадим точки входа для сервиса:

$ openstack endpoint create identity public http://controller.
test.local:5000/v3 --region RegionOne
+--------------+--------------------------------------+
| Field | Value |
+--------------+--------------------------------------+
enabled	True
id	1433078144ea46b187bb696ff936adfe
interface	public
region	RegionOne
region_id	RegionOne
service_id	9700a30f8eb74b3b8c96e81b0e89321a
service_name	keystone
service_type	identity
url	http://controller.test.local:5000/v3
+--------------+--------------------------------------+	
$ openstack endpoint create identity internal http://controller.	
test.local:5000/v3 --region RegionOne	
+--------------+--------------------------------------+	
Field	Value

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Работа с пользователями, ролями и проектами в Keystone    61

+--------------+--------------------------------------+
enabled	True
id	b81cc95780254417a8df42982ed279fa
interface	internal
region	RegionOne
region_id	RegionOne
service_id	9700a30f8eb74b3b8c96e81b0e89321a
service_name	keystone
service_type	identity
url	http://controller.test.local:5000/v3
+--------------+--------------------------------------+	
$ openstack endpoint create identity admin http://controller.	
test.local:35357/v3 --region RegionOne	
+--------------+---------------------------------------+	
Field	Value
+--------------+---------------------------------------+	
enabled	True
id	0b731c9d27354f34b874b92ae2439b86
interface	admin
region	RegionOne
region_id	RegionOne
service_id	9700a30f8eb74b3b8c96e81b0e89321a
service_name	keystone
service_type	identity
url	http://controller.test.local:35357/v3
+--------------+---------------------------------------+

OpenStack поддерживает три варианта точек входа для каждого
сервиса: admin, internal и public. В промышленных инсталляциях
эти точки входа должны располагаться в различных сетях и обслу-
живать различные типы пользователей.

Обратите внимание, что ID сервиса присваивается динамиче-
ски и при выполнении команд вывод наверняка будет различать-
ся.

Также обратите внимание, что в команде мы использовали оп-
цию --region RegionOne. Мы можем создавать несколько регио-
нов в нашей облачной среде. В качестве отдельного региона можно
использовать, например, отдельный центр обработки данных. При
этом точки входа сервисов у каждого региона могут быть свои.

Работа с пользователями, ролями
и проектами в Keystone
Познакомимся на практике, как создавать проекты, пользовате-
лей и роли. Сделаем это на примере администратора, который

 1 / 30

62    Глава 3. Сервис идентификации Keystone

нам будет необходим для дальнейшего управления ресурсами
OpenStack. Обратите внимание, что если вы воспользовались ко-
мандой keystone-manage bootstrap, то домен Default, пользова-
тель и роль admin уже созданы за вас.

Первым делом создадим домен (пространство имен) Default и
в нем проект admin. Напомним, что проект – это контейнер, объ-
единяющий ресурсы облака:

$ source keystonerc_adm
$ openstack domain create --description "Default Domain" default
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Default Domain
enabled	True
id	0d4b1f2685b048639fb537f87c1e472f
name	default
+-------------+----------------------------------+	
$ openstack project create --domain default --description "Admin	
Project" admin	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	Admin Project
domain_id	0d4b1f2685b048639fb537f87c1e472f
enabled	True
id	4372600eb0b249edaeba5eda5f4dcf81
is_domain	False
name	admin
parent_id	0d4b1f2685b048639fb537f87c1e472f
+-------------+----------------------------------+

Далее создадим самого пользователя admin:

$ openstack user create --domain default --email andrey@controller.
test.local --password openstack admin
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	0d4b1f2685b048639fb537f87c1e472f
email	andrey@controller.test.local
enabled	True
id	65ec03579454407b88727eb369f3dd67
name	admin
password_expires_at	None
+---------------------+----------------------------------+

И наконец, создадим роль admin:

 2 / 30

Работа с пользователями, ролями и проектами в Keystone    63

$ openstack role create admin
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	c2ab46dd35ed44dd86749c8ffd668355
name	admin
+-----------+----------------------------------+

Роль admin присутствует в OpenStack «из коробки». Роли опи-
сываются в файле /etc/keystone/policy.json. В частности, описание
роли admin:

{
 "admin_required": "role:admin or is_admin:1"
}

Далее идет описание правил политики в формате: «служба:дейст
вие: условия». Например:

{
 "identity:list_roles": "rule:admin_required",
}

Вы можете создать и другие роли, но они не будут применяться,
пока не описаны в файле policy.json. Файлы policy.json с описани-
ем ролей и политик доступа индивидуальны для каждого сервиса и
расположены в соответствующих сервису поддиректориях дирек-
тории /etc.

Просмотреть список ролей и их идентификаторов можно ко-
мандой:

$ openstack role list
+----------------------------------+----------+
| id | name |
+----------------------------------+----------+
| 9fe2ff9ee4384b1894a90878d3e92bab | _member_ |
| f45f68589f8445699f361ba13c37623d | admin |
+----------------------------------+----------+

Создание новых ролей не является распространенной практи-
кой. Теперь собираем все вместе. Добавляем роль admin проекту и
пользователю:

$ openstack role add --project admin --user admin admin

Важно, что роль admin – глобальная. Если вы даете ее пользова-
телю в одном проекте, то вы даете ее пользователю во всем облаке.

 3 / 30

64    Глава 3. Сервис идентификации Keystone

Начиная с этого момента, мы можем продолжить работу поль-
зователем admin. Создадим скрипт keystonerc_admin следующего
содержания:

export OS_AUTH_TYPE=password
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=http://controller.test.local:35357/v3
export OS_IDENTITY_API_VERSION=3

и выполним команду

$ source keystonerc_admin

Поскольку вся необходимая для аутентификации информация
присутствует в переменных окружения, мы можем запросить то-
кен:

openstack token issue
+------------+--+
| Field | Value |
+------------+--+
expires	2018-03-02T14:59:14+0000
id	gAAAAABamViyvyadVUQSm6BL1lLIo2n8ZkVu_RaWBkPReK6kQa1g
	DtEhPPmwdXX1Pu8fjA3fXbY5fOsHxndJY-Vew6j6eroT2vQZbFuF
	r0RGf7fNj1ggvmnJ_bb0c_qnDxh9tc9LpyFL8LAv4ceHoUZI2Y7c
	bdjuPM0wZJnUV3JsWVCuwTvdWe0
project_id	7fe2a6ef08df4a749f3bad1fceb055b9
user_id	a37a67fdf3dc4e9c9e5251754b26770d
+------------+--+

Теперь перейдем к непривилегированному пользователю и про-
екту. Можно повторить команды, аналогичные ранее описанным
для проекта admin, но мы воспользуемся утилитой keystone, кото-
рая использовалась до появления клиента OpenStackClient. Чита-
телю будет полезно знакомство с утилитой keystone, если придется
работать с устаревшими версиями OpenStack. Важно отметить, что
на нашем стенде с релизом Queens и API v3 команда keystone ра-
ботать не будет. Пример приведен только для устаревших релизов:

$ keystone tenant-create --name demo --description "Demo Tenant"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+

 4 / 30

Работа с пользователями, ролями и проектами в Keystone    65

description	Demo Tenant
enabled	True
id	ebf7fa585d254c749deff6385c3e816f
name	demo
+-------------+----------------------------------+

$ keystone user-create --name demo --tenant demo --pass openstack
--email user@controller.test.local
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	user@controller.test.local
enabled	True
id	1fb056cf72d248b4a16f2227d2ff74ff
name	demo
tenantId	ebf7fa585d254c749deff6385c3e816f
username	demo
+----------+----------------------------------+

На нашем стенде две вышеприведенные команды необходимо
заменить:

$ openstack project create --domain default --description "Demo
Tenant" demo
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Demo Tenant
domain_id	default
enabled	True
id	bc10ac4b71164550a363b8098e8ad270
is_domain	False
name	demo
parent_id	default
tags	[]
+-------------+----------------------------------+	
$ openstack user create --domain default --project demo --email	
user@controller.test.local --password openstack demo	
+---------------------+----------------------------------+	
Field	Value
+---------------------+----------------------------------+	
default_project_id	bc10ac4b71164550a363b8098e8ad270
domain_id	default
email	user@controller.test.local
enabled	True
id	3b76dece42b140e092dc1a76a85c1879
name	demo
options	{}
password_expires_at	None
+---------------------+----------------------------------+

 5 / 30

66    Глава 3. Сервис идентификации Keystone

Создадим и добавим пользователю demo роль члена проекта:

$ openstack role create user
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	9fe2ff9ee4384b1894a90878d3e92bab
name	user
+-----------+----------------------------------+
$ openstack role add --project demo --user demo user

Команда keystone help или openstack help покажет список
ключей с «говорящими» именами, позволяющими просматри-
вать, удалять и создавать роли, сервисы, проекты и пользователей.
Кроме того, по аналогии с keystonerc_admin вы можете создать
скрипт для пользователя demo. Единственное отличие, помимо
имени пользователя и проекта, будет в переменной OS_AUTH_URL.
Вместо порта 35357 используйте порт 5000, предназначенный для
обычных пользователей:

export OS_AUTH_TYPE=password
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=demo
export OS_USERNAME=demo
export OS_PASSWORD=openstack
export OS_AUTH_URL=http://controller.test.local:5000/v3
export OS_IDENTITY_API_VERSION=3

Также автор рекомендовал бы добавить в каждый из файлов
keystonerc_* новое определение переменной окружения PS1, кото-
рая отвечает в bash за внешний вид приглашения. Было бы полез-
но, для того чтобы не запутаться, каким пользователем OpenStack
вы работаете, поместить в PS1 его имя или название. Например:

export PS1='[\u@\h \W(Openstack_Admin)]\$ '

и
export PS1='[\u@\h \W(Openstack_Demo)]\$ '

После команды source для такого keystonerc приглашение для
пользователя поменяется на:

[root@controller ~(Openstack_Admin)]#

или

 6 / 30

Работа с пользователями, ролями и проектами в Keystone    67

[root@controller ~(Openstack_Demo)]#

Последнее, что мы сделаем, – это подготовим специальный
проект для остальных сервисов OpenStack. Каждый сервис требу-
ет пользователя и роль администратора в специальном сервисном
контейнере:

$ openstack project create --domain default --description "Service
Project" service
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Service Project
domain_id	0d4b1f2685b048639fb537f87c1e472f
enabled	True
id	0e8406620808466590e592df819c88ee
is_domain	False
name	service
parent_id	0d4b1f2685b048639fb537f87c1e472f
+-------------+----------------------------------+

Соответствующий синтаксис команды keystone выглядит как:

$ keystone tenant-create --name service --description "Service Project"

Просмотреть список пользователей и проектов можно коман-
дами openstack user list и openstack project list. Рекомен-
дуется отключить временный механизм аутентификации по то-
кенам, в случае если вы использовали его для создания первого
пользователя admin. Для этого необходимо отредактировать файл
/usr/share/keystone/keystone-dist-paste.ini и удалить admin_token_
auth из секций [pipeline:public_api], [pipeline:admin_api] и
[pipeline:api_v3].

Итак, если вы, следуя за изложением материала, отработали
все приведенные команды, то у вас установлен и настроен сервис
идентификации Keystone, созданы три проекта – администратора,
сервисный и demo – и заведены два пользователя – demo и admin,
а также вы познакомились с устаревшей командой keystone. Еще
раз подчеркну, что если вы работаете с последними релизами
OpenStack, команда keystone вам не понадобится.

Посмотреть, какие сервисы доступны в вашем облаке, и точки
входа в эти сервисы всегда можно командой openstack catalog
list. Пока у нас будет только один сервис:

 7 / 30

68    Глава 3. Сервис идентификации Keystone

$ openstack catalog list
+----------+----------+---+
| Name | Type | Endpoints |
+----------+----------+---+
keystone	identity	RegionOne
		internal: http://controller:35357/v3/
		RegionOne
		public: http://controller:5000/v3/
		RegionOne
		admin: http://controller:35357/v3/
+----------+----------+---+

Также будет полезным знать команду openstack service list.
Она покажет сервисы и их идентификаторы. Пример с вывода коман-
ды приведен ниже. Такой вывод вы получите ближе к концу книги:

$ openstack service list
+----------------------------------+------------+-----------------+
| ID | Name | Type |
+----------------------------------+------------+-----------------+
009af6dfa02d4e238a504e6f63c940a4	heat	orchestration
27c82194ea0844ed8fbd59e9798e3337	gnocchi	metric
3345af31a7684e259ff49a17b05b9ab7	nova	compute
5eff07227f47445993898a3ae18ccb94	swift	object-store
63e493e9b9254be59056cec2ca44ddbe	keystone	identity
674b422d44fa435c9c05f5bc79293d67	aodh	alarming
717ed5d914a54a3ba8b576ea2379ffe6	cinderv3	volumev3
7a08a70288084664b770ec0d38af85e1	glance	image
a8ee318c098745d1ae81cbb0a3f36f2b	placement	placement
b186a1daee4c4147abe4d454b7431298	cinderv2	volumev2
b8068f12e01c4cb4af30dba04339bb6c	magnum	container-infra
ebb95159786f48668c5fa50a10129a89	neutron	network
+----------------------------------+------------+-----------------+

Еще одна вещь, на которую хотелось бы обратить внимание чи-
тателя, прежде чем мы пойдем дальше. В этой главе мы работали с
утилитой командной строки – клиентом keystone и openstack. Да-
лее мы столкнемся с утилитами glance, cinder, nova и др. У них
имеется полезный ключ --debug, который позволяет посмотреть,
какие вызовы OpenStack API использовались при том или ином
действии. Например:

$ openstack --debug project create --domain default --description
"My project" proj1
START with options: [u'--debug', u'project', u'create', u'--domain',
u'default', u'--description', u'My project', u'proj1']
options: Namespace(access_key='', access_secret='***', access_

 8 / 30

Работа с пользователями, ролями и проектами в Keystone    69

token='***', access_token_endpoint='', access_token_type='',
application_credential_id='', application_credential_name='',
application_credential_secret='***', auth_type='', auth_
url='http://controller.test.local:35357/v3', cacert=None,
cert='', client_id='', client_secret='***', cloud='', code='',
consumer_key='', consumer_secret='***', debug=True, default_
domain='default', default_domain_id='', default_domain_name='',
deferred_help=False, discovery_endpoint='', domain_id='',
domain_name='', endpoint='', identity_provider='', insecure=None,
interface='', key='', log_file=None, openid_scope='', os_beta_
command=False, os_compute_api_version='', os_identity_api_
version='3', os_image_api_version='2', os_network_api_version='',
os_object_api_version='', os_project_id=None, os_project_
name=None, os_volume_api_version='', passcode='', password='***',
profile='', project_domain_id='', project_domain_name='Default',
project_id='', project_name='admin', protocol='', redirect_
uri='', region_name='', remote_project_domain_id='', remote_
project_domain_name='', remote_project_id='', remote_project_
name='', service_provider='', system_scope='', timing=False,
token='***', trust_id='', url='', user_domain_id='', user_domain_
name='Default', user_id='', username='admin', verbose_level=3,
verify=None)
...
GET call to identity for http://controller:35357/v3/domains/
default used request id req-4c0ac864-29e1-4d54-b6a7-b210cb6e7094
REQ: curl -g -i -X POST http://controller:35357/v3/projects
-H "User-Agent: python-keystoneclient" -H "Content-Type:
application/json" -H "Accept: application/json" -H "X-Auth-Token:
{SHA1}fd96ae3da4410fe6dc21791332c3b5ab734a78f2" -d '{"project":
{"enabled": true, "description": "My project", "name": "proj1",
"domain_id": "default"}}'
http://controller:35357 "POST /v3/projects HTTP/1.1" 201 289
RESP: [201] Date: Fri, 02 Mar 2018 14:34:06 GMT Server:
Apache/2.4.6 (CentOS) mod_wsgi/3.4 Python/2.7.5 Vary: X-Auth-
Token x-openstack-request-id: req-37c2237c-e157-483f-9f91-
7d0b195d1d46 Content-Length: 289 Keep-Alive: timeout=5, max=99
Connection: Keep-Alive Content-Type: application/json
RESP BODY: {"project": {"is_domain": false, "description": "My
project", "links": {"self": "http://controller:35357/v3/projects/
26aa317a74aa43a5bf40513a6fbbea28"}, "tags": [], "enabled": true,
"id": "26aa317a74aa43a5bf40513a6fbbea28", "parent_id": "default",
"domain_id": "default", "name": "proj1"}}

POST call to identity for http://controller:35357/v3/projects
used request id req-37c2237c-e157-483f-9f91-7d0b195d1d46
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | My project |
| domain_id | default |

 9 / 30

70    Глава 3. Сервис идентификации Keystone

enabled	True
id	26aa317a74aa43a5bf40513a6fbbea28
is_domain	False
name	proj1
parent_id	default
tags	[]
+-------------+----------------------------------+
clean_up CreateProject:
END return value: 0

Далее по адресу https://developer.openstack.org/api-guide/quick-
start/index.html можно ознакомиться со справочниками API.
В данном случае нас интересует раздел «Identity API v3» и вызов
«Create project».

 10 / 30

https://developer.openstack.org/api-guide/quick-start/index.html
https://developer.openstack.org/api-guide/quick-start/index.html

Глава 4
Сервис хранения

образов Glance

Название: OpenStack Image Service (Glance)
Назначение: каталог образов виртуальных машин
Пакет: openstack-glance
Имена сервисов: openstack-glance-registry, openstack-glance-api
Порт: 9292/tcp
Конфигурационные файлы: /etc/glance/glance-registry.conf, /etc/
glance/glance-api.conf
Файлы журнала: /var/log/glance/api.log, /var/log/glance/registry.log

Сервис Glance отвечает за ведение каталога, регистрацию и до-
ставку образов виртуальных машин. Как правило, эти образы вы-
полняют роль шаблонов и требуют дополнительной настройки
после запуска виртуальной машины. Glance можно назвать реа-
лизацией проекта «образы виртуальных машин как сервис». При
этом Glance не реализует фактического хранения образов, а через
один из адаптеров использует в качестве бэкэнда ту или иную си-
стему хранения данных. Это может быть как локальная файловая
система (используется по умолчанию и описывается в этой главе),
NFS, GlusterFS, так и рассматриваемые в дальнейших главах объ-
ектное хранилище Swift или блочное Ceph.

Метаданные образов, такие как размер, формат, имя и т. д., хра-
нятся в базе данных.

Glance поддерживает целый ряд форматов хранения образов
виртуальных машин: vhd, vmdk, vdi, iso, qcow2, ami и др. В качест
ве образов могут также выступать ядро и initrd-файл, которые при
запуске виртуальной машины необходимо связывать вместе. Так-
же необходимо отметить, что хотя утилиты OpenStack допускают
указание формата контейнера (bare, aki, ovf…), в настоящее вре-

 11 / 30

72    Глава 4. Сервис хранения образов Glance

мя поддержка контейнеров для образов виртуальных машин в
OpenStack отсутствует.

Сервис включает в себя две службы:

�� glance-api – предоставляет доступ к REST API сервиса об-
разов для поиска, хранения и получения образов;

�� glance-registry – хранит, обрабатывает и предоставляет
информацию. Непосредственно пользователи не взаимо-
действуют с этим сервисом, поэтому в реальной промыш-
ленной среде доступ к нему должен быть ограничен только
сервисами Glance.

Взаимодействие с другими сервисами и архитектура Glance
приведены на рис. 4.1.

Рис. 4.1. Архитектура Glance

Процедура получения образа гипервизором при запуске вир-
туальной машины зависит от бэкэнда, но обычно выглядит сле-
дующим образом. Nova отправляет GET-запрос по адресу http://
путь-к-сервису-glance/images/идентификатор-образа. В случае ес-
ли образ найден, то glance-api возвращает URL, ссылающийся на
образ. Nova передает ссылку драйверу гипервизора, который на-
прямую скачивает образ.

 12 / 30

Установка и настройка сервиса Glance    73

Установка и настройка сервиса Glance
Для своей работы Glance требует работающий сервис Keystone и
базу данных для хранения метаданных об образах. Мы в качестве
базы данных будем использовать уже установленную MariaDB.

Для начала выполним команды, знакомые нам из предыдущей
главы. Создадим пользователя glance:

$ source keystonerc_admin
$ openstack user create --domain default --password openstack glance
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	b8de68858b00440bb98b6b1541466794
name	glance
options	{}
password_expires_at	None
+---------------------+----------------------------------+

Затем присвоим роль admin пользователю glance в проекте
service и создадим сам сервис glance:

$ openstack role add --project service --user glance admin
$ openstack service create --name glance --description "OpenStack
Image service" image
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Image service
enabled	True
id	7a08a70288084664b770ec0d38af85e1
name	glance
type	image
+-------------+----------------------------------+

Наконец, создадим для сервиса точки входа по аналогии с ранее
созданной точкой для Keystone. Обратите внимание, что в этом
случае все три URL совпадают:

$ openstack endpoint create --region RegionOne image public
http://controller.test.local:9292
+--------------+-----------------------------------+
| Field | Value |
+--------------+-----------------------------------+
| enabled | True |
| id | bc261fcf9c54499f9b8dca58ccd0f20e |

 13 / 30

74    Глава 4. Сервис хранения образов Glance

interface	internal
region	RegionOne
region_id	RegionOne
service_id	7a08a70288084664b770ec0d38af85e1
service_name	glance
service_type	image
url	http://controller.test.local:9292
+--------------+-----------------------------------+

$ openstack endpoint create --region RegionOne image internal
http://controller.test.local:9292
+--------------+-----------------------------------+
| Field | Value |
+--------------+-----------------------------------+
enabled	True
id	c1e61498fd1a49c1979df288a3a2cfdf
interface	internal
region	RegionOne
region_id	RegionOne
service_id	4569bd1eccb348e787700603cdd94b10
service_name	glance
service_type	image
url	http://controller.test.local:9292
+--------------+-----------------------------------+

$ openstack endpoint create --region RegionOne image admin
http://controller.test.local:9292
+--------------+-----------------------------------+
| Field | Value |
+--------------+-----------------------------------+
enabled	True
id	b465f9d8795c404884eeeefbb328633f
interface	admin
region	RegionOne
region_id	RegionOne
service_id	7a08a70288084664b770ec0d38af85e1
service_name	glance
service_type	image
url	http://controller.test.local:9292
+--------------+-----------------------------------+

На данный момент у нас должны быть точки входа на два сервиса:

$ openstack endpoint list
+------+-----------+--------------+--------------+---------+-----------+---------------------------------------+
| ID | Region | Service Name | Service Type | Enabled | Interface | URL |
+------+-----------+--------------+--------------+---------+-----------+---------------------------------------+
0b..	RegionOne	keystone	identity	True	admin	http://controller.test.local:35357/v3
14..	RegionOne	keystone	identity	True	public	http://controller.test.local:5000/v3
b8..	RegionOne	keystone	identity	True	internal	http://controller.test.local:5000/v3

 14 / 30

Установка и настройка сервиса Glance    75

bf..	RegionOne	glance	image	True	public	http://controller.test.local:9292
c1..	RegionOne	glance	image	True	internal	http://controller.test.local:9292
f0..	RegionOne	glance	image	True	admin	http://controller.test.local:9292
+------+-----------+--------------+--------------+---------+-----------+---------------------------------------+

При использовании устаревшей команды keystone для создания
точки входа необходимо указывать идентификатор сервиса,
например взятый из вывода команды создания сервиса. Пример
команды:

$ keystone endpoint-create \
> --service-id 6a35c051d3f44cdfba24e0598e9b0152 \
> --publicurl http:// controller.test.local:9292 \
> --internalurl http:// controller.test.local:9292 \
> --adminurl http:// controller.test.local:9292
+-------------+---------------------------------------+
| Property | Value |
+-------------+---------------------------------------+
| adminurl | http:// controller.test.local:9292 |
| id | d4bc5b058eb74142ad4df0b3b98b6b1a |
| internalurl | http:// controller.test.local:9292 |
| publicurl | http:// controller.test.local:9292 |
| region | regionOne |
| service_id | 6a35c051d3f44cdfba24e0598e9b0152 |
+-------------+---------------------------------------+

Теперь можно установить необходимые пакеты:

[root@controller ~]# yum -y install openstack-glance

Создадим базу данных. Первым делом подключимся как поль-
зователь root:

[root@controller ~]# mysql -u root -p
Enter password: openstack

После чего необходимо непосредственно создать базу данных

MariaDB [(none)]> CREATE DATABASE glance;

и выдать на нее правильные права:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON glance.* TO
'glance'@'localhost' IDENTIFIED BY 'glance';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON glance.* TO
'glance'@'%' IDENTIFIED BY 'glance';

Теперь необходимо обновить настройки в конфигурационных
файлах обоих сервисов. Для начала прописываем строку подклю-
чения к базе данных:

 15 / 30

76    Глава 4. Сервис хранения образов Glance

[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf database connection mysql+pymysql://glance:glance@controller.
test.local/glance
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
database connection mysql+pymysql://glance:glance@controller.test.
local/glance

И завершаем настройку базы данных:

[root@controller ~]# su -s /bin/sh -c "glance-manage db_sync" glance

Далее укажем проект, предназначенный для сервисов, имя
пользователя в keystone и пароль для glance-api. Напомним, все
сервисы OpenStack группируются в специальный сервисный про-
ект, который мы создали в предыдущей главе и назвали service.
В качестве пароля везде, за исключением MariaDB, мы используем
«openstack».

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
paste_deploy flavor keystone
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken auth_type password
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken project_domain_name default
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken project_name service
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken username glance
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
keystone_authtoken password openstack

Теперь в секции [glance_store] укажем, что мы используем ло-
кальную файловую систему, и место расположения файлов образов:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store default_store file
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store filesystem_store_datadir /var/lib/glance/images/

Нужно отметить, что Glance одновременно поддерживает не-
сколько хранилищ для образов виртуальных машин. То, где соз-
дается образ, зависит от приоритета и свободного места на диске.

 16 / 30

Установка и настройка сервиса Glance    77

Например, если бы у нас в /var/lib/glance/images/ были бы смонти-
рованы два диска, мы могли бы указать их с разным приоритетом:
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store filesystem_store_datadirs /var/lib/glance/images/
mountA/:10
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store filesystem_store_datadirs /var/lib/glance/images/
mountB/:20

Обратите внимание, что в данном случае указана опция
filesystem_store_datadirs, а не filesystem_store_datadir.

Продолжим настройку. Те же настройки keystone, что мы задава-
ли для glance-api, укажем и для glance-registry:

[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf paste_deploy flavor keystone
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken auth_uri http://controller.test.
local:5000
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken auth_url http://controller.test.
local:35357
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken auth_type password
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken project_domain_name default
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken project_name service
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken username glance
[root@controller ~]# crudini --set /etc/glance/glance-registry.
conf keystone_authtoken password openstack

Добавляем в конфигурационные файлы информацию по серви-
су RabbitMQ:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
DEFAULT rabbit_password openstack
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
DEFAULT rabbit_userid openstack
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
DEFAULT rabbit_host controller.test.local

На этом этапе могут стартовать сервисы:
[root@controller ~]# systemctl start openstack-glance-registry
[root@controller ~]# systemctl enable openstack-glance-registry

 17 / 30

78    Глава 4. Сервис хранения образов Glance

[root@controller ~]# systemctl start openstack-glance-api
[root@controller ~]# systemctl enable openstack-glance-api

После чего нужно убедиться в отсутствии ошибок в файлах жур-
налов /var/log/glance/*.

Подготовка образов виртуальных
машин
Для того чтобы проверить работу нашего сервиса, мы воспользу-
емся образом CirrOS – минималистской операционной системой
GNU/Linux, специально созданной для запуска в облаке (https://
launchpad.net/cirros). Для выполнения следующих команд вам не-
обходимо предварительно установить пакеты wget и qemu-img-ev.
Размер образа – всего лишь 13 Мб:

$ wget -P /tmp http://download.cirros-cloud.net/0.4.0/cirros-
0.4.0-x86_64-disk.img

При необходимости установите пакет wget. Проверим образ при
помощи утилиты qemu-img:

$ qemu-img info /tmp/cirros-0.4.0-x86_64-disk.img
image: /tmp/cirros-0.4.0-x86_64-disk.img
file format: qcow2
virtual size: 44M (46137344 bytes)
disk size: 12M
cluster_size: 65536
Format specific information:
 compat: 1.1
 lazy refcounts: false
 refcount bits: 16
 corrupt: false

В выводе команды:

�� file format – формат диска;
�� virtual size – размер диска виртуальной машины;
�� disk size – действительный размер файла;
�� cluster_size – размер блока (кластера) qcow;
�� format specific information – специфичная для формата

информация. В данном случае версия формата qcow2. В на-
шем примере указано compat: 1.1. Это означает новую
версию образа qcow2, который поддерживается начиная
с QEMU 1.1.

 18 / 30

https://launchpad.net/cirros
https://launchpad.net/cirros

Подготовка образов виртуальных машин    79

Нужно отметить, что в составе официальной документации
OpenStack работе с образами посвящено отдельное руководство –
OpenStack Virtual Machine Image Guide (http://docs.openstack.org/
image-guide/content/). Документ содержит как обзор средств авто-
матизированного создания образов, так и примеры их создания
вручную.

В качестве примера рассмотрим работу с утилитой Oz (https://
github.com/clalancette/oz/wiki).

Это утилита командной строки написана на Python. Hа Linux-
машине с гипервизором KVM и сервисом libvirtd позволяет созда-
вать образы виртуальных машин с минимальным вмешательством
пользователя. Для этого Oz использует заранее подготовленные
файлы ответов неинтерактивной установки операционной систе-
мы. Например, для установки Windows используются файлы от-
ветов unattended setup, для CentOS – kickstart-файлы и т. д. Фай-
лы ответов для различных операционных систем расположены в
директории /usr/lib/python2.7/site-packages/oz/auto/. Их можно и
нужно редактировать, например для выбора правильной времен-
ной зоны. В качестве инструкций сам Oz требует файлов в формате
Template Description Language (TDL). Это XML-файлы, описываю-
щие, какая операционная система устанавливается, где находится
дистрибутив, какие дополнительные изменения необходимо внес
ти в образ.

Не рекомендуется запуск утилиты на тех же узлах, где раз-
вернуты сервисы OpenStack. Во время работы утилита запускает
виртуальную машину, в которой и производится установка опера-
ционной системы по вашим инструкциям TDL шаблона с исполь-
зованием общих файлов ответов.

В CentOS и Fedora установка утилиты производится командой
yum -y install oz

Для Ubuntu в стандартных репозиториях пакета нет, поэтому
вам нужно либо установить утилиту из исходных кодов, либо са-
мостоятельно собрать пакет. Убедимся в том, что определена сеть
libvirtd, используемая по умолчанию. Если вывод команды virsh
net-list не покажет нам сеть default, то определим ее и зададим
автозапуск сети:

virsh net-define /usr/share/libvirt/networks/default.xml
Network default defined from /usr/share/libvirt/networks/default.xml
virsh net-autostart default

 19 / 30

http://docs.openstack.org/image-guide/content/
http://docs.openstack.org/image-guide/content/
https://github.com/clalancette/oz/wiki
https://github.com/clalancette/oz/wiki

80    Глава 4. Сервис хранения образов Glance

Network default marked as autostarted
virsh net-list
 Name State Autostart Persistent
--
 default active yes yes

Конфигурационный файл утилиты по умолчанию – /etc/oz/
oz.cfg. Зададим в качестве типа образа формат qcow2 вместо raw:

crudini --set /etc/oz/oz.cfg libvirt image_type qcow2

Теперь нам потребуется TDL-шаблон. Примеры поставляются с
утилитой и располагаются в /usr/share/doc/oz-*/examples. Исполь-
зуем самый простейший, в котором определяются только путь к
дистрибутиву и пароль пользователя root:

$ cat my-template.tdl
<template>
<name>CentOS-7</name>
<os>
<name>CentOS-7</name>
<version>1</version>
<arch>x86_64</arch>
<rootpw>openstack</rootpw>
<install type='url'>
<url>http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/</url>
</install>
</os>
<disk>
<size>20</size>
</disk>
</template>

Из полезных секций, которые можно найти в примерах, можно
отметить: <packages>, <repositories>, <files> и <commands>. Со-
ответственно: установка пакетов, добавление репозиториев, соз-
дание файлов и выполнение команд. Есть секции, специфичные
для операционных систем. В качестве примера можно назвать
ключи активации для Windows.

Запускаем утилиту:

oz-install -d 2 -t 4000 my-template.tdl
Libvirt network without a forward element, skipping
Checking for guest conflicts with CentOS-7
Fetching the original media
Fetching the original install media from http://centos-mirror.rbc.
ru/pub/centos/7/os/x86_64/images/pxeboot/vmlinuz
Fetching the original media

 20 / 30

http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/
http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/vmlinuz
http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/vmlinuz
http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/vmlinuz

Подготовка образов виртуальных машин    81

Fetching the original install media from http://centos-mirror.rbc.
ru/pub/centos/7/os/x86_64/images/pxeboot/initrd.img
Generating 20GB diskimage for CentOS-7
Running install for CentOS-7
Generate XML for guest CentOS-7 with bootdev None
Install of CentOS-7 succeeded
Generate XML for guest CentOS-7 with bootdev hd
Cleaning up after install
Libvirt XML was written to CentOS-7Sep_30_2015-00:31:23

Ключ -t 3000 говорит о том, через сколько секунд инсталлятор
должен прервать установку. Также установка прервется, если в те-
чение 300 секунд не было дисковой активности.

Ключ -d показывает уровень сообщений об ошибках. Для более
подробного вывода укажите вместо двойки тройку.

Далее, вне зависимости, используете ли вы OZ или самостоя
тельно готовите образ виртуальной машины, например при по-
мощи virt-builder из пакета libguestfs-tools, необходимо или
вручную, или при помощи утилиты virt-sysprep из того же па-
кета убрать специфичную для конкретного экземпляра машины
информацию. Для систем Windows можно воспользоваться ути-
литой sysprep. Пример использования утилиты virt-sysprep
для образа с CentOS:

virt-sysprep -a /var/lib/libvirt/images/centos7.0-1.qcow2
[0.0] Examining the guest ...
[54.4] Performing "abrt-data" ...
[54.4] Performing "bash-history" ...
...
[54.5] Setting a random seed
[54.9] Performing "lvm-uuids" ...

Те же действия можно произвести и вручную. Приведем пример
основных шагов для CentOS:

�� Необходимо удалить или заменить на localhost.localdomain
содержимое параметра HOSTNAME в файле cat /etc/
sysconfig/network.

�� Следует убедиться, что в файлах всех сетевых адаптеров,
кроме интерфейса короткой петли, в параметре BOOTPROTO
указан DHCP и отсутствуют привязки к MAC-адресам (пара-
метр HWADDR). Имена конфигурационных файлов – /etc/
sysconfig/network-scripts/ifcfg-*.

�� Необходимо удалить SSH-ключи узла. Удалите /etc/ssh/ssh_
host_* и /etc/ssh/moduli.

 21 / 30

http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/initrd.img
http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/initrd.img
http://centos-mirror.rbc.ru/pub/centos/7/os/x86_64/images/pxeboot/initrd.img

82    Глава 4. Сервис хранения образов Glance

�� Удалите файлы ls /etc/udev/rules.d/*persistent*, отвечающие
за именование сетевых устройств.

�� Убедитесь, что отсутствуют специфичные для сервисов
keytab-файлы Kerberos и SSL- сертификаты.

Еще одна полезная утилита virt-sparsify позволяет умень-
шить размер образа, превратив его в «тонкий диск/файл» (thin-
provisioned/sparse). При запуске необходимо указать изначальный
образ и создаваемый «тонкий»:

virt-sparsify /var/lib/libvirt/images/centos7.0-1.qcow2 /var/
lib/libvirt/images/centos7.0-2.qcow2
[0.2] Create overlay file in /tmp to protect source disk
[0.4] Examine source disk
[1.9] Fill free space in /dev/centos/root with zero 100%
▒▒ 00:00
[38.2] Clearing Linux swap on /dev/centos/swap
[40.6] Fill free space in /dev/sda1 with zero 100%
▒▒ --:--
[43.3] Fill free space in volgroup centos with zero
[64.6] Copy to destination and make sparse
[112.2] Sparsify operation completed with no errors.
virt-sparsify: Before deleting the old disk, carefully check that
the target disk boots and works correctly.

Сравним размеры исходного и полученного образов:
ls -lh /var/lib/libvirt/images/centos7.0-1.qcow2 /var/lib/libvirt/
images/centos7.0-2.qcow2
-rw-------. 1 qemu qemu 11G Jan 23 21:17 /var/lib/libvirt/images/
centos7.0-1.qcow2
-rw-r--r--. 1 root root 961M Jan 23 21:21 /var/lib/libvirt/images/
centos7.0-2.qcow2

При необходимости изменить готовый образ виртуальной ма-
шины вы можете воспользоваться утилитой guestfish:
yum -y install guestfish

Утилита содержит встроенную подсказку и достаточно простые
команды. Ниже приведен пример для редактирования файла /etc/
issue внутри образа:

guestfish -a ubuntu_image.img

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands

 22 / 30

Работаем с образами виртуальных машин    83

 'man' to read the manual
 'quit' to quit the shell

><fs> run
 100% ▒▒ 00:00
><fs> list-filesystems
/dev/sda1: ext4
><fs> mount /dev/sda1 /
><fs> edit /etc/issue
><fs> cat /etc/issue
Ubuntu 15.10
modified
><fs> exit

Работаем с образами виртуальных
машин
Снова вернемся к нашему сервису и дистрибутиву cirros. Прежде
чем продолжить работу, добавим в оба рабочих файла keystonerc_*
переменную среды, определяющую версию Glance API, с которой
мы будем работать:

export OS_IMAGE_API_VERSION=2

При помощи команды openstack загрузим образ cirros в наш
сервис. При этом укажем формат образа и то, что этот образ будет
доступен во всех проектах, то есть будет публичным. Доступность
образа (публичный или непубличный) позже при необходимости
можно поменять. Загружаем образ:

$ openstack image create "cirros-0.4.0-x86_64" --file /tmp/cirros-0.4.0-
x86_64-disk.img --disk-format qcow2 --container-format bare --public
+------------------+--+
| Field | Value |
+------------------+--+
checksum	443b7623e27ecf03dc9e01ee93f67afe
container_format	bare
created_at	2018-03-02T15:27:23Z
disk_format	qcow2
file	/v2/images/c8ccc9b3-29bb-4220-be38-8f261ac8b99a/file
id	c8ccc9b3-29bb-4220-be38-8f261ac8b99a
min_disk	0
min_ram	0
name	cirros-0.4.0-x86_64
owner	7fe2a6ef08df4a749f3bad1fceb055b9
protected	False
schema	/v2/schemas/image

 23 / 30

84    Глава 4. Сервис хранения образов Glance

size	12716032
status	active
tags	
updated_at	2018-03-02T15:27:24Z
virtual_size	None
visibility	public
+------------------+--+

Если возникли ошибки, проверьте файлы журнала сервиса less
/var/log/glance/*. По умолчанию сервис в качестве бэкэнда исполь-
зует локальную файловую систему. Проверим:

[root@controller ~]# ls -l /var/lib/glance/images/
total 12420
-rw-r----- 1 glance glance 12716032 Mar 2 16:27 c8ccc9b3-29bb-
4220-be38-8f261ac8b99a

Далее мы продолжим пользоваться командой openstack, но об-
ратите внимание, что взаимодействовать с сервисом можно при
помощи клиента glance:

$ glance image-create --name "cirros-0.4.0-x86_64" --file /tmp/
cirros-0.4.0-x86_64-disk.img --disk-format qcow2 --container-format
bare --visibility public

Как мы видим, наш образ был загружен в директорию /var/lib/
glance/images/ под именем, совпадающим с идентификатором об-
раза. Просмотрим список доступных образов, к которым должен
был добавиться наш новый cirros:

$ openstack image list
+--------------------------------------+---------------------+--------+
| ID | Name | Status |
+--------------------------------------+---------------------+--------+
| c8ccc9b3-29bb-4220-be38-8f261ac8b99a | cirros-0.4.0-x86_64 | active |
+--------------------------------------+---------------------+--------+

Просмотреть подробную информацию по образу можно при по-
мощи команды:

$ openstack image show cirros-0.4.0-x86_64
+------------------+--+
| Field | Value |
+------------------+--+
checksum	443b7623e27ecf03dc9e01ee93f67afe
container_format	bare
created_at	2018-03-02T15:27:23Z
disk_format	qcow2

 24 / 30

Работаем с образами виртуальных машин    85

file	/v2/images/c8ccc9b3-29bb-4220-be38-8f261ac8b99a/file
id	c8ccc9b3-29bb-4220-be38-8f261ac8b99a
min_disk	0
min_ram	0
name	cirros-0.4.0-x86_64
owner	7fe2a6ef08df4a749f3bad1fceb055b9
protected	False
schema	/v2/schemas/image
size	12716032
status	active
tags	
updated_at	2018-03-02T15:27:24Z
virtual_size	None
visibility	public
+------------------+--+

К этому моменту образ готов для создания виртуальных машин.
Как это делать, мы познакомимся в дальнейших главах, когда уста-
новим службы Nova и Neutron.

За счет своего малого размера CirrOS обладает очень ограни-
ченным функционалом и рекомендуется только для тестирования
облачных сервисов. Большинство сборщиков дистрибутивов GNU/
Linux предоставляет готовые к использованию в облаке OpenStack
образы. Вот ссылки на некоторые из них:

�� Ubuntu: http://cloud-images.ubuntu.com/;
�� Fedora: https://cloud.fedoraproject.org/;
�� Debian: http://cdimage.debian.org/cdimage/openstack/;
�� CentOS: http://cloud.centos.org/centos/7/.

Ориентированные на работу в облаке с контейнерами:

�� CoreOS: https://coreos.com/os/docs/latest/booting-on-openstack.
html;

�� Project Atomic: http://www.projectatomic.io/download/.
При помощи команды openstack можно выполнять другие дейст

вия. Например, загрузим и сохраним локально образ из glance:

$ openstack image save cirros-0.4.0-x86_64 > cirros-0.4.0-x86_64-
disk.img
$ ls -l cirros-0.4.0-x86_64-disk.img
-rw-r--r-- 1 root root 12716032 Mar 2 16:42 cirros-0.4.0-x86_64-
disk.img

Вместе с образом вы можете хранить произвольные метадан-
ные, которые потом могут быть затребованы другими сервисами

 25 / 30

http://cloud-images.ubuntu.com/
https://cloud.fedoraproject.org/
http://cdimage.debian.org/cdimage/openstack/
http://cloud.centos.org/centos/7/images/
https://coreos.com/os/docs/latest/booting-on-openstack.html
https://coreos.com/os/docs/latest/booting-on-openstack.html
http://www.projectatomic.io/download/

86    Глава 4. Сервис хранения образов Glance

или утилитами. Также можно определять метаданные просто для
идентификации образа. Например:

$ openstack image set --property os_name=linux --property contact_
person="Andrey Markelov" cirros-0.4.0-x86_64
$ openstack image show cirros-0.4.0-x86_64
+------------------+--+
| Field | Value |
+------------------+--+
checksum	443b7623e27ecf03dc9e01ee93f67afe
container_format	bare
created_at	2018-03-02T15:27:23Z
disk_format	qcow2
file	/v2/images/c8ccc9b3-29bb-4220-be38-8f261ac8b99a/file
id	c8ccc9b3-29bb-4220-be38-8f261ac8b99a
min_disk	0
min_ram	0
name	cirros-0.4.0-x86_64
owner	7fe2a6ef08df4a749f3bad1fceb055b9
properties	contact_person=’Andrey Markelov’, os_name=’linux’
protected	False
schema	/v2/schemas/image
size	12716032
status	active
tags	
updated_at	2018-03-02T15:38:46Z
virtual_size	None
visibility	public
+------------------+--+

При необходимости удалить те или иные метаданные можно
воспользоваться командой

$ openstack image unset --property os_name --property contact_
person cirros-0.4.0-x86_64

 26 / 30

Глава 5
Сервис блочного

хранилища Cinder

Название: OpenStack Block Storage (Cinder)
Назначение: сервис блочного хранилища
Пакет: openstack-cinder
Имена сервисов: openstack-cinder-api, openstack-cinder-scheduler,
openstack-cinder-volume, openstack-cinder-backup
Порт: 3260/tcp (iscsi-target), 8776/tcp
Конфигурационный файл: /etc/cinder/cinder.conf
Файлы журнала: /var/log/cinder/*

В состав базовых проектов OpenStack входят два принципиаль-
но разных сервиса хранения информации. OpenStack Swift, рас-
сматриваемый в следующей главе, представляет из себя объект-
ное хранилище, подобное Amazon S3. В этой главе мы разберемся
с сервисом OpenStack Cinder, похожим на Amazon EBS.

Архитектура Cinder
Когда сервис Nova, рассматриваемый в седьмой главе, получает
образ виртуальной машины из сервиса Glance, образ копируется
на локальный диск вычислительного узла, где работает Nova, и из
образа запускается виртуальная машина. Между перезагрузками
виртуальной машины изменения, произведенные на файловой
системе, сохраняются в локальной копии образа, которая по умол-
чанию хранится в /var/lib/nova/instances. В тот момент, когда вир-
туальная машина удаляется, ее оперативные данные пропадают, и
у нас остается только то, что изначально содержалось в образе. Со-
ответственно, необходимо хранилище постоянной информации,
где данные сохранялись бы между перезагрузками или в случае
сбоя узла с запущенными виртуальными машинами. Такое храни-

 27 / 30

88    Глава 5. Сервис блочного хранилища Cinder

лище и предоставляет сервис Cinder – «блочное хранилище дан-
ных как сервис».

Помимо функционирования в качестве постоянного дополни-
тельного хранилища для виртуальных машин без сохранения со-
стояния, Cinder также может использоваться в качестве устройства
начальной загрузки. Кроме того, можно создавать снимки томов,
доступные в режиме «только чтение». В дальнейшем их можно ис-
пользовать для создания новых томов, доступных на запись.

Блочные устройства можно одновременно подключать к не-
скольким виртуальным машинам. Однако, чтобы обеспечить це-
лостность данных, они должны быть либо подключены в режиме
«только чтение», либо поверх блочного устройства должна быть
создана кластерная файловая система.

Архитектура Cinder представлена на рис. 5.1.

Рис. 5.1. Архитектура Cinder

Сервис состоит из четырех служб:

�� openstack-cinder-api – точка входа для запросов в сервис
по протоколу HTTP. Приняв запрос, сервис проверяет пол-
номочия на выполнение запроса и переправляет запрос
брокеру сообщений для доставки другим службам;

�� openstack-cinder-scheduler – сервис-планировщик при-
нимает запросы от брокера сообщений и определяет, какой

 28 / 30

Настройка сервисов Cinder    89

узел с сервисом openstack-cinder-volume должен обработать
запрос;

�� openstack-cinder-volume – сервис отвечает за взаимодей-
ствие с бэкэндом – блочным устройством. Получает за-
просы от планировщика и транслирует непосредственно в
хранилище. Cinder позволяет одновременно использовать
несколько бэкэндов. При этом для каждого из них запуска-
ется свой openstack-cinder-volume. И при помощи парамет
ров CapacityFilter и CapacityWeigher можно управлять тем,
какой бэкэнд выберет планировщик;

�� openstack-cinder-backup – сервис отвечает за создание ре-
зервных копий томов в объектное хранилище.

Существует множество драйверов cinder для всевозможных си-
стем хранения данных (СХД), как программных, так и аппаратных.
Матрица совместимости доступна по адресу https://wiki.openstack.
org/wiki/CinderSupportMatrix.

Настройка сервисов Cinder
Обычно внедряют много узлов с сервисом openstack-cinder-volume,
которые непосредственно отвечают за доступ к данным, и не-
сколько управляющих, обеспечивающих доступ к API и планиров-
щику. Мы продолжим развертывать все службы на управляющем
узле controller.test.local. Как самый простой вариант в качестве
блочного устройства будем использовать Linux LVM, а для досту-
па протокол iSCSI. Для этого необходимо либо создать дополни-
тельный диск, либо использовать свободное пространство на уже
имеющемся. Поскольку предполагается, что мы работаем с вирту-
альной машиной, проще всего добавить еще один диск средствами
используемой вами системы виртуализации. Если бы сервисы бы-
ли разнесены по узлам, то эти действия мы бы выполняли только
на серверах, где планируется запуск openstack-cinder-volume.

На свободном разделе выполняем команды по созданию LVM-
группы. Физический том LVM создастся автоматически:
[root@controller ~]# vgcreate cinder-volumes /dev/vdb1
 Physical volume "/dev/vdb1" successfully created
 Volume group "cinder-volumes" successfully created

Устанавливаем пакеты Cinder:
[root@controller ~]# yum -y install openstack-cinder

 29 / 30

https://wiki.openstack.org/wiki/CinderSupportMatrix
https://wiki.openstack.org/wiki/CinderSupportMatrix

90    Глава 5. Сервис блочного хранилища Cinder

Внесем необходимые настройки. Начнем со строки подключе-
ния к базе данных:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf database
connection mysql+pymysql://cinder:cinder@controller.test.local/cinder

Укажем местоположение брокера сообщений, имя и пароль
пользователя RabbitMQ, а также реквизиты пользователя и проек-
та в Keystone:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf DEFAULT
transport_url rabbit://openstack:openstack@controller.test.local

Как и раньше, мы используем в качестве пароля «openstack», а
проект для служебных пользователей называется service:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf DEFAULT
auth_strategy keystone
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken project_name service
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken project_domain_name default
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken auth_type password
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken username cinder
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken password openstack
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
keystone_authtoken auth_url http://controller.test.local:35357

По умолчанию Cinder использует в качестве хранилища именно
LVM. Укажем имя группы томов LVM, в которой будут создаваться
блочные устройства Cinder:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf lvm
volume_group cinder-volumes

Указываем бэкэнд и параметр volume_driver:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf DEFAULT
enabled_backends lvm
[root@controller ~]# crudini --set /etc/cinder/cinder.conf lvm
volume_driver cinder.volume.drivers.lvm.LVMVolumeDriver

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Настройка сервисов Cinder    91

Этот драйвер и отвечает за хранение данных при помощи ло-
кального менеджера логических томов и протокола транспорта
iSCSI. В главе, посвященной Ceph, мы в том числе заменим этот
драйвер на соответствующий Ceph.

Задаем параметры iSCSI:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf lvm
iscsi_protocol iscsi
[root@controller ~]# crudini --set /etc/cinder/cinder.conf lvm
iscsi_helper lioadm

Указываем расположение API сервиса Glance:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf DEFAULT
glance_api_servers http://controller.test.local:9292

И путь к lock-файлу:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf oslo_
concurrency lock_path /var/lib/cinder/tmp

Теперь выполняем уже знакомые по сервисам Glance и Keystone
операции. Создаем базу данных:

mysql -u root -p
Enter password: openstack
MariaDB [(none)]> CREATE DATABASE cinder;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO
'cinder'@'localhost' IDENTIFIED BY 'cinder';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON cinder.* TO
'cinder'@'%' IDENTIFIED BY 'cinder';

Подготавливаем базу данных:
[root@controller ~]# su -s /bin/sh -c "cinder-manage db sync" cinder

Заводим пользователя в Keystone и добавляем роль администра-
тора в проекте service:

$ source keystonerc_admin
$ openstack user create --domain default --password openstack cinder
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	86c5aa25bb134478bcaa9f67fcd0feb2
name	cinder
options	{}

 1 / 30

92    Глава 5. Сервис блочного хранилища Cinder

| password_expires_at | None |
+---------------------+----------------------------------+
$ openstack role add --project service --user cinder admin

Или то же самое, используя команду keystone в старых версиях
OpenStack:

$ keystone user-create --name cinder --pass openstack
$ keystone user-role-add --user cinder --role admin --tenant service

Теперь нам нужно, в отличие от ранее рассмотренных служб
OpenStack, создать целых два сервиса: cinderv2 и cinderv3. Это связано
с тем, что в настоящий момент параллельно используются две версии
Cinder API. До версии Newton также использовалась первая версия:

openstack service create --name cinderv2 --description "OpenStack
Block Storage" volumev2
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Block Storage
enabled	True
id	b186a1daee4c4147abe4d454b7431298
name	cinderv2
type	volumev2
+-------------+----------------------------------+	
$ openstack service create --name cinderv3 --description "OpenStack	
Block Storage" volumev3	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	OpenStack Block Storage
enabled	True
id	717ed5d914a54a3ba8b576ea2379ffe6
name	cinderv3
type	volumev3
+-------------+----------------------------------+

Создаем по три точки входа API для обоих сервисов:

$ openstack endpoint create --region RegionOne volumev2 public
http://controller:8776/v2/%\(project_id\)s
$ openstack endpoint create --region RegionOne volumev2 internal
http://controller:8776/v2/%\(project_id\)s
$ openstack endpoint create --region RegionOne volumev2 admin
http://controller:8776/v2/%\(project_id\)s

$ openstack endpoint create --region RegionOne volumev3 public
http://controller:8776/v3/%\(project_id\)s

 2 / 30

Настройка сервисов Cinder    93

$ openstack endpoint create --region RegionOne volumev3 internal
http://controller:8776/v3/%\(project_id\)s
$ openstack endpoint create --region RegionOne volumev3 admin
http://controller:8776/v3/%\(project_id\)s

Теперь устанавливаем и настраиваем сервис iSCSI. Опять же,
если бы мы разносили сервисы по узлам, то эти действия мы вы-
полняли бы только на серверах, где планируется запуск openstack-
cinder-volume:

[root@controller ~]# yum -y install targetcli
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
DEFAULT my_ip 192.168.122.200
[root@controller ~]# crudini --set /etc/cinder/cinder.conf
DEFAULT enabled_backends lvm
[root@controller ~]# systemctl enable target.service
[root@controller ~]# systemctl start target.service

Задаем автоматический старт сервисов Cinder после перезагрузки:

[root@controller ~]# systemctl enable openstack-cinder-api
[root@controller ~]# systemctl enable openstack-cinder-scheduler
[root@controller ~]# systemctl enable openstack-cinder-volume
[root@controller ~]# systemctl enable openstack-cinder-backup

Для разнообразия запустить все сервисы можно воспользовать-
ся скриптом openstack-service, предварительно установив пакет
openstack-utils:

[root@controller ~]# yum -y install openstack-utils
[root@controller ~]# openstack-service start cinder

Заодно познакомимся с еще одним удобным скриптом
openstack-status. Он должен показать ряд общей информации о
службах OpenStack, в том числе то, что все четыре сервиса Cinder
запущены:

openstack-status
== Glance services ==
openstack-glance-api: active
openstack-glance-registry: active
== Keystone service ==
openstack-keystone: inactive (disabled on boot)
== Cinder services ==
openstack-cinder-api: active
openstack-cinder-scheduler: active
openstack-cinder-volume: active
openstack-cinder-backup: active

 3 / 30

94    Глава 5. Сервис блочного хранилища Cinder

== Support services ==
mariadb: active
dbus: active
target: active
rabbitmq-server: active
== Keystone users ==
+----------------------------------+--------+
| ID | Name |
+----------------------------------+--------+
3b76dece42b140e092dc1a76a85c1879	demo
86c5aa25bb134478bcaa9f67fcd0feb2	cinder
a37a67fdf3dc4e9c9e5251754b26770d	admin
b8de68858b00440bb98b6b1541466794	glance
+----------------------------------+--------+	
== Glance images ==	
+--------------------------------------+---------------------+	
ID	Name
+--------------------------------------+---------------------+	
c8ccc9b3-29bb-4220-be38-8f261ac8b99a	cirros-0.4.0-x86_64
+--------------------------------------+---------------------+

Скрипт, как вы видите, в выводе указывает, что openstack-keysto
ne не запущен. Это нормально, поскольку данный сервис не исполь-
зуется. Вместо openstack-keystone мы используем Apache с mod_wsgi.
Также можно воспользоваться командой cinder service-list:

cinder service-list
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+
| Binary | Host | Zone | Status | State | Updated_at | Disabled Reason |
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+
cinder-backup	controller.test.local	nova	enabled	down	2018-03-02T17:31:31.000000	-
cinder-scheduler	controller.test.local	nova	enabled	up	2018-03-02T17:39:43.000000	-
cinder-volume	controller.test.local@lvm	nova	enabled	up	2018-03-02T17:39:49.000000	-
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+

Как можно заметить, сервис cinder-backup находится в состоя-
нии down. На данном этапе это нормально. Проверим журнал /var/
log/cinder/backup.log:

2018-03-02 18:39:42.821 19623 ERROR oslo.service.loopingcall
"Could not determine which Swift endpoint to use. This "
2018-03-02 18:39:42.821 19623 ERROR oslo.service.loopingcall
BackupDriverException: Backup driver reported an error: Could
not determine which Swift endpoint to use. This can either be
set in the service catalog or with the cinder.conf config option
'backup_swift_url'.

Как мы видим, мы не задали конечную точку сервиса объектно-
го хранилища Swift. Далее, когда мы добавим этот сервис в наше
окружение, мы исправим эту проблему.

 4 / 30

Создание и удаление томов Cinder    95

Создание и удаление томов Cinder
Подробнее про работу с томами мы поговорим в девятой гла-
ве. Пока в нашем стенде не хватает основного потребителя услуг
Cinder – сервиса Nova. Поэтому познакомимся только с базовыми
операциями. Попробуем создать том с именем testvol1 размером
1 Гб:

$ openstack volume create --size 1 testvol1
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2018-03-02T17:48:27.000000
description	None
encrypted	False
id	4e8227bf-8b45-4eb1-a4db-c7a5ea5703ac
migration_status	None
multiattach	False
name	testvol1
properties	
replication_status	None
size	1
snapshot_id	None
source_volid	None
status	creating
type	None
updated_at	None
user_id	a37a67fdf3dc4e9c9e5251754b26770d
+---------------------+--------------------------------------+

Соответствующий синтаксис команды cinder выглядит следую
щим образом:

$ cinder create --display-name testvol1 1

Команды cinder list или openstack volume list (ей мы не мо-
жем воспользоваться, пока не создали сервис Nova) покажут нам,
что том действительно создан, но пока не подключен ни к одному
из экземпляров виртуальных машин:

$ cinder list
+------+-----------+--------------+------+-------------+----------+-------------+
| ID | Status | Display Name | Size | Volume Type | Bootable | Attached to |

 5 / 30

96    Глава 5. Сервис блочного хранилища Cinder

+------+-----------+--------------+------+-------------+----------+-------------+
| 4e.. | available | testvol1 | 1 | – | false | |
+------+-----------+--------------+------+-------------+----------+-------------+

Ну и под конец убедимся, что действительно была использована
LVM-группа cinder-volumes:

[root@controller ~]# vgs
 VG #PV #LV #SN Attr VSize VFree
 centos 1 3 0 wz--n- <99.00g 4.00m
 cinder-volumes 1 2 0 wz--n- <10.00g 484.00m

и на ней создан том размером 1 Гб с именем, содержащим id тома
из вывода команды cinder:

[root@controller ~]# lvs
 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert
 home centos -wi-ao---- 45.99g
 root centos -wi-ao---- 50.00g
 swap centos -wi-ao---- 3.00g
 cinder-volumes-pool cinder-volumes twi-aotz-- 9.50g 0.00 0.62
 volume-4e8227bf-8b45-4eb1-a4db-c7a5ea5703ac cinder-volumes Vwi-a-tz-- 1.00g cinder-volumes-pool 0.00

При наличии сервиса Nova (с ним мы познакомимся в седьмой
главе) подключить имеющийся том к запущенному экземпляру
виртуальной машины и начать использовать этот том как блочное
устройство можно при помощи команды nova volume-attach, на-
пример:

$ nova volume-attach myinstance1 be61dc8a-3a08-4ab9-996f-3ef00db28f0d
/dev/vdb
+----------+--------------------------------------+
| Property | Value |
+----------+--------------------------------------+
device	/dev/vdb
id	be61dc8a-3a08-4ab9-996f-3ef00db28f0d
serverId	5f333f08-60ba-4b0b-80d3-de2f03125c28
volumeId	82711b99-cce1-45e4-8b7e-b91301d65dc8
+----------+--------------------------------------+

Через некоторое время в выводе команд cinder list или
openstack volume list статус тома изменится на «in-use», что
означает готовность к работе:

$ cinder list
+------+--------+--------------+------+-------------+----------+-------------+
| ID | Status | Display Name | Size | Volume Type | Bootable | Attached to |

 6 / 30

Создание и удаление томов Cinder    97

+------+--------+--------------+------+-------------+----------+-------------+
| be.. | in-use | testvol1 | 1 | None | false | 5f333f08-.. |
+------+--------+--------------+------+-------------+----------+-------------+

Те же действия можно проделать и при помощи команды
openstack:

$ openstack server add volume myinstance1 testvol1
$ openstack volume list
+------+--------------+--------+------+--------------------------------------+
| ID | Display Name | Status | Size | Attached to |
+------+--------------+--------+------+--------------------------------------+
| be.. | testvol1 | in-use | 1 | Attached to myinstance1 on /dev/vdb |
+------+--------------+--------+------+--------------------------------------+

Отключить том можно командой openstack server remove
volume или nova volume-detach, а удалить – командой cinder de-
lete.

Внешний вид окна управления томами Cinder в веб-интерфейсе
приведен на рис. 5.2.

Рис. 5.2. Управление томами Cinder

 7 / 30

Глава 6
Объектное хранилище

Swift

Название: OpenStack Object Storage
Назначение: объектное хранилище
Пакеты: openstack-swift-*
Имена сервисов: openstack-swift-object, openstack-swift-account,
openstack-swift-container, openstack-swift-proxy
Порты: по умолчанию 8080, 6000, 6001, 6002, 873(rsync)
Конфигурационные файлы: /etc/swift/*
Файлы журнала: журнал системы /var/log/messages

Объектное хранилище Swift – один из двух самых первых серви-
сов OpenStack. Swift – это программно определяемое хранилище
(software-defined storage, SDS), работающее с объектами.

Объектное хранилище, в отличие от файлового или блочного,
предоставляет доступ не к файлам и блочным устройствам, а к объ-
ектам в едином пространстве имен. У объектного хранилища есть
свой API, и обычно доступ к объектам осуществляется по прото-
колу HTTP. Такое хранилище абстрагирует объекты от их физиче-
ского расположения и позволяет осуществлять масштабирование
без привязки к физической инфраструктуре хранилища. Также
преимуществом объектного хранилища является возможность рас-
пределять запросы по большому числу серверов, хранящих данные.

Нужно отметить, что Swift является стабильным и зрелым про-
дуктом. Такие компании, как HP, Symantec, Softlayer, OVH, Hudson
Alpha Biotech и Dreamworks, поддерживают в промышленной экс-
плуатации кластеры размерами в петабайты.

Основные свойства архитектуры Swift:

�� линейная масштабируемость;
�� отсутствие узлов с эксклюзивными ролями;

 8 / 30

Архитектура Swift    99

�� механизмы репликации и самовосстановления. По умол-
чанию у каждого объекта три реплики. Соответственно, не
требуется RAID-массив на узлах хранения;

�� поддержка больших объектов (по умолчанию до пяти гигабайт);
�� архитектура Swift обеспечивает «консистентность в конеч-
ном счете» (англоязычный термин – eventually consistent).
Этот термин обозначает, что в отсутствие изменений дан-
ных в конечном счете все запросы будут возвращать по-
следнее обновленное значение. То есть, когда вы загру-
жаете объект в кластер, вы получаете подтверждение, что
объект записан, когда придут подтверждения от двух узлов.
Остальные узлы получат объект «в конечном счете». Самый
распространенный пример подобной службы – DNS.

Нужно отметить, что объектное хранилище используется при-
ложениями, а не виртуальными машинами самими по себе. Объ-
ектное хранилище, как правило, нужно, если необходимо разде-
лять большой объем данных. Если объем небольшой, то, возможно,
проще воспользоваться технологиями GlusterFS, OCFS2 или GFS2.

Архитектура Swift
Логическая структура Swift состоит из трех уровней.

�� Учетная запись (account) – соответствует понятию «про-
ект» в других сервисах OpenStack. Важно не путать учетную
запись Swift с пользователем. Учетная запись сама может
включать в себя множество пользователей. Ее можно срав-
нить с отдельной файловой системой, на которой распола-
гаются директории-контейнеры.

�� Контейнер – принадлежит учетной записи. Можно пред-
ставлять себе контейнер как директорию, которой принад-
лежат файлы – объекты. Но, в отличие от директорий, струк-
тура контейнеров «плоская». Контейнеры не могут быть
вложенными.

�� Объект – единица хранения в Swift. Объектом может быть что
угодно: видеофайл, образ виртуальной машины, doc-файл и
т. д. С объектом также могут быть связаны метаданные.

Каждый объект можно уникально идентифицировать по имени:

/Учетная_записьX/КонтейнерY/объектZ

 9 / 30

100    Глава 6. Объектное хранилище Swift

Физическая структура Swift не пересекается с логической и со-
стоит из следующих компонентов:

�� регион – соответствует одной площадке или центру обработки
данных. Если кластер содержит несколько регионов, то Swift
будет пытаться прочитать данные из ближайшего, основывая
свое решение на задержке при передаче данных. Во время
записи по умолчанию Swift пишет информацию во все регио-
ны одновременно. Каждый регион имеет свою точку входа API;

�� зона – набор серверов в регионе, характеризующийся об-
щим компонентом доступности, например набор стоек, за-
вязанных на одну линию питания, серверы, подключенные
к одной паре коммутаторов, лезвия в одной корзине и т. п.
Как правило, в кластере – несколько зон. Документация
OpenStack рекомендует создавать минимум пять зон;

�� серверы – отдельные серверы, хранящие данные;
�� диски – диски серверов хранения.

Объекты хранятся как файлы на дисках с файловой системой,
позволяющей хранить расширенные атрибуты файлов. Рекомен-
дуются ext4 и XFS. Также рекомендуется достаточно большой раз-
мер inode (индексного дескриптора) для целей хранения метадан-
ных. Например, можно задать размер, начиная от 1024.

Теперь рассмотрим, какие сервисы обслуживают Swift. Сервисы
могут работать на всех узлах, или под отдельные сервисы выде-
ляются отдельные узлы. Зачастую openstack-swift-proxy выносится
на отдельные узлы, а три остальных сервиса работают на всех узлах
кластера.

�� openstack-swift-proxy – данный сервис отвечает за комму-
никацию Swift с клиентами по протоколу HTTP и за распре-
деление запросов на чтение и запись между узлами.

�� openstack-swift-account – сервис отвечает за поддержку баз
данных SQLite, содержащих информацию о контейнерах, до-
ступных конкретной учетной записи. Для каждой учетной
записи создается своя база данных, и точно так же, как и объ-
екты, базы данных реплицируются внутри кластера.

�� openstack-swift-container – сервис отвечает за поддержку
баз данных, содержащих информацию об объектах, имею-
щихся в каждом контейнере. Для каждого контейнера соз-
дается своя база данных SQLite. Базы данных реплицируют-
ся внутри кластера.

 10 / 30

Подготовка дополнительных серверов лабораторного окружения    101

�� openstack-swift-object – отвечает за хранение, доставку и
удаление объектов, сгруппированных в логические группы,
называемые разделами на дисках узла. Важно, что разделы
в терминологии Swift – это не разделы диска. Раздел – это
директория на файловой системе, поддерживающей рас-
ширенные атрибуты файлов. Примеры таких файловых
систем: XFS или ext4. Объекты хранятся в поддиректори-
ях директории-раздела. Для идентификации объекта ис-
пользуется MD5-хэш пути к объекту. Метаданные, такие
как, например, метка последнего доступа, хранятся в рас-
ширенных атрибутах файловой системы. Сервис позволяет
хранить несколько версий одного и того же объекта, а также
его срок хранения.

Помимо перечисленных сервисов, существует ряд периодиче-
ски запускающихся процессов, в том числе:

�� репликатор. Процесс отвечает за целостность данных. Ре-
пликацией обеспечивается то, что на всех серверах и дис-
ках, на которых должен располагаться объект, присутствует
его последняя версия. Для сравнения объектов репликатор
использует хэш-функцию, а для копирования файлов –
Linux-демон rsyncd;

�� аудитор. Процесс периодически рассчитывает MD5-суммы
файлов и сравнивает их с хранящимися в метаданных. Если
обнаруживается расхождение, то файл помещается в специ-
альную директорию на карантин, а при следующей репли-
кации создается новая целостная копия файла;

�� процесс удаления учетных записей. Удаляет учетную запись
и связанные с ней контейнеры и объекты;

�� процессы обновления контейнеров и объектов;
�� процесс, отвечающий за автоматическое удаление объектов
по прошествии определенного времени. Это позволяет за-
давать «срок жизни объектов».

Подготовка дополнительных серверов
лабораторного окружения
Для установки сервиса OpenStack Swift мы используем три допол-
нительные виртуальные машины, каждой из которых мы выделим
по 1 Гб оперативной памяти. Для промышленной эксплуатации

 11 / 30

102    Глава 6. Объектное хранилище Swift

этого, конечно, мало, но для отработки материала главы достаточ-
но.

Рис. 6.1. Схема стенда Swift

Серверу sw1.test.local назначим роль Swift proxy, а два остав-
шихся – sw2 и sw3 – мы будем использовать в качестве серверов
хранения. Для начала установим на все три виртуальные машины
CentOS в варианте минимальной установки и настроим репозито-
рии, как указано во второй главе в разделе «Подготовка CentOS 7
к использованию дистрибутива RDO». Кроме того, необходимо
убедиться, что все четыре виртуальные машины могут разрешать
имена друг друга и между ними есть IP-связанность. В отсутствие
DNS-сервера можно просто реализовать это через общий файл
/etc/hosts.

Наконец, проделаем уже знакомые нам шаги. Создаем пользо-
вателя, добавляем его с ролью admin в проект service, создаем сер-
вис и с использованием идентификатора сервиса создаем точку

 12 / 30

Установка сервиса Swift-proxy    103

входа в сервис. Обратите внимание, что точка входа располагается
на сервере sw1:

$ source keystonerc_admin
$ openstack user create --domain default --password openstack swift
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	d2d83c0cbab24ba7ac7eaecd487b677d
name	swift
options	{}
password_expires_at	None
+---------------------+----------------------------------+
$ openstack role add --project service --user swift admin
$ openstack service create --name swift --description "OpenStack
Object Storage" object-store
$ openstack endpoint create --region RegionOne object-store
public http://sw1.test.local:8080/v1/AUTH_%\(project_id\)s
$ openstack endpoint create --region RegionOne object-store
internal http://sw1.test.local:8080/v1/AUTH_%\(project_id\)s
$ openstack endpoint create --region RegionOne object-store admin
http://sw1.test.local:8080/v1

Теперь можно подключиться к виртуальной машине, где мы бу-
дем настраивать сервис Swift-proxy, – sw1.test.local.

Установка сервиса Swift-proxy
Первым делом установим необходимые пакеты на виртуальную
машину sw1.test.local:

[root@sw1 ~]# yum -y install openstack-swift-proxy python-swiftclient
python-keystoneclient python-keystonemiddleware memcached crudini

В конфигурационном файле прокси пропишем сервер Keystone
и другие атрибуты, необходимые для подключения к сервису
идентификации. С этими настройками мы знакомы по предыду-
щим главам:

[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken paste.filter_factory keystonemiddleware.auth_
token:filter_factory
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken auth_uri http://controller.test.local:5000
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf

 13 / 30

104    Глава 6. Объектное хранилище Swift

filter:authtoken auth_url http://controller.test.local:35357
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken auth_type password
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken project_domain_id default
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken user_domain_id default
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken project_name service
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken username swift
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken password openstack
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:authtoken delay_auth_decision True

Определим, какие роли имеют право изменять данные в учет-
ной записи (проекте):

[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:keystoneauth operator_roles admin,user
[root@sw1 ~]# crudini --set /etc/swift/proxy-server.conf
filter:keystoneauth use egg:swift#keystoneauth

Остальные параметры оставляем по умолчанию. В частности,
местоположение сервиса memcached (memory cache daemon) –
базы данных в памяти для кэширования информации клиентов,
прошедших аутентификацию.

Установка узлов хранения Swift
Устанавливаем необходимые пакеты на две оставшиеся виртуаль-
ные машины sw2.test.local и sw3.test.local. Команды нужно выпол-
нять на обоих серверах:

[root@sw2 и 3~]# yum -y install openstack-swift-account
openstack-swift-container openstack-swift-object crudini rsync

Каждой из двух виртуальных машин добавим по два локальных
диска и на каждом из них создадим по одному разделу. Два выбе-
рем для упрощения стенда. Имена блочных устройств зависят от
системы виртуализации и типа эмулируемого устройства. В случае
KVM VirtIO это /dev/vdb и /dev/vdc. Создадим на обоих разделах
виртуальных машин sw2 и sw3 файловую систему XFS:

[root@sw2 и 3~]# mkfs.xfs /dev/vdb1
[root@sw2 и 3~]# mkfs.xfs /dev/vdc1

 14 / 30

Установка узлов хранения Swift    105

Файловые системы необходимо смонтировать в поддиректории
/srv/node:

[root@sw2 и 3~]# mkdir -p /srv/node/vd{b,c}1
[root@sw2 и 3~]# echo "/dev/vdb1 /srv/node/vdb1 xfs noatime,nodi
ratime,nobarrier,logbufs=8 0 2" >> /etc/fstab
[root@sw2 и 3~]# echo "/dev/vdc1 /srv/node/vdc1 xfs noatime,nodi
ratime,nobarrier,logbufs=8 0 2" >> /etc/fstab
[root@sw2 и 3~]# mount -a
[root@sw2 и 3~]# chown -R swift:swift /srv/node/

Если вы не отключили SELinux, то восстановите контекст на ди-
ректорию /srv/node:

[root@sw2 и 3 ~]# restorecon -vR /srv

Для того чтобы Swift выполнял репликацию, необходимо на-
строить демон rsyncd. Создаем на обоих узлах файл /etc/rsyncd.
conf следующего содержания:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = IP-адрес узла
[account]
max connections = 25
path = /srv/node/
read only = false
lock file = /var/lock/account.lock
[container]
max connections = 25
path = /srv/node/
read only = false
lock file = /var/lock/container.lock
[object]
max connections = 25
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

Ознакомиться со значением параметров конфигурационного
файла можно на man-странице rsyncd.conf (5). Запускаем и акти-
вируем сервис:

[root@sw2 и 3~]# systemctl enable rsyncd.service
[root@sw2 и 3~]# systemctl start rsyncd.service

 15 / 30

106    Глава 6. Объектное хранилище Swift

Опять же, если вы оставили включенным SELinux, вам необхо-
димо выполнить команду:

[root@sw2 и 3~]# setsebool -P rsync_full_access 1

Проверяем работу демона rsync для обоих серверов, подставив
соответствующий IP-адрес:

[root@sw2 и 3~]# rsync IP-адрес::
[root@sw2 и 3~]# rsync IP-адрес::object
[root@sw2 и 3~]# rsync IP-адрес::account
[root@sw2 и 3~]# rsync IP-адрес::container

Теперь на каждом из двух узлов необходимо создать по три кон-
фигурационных файла оставшихся сервисов. Для управления кон-
фигурацией сервисов Swift используем систему Paste.deploy (http://
pythonpaste.org/deploy/). Значения опций описаны на странице
http://docs.openstack.org/developer/swift/deployment_guide.html.
Конфигурационный файл /etc/swift/account-server.conf:

[DEFAULT]
bind_ip = IP-адрес сервера
bind_port = 6202
user = swift
workers = 2
swift_dir = /etc/swift
devices = /srv/node
[pipeline:main]
pipeline = healthcheck recon account-server
[app:account-server]
use = egg:swift#account
[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

[filter:healthcheck]
use = egg:swift#healthcheck
[account-replicator]
[account-auditor]
[account-reaper]

Конфигурационный файл /etc/swift/object-server.conf:

[DEFAULT]
bind_ip = IP-адрес сервера
bind_port = 6200
user = swift
swift_dir = /etc/swift

 16 / 30

http://pythonpaste.org/deploy/
http://pythonpaste.org/deploy/
http://docs.openstack.org/developer/swift/deployment_guide.html

Установка узлов хранения Swift    107

devices = /srv/node
workers = 3
[pipeline:main]
pipeline = healthcheck recon object-server
[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift
[app:object-server]
use = egg:swift#object
[filter:healthcheck]
use = egg:swift#healthcheck
[object-replicator]
[object-updater]
[object-auditor]

Конфигурационный файл /etc/swift/container-server.conf:

[DEFAULT]
bind_ip = IP-адрес сервера
bind_port = 6201
user = swift
swift_dir = /etc/swift
devices = /srv/node
workers = 2
[pipeline:main]
pipeline = healthcheck recon container-server
[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift
[app:container-server]
use = egg:swift#container
[filter:healthcheck]
use = egg:swift#healthcheck
[container-replicator]
[container-updater]
[container-auditor]
[container-sync]

Обратите внимание, что, несмотря на то что в начале главы ав-
тор указал, что для служб Swift используются порты 600X, в кон-
фигурационных файлах указаны 620X. Это связано с тем, что в
дистрибутиве RDO рекомендованы и используются в компоненте
openstack-puppet-modules именно эти порты. Разработчики обо-
сновывают такой сдвиг конфликтом с X-сервером. С учетом того,
что в тестовой среде действительно может одновременно работать
графический сервер и Swift, это справедливо. Кроме того, именно
порты 620X описаны по умолчанию в политике SELinux, что будет
важно для вас, если вы не стали отключать эту подсистему.

 17 / 30

108    Глава 6. Объектное хранилище Swift

Создание сервисных колец Swift
Следующим шагом настройки нам необходимо создать файлы сер-
висных колец (ring files). Эти файлы сопоставляют имена объек-
тов их физическому местоположению. Создается по одному файлу
для каждого объекта, контейнера и учетной записи. Каждый диск
делится на разделы, каждый из которых представляет собой ди-
ректорию. Рекомендуется от 100 разделов на диск. Для того чтобы
определить, в каком разделе должен располагаться файл объекта,
вычисляется хэш-функция по алгоритму MD5, и далее часть этого
хэша используется как идентификатор раздела.

При создании файла кольца один из требуемых параметров –
это число битов, используемых для определения раздела. Для
определения числа битов проще всего прикинуть максимальное
число дисков в кластере. Например, при 100 разделах на диске и
5000 дисков общее число разделов будет 5000 × 100 = 500 000. Для
такого числа разделов надо определить ближайшую степень числа
два, большую, чем 500 тысяч. Это будет 17, поскольку 2^17 = 524 288.
Это число мы и будем использовать в качестве первого параметра
утилиты swift-ring-builder при создании файлов колец. Вторым
параметром задается число реплик файла (рекомендуется мини-
мум 3), и, наконец, минимальное число часов, по прошествии ко-
торых раздел можно перемещать.

Проделываем шаги один раз на узле sw1. Пример показан для
кольца account, и в качестве первого параметра мы возьмем чис-
ло 10:

[root@sw1 ~]# cd /etc/swift/
[root@sw1 swift]# swift-ring-builder account.builder create 10 3 1

Теперь добавляем каждый из двух дисков на узлах sw2 и sw3,
указывая их IP-адреса, выполнив команду swift-ring-builder
add четыре раза.

[root@sw1 swift]# swift-ring-builder account.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6202 --device vdb1 --weight 100
Device d0r1z1-192.168.122.62:6202R192.168.122.62:6202/vdb1_"" with
100.0 weight got id 0
[root@sw1 swift]# swift-ring-builder account.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6202 --device vdc1 --weight 100
Device d1r1z1-192.168.122.62:6202R192.168.122.62:6202/vdc1_"" with
100.0 weight got id 1
[root@sw1 swift]# swift-ring-builder account.builder add --region 1

 18 / 30

Создание сервисных колец Swift    109

--zone 2 --ip 192.168.122.63 --port 6202 --device vdb1 --weight 100
Device d2r1z2-192.168.122.63:6202R192.168.122.63:6202/vdb1_""
with 100.0 weight got id 2
[root@sw1 swift]# swift-ring-builder account.builder add --region 1
--zone 2 --ip 192.168.122.63 --port 6202 --device vdc1 --weight 100
Device d3r1z2-192.168.122.63:6202R192.168.122.63:6202/vdc1_"" with
100.0 weight got id 3

Проверяем содержимое кольца:

[root@sw1 swift]# swift-ring-builder account.builder
account.builder, build version 5, id ff5952030739462a9bfcc860793825fa
1024 partitions, 3.000000 replicas, 1 regions, 2 zones, 4 devices, 0.00 balance, 0.00 dispersion
The minimum number of hours before a partition can be reassigned is 1 (0:59:46 remaining)
The overload factor is 0.00% (0.000000)
Ring file account.ring.gz is up-to-date
Devices: id region zone ip address:port replication ip:port name weight partitions balance flags meta
 0 1 1 192.168.122.62:6202 192.168.122.62:6202 vdb1 100.00 768 0.00
 1 1 1 192.168.122.62:6202 192.168.122.62:6202 vdc1 100.00 768 0.00
 2 1 2 192.168.122.63:6202 192.168.122.63:6202 vdb1 100.00 768 0.00
 3 1 2 192.168.122.63:6202 192.168.122.63:6202 vdc1 100.00 768 0.00

Распределяем разделы по устройствам в кольце:

[root@sw1 swift]# swift-ring-builder account.builder rebalance

Затем подобные же команды повторяем для колец container
и object. После этого копируем файлы колец на обе виртуальные
машины sw2 и sw3:

[root@sw1 swift]# swift-ring-builder container.builder create 10 3 1
[root@sw1 swift]# swift-ring-builder container.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6201 --device vdb1 --weight 100
[root@sw1 swift]# swift-ring-builder container.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6201 --device vdc1 --weight 100
[root@sw1 swift]# swift-ring-builder container.builder add --region 1
--zone 2 --ip 192.168.122.63 --port 6201 --device vdb1 --weight 100
[root@sw1 swift]# swift-ring-builder container.builder add --region 1
--zone 2 --ip 192.168.122.63 --port 6201 --device vdc1 --weight 100
[root@sw1 swift]# swift-ring-builder container.builder rebalance

[root@sw1 swift]# swift-ring-builder object.builder create 10 3 1
[root@sw1 swift]# swift-ring-builder object.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6200 --device vdb1 --weight 100
[root@sw1 swift]# swift-ring-builder object.builder add --region 1
--zone 1 --ip 192.168.122.62 --port 6200 --device vdc1 --weight 100
[root@sw1 swift]# swift-ring-builder object.builder add --region 1
--zone 2 --ip 192.168.122.63 --port 6200 --device vdb1 --weight 100
[root@sw1 swift]# swift-ring-builder object.builder add --region 1
--zone 2 --ip 192.168.122.63 --port 6200 --device vdc1 --weight 100

 19 / 30

110    Глава 6. Объектное хранилище Swift

[root@sw1 swift]# swift-ring-builder object.builder rebalance

[root@sw1 swift]# scp *.ring.gz sw2:/etc/swift/
[root@sw1 swift]# scp *.ring.gz sw3:/etc/swift/

Завершение настройки
В файл /etc/swift/swift.conf необходимо добавить два случайных
параметра, которые следует держать в секрете. Они играют роль
аналога «соли» файла /etc/shadow и будут добавляться к имени
объекта для предотвращения DoS-атаки. Если злоумышленник бу-
дет знать значение этих параметров, то он сможет узнать реальное
расположение объектов в разделах Swift.

[root@sw1 swift]# crudini --set /etc/swift/swift.conf swift-hash
swift_hash_path_suffix $(openssl rand -hex 10)
[root@sw1 swift]# crudini --set /etc/swift/swift.conf swift-hash
swift_hash_path_prefix $(openssl rand -hex 10)

Копия этого файла должна быть на каждом сервере:

[root@sw1 swift]# scp /etc/swift/swift.conf sw2:/etc/swift/swift.conf
[root@sw1 swift]# scp /etc/swift/swift.conf sw3:/etc/swift/swift.conf

Теперь убедимся, что все конфигурационные файлы на всех сер-
верах принадлежат корректному пользователю и группе:

[root@sw1, 2 и 3 swift]#chown -R swift:swift /etc/swift

Наконец, командой systemctl enable и systemctl start ак-
тивируем и запускаем на сервере sw1 сервисы openstack-swift-
proxy.service и memcached.service, а на серверах sw2 и sw3 це-
лых двенадцать сервисов:

openstack-swift-account.service
openstack-swift-account-auditor.service
openstack-swift-account-reaper.service
openstack-swift-account-replicator.service

openstack-swift-container.service
openstack-swift-container-auditor.service
openstack-swift-container-replicator.service
openstack-swift-container-updater.service

openstack-swift-object.service
openstack-swift-object-auditor.service

 20 / 30

Работа с сервисом Swift    111

openstack-swift-object-replicator.service
openstack-swift-object-updater.service

Работа с сервисом Swift
Проверим функционирование сервиса, подключившись как поль-
зователь demo:

$ source keystonerc_demo
$ swift stat
 Account: AUTH_bc10ac4b71164550a363b8098e8ad270
 Containers: 0
 Objects: 0
 Bytes: 0
 X-Put-Timestamp: 1520072733.93450
 X-Timestamp: 1520072733.93450
 X-Trans-Id: tx9586054aea924ae2b2a38-005a9a781d
 Content-Type: text/plain; charset=utf-8
X-Openstack-Request-Id: tx9586054aea924ae2b2a38-005a9a781d

Теперь можно попробовать загрузить в сервис Swift файл. При
этом автоматически создадим контейнер test-cont1:
$ swift upload test-cont1 /etc/hosts
/etc/hosts

Проверим список контейнеров и объектов:
$ swift list
test-cont1
$ swift list test-cont1
etc/hosts

Загрузим объект в текущую рабочую директорию:

$ swift download test-cont1
etc/hosts [auth 0.520s, headers 0.530s, total 0.531s, 0.055 MB/s]
$ cat etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
...

Подключившись к серверам sw2 и sw3, поищем в директориях
/srv/node файлы, заканчивающиеся на .data, – в них хранятся объ-
екты. Поскольку у нас всего один объект и для каждого объекта
должно быть три реплики, суммарно на обоих серверах должно
найтись три файла:

[root@sw2 ~]# find /srv/node/ -type f -name *.data

 21 / 30

112    Глава 6. Объектное хранилище Swift

/srv/node/vdb1/objects/814/f80/
cb8bc06cf9ef2cd33f3a335a472d2f80/1520073247.76181.data
/srv/node/vdc1/objects/814/f80/
cb8bc06cf9ef2cd33f3a335a472d2f80/1520073247.76181.data
[root@sw3 ~]# find /srv/node/ -type f -name *.data
/srv/node/vdc1/objects/814/f80/
cb8bc06cf9ef2cd33f3a335a472d2f80/1520073247.76181.data

Проверим по одному из имен найденных файлов, что это дейст
вительно файл hosts, который мы загрузили в сервис Swift:

[root@sw3 ~]# cat /srv/node/vdc1/objects/814/f80/
cb8bc06cf9ef2cd33f3a335a472d2f80/1520073247.76181.data
127.0.0.1 localhost localhost.localdomain localhost4
localhost4.localdomain4
...

В одиннадцатой главе мы рассмотрим использование веб-клиента
Swift, а тут приведем пример снимка с экрана при работе с ним.

Рис. 6.2. Работа с Swift в интерфейсе веб-клиента

Для мониторинга кластера Swift можно использовать ряд ути-
лит. В процессе установки мы настроили middleware-сервер swift-
recon, который собирает и выдает в формате JSON различные мет
рики работы кластера. Также с ним можно использовать утилиту
командной строки. Например, статистика по репликации:

[root@sw1 ~]# swift-recon container -r
===
--> Starting reconnaissance on 2 hosts (container)
===

 22 / 30

Настройка Swift в качестве хранилища для Glance    113

[2018-03-03 10:38:20] Checking on replication
[replication_failure] low: 0, high: 0, avg: 0.0, total: 0, Failed: 0.0%, no_result: 0, reported: 2
[replication_success] low: 2, high: 4, avg: 3.0, total: 6, Failed: 0.0%, no_result: 0, reported: 2
[replication_time] low: 0, high: 0, avg: 0.0, total: 0, Failed: 0.0%, no_result: 0, reported: 2
[replication_attempted] low: 1, high: 2, avg: 1.5, total: 3, Failed: 0.0%, no_result: 0, reported: 2
Oldest completion was 2018-03-03 10:38:00 (19 seconds ago) by 192.168.122.63:6201.
Most recent completion was 2018-03-03 10:38:12 (7 seconds ago) by 192.168.122.62:6201.
===

Последнее, что мы сделаем, – это укажем корректную точку вхо-
да для сервиса Swift в настройках Cinder на сервере controller:

crudini --set /etc/cinder/cinder.conf DEFAULT backup_swift_url
http://sw1.test.local:8080/v1/AUTH

Перезапустим сервис и убедимся, что теперь он работает:

[root@controller ~(Openstack_Admin)]# systemctl restart openstack-cinder-backup
[root@controller ~(Openstack_Admin)]# cinder service-list
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+
| Binary | Host | Zone | Status | State | Updated_at | Disabled Reason |
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+
cinder-backup	controller.test.local	nova	enabled	up	2018-03-03T10:49:48.000000	-
cinder-scheduler	controller.test.local	nova	enabled	up	2018-03-03T10:49:48.000000	-
cinder-volume	controller.test.local@lvm	nova	enabled	up	2018-03-03T10:49:45.000000	-
+------------------+---------------------------+------+---------+-------+----------------------------+-----------------+

Настройка Swift в качестве хранилища
для Glance
Ну и в конце знакомства со Swift рассмотрим, как настроить объ-
ектное хранилище в качестве бэкэнда для сервиса хранения об-
разов Glance. Предполагается, что мы работаем с конфигураци-
онным файлом /etc/glance/glance-api.conf в том виде, в каком мы
получили его к концу четвертой главы. Внесем только необходи-
мые изменения, но перед этим сделайте резервную копию файла.
Первым делом изменим хранилище по умолчанию:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store default_store swift
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store stores swift

Для хранения настроек бэкэнда мы будем использовать отдель-
ный файл etc/glance/glance-swift.conf и в нем будем ссылаться на
конфигурацию ref1.

 23 / 30

114    Глава 6. Объектное хранилище Swift

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store default_swift_reference ref1
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store swift_store_config_file /etc/glance/glance-swift.conf

Указываем на необходимость создания контейнера:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
glance_store swift_store_create_container_on_put True

Теперь добавляем параметры в файле /etc/glance/glance-swift.
conf. Указываем опцию подключения к Keystone:

[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 auth_address http://controller:35357/v3
[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 user_domain_id default
[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 project_domain_id default
[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 auth_version 3

Указываем имя и пароль пользователя Swift:

[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 user service:swift
[root@controller ~]# crudini --set /etc/glance/glance-swift.conf
ref1 key openstack

Теперь, чтобы glance мог создавать контейнеры, ему необходи-
мо добавить роль ResellerAdmin в сервисном проекте. Если такой
роли нет, то создаем ее:

$ source keystonerc_admin
$ openstack role create ResellerAdmin
$ openstack role add --project service --user glance ResellerAdmin

Рестартуем сервис Glance-api:

[root@controller ~]# systemctl restart openstack-glance-api

Наконец, можно проверить работу. Создадим новый образ, как
мы это уже делали в главе, посвященной Glance:

$ openstack image create "cirros-0.4.0-x86_64-2" --file /tmp/cirros-0.4.0-
x86_64-disk.img --disk-format qcow2 --container-format bare --public
+------------------+--+
| Field | Value |

 24 / 30

Рекомендации по поиску неисправностей в сервисах Swift    115

+------------------+--+
checksum	443b7623e27ecf03dc9e01ee93f67afe
container_format	bare
created_at	2018-03-04T12:12:07Z
disk_format	qcow2
file	/v2/images/916374f7-be83-43a7-82ad-090f1d0aa130/file
id	916374f7-be83-43a7-82ad-090f1d0aa130
min_disk	0
min_ram	0
name	cirros-0.4.0-x86_64-2
owner	7fe2a6ef08df4a749f3bad1fceb055b9
protected	False
schema	/v2/schemas/image
size	12716032
status	active
tags	
updated_at	2018-03-04T12:12:08Z
virtual_size	None
visibility	public
+------------------+--+

Далее если вы хотите продолжить работу со стендом без сервиса
Swift и сэкономить ресурсы, удалите только что созданный образ,
восстановите файл /etc/glance/glance-api.conf из резервной копии
и рестартуйте сервис openstack-glance-api.

Рекомендации по поиску
неисправностей в сервисах Swift
Сервисы Swift пишут сообщения об ошибках в системный журнал /var/
log/messages. Как правило, там могут быть trace-сообщения Python.

Проверьте, что все сервисы запущены, при помощи команды
lsof -i, и что они работают на правильных портах. Если вы не
нашли в списке одну из служб, то можете попытаться запустить
ее вручную, указав исполняемому файлу ваш конфигурационный
файл. Например:

[root@sw3 ~]# swift-object-server /etc/swift/object-server.conf
Traceback (most recent call last):
 File "/usr/bin/swift-object-server", line 27, in <module>
 ...
LookupError: No loader given in section 'filter:recon'

Сервис не запускается, и из вывода видно, что в данном случае
имеется ошибка конфигурационного файла в секции recon.

 25 / 30

116    Глава 6. Объектное хранилище Swift

В случае возникновения ошибок типа 503 Service Unavailable в
первую очередь проверьте конфигурационные ошибки на опечат-
ки, затем корректность имени и пароля в Keystone, а также кор-
ректность заведения URI точек входа в API сервиса.

В принципе, недоступность любого сервиса (Keystone, RabbitMQ
или хранилищ Ceph либо GlusterFS) может вызвать ошибку 503
Service Unavailable. Проверьте соответствующие сервисы.

Ошибки в создании кольца нельзя исправить выполнением еще
одной команды swift-ring-builder add. Предварительно необ-
ходимо отдать команду swift-ring-builder remove.

 26 / 30

Глава 7
Контроллер

и вычислительный
узел Nova

Название: OpenStack Compute
Назначение: управление виртуальными машинами и сетью
Пакет: openstack-nova
Имена сервисов: openstack-nova-api, openstack-nova-consoleauth,
openstack-nova-scheduler, openstack-nova-conductor.service,
openstack-nova-novncproxy.service, openstack-nova-compute.service
Порты: 8773, 8774, 8775, 8778, 5900-5999 (VNC)
Конфигурационные файлы: /etc/nova/nova.conf
Файлы журнала: /var/log/nova/nova-*

Переходим к самому главному компоненту OpenStack – сервису
Nova, отвечающему за управление запущенными экземплярами
виртуальных машин. Помимо управления виртуальными маши-
нами, часть сервисов Nova также может обеспечивать управление
сетью, но, хотя среди развернутых в настоящее время облаков
процент использования сервиса nova-network достаточно высок,
в этой книге мы не будем его рассматривать. В качестве сетевого
компонента мы остановимся на более современном Neutron, кото-
рый рассматривается в следующей главе. Данная глава в основном
посвящена архитектуре и установке Nova. Работа с виртуальными
машинами и сетями освещается дальше.

Архитектура Nova
Рассмотрим минимально необходимую часть сервисов Nova из тех,
что мы будем использовать в нашем лабораторном окружении.

 27 / 30

118    Глава 7. Контроллер и вычислительный узел Nova

�� openstack-nova-api – как и подобные службы других рас-
смотренных сервисов, отвечает за обработку пользователь-
ских вызовов API.

�� openstack-nova-scheduler – сервис-планировщик. Получа-
ет из очереди запросы на запуск виртуальных машин и вы-
бирает узел для их запуска. Выбор осуществляется, согласно
весам узлов после применения фильтров (например, необ-
ходимый объем оперативной памяти, определенная зона
доступности и т. д.). Вес рассчитывается каждый раз при за-
пуске или миграции виртуальной машины.

�� openstack-nova-conductor – сервис появился в релизе
Grizzly. Он выступает в качестве посредника между базой
данных и nova-compute, позволяя осуществлять горизон-
тальное масштабирование. Этот сервис нельзя разверты-
вать на тех же узлах, что и nova-compute.

�� openstack-nova-novncproxy – выступает в роли VNC-
прокси и позволяет подключаться к консоли виртуальных
машин при помощи браузера.

�� openstack-nova-consoleauth – отвечает за авторизацию
для предыдущего сервиса.

�� openstack-nova-placement-api – сервис появился в Open-
Stack версии Newton. Он отвечает за отслеживание списка
ресурсов и их использование.

�� openstack-nova-compute – демон, управляющий виртуаль-
ными машинами через API гипервизора. Как правило, за-
пускается на узлах, где располагается сам гипервизор.

Также сервисам Nova требуются брокер сообщений и база дан-
ных. Мы, как всегда, будем использовать MariaDB и RabbitMQ, раз-
вернутые в виртуальной машине controller.test.local.

Первые пять сервисов мы разместим на нашей управляющей
виртуальной машине, шестой – nova-compute – на новой, compute.
test.local. При создании узла compute постарайтесь выделить ему
как можно больше оперативной памяти.

Установка контроллера Nova
Начнем с установки пакетов на сервере controller.test.local:

[root@controller ~]# yum -y install openstack-nova-api openstack-
nova-conductor openstack-nova-novncproxy openstack-nova-scheduler
openstack-nova-console openstack-nova-placement-api

 28 / 30

Установка контроллера Nova    119

Далее проделаем уже традиционные операции. Создаем базы
данных для сервиса, создаем пользователя, добавляем его с ролью
admin в проект service, создаем сервис nova и с использованием
идентификатора сервиса создаем точки входа в сервис:

mysql -u root -p
Enter password: openstack
MariaDB [(none)]> CREATE DATABASE nova_api;
MariaDB [(none)]> CREATE DATABASE nova;
MariaDB [(none)]> CREATE DATABASE nova_cell0;

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO
'nova'@'localhost' IDENTIFIED BY 'nova';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO
'nova'@'%' IDENTIFIED BY 'nova';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO
'nova'@'localhost' IDENTIFIED BY 'nova';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%'
IDENTIFIED BY 'nova';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO
'nova'@'localhost' IDENTIFIED BY 'nova';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO
'nova'@'%' IDENTIFIED BY 'nova';
MariaDB [(none)]> exit

$ source keystonerc_admin
$ openstack user create --domain default --password openstack nova
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	03b593ee9de442b985871aea39eec9b1
name	nova
options	{}
password_expires_at	None
+---------------------+----------------------------------+

$ openstack role add --project service --user nova admin
$ openstack service create --name nova --description "OpenStack
Compute Service" compute
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Compute Service
enabled	True
id	3345af31a7684e259ff49a17b05b9ab7
name	nova
type	compute

 29 / 30

120    Глава 7. Контроллер и вычислительный узел Nova

+-------------+----------------------------------+

$ openstack endpoint create --region RegionOne compute public
http://controller:8774/v2.1
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	f566c0fa6c16472ab4f08dabbfb9021a
interface	public
region	RegionOne
region_id	RegionOne
service_id	3345af31a7684e259ff49a17b05b9ab7
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+----------------------------------+	
$ openstack endpoint create --region RegionOne compute internal	
http://controller:8774/v2.1	
+--------------+----------------------------------+	
Field	Value
+--------------+----------------------------------+	
enabled	True
id	80b44f94ed2047a2bbbfdbd4ff82befd
interface	internal
region	RegionOne
region_id	RegionOne
service_id	3345af31a7684e259ff49a17b05b9ab7
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+----------------------------------+	
$ openstack endpoint create --region RegionOne compute admin	
http://controller:8774/v2.1	
+--------------+----------------------------------+	
Field	Value
+--------------+----------------------------------+	
enabled	True
id	52a1016b1e894755af86d5821a61f380
interface	admin
region	RegionOne
region_id	RegionOne
service_id	3345af31a7684e259ff49a17b05b9ab7
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+----------------------------------+

Теперь необходимо повторить действия по созданию пользова-
теля и конечных точек для сервиса placement:

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Установка контроллера Nova    121

$ openstack user create --domain default --password openstack
placement
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	20ff08c488084425a1c15226d74d0bd6
name	placement
options	{}
password_expires_at	None
+---------------------+----------------------------------+	
$ openstack role add --project service --user placement admin	
$ openstack service create --name placement --description "OpenStack	
Placement API" placement	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	OpenStack Placement API
enabled	True
id	a8ee318c098745d1ae81cbb0a3f36f2b
name	placement
type	placement
+-------------+----------------------------------+	
$ openstack endpoint create --region RegionOne placement public	
http://controller:8778	
+--------------+----------------------------------+	
Field	Value
+--------------+----------------------------------+	
enabled	True
id	caf85b8863cb4ad2af39139cf42b9844
interface	public
region	RegionOne
region_id	RegionOne
service_id	a8ee318c098745d1ae81cbb0a3f36f2b
service_name	placement
service_type	placement
url	http://controller:8778
+--------------+----------------------------------+	
$ openstack endpoint create --region RegionOne placement internal	
http://controller:8778	
+--------------+----------------------------------+	
Field	Value
+--------------+----------------------------------+	
enabled	True
id	22ef59a2770e4485b2830069647e25cf
interface	internal
region	RegionOne
region_id	RegionOne
service_id	a8ee318c098745d1ae81cbb0a3f36f2b

 1 / 30

122    Глава 7. Контроллер и вычислительный узел Nova

service_name	placement
service_type	placement
url	http://controller:8778
+--------------+----------------------------------+	
$ openstack endpoint create --region RegionOne placement admin	
http://controller:8778	
+--------------+----------------------------------+	
Field	Value
+--------------+----------------------------------+	
enabled	True
id	f0fac7e439e64f00a2363bb6e6bcc1c3
interface	admin
region	RegionOne
region_id	RegionOne
service_id	a8ee318c098745d1ae81cbb0a3f36f2b
service_name	placement
service_type	placement
url	http://controller:8778
+--------------+----------------------------------+

Для начала установим опции в конфигурационном файле /etc/
nova/nova.conf, общие для контроллера nova – виртуальной маши-
ны controller.test.local и вычислительного узла compute.test.local.
Если у вас достаточно ресурсов, то вы также можете создать второй
опциональный узел compute-opt.test.local.

Зададим настройки брокера сообщений RabbitMQ. Напомним,
что для взаимодействия всех сервисов через брокер сообщений
используется пользователь openstack с паролем openstack:

[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
transport_url rabbit://openstack:openstack@controller.test.local

Включаем два API: для самого сервиса и для обеспечения воз-
можности передачи метаданных:

[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
enabled_apis osapi_compute,metadata

Настройки сервиса идентификации Keystone:

[root@controller ~]# crudini --set /etc/nova/nova.conf api auth_
strategy keystone
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken project_name service
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken project_domain_name default

 2 / 30

Установка контроллера Nova    123

[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken auth_type password
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken username nova
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken password openstack
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/nova/nova.conf keystone_
authtoken auth_url http://controller.test.local:35357

Включаем поддержку сервиса Neutron:

[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
use_neutron True
[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
firewall_driver nova.virt.firewall.NoopFirewallDriver

и местоположение сервиса образов виртуальных машин Glance:
[root@controller ~]# crudini --set /etc/nova/nova.conf glance
api_servers http://controller.test.local:9292

Указываем имя региона для Cinder:

[root@controller ~]# crudini --set /etc/nova/nova.conf cinder
os_region_name RegionOne

Наконец, в секции oslo_concurrency укажем путь к файлам бло-
кировок:

[root@controller ~]# crudini --set /etc/nova/nova.conf oslo_
concurrency lock_path /var/lib/nova/tmp

Настраиваем Placement API в секции placement:

[root@controller ~]# crudini --set /etc/nova/nova.conf placement
os_region_name RegionOne
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
project_name service
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
user_domain_name Default
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
project_domain_name Default
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
auth_type password
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
username placement
[root@controller ~]# crudini --set /etc/nova/nova.conf placement
password openstack

 3 / 30

124    Глава 7. Контроллер и вычислительный узел Nova

[root@controller ~]# crudini --set /etc/nova/nova.conf placement
auth_url http://controller.test.local:35357/v3

Описанные выше опции также необходимо будет прописать и в
виртуальной машине вычислительного узла compute. На данном
этапе вы просто можете перенести конфигурационный файл, ско-
пировав его на второй и опциональный третьий узел при его на-
личии:

[root@controller ~]# scp /etc/nova/nova.conf compute:~/nova.conf
[root@controller ~]# scp /etc/nova/nova.conf compute-opt:~/nova.conf

Продолжим настраивать опции, специфичные для контроллера.
Пути к базам данных:

[root@controller ~]# crudini --set /etc/nova/nova.conf api_
database connection mysql+pymysql://nova:nova@controller.test.
local/nova_api
[root@controller ~]# crudini --set /etc/nova/nova.conf database
connection mysql+pymysql://nova:nova@controller.test.local/nova

IP-адрес управляющего интерфейса:

[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
my_ip 192.168.122.200

Тот же самый адрес, где будет слушать входящие подключения
VNC-сервер:

[root@controller ~]# crudini --set /etc/nova/nova.conf vnc
server_listen 192.168.122.200
[root@controller ~]# crudini --set /etc/nova/nova.conf vnc
server_proxyclient_address 192.168.122.200
[root@controller ~]# crudini --set /etc/nova/nova.conf vnc
enabled true

На момент написания книги существовала проблема, описанная
в https://bugzilla.redhat.com/show_bug.cgi?id=1430540. Для исправ-
ления ошибки необходимо добавить в файл /etc/httpd/conf.d/00-
nova-placement-api.conf секцию:

<Directory /usr/bin>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all

 4 / 30

https://bugzilla.redhat.com/show_bug.cgi?id=1430540

Установка контроллера Nova    125

 </IfVersion>
</Directory>

И перезапустить веб-сервер:

systemctl restart httpd

Инициализируем базу данных nova-api:

[root@controller ~]# su -s /bin/sh -c "nova-manage api_db sync" nova

Можно игнорировать предупреждающее сообщение в выводе
команды. Далее регистрируем базу данных cell0 и создаем ячейку
cell1:

[root@controller ~]# su -s /bin/sh -c "nova-manage cell_v2 map_cell0" nova
[root@controller ~]# su -s /bin/sh -c "nova-manage cell_v2 create_cell
--name=cell1 --verbose" nova
eb2201b9-0776-4d13-8aa8-93cba84f8894

Заполняем базу данных. Это может занять некоторое время:

[root@controller ~]# su -s /bin/sh -c "nova-manage db sync" nova

Активируем и запускаем сервисы:

[root@controller ~]# systemctl enable openstack-nova-api.service
openstack-nova-consoleauth.service openstack-nova-scheduler.
service openstack-nova-conductor.service openstack-nova-
novncproxy.service
[root@controller ~]# systemctl start openstack-nova-api.service
openstack-nova-consoleauth.service openstack-nova-scheduler.
service openstack-nova-conductor.service openstack-nova-
novncproxy.service

Можно проверить, что сервисы стартовали, и просмотреть спи-
сок файлов журналов и самих сервисов, которые используют жур-
налы:

[root@controller ~]# systemctl status openstack-nova-api.service openstack-nova-consoleauth.
service openstack-nova-scheduler.service openstack-nova-conductor.service openstack-nova-
novncproxy.service -n 0
● openstack-nova-api.service - OpenStack Nova API Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-api.service; enabled; vendor preset:
disabled)
 Active: active (running) since Sun 2018-03-04 16:05:58 CET; 5s ago
 Main PID: 7281 (nova-api)
 CGroup: /system.slice/openstack-nova-api.service
 ├─7281 /usr/bin/python2 /usr/bin/nova-api

 5 / 30

126    Глава 7. Контроллер и вычислительный узел Nova

 ├─7336 /usr/bin/python2 /usr/bin/nova-api
 └─7338 /usr/bin/python2 /usr/bin/nova-api

● openstack-nova-consoleauth.service - OpenStack Nova VNC console auth Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-consoleauth.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sun 2018-03-04 16:05:54 CET; 9s ago
 Main PID: 7282 (nova-consoleaut)
 CGroup: /system.slice/openstack-nova-consoleauth.service
 └─7282 /usr/bin/python2 /usr/bin/nova-consoleauth

● openstack-nova-scheduler.service - OpenStack Nova Scheduler Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-scheduler.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sun 2018-03-04 16:05:55 CET; 8s ago
 Main PID: 7283 (nova-scheduler)
 CGroup: /system.slice/openstack-nova-scheduler.service
 └─7283 /usr/bin/python2 /usr/bin/nova-scheduler

● openstack-nova-conductor.service - OpenStack Nova Conductor Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-conductor.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sun 2018-03-04 16:05:54 CET; 9s ago
 Main PID: 7284 (nova-conductor)
 CGroup: /system.slice/openstack-nova-conductor.service
 └─7284 /usr/bin/python2 /usr/bin/nova-conductor

● openstack-nova-novncproxy.service - OpenStack Nova NoVNC Proxy Server
 Loaded: loaded (/usr/lib/systemd/system/openstack-nova-novncproxy.service; enabled; vendor
preset: disabled)
 Active: active (running) since Sun 2018-03-04 16:05:37 CET; 26s ago
 Main PID: 7285 (nova-novncproxy)
 CGroup: /system.slice/openstack-nova-novncproxy.service
 └─7285 /usr/bin/python2 /usr/bin/nova-novncproxy --web /usr/share/novnc/

[root@controller ~]# lsof /var/log/nova/*
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
httpd 6709 root 14w REG 253,0 0 67176374 /var/log/nova/nova-placement-api.log
...
nova-api 7281 nova 3w REG 253,0 4829 68437359 /var/log/nova/nova-api.log
nova-cons 7282 nova 3w REG 253,0 2245 68437334 /var/log/nova/nova-consoleauth.log
nova-sche 7283 nova 3w REG 253,0 2389 68437335 /var/log/nova/nova-scheduler.log
nova-cond 7284 nova 3w REG 253,0 2243 67174004 /var/log/nova/nova-conductor.log
nova-novn 7285 nova 3w REG 253,0 632 68437369 /var/log/nova/nova-novncproxy.log
nova-api 7336 nova 3w REG 253,0 4829 68437359 /var/log/nova/nova-api.log
nova-api 7338 nova 3w REG 253,0 4829 68437359 /var/log/nova/nova-api.log

На этом месте переходим к настройкам вычислительного узла,
где будут запускаться виртуальные машины нашего облака.

 6 / 30

Установка вычислительных узлов Nova    127

Установка вычислительных узлов Nova
Устанавливаем необходимые пакеты на новую виртуальную ма-
шину compute.test.local, подготовленную в соответствии с описа-
нием во второй главе:

[root@compute ~]# yum -y install openstack-nova-compute sysfsutils libvirt

Если на вашем стенде достаточно ресурсов, то проделайте то же
самое для второго вычислительного узла compute-opt.test.local.

Предполагаем, что у нас уже есть конфигурационный файл, пе-
ренесенный с узла controller, как это было описано в предыдущем
разделе. Соответственно, остается его скопировать в /etc/nova/ и
добавить настройки, уникальные для вычислительных узлов.

Первое, с чем нужно определиться, – это поддерживает ли ва-
ша виртуальная машина или сервер аппаратную виртуализуцию.
Определить поможет команда:

[root@compute ~]# grep -E ' svm | vmx' /proc/cpuinfo

Если поиск grep ничего не показывает, то вам придется восполь-
зоваться эмуляцией QEMU:

[root@compute ~]# crudini --set /etc/nova/nova.conf libvirt virt_type qemu

Однако большинство современных систем виртуализации под-
держивает вложенную виртуализацию, так что автор рекоменду-
ет поискать соответствующие инструкции для вашей системы. По
умолчанию OpenStack использует kvm, так что если аппаратная
поддержка присутствует, то дополнительно менять настройку не
нужно.

Нужно отметить, что на установленном OpenStack веб-
интерфейс и утилиты командной строки будут в обоих случаях по-
казывать в качестве типа гипервизора QEMU. Определить, исполь-
зуется эмуляция или виртуализация, можно опять же при помощи
флагов процессора:

$ nova hypervisor-show compute.test.local | grep vmx
| | "fsgsbase", "xsave", "pge", "vmx", |
$ nova hypervisor-show compute-opt.test.local | grep vmx

В данном примере на узле compute.test.local параметр virt_
type установлен в kvm, а на узле compute-opt.test.local – в qemu.

Указываем адреса вычислительных узлов:

 7 / 30

128    Глава 7. Контроллер и вычислительный узел Nova

[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT my_ip
192.168.122.210

Для compute-opt укажите адрес 192.168.122.215. Затем укажем,
что VNC-сервер будет слушать подключения на всех интерфей-
сах и URL прокси-сервера, где будет доступен браузеру интерфейс
виртуальной машины:

[root@compute ~]# crudini --set /etc/nova/nova.conf vnc vnc_enabled True
[root@compute ~]# crudini --set /etc/nova/nova.conf vnc vncserver_listen
0.0.0.0
[root@compute ~]# crudini --set /etc/nova/nova.conf vnc novncproxy_base_
url http://controller.test.local:6080/vnc_auto.html

Следующая команда должна содержать адрес конкретного вы-
числительного узла. Соответственно, для compute-opt укажите
адрес 192.168.122.215:

[root@compute ~]# crudini --set /etc/nova/nova.conf vnc
vncserver_proxyclient_address 192.168.122.210

Активируем и запускаем сервисы libvirt и nova-compute:

[root@compute ~]# systemctl enable libvirtd.service openstack-
nova-compute.service
[root@compute ~]# systemctl start libvirtd.service openstack-
nova-compute.service

Теперь проверим работу сервисов при помощи команды
openstack compute service list или nova service-list. Они
выдают одинаковый результат, и мы должны получить такую кар-
тину:

$ source keystonerc_admin
$ nova service-list
+------+------------------+------------------------+----------+---------+-------+--------------+-----------------+-------------+
| Id | Binary | Host | Zone | Status | State | Updated_at | Disabled Reason | Forced down |
+------+------------------+------------------------+----------+---------+-------+--------------+-----------------+-------------+
a5..	nova-consoleauth	controller.test.local	internal	enabled	up	2018-03-04..	-	False
09..	nova-conductor	controller.test.local	internal	enabled	up	2018-03-04..	-	False
0e..	nova-scheduler	controller.test.local	internal	enabled	up	2018-03-04..	-	False
2d..	nova-compute	compute.test.local	nova	enabled	up	2018-03-04..	-	False
42..	nova-compute	compute-opt.test.local	nova	enabled	up	2018-03-04..	-	False
+------+------------------+------------------------+----------+---------+-------+--------------+-----------------+-------------+

Теперь регистрируем гипервизоры:

$ su -s /bin/sh -c "nova-manage cell_v2 discover_hosts --verbose" nova
Found 2 cell mappings.

 8 / 30

Установка вычислительных узлов Nova    129

Skipping cell0 since it does not contain hosts.
Getting compute nodes from cell 'cell1': eb2201b9-0776-4d13-8aa8-
93cba84f8894
Found 2 unmapped computes in cell: eb2201b9-0776-4d13-8aa8-
93cba84f8894
Checking host mapping for compute host 'compute.test.local':
658bd88c-8878-489c-9a9a-1239295ba61c
Creating host mapping for compute host 'compute.test.local':
658bd88c-8878-489c-9a9a-1239295ba61c
Checking host mapping for compute host 'compute-opt.test.local':
6989b8db-72db-47b7-864d-b3e1fd7b7868
Creating host mapping for compute host 'compute-opt.test.local':
6989b8db-72db-47b7-864d-b3e1fd7b7868

Продолжим проверку работы сервиса. Интеграция с Glance:

$ openstack image list
+--------------------------------------+---------------------+--------+
| ID | Name | Status |
+--------------------------------------+---------------------+--------+
| c8ccc9b3-29bb-4220-be38-8f261ac8b99a | cirros-0.4.0-x86_64 | active |
+--------------------------------------+---------------------+--------+

Проверяем работу Placement API:

su -s /bin/sh -c "nova-status upgrade check" nova
+---------------------------+
| Upgrade Check Results |
+---------------------------+
| Check: Cells v2 |
| Result: Success |
| Details: None |
+---------------------------+
| Check: Placement API |
| Result: Success |
| Details: None |
+---------------------------+
| Check: Resource Providers |
| Result: Success |
| Details: None |
+---------------------------+

На будущее также нам будет полезна команда host-describe,
позволяющая посмотреть информацию об использовании ресур-
сов вычислительного узла в целом и по отдельным проектам:

$ nova --os-compute-api-version 2 host-describe compute.test.local
+--------------------+------------+-----+-----------+---------+
| HOST | PROJECT | cpu | memory_mb | disk_gb |
+--------------------+------------+-----+-----------+---------+

 9 / 30

130    Глава 7. Контроллер и вычислительный узел Nova

compute.test.local	(total)	4	3952	49
compute.test.local	(used_now)	1	812	1
compute.test.local	(used_max)	1	300	1
+--------------------+------------+-----+-----------+---------+

Еще одна команда, которая покажет сервисы и их распределе-
ние по узлам:

$ nova --os-compute-api-version 2 host-list
+------------------------+-------------+----------+
| host_name | service | zone |
+------------------------+-------------+----------+
controller.test.local	consoleauth	internal
controller.test.local	conductor	internal
controller.test.local	scheduler	internal
compute.test.local	compute	nova
compute-opt.test.local	compute	nova
+------------------------+-------------+----------+

Наконец, при помощи команды nova hypervisor-show можно
получить подробную информацию по гипервизору:

$ nova --os-compute-api-version 2 hypervisor-show compute-opt.
test.local
+---------------------------+--+
| Property | Value |
+---------------------------+--+
cpu_info_arch	x86_64
cpu_info_features	["pge", "avx", "xsaveopt", "clflush",
	"sep", "syscall", "tsc_adjust", "tsc-
	deadline", "invpcid", "tsc", "fsgsbase",
	"xsave", "smap", "vmx", "erms", "cmov",
	"smep", "fpu", "pat", "lm", "msr",
	"adx", "3dnowprefetch", "nx", "fxsr",
	"sse4.1", "pae", "sse4.2", "pclmuldq",
	"pcid", "fma", "vme", "mmx", "osxsave",
	"cx8", "mce", "de", "aes", "mca", "pse",
	"lahf_lm", "abm", "rdseed", "popcnt",
	"pdpe1gb", "apic", "sse", "f16c", "pni",
	"rdtscp", "avx2", "sse2", "ss",
	"hypervisor", "bmi1", "bmi2", "ssse3",
	"cx16", "pse36", "mtrr", "movbe",
	"rdrand", "x2apic"]
cpu_info_model	Broadwell-noTSX
cpu_info_topology_cells	1
cpu_info_topology_cores	1
cpu_info_topology_sockets	4
cpu_info_topology_threads	1
cpu_info_vendor	Intel
current_workload	0

 10 / 30

Установка вычислительных узлов Nova    131

disk_available_least	48
free_disk_gb	49
free_ram_mb	1535
host_ip	192.168.122.215
hypervisor_hostname	compute-opt.test.local
hypervisor_type	QEMU
hypervisor_version	2009000
id	2
local_gb	49
local_gb_used	0
memory_mb	2047
memory_mb_used	512
running_vms	0
service_disabled_reason	None
service_host	compute-opt.test.local
service_id	7
state	up
status	enabled
vcpus	4
vcpus_used	0
+---------------------------+--+

Осталось добавить сеть, чем мы займемся в следующей главе, и
основные компоненты нашего облака – в сборе.

 11 / 30

Глава 8
Службы сети Neutron

Название: OpenStack Networking
Назначение: обеспечение сети для виртуальных машин
Пакет: openstack-neutron
Имена сервисов: openstack-neutron-*
Порт: 9696/tcp
Конфигурационные файлы: /etc/neutron/*
Файлы журнала: /var/log/neutron/*

OpenStack Networking (Neutron) – это сетевой сервис облачной
операционной системы, использующий множество технологий,
включая стандартные технологии коммутации (NetFlow, RSPAN,
SPAN, LACP, 802.1q, туннелирование GRE и VXLAN), балансировку
нагрузки, брандмауэр, VPN и др. Часть функционала реализуется
через подключаемые модули сторонних производителей, часть
зависит от компонентов операционной системы GNU/Linux, таких
как iptables и Open vSwitch.

Архитектура Neutron
Основные абстракции, которыми оперирует Neutron:

�� сеть – содержит в себе подсети. Различают внутренние, вир-
туальные сети, которых может быть много, и как минимум
одну внешнюю. Доступ к виртуальным машинам внутри
внутренней сети могут получить только машины в этой же
сети или узлы, связанные через виртуальные маршрутиза-
торы. Внешняя сеть представляет собой отображение ча-
сти реально существующей физической сети и необходима
для обеспечения сетевой связанности ваших виртуальных
машин внутри облака, использующих внутренние сети, и
«внешнего мира». Внешние сети создаются администрато-
ром OpenStack;

 12 / 30

Архитектура Neutron    133

�� подсеть – сеть должна иметь ассоциированные с ней под-
сети. Именно через подсеть задается конкретный диапазон
IP-адресов;

�� маршрутизатор – как и в физическом мире, служит для
маршрутизации между сетями. Маршрутизатор может
иметь шлюз и множество интерфейсов, соединяющих под-
сети;

�� группа безопасности – набор правил брандмауэра, приме-
няющихся к виртуальным машинам в этой группе;

�� «плавающий IP-адрес» (Floating IP) – IP-адрес внешней сети,
назначаемый экземпляру виртуальной машины. Он может
быть выделен только из существующей внешней сети. По
умолчанию каждый проект имеет квоту в 50 адресов;

�� порт – подключение к подсети. Порт на виртуальном ком-
мутаторе. Включает в себя MAC-адрес и IP-адрес.

Справочная архитектура на сайте OpenStack выделяет четыре
типа трафика (внешний, внутренний, трафик виртуальных машин,
API и управления). Внутренние сети могут быть как «плоскими», так
и тегированными. В случае если планируется более четырех тысяч
внутренних сетей (лимит VLAN), создание оверлейных сетей мо-
жет осуществляться при помощи VXLAN или GRE-инкапсуляции.

В реальной жизни может использоваться большее число изоли-
рованных типов трафика:

�� публичная сеть, которой принадлежат «реальные» IP-адреса
виртуальных машин;

�� сеть, предоставляющая наружу публичный API и веб-ин
терфейс Horizon;

�� управляющая сеть для операционных систем и служб (ssh и
мониторинг);

�� управляющая сеть для сетевой установки узлов под сервисы
OpenStack;

�� управляющая сеть для IPMI, DRAC, iLO, консолей коммута-
торов и т. п.;

�� сеть передачи данных для служб SDS (Swift, Ceph, iSCSI,
NFS…);

�� демилитаризованная зона.

Справочная архитектура на сайте документации OpenStack
определяет три типа узлов: узел управления, сетевой узел и вы-
числительный узел. Как правило, cетевые узлы в реальной экс-

 13 / 30

134    Глава 8. Службы сети Neutron

плуатации – физические серверы, поскольку они требовательны к
ресурсам. В некоторых случаях, если реальная обработка трафика
выполняется на физических коммутаторах, сетевые узлы не тре-
буются. В таких случаях управляющий сервер Neutron через под-
ключаемые модули управляет таким физическим «железом». В на-
шем лабораторном окружении роль сетевого узла будет выполнять
network.test.local.

В устаревшей реализации сети nova-network использовались
стандартные компоненты операционной системы GNU/Linux,
такие как брандмауэр iptables, сетевые мосты и VLAN. В Neutron
для реализации взаимодействия на втором уровне сетевого сте-
ка OSI появилась возможность расширять API при помощи под-
ключаемых модулей (plug-in). В других источниках при описании
использования Neutron до релиза Havana вы можете встретить
модули LinuxBridge и Open vSwitch. Оба модуля монолитные и не
подразумевают одновременного использования.

Начиная с релиза Icehouse они считаются устаревшими, поэто-
му их заменил модуль Modular Layer 2 (ML2 – OVS/LB), который и
рассматривается в этой книге. Его преимуществом является воз-
можность одновременного использования нескольких технологий
второго уровня. При этом устаревшие подключаемые модули для
упрощения поддержки, тестирования и переиспользования кода
трансформировались в драйверы механизмов/агенты (mechanism_
drivers в конфигурационном файле ml2_conf.ini).

Существует несколько типов драйверов механизмов:

�� использующие агенты, например LinuxBridge и OVS, кото-
рый мы рассматриваем в книге;

�� использующие контроллеры SDN, например OpenDaylight,
OpenContrail, VMware NSX, PLUMgrid и др.;

�� использующие аппаратные коммутаторы, например Cisco
Nexus, Extreme Networks и многие другие.

Если говорить о сторонних подключаемых модулях, то их около
двух десятков. За подробностями автор рекомендует обратиться
в wiki – https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers.

Также существуют сервисные подключаемые модули Neutron:
�� маршрутизатор;
�� балансировщик нагрузки (LBaaS);
�� брандмауэр (FaaS);
�� виртуальные частные сети (VPNaaS).

 14 / 30

https://wiki.openstack.org/wiki/Neutron_Plugins_and_Drivers

Архитектура Neutron    135

Один узел может обслуживать несколько проектов с отдельными
сетями, адресные пространства которых могут совпадать. Пересе-
чение сетевых пространств реализуется при помощи пространств
имен (namespaces). Сетевые пространства имен позволяют на од-
ной машине иметь несколько ARP и таблиц маршрутизации, на-
боров правил брандмауэра, сетевых устройств и т. д.

Перечислим основные сервисы.

�� Сервис узла контроллера:
•	 neutron-server – центральный управляющий компо-

нент. Не занимается непосредственно маршрутизацией
пакетов. С остальными компонентами взаимодействует
через брокер сообщений.

�� Сервисы сетевого узла:
•	 neutron-openvswitch-agent – взаимодействует с

neutron-server через брокер сообщений и отдает команды
OVS для построения таблицы потоков. При этом исполь-
зуются локальные команды OVS и протокол OpenFlow не
используется;

•	 neutron-l3-agent – обеспечивает маршрутизацию и NAT,
используя технологию сетевых пространств имен;

•	 openvswitch – программный коммутатор, используемый
для построения сетей. Не является проектом OpenStack,
но используется им. Подробнее об Open vSwitch – в сле-
дующей главе;

•	 neutron-dhcp-agent – сервис отвечает за запуск и управ-
ление процессами dnsmasq. Dnsmasq – это легковесный
dhcp-сервер и сервис кэширования DNS. Также neutron-
dhcp-agent отвечает за запуск прокси-процессов серве-
ра предоставления метаданных. По умолчанию каждая
сеть, создаваемая агентом, получает собственное про-
странство имен qdhcp-UUID_сети;

•	 neutron-metadata-agent – данный сервис позволяет
виртуальным машинам запрашивать данные о себе, та-
кие как имя узла, открытый ssh-ключ для аутентифи-
кации и др. Экземпляры виртуальных машин получают
эту информацию во время загрузки скриптом, подоб-
ным cloud-init (https://launchpad.net/cloud-init), обра-
щаясь на адрес http://169.254.169.254. Агент проксирует
соответствующие запросы к openstack-nova-api при по-

 15 / 30

https://launchpad.net/cloud-init
http://169.254.169.254/

136    Глава 8. Службы сети Neutron

мощи пространства имен маршрутизатора или DHCP.
Во время настройки стенда мы для Nova и Neutron бу-
дем задавать общий секрет, используемый для подписи
сообщений;

•	 neutron-ovs-cleanup – отвечает во время старта за уда-
ление из базы данных OVS неиспользуемых мостов «ста-
рых» виртуальных машин.

�� Сервисы вычислительного узла включают в себя уже ранее
перечисленные:
•	 openvswitch;
•	 neutron-openvswitch-agent.

Работа Neutron при создании
экземпляра виртуальной машины
Рассмотрим последовательность действий сервиса Neutron при
создании виртуальной машины.

Во время создания экземпляра виртуальной машины сервис
Nova отправляет запрос на сервис neutron-server, отвечающий за
API. Тот, в свою очередь, отправляет запрос агенту DHCP на созда-
ние IP-адреса. Он обращается к сервису dnsmasq, отвечающему за
подсеть, в которой создается виртуальная машина. Dnsmasq воз-
вращает первый свободный IP-адрес из диапазона адресов подсе-
ти, после чего агент DHCP отправляет этот адрес сервису neutron-
server.

После того как за виртуальной машиной закреплен IP-адрес,
сервис Neutron отправляет запрос на Open vSwitch для создания
конфигурации, включающей IP-адрес в существующую сеть. Тре-
буемые параметры конфигурации возвращаются обратно на сер-
вис Neutron при помощи шины сообщений, а далее Neutron от-
правляет их сервису Nova.

Установка узла управления Neutron
Начнем установку с управляющего узла, в роли которого высту-
пает виртуальная машина controller.test.local. Ставим компоненты
Neutron и подключаемый модуль Modular Layer 2:

[root@controller ~]# yum -y install openstack-neutron openstack-
neutron-ml2

 16 / 30

Установка узла управления Neutron    137

Как всегда, создадим экземпляр базы данных MariaDB:

[root@controller ~]# mysql -u root -p
MariaDB [(none)]> CREATE DATABASE neutron;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON neutron.* TO
'neutron'@'localhost' IDENTIFIED BY 'neutron';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON neutron.* TO
'neutron'@'%' IDENTIFIED BY 'neutron';

Далее создаем пользователя, сервис и точки входа:

$ source keystonerc_admin
$ openstack user create --domain default --password openstack neutron
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	bc4ad74c8d9345a2a6cbeadae067a210
name	neutron
options	{}
password_expires_at	None
+---------------------+----------------------------------+	
$ openstack role add --project service --user neutron admin	
$ openstack service create --name neutron --description "OpenStack	
Networking" network	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	OpenStack Networking
enabled	True
id	ebb95159786f48668c5fa50a10129a89
name	neutron
type	network
+-------------+----------------------------------+	
$ openstack endpoint create --region RegionOne network public	
http://controller.test.local:9696	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	c33356a2d4b1467d968eab752457a7cc
interface	public
region	RegionOne
region_id	RegionOne
service_id	ebb95159786f48668c5fa50a10129a89
service_name	neutron
service_type	network
url	http://controller.test.local:9696
+--------------+-----------------------------------+

 17 / 30

138    Глава 8. Службы сети Neutron

$ openstack endpoint create --region RegionOne network internal
http://controller.test.local:9696
+--------------+-----------------------------------+
| Field | Value |
+--------------+-----------------------------------+
enabled	True
id	9263f2263399444a97651e20a2650e4f
interface	internal
region	RegionOne
region_id	RegionOne
service_id	ebb95159786f48668c5fa50a10129a89
service_name	neutron
service_type	network
url	http://controller.test.local:9696
+--------------+-----------------------------------+	
$ openstack endpoint create --region RegionOne network admin	
http://controller.test.local:9696	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	bd3e74e14e9b4086856f746b4d43767f
interface	admin
region	RegionOne
region_id	RegionOne
service_id	ebb95159786f48668c5fa50a10129a89
service_name	neutron
service_type	network
url	http://controller.test.local:9696
+--------------+-----------------------------------+

Следующие настройки конфигурационных файлов необходимо
выполнить на управляющем, сетевом и вычислительном узлах.
Соответственно, файлы neutron.conf и ml2_conf.ini можно будет
скопировать на узлы network, compute и compute-opt. Для удобства
читателя в табл. 3 приведены используемые конфигурационные
файлы Neutron и описано их назначение.

Таблица 3. Конфигурационные файлы Neutron

Конфигурационный файл Назначение конфигурационного файла

/etc/neutron/neutron.conf Основной конфигурационный файл Neutron

/etc/neutron/plugins/ml2/
ml2_conf.ini

Конфигурационный файл подключаемого
модуля Modular Layer 2 (ML2)

 18 / 30

Установка узла управления Neutron    139

Конфигурационный файл Назначение конфигурационного файла

/etc/neutron/plugin.ini Символическая ссылка на конфигураци-
онный файл подключаемого модуля ML2
ml2_conf.ini или в старых версиях на кон-
фигурационный файл монолитного под-
ключаемого модуля Open vSwitch – ovs_
neutron_plugin.ini

/etc/neutron/l3_agent.ini Конфигурационный файл L3-агента, осу-
ществляющего маршрутизацию

/etc/neutron/dhcp_agent.ini Конфигурационный файл DHCP-агента

/etc/neutron/metadata_agent.ini Конфигурационный файл агента, предо-
ставляющего метаданные виртуальным ма-
шинам

/etc/neutron/plugins/ml2/
openvswitch_agent.ini

Подключаемый модуль агента Open vSwitch
для модуля ML2. До Liberty назывался ovs_
neutron_plugin.ini. В прошлом в файле ovs_
neutron_plugin.ini располагались настройки
монолитного подключаемого модуля Open
vSwitch. В ранней документации на Juno
и в первом издании книги предлагалось
использовать ml2_conf.ini для настройки
агента. Ранее некоторые дистрибутивы и
утилиты развертывания OpenStack меняли
стартовые скрипты агентов, для того чтобы
они использовали ml2_conf.ini. Сейчас
правильным методом является использова-
ние openvswitch_agent.ini

Большинство компонентов общается между собой при помощи
брокера сообщений. Задаем параметры аутентификации брокера
сообщений RabbitMQ:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT transport_url rabbit://openstack:openstack@controller.
test.local

Прописываем параметры Keystone. Тут для вас не должно быть
ничего нового:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT auth_strategy keystone
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken project_name service
[root@controller ~]# crudini --set /etc/neutron/neutron.conf

 19 / 30

140    Глава 8. Службы сети Neutron

keystone_authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken project_domain_name default
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken auth_type password
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken username neutron
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken password openstack
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
keystone_authtoken auth_url http://controller.test.local:35357

Теперь укажем, какой основной подключаемый модуль для реа-
лизации взаимодействия на втором уровне сетевого стека OSI мы
будем использовать:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT core_plugin ml2

Помимо ml2, допустимыми значениями являются: hyperv, cisco,
brocade, embrance, vmware, nec и др.

Задаем, какие подгружаемые модули будем использовать (при-
меры возможных вариантов: router, firewall, lbaas, vpnaas, metering).
Добавим только маршрутизатор:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT service_plugins router

Мы использовали краткие имена подключаемых модулей. Также
можно было ссылаться на них по длинным наименованиям клас-
сов, например: neutron.plugins.ml2.plugin:Ml2Plugin и neutron.
services.l3_router.l3_router_plugin.L3RouterPlugin.

Разрешаем пересечение IP-адресов внутри проектов:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT allow_overlapping_ips True

В секции oslo_concurrency укажем путь к файлам блокировок:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
oslo_concurrency lock_path /var/lib/neutron/tmp

Теперь перейдем к настройке подключаемого модуля Modular
Layer 2 (ML2). Подключаемый модуль ML2 параллельно может под-
держивать работу нескольких сегментов разных типов, включая

 20 / 30

Установка узла управления Neutron    141

flat, GRE, VLAN, VXLAN и local. При этом local подходит только для
установок типа «все в одном».

Для туннелирования с поддержкой пересечения IP-адресов
в OpenStack можно использовать несколько технологий. GRE –
устоявшийся в индустрии стандарт для инкапсуляции фреймов
второго уровня OSI (RFC 2784 и 2890). Номер IP-протокола – 47.
VXLAN – более молодой стандарт, предложенный IETF в 2011 году.
В качестве транспорта используется UDP-порт 4789. Также можно
использовать VLAN и «плоскую сеть».

Мы в примере настройки выберем GRE-туннелирование:

[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini ml2 type_drivers flat,gre,vlan,vxlan
[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini ml2 tenant_network_types gre

В реальной производственной среде также для избежания фраг-
ментации пакетов нам бы потребовалось увеличить MTU на сете-
вом оборудовании.

Указываем, что в качестве драйвера механизма к подклю-
чаемому модулю ML2 используем OVS (возможные варианты:
openvswitch, linuxbridge и l2population) и диапазон ID для GRE-
туннелей:

[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini ml2 mechanism_drivers openvswitch
[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini ml2_type_gre tunnel_id_ranges 1:1000

Включаем группы безопасности, ipset:

[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini securitygroup enable_security_group True
[root@controller ~]# crudini --set /etc/neutron/plugins/ml2/ml2_
conf.ini securitygroup enable_ipset True

Далее мы будем выполнять настройки, специфичные для управ-
ляющего узла. Поэтому скопируйте файлы /etc/neutron/neutron.
conf и /etc/neutron/plugins/ml2/ml2_conf.ini на узлы network,
compute и compute-opt, где мы продолжим их редактирование.

Параметры подключения к базе данных Neutron:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
database connection mysql://neutron:neutron@controller.test.
local/neutron

 21 / 30

142    Глава 8. Службы сети Neutron

Далее настройки также не нуждаются в комментариях. Вносим
необходимые изменения:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT notify_nova_on_port_status_changes True
[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT notify_nova_on_port_data_changes True
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
auth_type password
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
project_domain_name default
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
user_domain_name default
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
region_name RegionOne
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
project_name service
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
username nova
[root@controller ~]# crudini --set /etc/neutron/neutron.conf nova
password openstack

Указываем Nova, что за сеть отвечает Neutron и что необходимо
отключить сервис брандмауэра в Nova:

[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
network_api_class nova.network.neutronv2.api.API
[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
security_group_api neutron
[root@controller ~]# crudini --set /etc/nova/nova.conf
DEFAULT linuxnet_interface_driver nova.network.linux_net.
LinuxOVSInterfaceDriver
[root@controller ~]# crudini --set /etc/nova/nova.conf DEFAULT
firewall_driver nova.virt.firewall.NoopFirewallDriver

И наконец, параметры аутентификации Neutron для Nova. Тут
также комментарии излишни:

[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
url http://controller.test.local:9696
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
auth_type password
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
project_domain_name default
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron

 22 / 30

Установка узла управления Neutron    143

user_domain_name default
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
region_name RegionOne
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
project_name service
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
username neutron
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
password openstack

Заполняем базу данных:

[root@controller ~]# su -s /bin/sh -c "neutron-db-manage --config-
file /etc/neutron/neutron.conf --config-file /etc/neutron/plugins/
ml2/ml2_conf.ini upgrade head" neutron

Поскольку Neutron ожидает, что настройки основного подклю-
чаемого модуля задаются в файлах директории /etc/neutron/, нам
необходимо создать символическую ссылку на конфигурацион-
ный файл подключаемого модуля ML2:

[root@controller ~]# ln -s /etc/neutron/plugins/ml2/ml2_conf.ini
/etc/neutron/plugin.ini

Указываем использование прокси для сервера метаданных и
общий секрет, которым будут подписываться запросы к серверу
метаданных. Агента мы будем настраивать в следующем разделе
на узле network:

[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
service_metadata_proxy True
[root@controller ~]# crudini --set /etc/nova/nova.conf neutron
metadata_proxy_shared_secret openstack

Рестартуем и включаем сервисы:

[root@controller ~]# systemctl restart openstack-nova-api.service
openstack-nova-scheduler.service openstack-nova-conductor.service
[root@controller ~]# systemctl enable neutron-server.service
[root@controller ~]# systemctl start neutron-server.service

Проверяем, что все расширения Neutron загружены и сервис ра-
ботает:

$ neutron ext-list
+---------------------------+---+
| alias | name |
+---------------------------+---+

 23 / 30

144    Глава 8. Службы сети Neutron

default-subnetpools	Default Subnetpools
network-ip-availability	Network IP Availability
network_availability_zone	Network Availability Zone
auto-allocated-topology	Auto Allocated Topology Services
ext-gw-mode	Neutron L3 Configurable external gateway mode
binding	Port Binding
agent	agent
subnet_allocation	Subnet Allocation
l3_agent_scheduler	L3 Agent Scheduler
tag	Tag support
external-net	Neutron external network
flavors	Neutron Service Flavors
net-mtu	Network MTU
availability_zone	Availability Zone
quotas	Quota management support
l3-ha	HA Router extension
provider	Provider Network
multi-provider	Multi Provider Network
address-scope	Address scope
extraroute	Neutron Extra Route
subnet-service-types	Subnet service types
standard-attr-timestamp	Resource timestamps
service-type	Neutron Service Type Management
l3-flavors	Router Flavor Extension
extra_dhcp_opt	Neutron Extra DHCP opts
standard-attr-revisions	Resource revision numbers
pagination	Pagination support
sorting	Sorting support
security-group	security-group
dhcp_agent_scheduler	DHCP Agent Scheduler
router_availability_zone	Router Availability Zone
rbac-policies	RBAC Policies
standard-attr-description	standard-attr-description
router	Neutron L3 Router
allowed-address-pairs	Allowed Address Pairs
project-id	project_id field enabled
dvr	Distributed Virtual Router
+---------------------------+---+

Установка сетевого узла Neutron
Начинаем с установки необходимых пакетов:

[root@network ~]# yum -y install openstack-neutron openstack-
neutron-ml2 openstack-neutron-openvswitch openvswitch

Скопируем из временной директории перенесенные в процессе
установки с управляющего узла конфигурационные файлы neut

 24 / 30

Установка сетевого узла Neutron    145

ron.conf в /etc/neutron/neutron.conf, а ml2_conf.ini – в /etc/neutron/
plugins/ml2/ml2_conf.ini.

Вносим изменения в параметры ядра при помощи sysctl. Вклю-
чаем маршрутизацию пакетов и выключаем фильтрацию пакетов
по их исходящему адресу, которая по умолчанию предотвращает
DDoS-атаки. В нашем случае эти правила применяет Neutron для
каждого экземпляра виртуальной машины при помощи iptables.

[root@network ~]# vi /etc/sysctl.conf
[root@network ~]# sysctl -p
net.ipv4.ip_forward = 1
net.ipv4.conf.all.rp_filter = 0
net.ipv4.conf.default.rp_filter = 0

Вносим изменения в конфигурационный файл подключаемого
Modular Layer 2. Указываем flat-провайдер для внешней сети:

[root@network ~]# crudini --set /etc/neutron/plugins/ml2/ml2_conf.
ini ml2_type_flat flat_networks external

Поскольку Neutron ожидает, что настройки основного подклю-
чаемого модуля задаются в файлах директории /etc/neutron/, нам
необходимо создать символическую ссылку на конфигурацион-
ный файл подключаемого модуля ML2:

[root@network ~]# ln -s /etc/neutron/plugins/ml2/ml2_conf.ini /
etc/neutron/plugin.ini

Теперь от подключаемого модуля ML2 переходим к используе-
мому им агенту OVS. Напомним, что вместо агента OVS мог быть
использован Linux Bridge. Локальный IP-адрес для конечной точки
туннеля:

[root@network ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini ovs local_ip 192.168.122.220

Сопоставление внешней сети мосту br-ex:

[root@network ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini ovs bridge_mappings external:br-ex

Включаем GRE-туннелирование:

[root@network ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini ovs enable_tunneling True
[root@network ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini agent tunnel_types gre

 25 / 30

146    Глава 8. Службы сети Neutron

Если бы мы хотели использовать VXLAN-туннелирование, то
последняя команда выглядела бы как

[root@network ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini agent tunnel_types vxlan

Настраиваем L3-агента, осуществляющего маршрутизацию:

[root@network ~]# crudini --set /etc/neutron/l3_agent.ini DEFAULT
interface_driver neutron.agent.linux.interface.OVSInterfaceDriver
[root@network ~]# crudini --set /etc/neutron/l3_agent.ini DEFAULT
use_namespaces True
[root@network ~]# crudini --set /etc/neutron/l3_agent.ini DEFAULT
external_network_bridge br-ex
[root@network ~]# crudini --set /etc/neutron/l3_agent.ini DEFAULT
router_delete_namespaces True

Если вы хотите разрешить несколько внешних сетей для одного
агента, то параметр external_network_bridge можно оставить с
пустым значением.

Задаем минимально необходимые настройки DHCP-агента:

[root@network ~]# crudini --set /etc/neutron/dhcp_agent.
ini DEFAULT interface_driver neutron.agent.linux.interface.
OVSInterfaceDriver
[root@network ~]# crudini --set /etc/neutron/dhcp_agent.ini
DEFAULT dhcp_driver neutron.agent.linux.dhcp.Dnsmasq
[root@network ~]# crudini --set /etc/neutron/dhcp_agent.ini
DEFAULT use_namespaces True
[root@network ~]# crudini --set /etc/neutron/dhcp_agent.ini
DEFAULT dhcp_delete_namespaces True

Теперь настраиваем агента, предоставляющего метаданные вир-
туальным машинам. Задаем IP-адрес контроллера и общий секрет,
используемый для получения метаданных:

[root@network ~]# crudini --set /etc/neutron/metadata_agent.ini
DEFAULT nova_metadata_host 192.168.122.200
[root@network ~]# crudini --set /etc/neutron/metadata_agent.ini
DEFAULT metadata_proxy_shared_secret openstack

Теперь запускаем и включаем сервис Open vSwitch (OVS):

[root@network ~]# systemctl enable openvswitch.service
[root@network ~]# systemctl start openvswitch.service

Нам необходимо создать мост br-ex, к которому мы подключаем
второй, не настроенный пока сетевой адаптер:

 26 / 30

Установка сетевого узла Neutron    147

[root@network ~]# ovs-vsctl add-br br-ex
[root@network ~]# ovs-vsctl add-port br-ex eth1

Далее необходимо добавить настройки сети в файл конфигура-
ции адаптера /etc/sysconfig/network-scripts/ifcfg-eth1:

TYPE=Ethernet
NAME=eth1
DEVICE=eth1
ONBOOT=yes
BOOTPROTO=static
IPADDR=10.100.1.250
NETMASK=255.255.255.0
GATEWAY=10.100.1.1

Другой способ – это назначение настроек IP непосредственно
на мосту. В этом случае вам необходимо создать в директории
/etc/sysconfig/network-scripts/ файл, описывающий конфигурацию
моста br-ex с именем ifcfg-br-ex, который будет содержать парамет
ры, которые до этого присутствовали в конфигурационном файле
сетевого адаптера. Например:

DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=10.100.1.250
NETMASK=255.255.255.0
GATEWAY=10.100.1.1
ONBOOT=yes

После чего заменяем текущую конфигурацию сетевого адапте-
ра, объявив его OVS-портом:

DEVICE=eth0
TYPE=OVSPort
DEVICETYPE=ovs
OVS_BRIDGE=br-ex
ONBOOT=yes

Проверяем конфигурацию Open vSwitch:

[root@network ~]# ovs-vsctl show
d9eb006a-b746-4875-947a-ef9dc0190975
 Bridge br-ex
 Port "eth1"
 Interface "eth1"
 Port br-ex

 27 / 30

148    Глава 8. Службы сети Neutron

 Interface br-ex
 type: internal
 ovs_version: "2.8.2"

[root@network ~]# systemctl enable neutron-openvswitch-agent.
service neutron-l3-agent.service neutron-dhcp-agent.service
neutron-metadata-agent.service neutron-ovs-cleanup.service
[root@network ~]# systemctl start neutron-openvswitch-agent.
service neutron-l3-agent.service neutron-dhcp-agent.service
neutron-metadata-agent.service

Убеждаемся, что все агенты работают:

$ openstack network agent list
+------+--------------------+--------------------+---------+-------+-------+---------------------------+
| ID | Agent Type | Host | Av Zone | Alive | State | Binary |
+------+--------------------+--------------------+---------+-------+-------+---------------------------+
02..	Metadata agent	network.test.local	None	:-)	UP	neutron-metadata-agent
25..	Open vSwitch agent	network.test.local	None	:-)	UP	neutron-openvswitch-agent
40..	L3 agent	network.test.local	nova	:-)	UP	neutron-l3-agent
59..	DHCP agent	network.test.local	nova	:-)	UP	neutron-dhcp-agent
+------+--------------------+--------------------+---------+-------+-------+---------------------------+

Теперь можно перейти к настройке вычислительных узлов
compute и compute-opt (если он присутствует в вашей конфигура-
ции).

Установка вычислительного узла
Neutron
Выполняем дальнейшие инструкции на вычислительных узлах.
Начинаем с установки необходимых пакетов. Их список аналоги-
чен списку пакетов сетевого узла:

[root@compute ~]# yum -y install openstack-neutron openstack-
neutron-ml2 openstack-neutron-openvswitch

Еще раз скопируем из временной директории перенесенные в
процессе установки с управляющего узла конфигурационные фай-
лы neutron.conf в /etc/neutron/neutron.conf, а ml2_conf.ini – в /etc/
neutron/plugins/ml2/ml2_conf.ini.

Вносим изменения в параметры ядра при помощи sysctl. Вы-
ключаем фильтрацию пакетов по их исходящему адресу, которая
по умолчанию предотвращает DDoS-атаки. В нашем случае эти
правила применяет Neutron для каждого экземпляра виртуальной

 28 / 30

Установка вычислительного узла Neutron    149

машины при помощи iptables. Также задаем, что пакеты с сетевого
моста передаются на обработку iptables:

[root@compute ~]# vi /etc/sysctl.conf
[root@compute ~]# sysctl -p
net.ipv4.conf.all.rp_filter = 0
net.ipv4.conf.default.rp_filter = 0
net.bridge.bridge-nf-call-iptables = 1

Вносим изменения в конфигурационный файл агента OVS.
Агент OVS использует подключаемый модуль Modular Layer 2. Ло-
кальный IP-адрес вычислительного узла:

[root@compute ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini ovs local_ip 192.168.122.210

[root@compute-opt ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini ovs local_ip 192.168.122.215

Включаем тип туннеля GRE в секции agent:

[root@compute ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini agent tunnel_types gre

Выбираем традиционный драйвер брандмауэра, реализован-
ный с правилами iptables на специально созданном для этого мос
ту Linux bridge:

[root@compute ~]# crudini --set /etc/neutron/plugins/ml2/
openvswitch_agent.ini securitygroup firewall_driver neutron.agent.
linux.iptables_firewall.OVSHybridIptablesFirewallDriver

Подробнее об этой настройке мы поговорим в десятой главе. За-
пускаем и включаем сервис Open vSwitch (OVS):

[root@compute ~]# systemctl enable openvswitch.service
[root@compute ~]# systemctl start openvswitch.service

Указываем сервису Nova, что за сеть отвечает Neutron и что не-
обходимо отключить службу брандмауэра в Nova:

[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
network_api_class nova.network.neutronv2.api.API
[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
security_group_api neutron
[root@compute ~]# crudini --set /etc/nova/nova.conf
DEFAULT linuxnet_interface_driver nova.network.linux_net.
LinuxOVSInterfaceDriver

 29 / 30

150    Глава 8. Службы сети Neutron

[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
firewall_driver nova.virt.firewall.NoopFirewallDriver

Как и на управляющем узле, зададим параметры аутентифика-
ции Neutron для Nova:

[root@compute ~]# crudini --set /etc/nova/nova.conf neutron url
http://controller.test.local:9696
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
auth_url http://controller.test.local:35357
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
auth_type password
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
project_domain_name default
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
user_domain_name default
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
region_name RegionOne
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
project_name service
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
username neutron
[root@compute ~]# crudini --set /etc/nova/nova.conf neutron
password openstack

Как и ранее, нам необходимо создать символическую ссылку на
конфигурационный файл подключаемого модуля ML2:

[root@compute ~]# ln -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/
neutron/plugin.ini

Рестартуем сервис Nova и включаем и стартуем агента Open
vSwitch:

[root@compute ~]# systemctl restart openstack-nova-compute.service
[root@compute ~]# systemctl enable neutron-openvswitch-agent.service
[root@compute ~]# systemctl start neutron-openvswitch-agent.service

Для проверки повторим команду, показывающую список аген-
тов, и убедимся, что добавились агенты Open vSwitch на вычисли-
тельных узлах:

$ openstack network agent list
+------+--------------------+------------------------+---------+-------+-------+---------------------------+
| ID | Agent Type | Host | Av Zone | Alive | State | Binary |
+------+--------------------+------------------------+---------+-------+-------+---------------------------+
02..	Metadata agent	network.test.local	None	:-)	UP	neutron-metadata-agent
1e..	Open vSwitch agent	compute-opt.test.local	None	:-)	UP	neutron-openvswitch-agent
25..	Open vSwitch agent	network.test.local	None	:-)	UP	neutron-openvswitch-agent
40..	L3 agent	network.test.local	nova	:-)	UP	neutron-l3-agent

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Установка вычислительного узла Neutron    151

| 59.. | DHCP agent | network.test.local | nova | :-) | UP | neutron-dhcp-agent |
| 9b.. | Open vSwitch agent | compute.test.local | None | :-) | UP | neutron-openvswitch-agent |
+------+--------------------+------------------------+---------+-------+-------+---------------------------+

Основные компоненты установлены. В следующей главе мы,
наконец, начнем работать с виртуальными машинами и сетями.
В табл. 4 приведены файлы журналов служб Neutron:

Таблица 4. Файлы журналов служб Neutron

Служба Месторасположение журнала

neutron-dhcp-agent /var/log/neutron/dhcp-agent.log

neutron-l3-agent /var/log/neutron/l3-agent.log

neutron-metadata-agent /var/log/neutron/metadata-agent.log

neutron-openvswitch-agent /var/log/neutron/openvswitch-agent.log

neutron-ovs-cleanup /var/log/neutron/ovs-cleanup.log

neutron-server /var/log/neutron/server.log

 1 / 30

Глава 9
Работа с виртуальными

машинами из командной
строки

Начнем рассмотрение работы с нашим учебным облаком с изуче-
ния сетевых компонентов.

Сеть в OpenStack
Создадим из командной строки минимально необходимые компо-
ненты сетевой инфраструктуры для запуска экземпляра виртуаль-
ной машины. Первое, что нужно сделать, – это создать внешнюю
сеть, которую назовем ext-net. Ее нам необходимо создать, работая
с привилегиями администратора, и для этого мы воспользуемся
командой openstack network create. Также нужно сказать, что
до сих пор доступна команда neutron. Работать с утилитой neutron
можно как интерактивно, так и вызывая с параметрами. Команда
neutron help выведет список всех подкоманд с описанием, а ис-
пользуя синтаксис neutron help <имя_подкоманды>, можно полу-
чить более подробную справку. Работать мы можем с узла, на кото-
ром установлены пакеты python-neutronclient и python-novaclient,
используя традиционные утилиты или python-openstackclient для
команды openstack.

$ source keystonerc_admin
$ openstack network create --external --share --provider-network-type
flat --provider-physical-network datacentre ext-net
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+

 2 / 30

Сеть в OpenStack    153

admin_state_up	UP
availability_zone_hints	
availability_zones	
created_at	2018-03-06T20:43:08Z
description	
dns_domain	None
id	1d25a0b0-f1a4-49c2-9388-bed695c11267
ipv4_address_scope	None
ipv6_address_scope	None
is_default	False
is_vlan_transparent	None
mtu	1500
name	ext-net
port_security_enabled	False
project_id	7fe2a6ef08df4a749f3bad1fceb055b9
provider:network_type	flat
provider:physical_network	datacentre
provider:segmentation_id	None
qos_policy_id	None
revision_number	4
router:external	External
segments	None
shared	True
status	ACTIVE
subnets	
tags	
updated_at	2018-03-06T20:43:08Z
+---------------------------+--------------------------------------+

Как мы видим, на текущий момент какие-либо подсети отсут-
ствуют. Создадим подсеть для внешней сети, из которой у нас бу-
дут выделяться плавающие IP-адреса. В реальных внедрениях это
могут быть «реальные» маршрутизируемые в Интернете IP-адреса:

$ openstack subnet create --network ext-net --no-dhcp --allocation-
pool start=10.100.1.100,end=10.100.1.200 --gateway 10.100.1.1
--subnet-range 10.100.1.0/24 ext-subnet
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
allocation_pools	10.100.1.100-10.100.1.200
cidr	10.100.1.0/24
created_at	2018-03-06T20:45:22Z
description	
dns_nameservers	
enable_dhcp	False
gateway_ip	10.100.1.1
host_routes	
id	18b64199-932b-46ee-9537-06bf83f6d4d7
ip_version	4

 3 / 30

154    Глава 9. Работа с виртуальными машинами из командной строки

ipv6_address_mode	None
ipv6_ra_mode	None
name	ext-subnet
network_id	1d25a0b0-f1a4-49c2-9388-bed695c11267
project_id	7fe2a6ef08df4a749f3bad1fceb055b9
revision_number	0
segment_id	None
service_types	
subnetpool_id	None
tags	
updated_at	2018-03-06T20:45:22Z
+-------------------+--------------------------------------+

Можно посмотреть список сетей командой openstack network
list, а подробности, касающиеся конкретной сети, – при помощи
openstack network show <имя_сети>. Далее продолжим работу в ка-
честве пользователя demo. Создадим внутреннюю сеть, которая
будет использоваться в проекте demo. На этот раз для демонстра-
ции воспользуемся командой neutron:

$ source keystonerc_demo
$ neutron net-create demo-net
neutron CLI is deprecated and will be removed in the future. Use
openstack CLI instead.
Created a new network:
+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
admin_state_up	True
availability_zone_hints	
availability_zones	
created_at	2018-03-06T20:46:26Z
description	
id	330c12e5-d560-4b85-abc0-05de6ee7cff4
ipv4_address_scope	
ipv6_address_scope	
is_default	False
mtu	1458
name	demo-net
project_id	bc10ac4b71164550a363b8098e8ad270
revision_number	2
router:external	False
shared	False
status	ACTIVE
subnets	
tags	
tenant_id	bc10ac4b71164550a363b8098e8ad270
updated_at	2018-03-06T20:46:26Z
+-------------------------+--------------------------------------+

 4 / 30

Сеть в OpenStack    155

Обратите внимание на то, что команда neutron считается уста-
ревшей. Затем создадим подсеть в сети demo-net:

$ neutron subnet-create demo-net --name demo-subnet --gateway
172.16.0.1 172.16.0.0/24
neutron CLI is deprecated and will be removed in the future. Use
openstack CLI instead.
Created a new subnet:
+-------------------+--+
| Field | Value |
+-------------------+--+
allocation_pools	{"start": "172.16.0.2", "end": "172.16.0.254"}
cidr	172.16.0.0/24
created_at	2018-03-06T20:47:23Z
description	
dns_nameservers	
enable_dhcp	True
gateway_ip	172.16.0.1
host_routes	
id	e3729508-98d6-4fd1-856d-03602c6b178e
ip_version	4
ipv6_address_mode	
ipv6_ra_mode	
name	demo-subnet
network_id	330c12e5-d560-4b85-abc0-05de6ee7cff4
project_id	bc10ac4b71164550a363b8098e8ad270
revision_number	0
service_types	
subnetpool_id	
tags	
tenant_id	bc10ac4b71164550a363b8098e8ad270
updated_at	2018-03-06T20:47:23Z
+-------------------+--+

Мы использовали параметр --gateway. Когда подсеть будет под-
ключена к маршрутизатору, интерфейс маршрутизатора получит
заданный IP-адрес 172.16.0.1. Теперь создадим этот маршрутиза-
тор. Вернемся к использованию команды openstack:

$ openstack router create demo-router
+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	
availability_zones	
created_at	2018-03-04T18:20:38Z
description	
distributed	False

 5 / 30

156    Глава 9. Работа с виртуальными машинами из командной строки

external_gateway_info	None
flavor_id	None
ha	False
id	006630d4-5cb6-4d72-adee-4c8f71f5cbd4
name	demo-router
project_id	bc10ac4b71164550a363b8098e8ad270
revision_number	1
routes	
status	ACTIVE
tags	
updated_at	2018-03-04T18:20:38Z
+-------------------------+--------------------------------------+

и подключим интерфейс маршрутизатора demo-router к подсети
demo-subnet:

$ openstack router add subnet demo-router demo-subnet

Осталось только установить маршрутизатору demo-router в ка-
честве шлюза внешнюю сеть ext-net:

$ neutron router-gateway-set demo-router ext-net
neutron CLI is deprecated and will be removed in the future. Use
openstack CLI instead.
Set gateway for router demo-router

На этом этапе почти все готово для запуска первой виртуальной
машины. Теперь можно просмотреть список всех существующих
портов:

$ source keystonerc_admin
$ openstack port list
+------+------+-------------------+---+--------+
| ID | Name | MAC Address | Fixed IP Addresses | Status |
+------+------+-------------------+---+--------+
11..		fa:16:3e:79:ea:e4	ip_address='10.100.1.108', subnet_id='18b641..'	DOWN
86..		fa:16:3e:8d:ea:4b	ip_address='172.16.0.1', subnet_id='e37295..'	ACTIVE
cf..		fa:16:3e:c6:79:ac	ip_address='172.16.0.2', subnet_id='e37295..'	ACTIVE
+------+------+-------------------+---+--------+

Как было сказано ранее, порт – это логическое подключение ре-
сурса, например виртуальной машины или маршрутизатора, к под-
сети. Просмотреть информацию о конкретном порте можно при
помощи команды neutron port-show или openstack port show:

$ openstack port show 866cd6d8-7e1f-43a8-a25b-cffb29347ec3
+-----------------------+---+
| Field | Value |
+-----------------------+---+

 6 / 30

Запускаем экземпляр виртуальной машины    157

admin_state_up	UP
allowed_address_pairs	
binding_host_id	network.test.local
binding_profile	
binding_vif_details	datapath_type=’system’,
	ovs_hybrid_plug=’False’, port_filter=’True’
binding_vif_type	ovs
binding_vnic_type	normal
created_at	2018-03-06T20:51:49Z
data_plane_status	None
description	
device_id	eb5aa33d-726a-46a7-a589-d78f99d1c2eb
device_owner	network:router_interface
dns_assignment	None
dns_name	None
extra_dhcp_opts	
fixed_ips	ip_address=’172.16.0.1’, subnet_id=’e37..
id	866cd6d8-7e1f-43a8-a25b-cffb29347ec3
ip_address	None
mac_address	fa:16:3e:8d:ea:4b
name	
network_id	330c12e5-d560-4b85-abc0-05de6ee7cff4
option_name	None
option_value	None
port_security_enabled	False
project_id	bc10ac4b71164550a363b8098e8ad270
qos_policy_id	None
revision_number	9
security_group_ids	
status	ACTIVE
subnet_id	None
tags	
trunk_details	None
updated_at	2018-03-06T20:51:59Z
+-----------------------+---+

Запускаем экземпляр виртуальной
машины
Прежде чем создать экземпляр виртуальной машины, познако-
мимся с понятием flavor. Фактически это тип создаваемой вирту-
альной машины. До версии Mitaka при установке OpenStack созда-
валось несколько предустановленных типов. Начиная с Mitaka, вам
необходимо создавать flavors самостоятельно так, как это описано
ниже. Посмотрим, какие предустановленные типы «из коробки»
мы бы увидели на стенде с одной из старых версий OpenStack:

 7 / 30

158    Глава 9. Работа с виртуальными машинами из командной строки

$ nova flavor-list
+----+-----------+--------+------+-----+------+-------+-------------+-----------+
| ID | Name | Mem_MB | Disk | Eph | Swap | VCPUs | RXTX_Factor | Is_Public |
+----+-----------+--------+------+-----+------+-------+-------------+-----------+
1	m1.tiny	512	1	0		1	1.0	True
2	m1.small	2048	20	0		1	1.0	True
3	m1.medium	4096	40	0		2	1.0	True
4	m1.large	8192	80	0		4	1.0	True
5	m1.xlarge	16384	160	0		8	1.0	True
+----+-----------+--------+------+-----+------+-------+-------------+-----------+

Из перечисленных параметров нужно прокомментировать
Ephemeral – размер второго временного диска, данные которого,
как и первого, теряются при выключении виртуальной машины.
Swap – размер опционального swap-раздела. RXTX_Factor позволя-
ет изменять пропускную способность сети. Значение по умолчанию
1.0 обозначает пропускную способность как у подключенной сети.
Данный параметр используется только в драйвере гипервизора Xen.

В нашем случае вывод команды nova flavor-list или openstack
flavor list будет пуст. Создадим flavor для наших эксперимен-
тов. Укажем, что этот шаблон доступен всем пользователям облака,
размер диска 1 Гб и используется 1 vCPU, а размер оперативной
памяти зададим 300 Мб:

$ source keystonerc_admin
$ openstack flavor create --ram 300 --disk 1 --vcpu 1 --public m2.tiny
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	1
id	a5515a35-c0a2-4d36-8997-93fcbf73d18b
name	m2.tiny
os-flavor-access:is_public	True
properties	
ram	300
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+--------------------------------------+

Соответствующая команда nova выглядит так:

$ nova flavor-create --is-public true m2.tiny auto 300 1 1
+----------+---------+--------+------+-----+------+-------+------+-----------+
| ID | Name | Mem_MB | Disk | Eph | Swap | VCPUs | RXTX | Is_Public |
+----------+---------+--------+------+-----+------+-------+------+-----------+

 8 / 30

Запускаем экземпляр виртуальной машины    159

| 98c...e3 | m2.tiny | 300 | 1 | 0 | | 1 | 1.0 | True |
+----------+---------+--------+------+-----+------+-------+------+-----------+

Для того чтобы просмотреть информацию о шаблоне, исполь-
зуйте команду openstack flavor show. По умолчанию только ад-
министратор может создавать новые шаблоны и просматривать их
полный список. Для того чтобы разрешить пользователям созда-
вать свои шаблоны, необходимо в файле /etc/nova/policy.json по-
менять строку

"compute_extension:flavormanage": "rule:admin_api",

на

"compute_extension:flavormanage": "",

Как уже упоминалось ранее, сервер метаданных Nova может пе-
редавать те или иные параметры экземпляру виртуальной маши-
ны. В частности, это относится к открытым ssh-ключам. Создадим
пару ключей и сохраним закрытый ключ в файл:

$ source keystonerc_demo
$ nova keypair-add demokey1 > ~/demokey1

или:

$ source keystonerc_demo
$ openstack keypair create demokey1 > ~/demokey1

Проверить список ключей, доступных вам, можно командой
openstack или nova keypair-list:

$ openstack keypair list
+----------+---+
| Name | Fingerprint |
+----------+---+
| demokey1 | b6:3e:bd:fb:81:0f:f2:2b:60:8c:e2:f1:f4:bc:c4:ed |
+----------+---+

Теперь попробуем запустить экземпляр виртуальной машины
на основе своего шаблона m2.tiny с ключом demokey1:

$ openstack server create --image cirros-0.4.0-x86_64 --flavor m2.tiny
--key-name demokey1 --nic net-id=demo-net myinstance1
+-----------------------------+--------------------------------------+
| Field | Value |
+-----------------------------+--------------------------------------+
| OS-DCF:diskConfig | MANUAL |

 9 / 30

160    Глава 9. Работа с виртуальными машинами из командной строки

OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	NOSTATE
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	None
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	
adminPass	GDyA9hzW85j4
config_drive	
created	2018-03-06T21:02:54Z
flavor	m2.tiny (a5515a35-c0a2-4d36-8997-9..)
hostId	
id	10e4a71b-6162-4984-a410-3dff74b1e667
image	cirros-0.4.0-x86_64 (c8ccc9b3-29b..)
key_name	demokey1
name	myinstance1
progress	0
project_id	bc10ac4b71164550a363b8098e8ad270
properties	
security_groups	name=’default’
status	BUILD
updated	2018-03-06T21:02:54Z
user_id	3b76dece42b140e092dc1a76a85c1879
volumes_attached	
+-----------------------------+--------------------------------------+

Соответствующий синтаксис команды nova:

$ nova boot --flavor m2.tiny --image cirros-0.4.0-x86_64 --key-name
demokey1 myinstance1

Запуск экземпляра виртуальной машины занимает некоторое
время. Можно попробовать периодически запускать команду nova
list или openstack server list, пока статус экземпляра не по-
меняется на active:

$ openstack server list
+-------+-------------+--------+---------------------+---------------------+---------+
| ID | Name | Status | Networks | Image | Flavor |
+-------+-------------+--------+---------------------+---------------------+---------+
| 10e.. | myinstance1 | ACTIVE | demo-net=172.16.0.5 | cirros-0.4.0-x86_64 | m2.tiny |
+-------+-------------+--------+---------------------+---------------------+---------+

Можно подключиться к гипервизору и посмотреть список вир-
туальных машин при помощи virsh, а также параметры, с которы-
ми через libvirt был запущен экземпляр виртуальной машины:

 10 / 30

Запускаем экземпляр виртуальной машины    161

$ ssh root@192.168.122.215
virsh list
 Id Name State
--
 1 instance-0000000a running

[root@compute-opt ~]# virsh dumpxml instance-0000000a
<domain type='kvm' id='1'>
 <name>instance-0000000a</name>
 <uuid>10e4a71b-6162-4984-a410-3dff74b1e667</uuid>
 <metadata>
 <nova:instance xmlns:nova="http://openstack.org/xmlns/libvirt/
nova/1.0">
 <nova:package version="17.0.0-1.el7"/>
 <nova:name>myinstance1</nova:name>
 <nova:creationTime>2018-03-06 21:03:07</nova:creationTime>
 <nova:flavor name="m2.tiny">
 <nova:memory>300</nova:memory>
 <nova:disk>1</nova:disk>
 <nova:swap>0</nova:swap>
 <nova:ephemeral>0</nova:ephemeral>
 <nova:vcpus>1</nova:vcpus>
 </nova:flavor>
 <nova:owner>
 <nova:user uuid="3b76dece42b140e092dc1a76a85c1879">demo</
nova:user>
 <nova:project uuid="bc10ac4b71164550a363b8098e8ad270">demo</
nova:project>
 </nova:owner>
 <nova:root type="image" uuid="c8ccc9b3-29bb-4220-be38-
8f261ac8b99a"/>
 </nova:instance>
 </metadata>
 <memory unit='KiB'>307200</memory>
 <currentMemory unit='KiB'>307200</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <cputune>
 <shares>1024</shares>
 </cputune>
 <resource>
 <partition>/machine</partition>
 </resource>
 <sysinfo type='smbios'>
 <system>
 <entry name='manufacturer'>RDO</entry>
 <entry name='product'>OpenStack Compute</entry>
 <entry name='version'>17.0.0-1.el7</entry>
 <entry name='serial'>c81dde69-60f6-42b6-8ad3-4fe71ae5b698</entry>
 <entry name='uuid'>10e4a71b-6162-4984-a410-3dff74b1e667</entry>
 <entry name='family'>Virtual Machine</entry>
 </system>

 11 / 30

162    Глава 9. Работа с виртуальными машинами из командной строки

 </sysinfo>
 <os>
 <type arch='x86_64' machine='pc-i440fx-rhel7.4.0'>hvm</type>
 <boot dev='hd'/>
 <smbios mode='sysinfo'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 </features>
 <cpu mode='custom' match='exact' check='full'>
 <model fallback='forbid'>Broadwell-noTSX</model>
 <vendor>Intel</vendor>
 <topology sockets='1' cores='1' threads='1'/>
 <feature policy='require' name='vme'/>
 <feature policy='require' name='ss'/>
 <feature policy='require' name='f16c'/>
 <feature policy='require' name='rdrand'/>
 <feature policy='require' name='hypervisor'/>
 <feature policy='require' name='arat'/>
 <feature policy='require' name='tsc_adjust'/>
 <feature policy='require' name='xsaveopt'/>
 <feature policy='require' name='abm'/>
 <feature policy='disable' name='invpcid'/>
 </cpu>
 <clock offset='utc'>
 <timer name='pit' tickpolicy='delay'/>
 <timer name='rtc' tickpolicy='catchup'/>
 <timer name='hpet' present='no'/>
 </clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/libexec/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='none'/>
 <source file='/var/lib/nova/instances/10e4a71b-6162-4984-a410-
3dff74b1e667/disk'/>
 <backingStore type='file' index='1'>
 <format type='raw'/>
 <source file='/var/lib/nova/instances/_base/2fd07305443c5
0eaf54493008b80b9f329e88b30'/>
 <backingStore/>
 </backingStore>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04'
function='0x0'/>
 </disk>
 <controller type='usb' index='0' model='piix3-uhci'>

 12 / 30

Запускаем экземпляр виртуальной машины    163

 <alias name='usb'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01'
function='0x2'/>
 </controller>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <interface type='bridge'>
 <mac address='fa:16:3e:95:67:8b'/>
 <source bridge='qbr4194b0a8-77'/>
 <target dev='tap4194b0a8-77'/>
 <model type='virtio'/>
 <alias name='net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03'
function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/1'/>
 <log file='/var/lib/nova/instances/10e4a71b-6162-4984-a410-
3dff74b1e667/console.log' append='off'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/1'>
 <source path='/dev/pts/1'/>
 <log file='/var/lib/nova/instances/10e4a71b-6162-4984-a410-
3dff74b1e667/console.log' append='off'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <input type='tablet' bus='usb'>
 <alias name='input0'/>
 <address type='usb' bus='0' port='1'/>
 </input>
 <input type='mouse' bus='ps2'>
 <alias name='input1'/>
 </input>
 <input type='keyboard' bus='ps2'>
 <alias name='input2'/>
 </input>
 <graphics type='vnc' port='5900' autoport='yes' listen='0.0.0.0'
keymap='en-us'>
 <listen type='address' address='0.0.0.0'/>
 </graphics>
 <video>
 <model type='cirrus' vram='16384' heads='1' primary='yes'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02'
function='0x0'/>
 </video>
 <memballoon model='virtio'>

 13 / 30

164    Глава 9. Работа с виртуальными машинами из командной строки

 <stats period='10'/>
 <alias name='balloon0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05'
function='0x0'/>
 </memballoon>
 </devices>
 <seclabel type='none' model='none'/>
 <seclabel type='dynamic' model='dac' relabel='yes'>
 <label>+107:+107</label>
 <imagelabel>+107:+107</imagelabel>
 </seclabel>
</domain>

На этом этапе можно получить доступ к консоли виртуальной
машины при помощи noVNC. Для этого нам нужно получить ссыл-
ку при помощи команды nova get-vnc-console myinstance1
novnc или openstack console url show myinstance1, которую
дальше нужно скопировать в адресную строку браузера:

$ openstack console url show myinstance1
+-------+--+
| Field | Value |
+-------+--+
| type | novnc |
| url | http://controller.test.local:6080/vnc_auto.html?token=c1.. |
+-------+--+

Если вы все сделали правильно, то получите доступ к консоли,
подобной изображенной на рис. 9.1.

Что произошло бы в случае ошибки? Давайте смоделируем си-
туацию:

$ nova boot --flavor m1.xlarge --image cirros-0.4.0-x86_64 --key-
name demokey1 myinstance2

Если вы внимательно посмотрите на строку запуска виртуаль-
ной машины, то заметите, что был выбран тип виртуальной маши-
ны m1.xlarge, для которого требуются 16 Гб оперативной памяти.
В тестовом окружении автора нет вычислительного узла с требуе-
мым объемом. Если попробовать выполнить команду nova list,
то в статусе мы увидим «ERROR». Чтобы узнать причину ошибки,
используем команду nova show:

$ nova show myinstance2 | grep fault
| fault | {"message": "No valid host was
found. ", "code": 500, "created": "2018-03-05T19:15:03Z"} |

 14 / 30

Запускаем экземпляр виртуальной машины    165

Рис. 9.1. Доступ к консоли виртуальной машины через noVNC

На двух последующих рис. 9.2 и 9.3 автор отобразил последова-
тельность шагов при запуске виртуальной машины. В процессе за-
пуска, как вы видите, используются практически все рассмотрен-
ные ранее сервисы OpenStack.

Рис. 9.2. Последовательность шагов при запуске виртуальной машины. Часть 1

 15 / 30

166    Глава 9. Работа с виртуальными машинами из командной строки

Рис. 9.3. Последовательность шагов при запуске виртуальной машины. Часть 2

Познакомимся еще с несколькими командами на примере зада-
чи по поиску информации о том, на каком гипервизоре запущена
конкретная виртуальная машина.

Получим список всех вычислительных узлов:

$ source keystonerc_admin
$ nova hypervisor-list
+--------------------------------------+------------------------+-------+---------+
| ID | Hypervisor hostname | State | Status |
+--------------------------------------+------------------------+-------+---------+
| 658bd88c-8878-489c-9a9a-1239295ba61c | compute.test.local | up | enabled |
| 6989b8db-72db-47b7-864d-b3e1fd7b7868 | compute-opt.test.local | up | enabled |
+--------------------------------------+------------------------+-------+---------+

Теперь можно проверить, какие виртуальные машины запуще-
ны на каждом из гипервизоров:

$ nova hypervisor-servers compute.test.local
+------------------+-------------------+---------------+------------------------+
| ID | Name | Hypervisor ID | Hypervisor Hostname |
+------------------+-------------------+---------------+------------------------+
| 8d08f223-bfce-..| instance-00000008 | 658bd88c-8.. | compute.test.local |
+------------------+-------------------+---------------+------------------------+

 16 / 30

Запускаем экземпляр виртуальной машины    167

$ nova hypervisor-servers compute-opt.test.local
+------------------+-------------------+---------------+------------------------+
| ID | Name | Hypervisor ID | Hypervisor Hostname |
+------------------+-------------------+---------------+------------------------+
| b7a6fd97-a37e-.. | instance-00000007 | 6989b8db-7.. | compute-opt.test.local |
+------------------+-------------------+---------------+------------------------+

Естественно, такой способ поиска виртуальной машины вруч-
ную подходит только для небольших сред. Еще один способ – это
использование непосредственно SQL-запросов к базе данных nova,
например применяя uuid экземпляра виртуальной машины:

mysql -unova -pnova
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 87
Server version: 10.1.20-MariaDB MariaDB Server

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use nova;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

MariaDB [nova]> select uuid,host,launched_on,created_at from instances where
uuid='b7a6fd97-a37e-4f1f-98dc-0d182dd45e16';
+--------------------------------------+------------------------+------------------------+---------------------+
| uuid | host | launched_on | created_at |
+--------------------------------------+------------------------+------------------------+---------------------+
| b7a6fd97-a37e-4f1f-98dc-0d182dd45e16 | compute-opt.test.local | compute-opt.test.local | 2018-03-05 18:48:05 |
+--------------------------------------+------------------------+------------------------+---------------------+
1 row in set (0.00 sec)

Еще одна команда позволяет получить суммарную статистику
для каждого проекта:

$ nova usage-list
Usage from 2016-12-11 to 2017-01-09:
+-----------+---------+--------------+-----------+---------------+
| Tenant ID | Servers | RAM MB-Hours | CPU Hours | Disk GB-Hours |
+-----------+---------+--------------+-----------+---------------+
| 9c1258e.. | 10 | 159016.61 | 525.59 | 559.63 |
+-----------+---------+--------------+-----------+---------------+

 17 / 30

168    Глава 9. Работа с виртуальными машинами из командной строки

Добавляем к экземпляру виртуальной
машины сеть
Говоря о сети, начнем с понятия групп безопасности. Группа
безопасности – это набор правил брандмауэра, разрешающих дос
туп к тем или иным портам виртуальной машины. По умолчанию
в каждом проекте существует одна группа безопасности default, не
содержащая ни одного разрешающего правила для входящего тра-
фика. Можно добавить правила в уже существующую группу, но
мы создадим свою. Работать будем в проекте demo пользователем
demo:

$ openstack security group create demo-sgroup
+-----------------+---
--+
| Field | Value
 |
+-----------------+---
--+
| created_at | 2018-03-05T19:54:30Z
 |
| description | demo-sgroup
 |
| id | a9064626-bdc1-44b0-a4f5-9f4d5f0c2b44
 |
| name | demo-sgroup
 |
| project_id | bc10ac4b71164550a363b8098e8ad270
 |
| revision_number | 2
 |
| rules | created_at='2018-03-05T19:54:30Z', direction='egress', ethertype='IPv4',
id='5d4d520c-6430-4204-9d61-29e5f5f870a5', updated_at='2018-03-05T19:54:30Z' |
| | created_at='2018-03-05T19:54:30Z', direction='egress', ethertype='IPv6',
id='af8340ff-2f23-462e-98b1-99cee55803c7', updated_at='2018-03-05T19:54:30Z' |
| updated_at | 2018-03-05T19:54:30Z
 |
+-----------------+---
--+

После этого добавим одно правило, разрешающее доступ по ssh:

$ openstack security group rule create --protocol tcp --dst-port
22 demo-sgroup
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+

 18 / 30

Добавляем к экземпляру виртуальной машины сеть    169

created_at	2018-03-05T19:55:14Z
description	
direction	ingress
ether_type	IPv4
id	ad2e9953-76bf-46a0-ae53-06afffceaf83
name	None
port_range_max	22
port_range_min	22
project_id	bc10ac4b71164550a363b8098e8ad270
protocol	tcp
remote_group_id	None
remote_ip_prefix	0.0.0.0/0
revision_number	0
security_group_id	a9064626-bdc1-44b0-a4f5-9f4d5f0c2b44
updated_at	2018-03-05T19:55:14Z
+-------------------+--------------------------------------+

И второе, разрешающее протокол ICMP:

$ openstack security group rule create --protocol icmp demo-sgroup
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
created_at	2018-03-06T21:09:43Z
description	
direction	ingress
ether_type	IPv4
id	65ed89c2-49e9-4a2c-888b-597ec2f17783
name	None
port_range_max	None
port_range_min	None
project_id	bc10ac4b71164550a363b8098e8ad270
protocol	icmp
remote_group_id	None
remote_ip_prefix	0.0.0.0/0
revision_number	0
security_group_id	a9064626-bdc1-44b0-a4f5-9f4d5f0c2b44
updated_at	2018-03-06T21:09:43Z
+-------------------+--------------------------------------+

Посмотреть список групп безопасности можно командой nova
secgroup-list или openstack security group list:

$ openstack security group list
+--------------------------------------+-------------+------------------------+------
----------------------------+
| ID | Name | Description | Proje
ct |
+--------------------------------------+-------------+------------------------+------
----------------------------+

 19 / 30

170    Глава 9. Работа с виртуальными машинами из командной строки

| 22eedc5e-6901-4b5d-a0f5-d04543a05305 | default | Default security group | bc10a
c4b71164550a363b8098e8ad270 |
| a9064626-bdc1-44b0-a4f5-9f4d5f0c2b44 | demo-sgroup | demo-sgroup | bc10a
c4b71164550a363b8098e8ad270 |
+--------------------------------------+-------------+------------------------+------
----------------------------+

Команда nova secgroup-list-rules или openstack security
group rule list выводит список правил конкретной группы:

$ openstack security group rule list demo-sgroup
+--------------------------------------+-------------+-----------+------------+-----------------------+
| ID | IP Protocol | IP Range | Port Range | Remote Security Group |
+--------------------------------------+-------------+-----------+------------+-----------------------+
5d4d520c-6430-4204-9d61-29e5f5f870a5	None	None		None
65ed89c2-49e9-4a2c-888b-597ec2f17783	icmp	0.0.0.0/0		None
ad2e9953-76bf-46a0-ae53-06afffceaf83	tcp	0.0.0.0/0	22:22	None
af8340ff-2f23-462e-98b1-99cee55803c7	None	None		None
+--------------------------------------+-------------+-----------+------------+-----------------------+

Теперь вернемся к успешно стартовавшей виртуальной ма-
шине myinstance1. Группы безопасности можно добавлять и уда-
лять динамически. Добавим группу demo-sgroup и удалим группу
безопасности «по умолчанию» default:

$ openstack server add security group myinstance1 demo-sgroup
$ openstack server remove security group myinstance1 default

Проверим, что группа безопасности изменилась:

$ openstack server show myinstance1 | grep security_groups
| security_groups | name='demo-sgroup' |

При помощи ключа команды nova boot или openstack также
можно задавать группу безопасности при старте виртуальной ма-
шины:

$ nova boot --flavor m2.tiny --image cirros-0.4.0-x86_64
--security-groups demo-sgroup --key-name demokey1 myinstance1
$ openstack server create --image cirros-0.4.0-x86_64 --flavor
m2.tiny --security-groups demo-sgroup --key-name demokey1
myinstance1

Попробуем подключиться к виртуальной машине по сети. Пра-
вило в созданной нами группе безопасности должно позволить
подключение по протоколу ssh, а также у нас есть закрытый ключ,

 20 / 30

Добавляем к экземпляру виртуальной машины сеть    171

парный которому, открытый, должен был импортироваться при
старте виртуальной машины. Единственное, чего у нас не хвата-
ет, – это внешнего «плавающего» IP. Подключиться «снаружи» к
внутренней сети demo-net мы не сможем. Создадим один внеш-
ний IP, который нам будет выделен из сети ext-net:

$ openstack floating ip create ext-net
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
created_at	2018-03-06T21:11:48Z
description	
fixed_ip_address	None
floating_ip_address	10.100.1.109
floating_network_id	1d25a0b0-f1a4-49c2-9388-bed695c11267
id	87a41c7d-ee46-4c22-bed7-b40b858872f2
name	10.100.1.109
port_id	None
project_id	bc10ac4b71164550a363b8098e8ad270
qos_policy_id	None
revision_number	0
router_id	None
status	DOWN
subnet_id	None
updated_at	2018-03-06T21:11:48Z
+---------------------+--------------------------------------+

Нам нужно ассоциировать сетевой порт виртуальной машины c
выделенным IP 10.100.1.103. Отдаем команду:

$ openstack server add floating ip myinstance1 10.100.1.103

Затем при помощи nova list или openstack server list про-
веряем, появился ли «плавающий» IP в сетях:

$ openstack server list
+-------+-------------+--------+------------------------+---------------------+---------+
| ID | Name | Status | Networks | Image | Flavor |
+-------+-------------+--------+------------------------+---------------------+---------+
| 10e.. | myinstance1 | ACTIVE | demo-net=172.16.0.5, | | |
| | | | 10.100.1.109 | cirros-0.4.0-x86_64 | m2.tiny |
+-------+-------------+--------+------------------------+---------------------+---------+

Работу с веб-панелью управления OpenStack мы рассмотрим
только в одной из следующих глав, но, для того чтобы проиллюст
рировать получившуюся конфигурацию нашей сети, я приведу
снимки экранов сетевой топологии в данном разделе. В версии

 21 / 30

172    Глава 9. Работа с виртуальными машинами из командной строки

Newton разработчики объединили в Horizon оба вида графичес
ких представлений сети. На рис. 9.4 приведена сетевая топология
Horizon, как она выглядела в версии OpenStack Kilo и более ран-
них. На рис. 9.5 – то, как выглядела топология в версии начиная с
OpenStack Liberty.

Рис. 9.4. Сетевая топология в Horizon

Последнее, что осталось проверить, – с тестовой машины, под-
ключенной в ту же сеть, что и сетевой интерфейс eth1 виртуальной
машины network, попробовать подключиться к виртуальной ма-
шине. В случае использования дистрибутива cirros подключаться
надо пользователем cirros:

[user@test ~]$ ssh -i ~/demokey1 cirros@10.100.1.109

 22 / 30

Моментальные снимки и резервные копии    173

Рис. 9.5. Сетевая топология в виде графов

Моментальные снимки и резервные
копии
Как мы помним из главы, посвященной сервису работы с блочны-
ми устройствами, у нас есть том с именем testvol1 и размером 1 Гб:

$ openstack volume list
+--------------------------------------+----------+-----------+------+-------------+
| ID | Name | Status | Size | Attached to |
+--------------------------------------+----------+-----------+------+-------------+
| 11bddba4-ed69-4aa3-b5a9-6dd47e19d49a | testvol1 | available | 1 | |
+--------------------------------------+----------+-----------+------+-------------+

Мы можем подключить его к запущенному экземпляру вирту-
альной машины myinstance1 и начать использовать «изнутри» ма-
шины:

$ openstack server add volume myinstance1 testvol1

Нужно дождаться, когда в выводе команды openstack volume
list статус тома изменится на «in-use»:

 23 / 30

174    Глава 9. Работа с виртуальными машинами из командной строки

$ openstack volume list
+--------------------------------------+----------+--------+------+-------------------------------------+
| ID | Name | Status | Size | Attached to |
+--------------------------------------+----------+--------+------+-------------------------------------+
| 11bddba4-ed69-4aa3-b5a9-6dd47e19d49a | testvol1 | in-use | 1 | Attached to myinstance1 on /dev/vdb |
+--------------------------------------+----------+--------+------+-------------------------------------+

После этого можно проверить, что устройство появилось в вир-
туальной машине:

$ cat /proc/partitions
major minor #blocks name

 253 0 1048576 vda
 253 1 1036192 vda1
 253 16 1048576 vdb

Дальше можно стандартными средствами операционной си-
стемы создать раздел и файловую систему на нем. Отключить его
можно командой nova volume-detach. Предварительно не забудь-
те размонтировать устройство в виртуальной машине.

Также можно подключать блочное устройство cinder во время
создания виртуальной машины командой nova boot при помощи
опции --block-device-mapping.

Средствами OpenStack можно создать снимок работающей вир-
туальной машины, например для целей резервного копирования
или для создания нового измененного базового образа. Важно от-
метить, что снимок не является точкой восстановления для суще-
ствующей виртуальной машины. Снимок – это такой же образ, как
и те, что вы загружаете в Glance. Основное различие – это несколь-
ко дополнительных полей в базе данных, например UUID вирту-
альной машины, из которой получен этот образ.

Сделаем какое-нибудь простое и легко проверяемое изменение
на файловой системе, запущенной из машины myinstance1:

$ sudo cp /etc/os-release /etc/my-os-release

Создадим снимок с именем myinstance1_sn1:

$ nova image-create myinstance1 myinstance1_sn1

Для нашего тестового образа cirros создание снимка произой-
дет в считанные секунды. Для образов большого размера это
займет некоторое время. Дождемся, пока статус снимка станет
«ACTIVE»:

 24 / 30

Моментальные снимки и резервные копии    175

$ nova image-list
+--------------------------------------+---------------------+--------+---------+
| ID | Name | Status | Server |
+--------------------------------------+---------------------+--------+---------+
| 4204660a-dc38-4430-9a68-1fa61e542522 | cirros-0.3.4-x86_64 | ACTIVE | |
| ab8dedb7-2ec3-4aa9-978c-d081eb18e7ac | myinstance1_sn1 | ACTIVE | c70bd.. |
+--------------------------------------+---------------------+--------+---------+

После можно запустить новую виртуальную машину:
$ nova boot --flavor m2.tiny --image myinstance1_sn1 --key-name
demokey1 --security-groups demo-sgroup myinstance2

Если получить доступ к консоли myinstance2, то мы увидим, что
изменения присутствуют в новом экземпляре:
$ ls /etc/my*
/etc/my-os-release

В том случае, если вы работаете с виртуальными машинами
Fedora, CentOS, RHEL или им подобными, необходимо перед соз-
данием снимка удалить правило udev для сети, иначе новый эк-
земпляр не сможет создать сетевого интерфейса:

rm -f /etc/udev/rules.d/70-net-persistent.rule

Также если виртуальная машина запущена во время создания
снимка, необходимо сбросить на диск содержимое всех файловых
буферов и исключить дисковый ввод/вывод каких-либо процессов.
Данные команды сбросят буферы и «заморозят» доступ к файло-
вой системе на 60 секунд:

sync && fsfreeze -f / && sleep 60 && fsfreeze -u /

Помимо моментальных снимков, имеется функционал созда-
ния резервных копий. Основные отличия от снимков:

�� резервная копия сохраняется в объектное хранилище, а не в
сервис работы с образами;

�� резервная копия занимает столько места, сколько занима-
ют данные, а моментальный снимок копирует весь образ
полностью;

�� резервную копию можно восстановить на новый том, а из
моментального снимка можно запустить новый экземпляр
виртуальной машины;

�� в отличие от создания моментального снимка, нельзя де-
лать резервную копию используемого тома.

 25 / 30

176    Глава 9. Работа с виртуальными машинами из командной строки

Пример создания резервной копии тома:

$ cinder backup-create 82711b99-cce1-45e4-8b7e-b91301d65dc8
+-----------+--------------------------------------+
| Property | Value |
+-----------+--------------------------------------+
id	66a1b5b7-4167-4a1d-b2cd-c565019cfb76
name	None
volume_id	82711b99-cce1-45e4-8b7e-b91301d65dc8
+-----------+--------------------------------------+

Если теперь посмотреть содержимое контейнера volumebackups,
то мы увидим там множество объектов. Идентифицировать ре-
зервную копию можно по идентификатору тома и времени созда-
ния резервной копии:

$ swift list volumebackups
volume_82711b99.../20150625081540/az_nova_backup_66a1b5b7-...-00001
volume_82711b99.../20150625081540/az_nova_backup_66a1b5b7-...-00002
...

При восстановлении необходимо уже указывать не ID тома, а
идентификатор резервной копии. В нашем случае:

$ cinder backup-restore 66a1b5b7-4167-4a1d-b2cd-c565019cfb76

Если мы посмотрим вывод команды cinder list, то увидим, что
резервная копия восстанавливается в новый том с именем restore_
backup_66a1b5b7-4167-4a1d-b2cd-c565019cfb76:

$ cinder list
+-------+------------------+-----------------------+------+-------------+----------+-------------+
| ID | Status | Display Name | Size | Volume Type | Bootable | Attached to |
+-------+------------------+-----------------------+------+-------------+----------+-------------+
| 82... | available | testvol1 | 1 | None | false | |
| d3... | restoring-backup | restore_backup_66a1...| 1 | None | false | |
+-------+------------------+-----------------------+------+-------------+----------+-------------+

Инкрементальные резервные копии в настоящий момент под-
держиваются, только если вы используете в качестве бэкэнда Ceph,
и эта реализация специфична именно для Ceph. Начиная с релиза
Kilo инкрементальные резервные копии реализованы как общая,
неспецифичная функция (для Ceph функционал существовал, на-
чиная с Havana), но большинство драйверов на момент написания
главы ее не поддерживало.

 26 / 30

Шифрование томов Cinder    177

Шифрование томов Cinder
Одной из полезных опций работы с блочными устройствами явля-
ется их шифрование. Настройка шифрования томов требуется со
стороны двух служб: Nova и Cinder. Сделать это можно при помо-
щи общего секрета или при помощи сервиса управления ключами
Barbican, который не рассматривается в этой книге. Соответствен-
но, пойдем по пути использования общего секрета. Нужно иметь в
виду, что если он скомпрометирован, то злоумышленник получит
доступ ко всем зашифрованным томам.

Зададим ключ на узле Cinder и всех вычислительных узлах:

[root@compute ~]# crudini --set /etc/nova/nova.conf keymgr fixed_key
123456789
[root@compute ~]# systemctl restart openstack-nova-compute
[root@controller ~]# crudini --set /etc/cinder/cinder.conf keymgr
fixed_key 123456789
[root@controller ~]# systemctl restart openstack-cinder-volume

Нам необходимо создать новый тип тома. Назовем его LUKS,
поскольку для шифрования будет использоваться соответствую-
щая спецификация (https://en.wikipedia.org/wiki/Linux_Unified_Key_
Setup):

$ source keystonerc_admin
$ cinder type-create LUKS
+--------------------------------------+------+-------------+-----------+
| ID | Name | Description | Is_Public |
+--------------------------------------+------+-------------+-----------+
| 14bbc318-3377-4ab3-a4f0-e1738eec8dfd | LUKS | – | True |
+--------------------------------------+------+-------------+-----------+

Следующим шагом нужно создать тип шифрования:

$ cinder encryption-type-create --cipher aes-xts-plain64 --key_size 512 --control_
location front-end LUKS nova.encryptors.luks.LuksEncryptor
+----------------+------------------------------------+-----------------+----------+------------------+
| Volume Type ID | Provider | Cipher | Key Size | Control Location |
+----------------+------------------------------------+-----------------+----------+------------------+
| 14bbc318-337.. | nova.encryptors.luks.LuksEncryptor | aes-xts-plain64 | 512 | front-end |
+----------------+------------------------------------+-----------------+----------+------------------+

Теперь у нас все готово для создания зашифрованного тома. Об-
ратите внимание на свойство encrypted при выводе команды:

$ source keystonerc_demo
$ cinder create --display-name myvolumeEncr --volume-type LUKS 1

 27 / 30

https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup
https://en.wikipedia.org/wiki/Linux_Unified_Key_Setup

178    Глава 9. Работа с виртуальными машинами из командной строки

+------------------------------+--------------------------------------+
| Property | Value |
+------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-12-18T14:19:56.000000
description	None
encrypted	True
id	ec5612de-0116-482d-b69b-78d73138b7e9
metadata	{}
multiattach	False
name	myvolumeEncr
os-vol-tenant-attr:tenant_id	9c1258e169d54a35964c4a28c380fbc3
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	creating
updated_at	None
user_id	372dd23e2c6949169a7dd9b699a2bc6b
volume_type	LUKS
+------------------------------+--------------------------------------+

Квоты на ресурсы
В контексте управления ресурсами и виртуальными машинами
нельзя не упомянуть про квоты. Квоты можно задавать как для вы-
числительных ресурсов, так и для дискового пространства. Чаще
всего квоты задаются в разрезе проектов, но можно их устанавли-
вать и для пользователей. Посмотрим квоты по умолчанию:

$ nova quota-defaults
+-----------------------------+-------+
| Quota | Limit |
+-----------------------------+-------+
instances	10
cores	20
ram	51200
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100
server_groups	10
server_group_members	10
+-----------------------------+-------+

 28 / 30

Квоты на ресурсы    179

Из вывода команды видно, какие ограничения можно устанав-
ливать. Для работы с отдельным проектом можно использовать
подкоманды quota-update и quota-show.

Для cinder, neutron, swift и остальных сервисов нужно использо-
вать соответствующие команды. Например:

$ cinder quota-show demo
+----------------------+-------+
| Property | Value |
+----------------------+-------+
backup_gigabytes	1000
backups	10
gigabytes	1000
gigabytes_LUKS	-1
per_volume_gigabytes	-1
snapshots	10
snapshots_LUKS	-1
volumes	10
volumes_LUKS	-1
+----------------------+-------+

Нули означают, что квоты не заданы. Можно посмотреть теку-
щее использование квоты:

$ cinder quota-usage demo
+----------------------+--------+----------+-------+
| Type | In_use | Reserved | Limit |
+----------------------+--------+----------+-------+
backup_gigabytes	0	0	1000
backups	0	0	10
gigabytes	1	0	1000
gigabytes_LUKS	0	0	-1
per_volume_gigabytes	0	0	-1
snapshots	1	0	10
snapshots_LUKS	0	0	-1
volumes	1	0	10
volumes_LUKS	0	0	-1
+----------------------+--------+----------+-------+

Ниже приведен пример для Neutron:

$ neutron quota-list
+------------+---------+------+-------------+--------+----------
------+---------------------+--------+------------+-----------+
| floatingip | network | port | rbac_policy | router | security_
group | security_group_rule | subnet | subnetpool | tenant_id |
+------------+---------+------+-------------+--------+----------
------+---------------------+--------+------------+-----------+
| 10 | 10 | 50 | 10 | 10 |

 29 / 30

180    Глава 9. Работа с виртуальными машинами из командной строки

10 | 100 | 10 | -1 | 9c1258.. |
+------------+---------+------+-------------+--------+----------
------+---------------------+--------+------------+-----------+

Описание команд работы с квотами можно посмотреть при по-
мощи команды help.

Зоны доступности и агрегирование
вычислительных узлов в Nova
Еще два понятия, которые необходимо обсудить, – это зоны доступ-
ности (Availabaility Zones) и агрегаторы узлов (Host Aggregates). На
самом деле в Nova все зоны доступности – это подмножество агре-
гаторов. Но не будем забегать вперед, а пойдем по порядку.

Зоны доступности позволяют группировать узлы OpenStack
в логические группы с общим элементом доступности. Напри-
мер, это могут быть две независимые площадки с раздельным
питанием и доступом в Интернет, или это могут быть просто
две стойки.

По умолчанию все вычислительные узлы создаются в зоне nova.
Прежде чем продолжить разговор про зоны, разберемся с агрега-
цией узлов. Агрегаторы узлов – это также логическое объединение
узлов, но с привязкой дополнительных метаданных. Агрегаторы
позволяют группировать узлы по различным специфическим при-
знакам. Посмотрим, как их можно использовать:

$ source keystonerc_admin
$ nova aggregate-create MyAggregate
+----+-------------+-------------------+-------+----------+
| Id | Name | Availability Zone | Hosts | Metadata |
+----+-------------+-------------------+-------+----------+
| 1 | MyAggregate | – | | |
+----+-------------+-------------------+-------+----------+

Сейчас мы просто создали один агрегатор. Следующим шагом
добавим в него один из наших вычислительных узлов:

$ nova aggregate-add-host MyAggregate compute.test.local
Host compute.test.local has been successfully added for aggregate 1
+----+-------------+-------------------+----------------------+----------+
| Id | Name | Availability Zone | Hosts | Metadata |
+----+-------------+-------------------+----------------------+----------+
| 1 | MyAggregate | – | ‘compute.test.local’ | |
+----+-------------+-------------------+----------------------+----------+

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Зоны доступности и агрегирование вычислительных узлов в Nova    181

Заметим, что один узел может входить в несколько агрегато-
ров. Добавим к агрегатору метаданные, которые мы дальше будем
использовать для выбора узлов (в нашем случае только одного –
compute.test.local) из этого агрегатора:

$ nova aggregate-set-metadata MyAggregate mynewmetadata=true
Metadata has been successfully updated for aggregate 1.
+----+-------------+------------+----------------------+----------------------+
| Id | Name | Av... Zone | Hosts | Metadata |
+----+-------------+------------+----------------------+----------------------+
| 1 | MyAggregate | – | 'compute.test.local' | ‘mynewmetadata=true' |
+----+-------------+------------+----------------------+----------------------+

Как разбирали в разделе «Запускаем экземпляр виртуальной
машины», создадим новый тип (flavor) виртуальной машины:

$ nova flavor-create --is-public true m2.mynewmdvm auto 300 1 1
+------+--------------+-----------+------+-----+------+-------+-------------+-----------+
| ID | Name | Memory_MB | Disk | Eph | Swap | VCPUs | RXTX_Factor | Is_Public |
+------+--------------+-----------+------+-----+------+-------+-------------+-----------+
| 64.. | m2.mynewmdvm | 300 | 1 | 0 | | 1 | 1.0 | True |
+------+--------------+-----------+------+-----+------+-------+-------------+-----------+

Добавим к созданному типу метаданные, по наличию которых
при попытке запуска виртуальной машины этого типа она будет
стартовать в агрегаторе MyAggregate:

$ nova flavor-key m2.mynewmdvm set mynewmetadata=true

Проверим данные:

$ nova flavor-show m2.mynewmdvm
+----------------------------+----------------------------+
| Property | Value |
+----------------------------+----------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	1
extra_specs	{"mynewmetadata": "true"}
id	647fe1cc-9eff-4405-9b9e-..
name	m2.mynewmdvm
os-flavor-access:is_public	True
ram	300
rxtx_factor	1.0
swap	
vcpus	1
+----------------------------+----------------------------+

Теперь при запуске виртуальной машины с flavor m2.mynewmdvm
такая машина будет стартовать на узле compute.test.local.

 1 / 30

182    Глава 9. Работа с виртуальными машинами из командной строки

Вернемся к зонам доступности. Агрегация узлов может быть
представлена для пользователей в виде зоны доступности. Фак-
тически агрегатор и есть зона доступности, необходимо только
дать ему соответствующее имя. Посмотрим список зон, доступных
пользователям в настоящее время:

$ source keystonerc_demo
$ nova availability-zone-list
+------+-----------+
| Name | Status |
+------+-----------+
| nova | available |
+------+-----------+

Создадим агрегатор узлов, дав ему имя как зоне доступности:

$ source keystonerc_admin
$ nova aggregate-create MyAggregateZ MyZone
+----+--------------+-------------------+-------+----------------------------+
| Id | Name | Availability Zone | Hosts | Metadata |
+----+--------------+-------------------+-------+----------------------------+
| 2 | MyAggregateZ | MyZone | | 'availability_zone=MyZone' |
+----+--------------+-------------------+-------+----------------------------+

Добавим второй оставшийся узел в созданный агрегатор:

$ nova aggregate-add-host MyAggregateZ compute-opt.test.local
Host compute-opt.test.local has been successfully added for aggregate 2
+----+--------------+-----------+--------------------------+--------------------+
| Id | Name | Av.. Zone | Hosts | Metadata |
+----+--------------+-----------+--------------------------+--------------------+
| 2 | MyAggregateZ | MyZone | 'compute-opt.test.local' | 'availability_zone |
| | | | | =MyZone' |
+----+--------------+-----------+--------------------------+--------------------+

Теперь проверим видимые пользователю зоны доступности:

$ nova availability-zone-list
+---------------------------+--+
| Name | Status |
+---------------------------+--+
internal	available		
	- controller.test.local		
		- nova-conductor	enabled :-) 2016-11-21T17:45:38.000000
		- nova-consoleauth	enabled :-) 2016-11-21T17:45:38.000000
		- nova-scheduler	enabled :-) 2016-11-21T17:45:39.000000
nova	available		
	- compute.test.local		
		- nova-compute	enabled :-) 2016-11-21T17:45:37.000000
MyZone	available		

 2 / 30

Зоны доступности и агрегирование вычислительных узлов в Nova    183

| |- compute-opt.test.local | |
| | |- nova-compute | enabled :-) 2016-11-21T17:45:37.000000 |
+---------------------------+--+

и запустим виртуальную машину с указанием имени зоны
MyZone. Машина будет запущена на узлах, входящих в агрегатор
MyAggregateZ. В нашем случае это – единственный узел compute-
opt.test.local.

$ nova boot --flavor m2.tiny --image cirros-0.3.4-x86_64 --key-name
demokey1 --security-groups demo-sgroup --availability-zone MyZone
test1

На рис. 9.6 показан интерфейс работы с зонами и агрегаторами
в Horizon.

Рис. 9.6. Зоны доступности и агрегаторы узлов в веб-интерфейсе

Если необходимо в дальнейшем установить зону доступности
для виртуальных машин по умолчанию, то это можно сделать при
помощи параметра default_availability_zone в /etc/nova/nova.conf
на управляющих узлах.

Удалим узлы из агрегаторов:

$ nova aggregate-remove-host MyAggregate compute.test.local
Host compute.test.local has been successfully removed from aggregate 1
+----+-------------+-------------------+-------+----------------------+
| Id | Name | Availability Zone | Hosts | Metadata |
+----+-------------+-------------------+-------+----------------------+

 3 / 30

184    Глава 9. Работа с виртуальными машинами из командной строки

| 1 | MyAggregate | – | | ‘mynewmetadata=true’ |
+----+-------------+-------------------+-------+----------------------+
$ nova aggregate-remove-host MyAggregateZ compute-opt.test.local
Host compute-opt.test.local has been successfully removed from aggregate 2
+----+--------------+-------------------+-------+----------------------------+
| Id | Name | Availability Zone | Hosts | Metadata |
+----+--------------+-------------------+-------+----------------------------+
| 2 | MyAggregateZ | MyZone | | 'availability_zone=MyZone' |
+----+--------------+-------------------+-------+----------------------------+

После чего можно будет удалить сами агрегаторы:

$ nova aggregate-delete MyAggregate
Aggregate 1 has been successfully deleted.
$ nova aggregate-delete MyAggregateZ
Aggregate 2 has been successfully deleted.

Проверим изменения в зонах доступности:

$ nova availability-zone-list
+---------------------------+--+
| Name | Status |
+---------------------------+--+
internal	available		
	- controller.test.local		
		- nova-conductor	enabled :-) 2016-12-17T15:17:31.000000
		- nova-consoleauth	enabled :-) 2016-12-17T15:17:32.000000
		- nova-scheduler	enabled :-) 2016-12-17T15:17:36.000000
nova	available		
	- compute-opt.test.local		
		- nova-compute	enabled :-) 2016-12-17T15:17:36.000000
	- compute.test.local		
		- nova-compute	enabled :-) 2016-12-17T15:17:29.000000
+---------------------------+--+

Далее мы рассмотрим использование зон доступности в Cinder.
В релизе Mitaka также появились зоны доступности Neutron, но в
данной книге они не рассматриваются.

Зоны доступности в Cinder
Зоны доступности Cinder настраиваются в конфигурационном
файле /etc/cinder/cinder.conf на узлах, где запускается сервис
cinder-volume. Для создания новой зоны доступности необходимо
изменить параметр storage_availability_zone, после чего рестарто-
вать сервис openstack-cinder-volume:
[root@controller ~]# crudini --set /etc/cinder/cinder.conf DEFAULT storage_availability_zone cinder1
[root@controller ~]# systemctl restart openstack-cinder-volume

 4 / 30

Живая миграция виртуальных машин    185

$ cinder service-list
+------------------+---------------------------+---------+---------+-------+--------------+----------+
| Binary | Host | Zone | Status | State | Updated_at | Disabled |
+------------------+---------------------------+---------+---------+-------+--------------+----------+
cinder-backup	controller.test.local	nova	enabled	up	2017-01-29..	–
cinder-scheduler	controller.test.local	nova	enabled	up	2017-01-29..	–
cinder-volume	controller.test.local@lvm	cinder1	enabled	up	2017-01-29..	–
+------------------+---------------------------+---------+---------+-------+--------------+----------+

Для того чтобы установить зону доступности по умолчанию, не-
обходимо править /etc/cinder/cinder.conf на узле, где запускается
сервис cinder-api. В нашем случае этот узел – также controller:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf
DEFAULT default_availability_zone cinder1
[root@controller ~]# systemctl restart openstack-cinder-api

Для одного сервиса cinder-volume можно указать несколько
бэкэндов. Это возможно сделать в рамках одного узла и сервиса
cinder-volume. Однако за разные зоны доступности должны отве-
чать разные узлы.

Живая миграция виртуальных машин
Рассмотрим на практике, как работает живая миграция виртуаль-
ных машин в OpenStack. Сразу оговоримся, что для инициации
вам понадобятся привилегии администратора облака, поскольку
для пользователя информация об облаке скрыта, в том числе и
о конкретных гипервизорах, на которых запускаются виртуаль-
ные машины. Различные балансировки нагрузки и миграции в
OpenStack – вне области ответственности пользователя.

Сервис OpenStack Nova поддерживает живую миграцию вирту-
альных машин в двух вариантах:

�� с общей системой хранения данных. Виртуальная маши-
на перемещается между двумя вычислительными узлами
с общим хранилищем, к которым оба узла имеют доступ.
В качестве общего хранилища может выступать, например,
NFS или Ceph. Сюда же можно отнести вариант, когда не ис-
пользуются временные диски (ephemeral disk), а в качестве
единственной системы хранения при создании виртуаль-
ных машин используется Cinder;

�� без общей системы хранения данных. Более простой в на-
стройке вариант, который мы рассмотрим далее. В этом слу-

 5 / 30

186    Глава 9. Работа с виртуальными машинами из командной строки

чае на миграцию требуется больше времени, поскольку вир-
туальная машина копируется целиком с узла на узел по сети.

Для выполнения упражнения из этого раздела вам понадобятся
два работающих гипервизора (рис. 9.7). Начните с проверки IP-
связанности между вычислительными узлами:

[root@compute ~]# ping compute-opt
PING compute-opt.test.local (192.168.122.215) 56(84) bytes of data.
64 bytes from compute-opt.test.local (192.168.122.215): icmp_seq=1
ttl=64 time=0.302 ms
64 bytes from compute-opt.test.local (192.168.122.215): icmp_seq=2
ttl=64 time=0.363 ms
^C

Рис. 9.7. Для миграции виртуальных машин необходимы два гипервизора

Теперь запустим виртуальную машину и при помощи команд, ко-
торые рассмотрели в разделе «Выделение вычислительных ресур-
сов для OpenStack», определим, на котором из узлов она работает.

$ nova hypervisor-servers compute.test.local
+----+------+---------------+---------------------+
| ID | Name | Hypervisor ID | Hypervisor Hostname |
+----+------+---------------+---------------------+
+----+------+---------------+---------------------+
$ nova hypervisor-servers compute-opt.test.local
+--------------------------------------+-------------------+----
----------------------------------+------------------------+

 6 / 30

Живая миграция виртуальных машин    187

| ID | Name |
Hypervisor ID | Hypervisor Hostname |
+--------------------------------------+-------------------+----
----------------------------------+------------------------+
| 5ac4154e-9f85-46ec-b8fd-27310cd0d10d | instance-0000002c |
6989b8db-72db-47b7-864d-b3e1fd7b7868 | compute-opt.test.local |
+--------------------------------------+-------------------+----
----------------------------------+------------------------+

Мы видим, что виртуальная машина работает на узле compute-
opt. Дальше определим, какой flavor использовался для этой вир-
туальной машины:

$ nova show 8nova show 5ac4154e-9f85-46ec-b8fd-27310cd0d10d |
grep flavor:original_name
| flavor:original_name | m2.tiny

и достаточно ли ресурсов на узле, куда мы хотим мигрировать вир-
туальную машину:

$ nova --os-compute-api-version 2 host-describe compute.test.local
+--------------------+------------+-----+-----------+---------+
| HOST | PROJECT | cpu | memory_mb | disk_gb |
+--------------------+------------+-----+-----------+---------+
compute.test.local	(total)	2	2000	49
compute.test.local	(used_now)	0	512	0
compute.test.local	(used_max)	0	0	0
+--------------------+------------+-----+-----------+---------+

Как мы видим, ресурсов достаточно. Однако, прежде чем отда-
вать команду на миграцию, необходимо разрешить демону libvirtd
слушать входящие подключения по сети. На обоих гипервизорах
добавим опцию

LIBVIRTD_ARGS="--listen"

в файл /etc/sysconfig/libvirtd, отвечающую за строку запуска де-
мона. Следующим шагом в конфигурационном файле /etc/libvirt/
libvirtd.conf разрешим подключение без аутентификации и шиф-
рования:
listen_tls = 0
listen_tcp = 1
auth_tcp = "none"

Альтернативой могло бы быть использование сертификатов или
Kerberos. Рестартуем libvirtd на вычислительных узлах:

systemctl restart libvirtd

 7 / 30

188    Глава 9. Работа с виртуальными машинами из командной строки

Убедимся, что сервис работает и имеет необходимую опцию:

[root@compute-opt ~]# systemctl status libvirtd
● libvirtd.service - Virtualization daemon
 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled;
vendor preset: enabled)
 Active: active (running) since Tue 2018-03-20 17:17:14 CET; 8s ago
 Docs: man:libvirtd(8)
 http://libvirt.org
 Main PID: 2493 (libvirtd)
 CGroup: /system.slice/libvirtd.service
 ├─1514 /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/
dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_
leaseshelpe...
 ├─1515 /usr/sbin/dnsmasq --conf-file=/var/lib/libvirt/
dnsmasq/default.conf --leasefile-ro --dhcp-script=/usr/libexec/libvirt_
leaseshelpe...
 └─2493 /usr/sbin/libvirtd --listen

Последнее, что нужно поправить, – это флаги миграции. Делает-
ся это также на всех вычислительных узлах:

crudini --set /etc/nova/nova.conf DEFAULT block_migration_flag
VIR_MIGRATE_UNDEFINE_SOURCE,VIR_MIGRATE_PEER2PEER,VIR_MIGRATE_LIVE

Данное изменение необходимо, поскольку флаги по умолчанию
включают в себя TUNELLED, который не работает с обновленным
кодом NBD (Network Block Device) в QEMU. Для применения изме-
нений необходимо перестартовать сервис nova-compute:

systemctl restart openstack-nova-compute.service

Теперь можно отдать команду на живую миграцию, обязательно
указав опцию --block-migrate, которая отвечает за миграцию без
общего дискового хранилища:

$ source keystonerc_admin
$ nova live-migration --block-migrate 5ac4154e-9f85-46ec-b8fd-
27310cd0d10d compute.test.local

При помощи nova show проверим, на каком узле работает вир-
туальная машина до и после миграции:

$ nova show 5ac4154e-9f85-46ec-b8fd-27310cd0d10d | grep hypervisor
| OS-EXT-SRV-ATTR:hypervisor_hostname | compute-opt.test.local |
$ nova live-migration --block-migrate 5ac4154e-9f85-46ec-b8fd-27310cd0d10d
$ nova show 5ac4154e-9f85-46ec-b8fd-27310cd0d10d | grep hypervisor
| OS-EXT-SRV-ATTR:hypervisor_hostname | compute.test.local |

 8 / 30

Настройка экземпляров виртуальных машин при помощи cloud-init    189

Как мы видим, миграция на этот раз прошла удачно. В журнале
/var/log/nova/nova-compute.log, на узле с которого осуществляет-
ся миграция, должно появиться сообщение, подобное следующе-
му:

2018-03-20 17:23:10.629 2632 INFO nova.compute.manager [req-
b734f151-7aba-459e-8f31-48a696d910e3 03b593ee9de442b985871aea
39eec9b1 c19f44553ab640779672e2321364e6ce - default default]
[instance: 5ac4154e-9f85-46ec-b8fd-27310cd0d10d] Migrating
instance to compute.test.local finished successfully.

Во время самого процесса можно следить за ходом ее выполне-
ния средствами OpenStack при помощи команды nova migration-
list или на узле-источнике при помощи команды virsh:

[root@compute-opt ~]# virsh domjobinfo instance-00000017
Job type: Unbounded
Time elapsed: 1084 ms
Data processed: 25.162 MiB
Data remaining: 1.726 GiB
Data total: 2.016 GiB
Memory processed: 25.162 MiB
Memory remaining: 1.726 GiB
Memory total: 2.016 GiB
Memory bandwidth: 240.426 MiB/s
Constant pages: 69765
Normal pages: 6276
Normal data: 24.516 MiB
Expected downtime: 46 ms
Setup time: 2 ms

Настройка экземпляров виртуальных
машин при помощи cloud-init
При помощи cloud-init экземпляры виртуальных машин при стар-
те могут настраивать различные параметры, такие как имя узла,
открытый ssh-ключ для аутентификации, имя хоста и др. Экзем-
пляры виртуальных машин получают эту информацию во вре-
мя загрузки, обращаясь на адрес агента метаданных Neutron:
http://169.254.169.254. Агент метаданных проксирует соответствую
щие запросы к openstack-nova-api при помощи пространства
имен маршрутизатора или DHCP.

Конфигурационная информация передается в виртуальную ма-
шину при помощи параметров --user-data во время запуска. Так-

 9 / 30

http://169.254.169.254/

190    Глава 9. Работа с виртуальными машинами из командной строки

же метаданные можно передать при старте виртуальной машины
из Horizon на вкладке Post-Creation.

Несмотря на то что конфигурация может быть выполнена не-
сколькими способами, включая скрипты, наиболее простым яв-
ляется использование YAML-файлов с синтаксисом cloud-config.
В конфигурационном файле описываются модули, исполняемые
во время загрузки экземпляра виртуальной машины. Например,
один модуль может настроить репозиторий с пакетами, а вто-
рой – установить требуемые пакеты. По ссылке https://cloudinit.
readthedocs.io/en/latest/topics/examples.html#yaml-examples в до-
кументации на cloud-init приведено несколько примеров, а мы
ограничимся простейшим экспериментом с установкой имени
узла.

Создадим текстовый файл test.txt следующего содержания:

#cloud-config
hostname: fedora24
fqdn: fedora24.test.local
manage_etc_hosts: true

Далее запустим виртуальную машину из образа Fedora, в кото-
ром существует поддержка cloud-init:

$ nova boot --flavor m1.small --image fedora-24.x86_64 --key-name
demokey1 --user-data ./test.txt mytestvm

Дождемся загрузки и добавим плавающий IP к экземпляру вир-
туальной машины mytestvm, а после подключимся к консоли поль-
зователем fedora при помощи ключа demokey1:

$ ssh -i demokey1.pem fedora@10.100.1.110
[fedora@fedora24 ~]$ hostname
fedora24.test.local

Как мы видим, имя узла установлено из нашего файла cloud-init.
Наконец, можно убедиться, что виртуальная машина получает этот
файл при помощи совместимого с EC2 API:

[fedora@fedora24 ~]$ curl http://169.254.169.254/2009-04-04/user-data
#cloud-config
hostname: fedora24
fqdn: fedora24.test.local
manage_etc_hosts: true
[fedora@fedora24 ~]$ curl http://169.254.169.254/latest/meta-data/
ami-id

 10 / 30

https://cloudinit.readthedocs.io/en/latest/topics/examples.html#yaml-examples
https://cloudinit.readthedocs.io/en/latest/topics/examples.html#yaml-examples

Настройка экземпляров виртуальных машин при помощи cloud-init    191

ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
instance-action
instance-id
instance-type
local-hostname
local-ipv4
placement/
public-hostname
public-ipv4
public-keys/
reservation-id
[fedora@fedora24 ~]$ curl http://169.254.169.254/latest/meta-data/
public-ipv4
10.100.1.110

Можно проверить файл журнала /var/log/neutron/metadata-
agent.log на сервере network и убедиться, что агент метаданных
предоставил последние запросы:

2018-03-11 13:21:58.688 1902 INFO eventlet.wsgi.server [-]
172.16.0.3,<local> "GET /latest/meta-data/ HTTP/1.1" status: 200
len: 360 time: 0.3548672
2018-03-11 13:23:29.910 1902 INFO eventlet.wsgi.server [-]
172.16.0.3,<local> "GET /latest/meta-data/public-ipv4 HTTP/1.1"
status: 200 len: 135 time: 0.3265879

 11 / 30

Глава 10
За фасадом Neutron

В этой главе мы посмотрим, что скрывается за интерфейсом ко-
манд работы с сетями Neutron. Посмотрим на сетевые простран-
ства имен, коммутатор Open vSwitch, группы безопасности и не-
которые другие темы, связанные с сетью в OpenStack.

Виртуальный коммутатор Open vSwitch
Начнем с виртуального коммутатора Open vSwitch и сетевых про-
странств имен. Прежде чем говорить о сетевых пространствах
имен, кратко рассмотрим, что такое пространства имен (Linux
Namespaces) вообще.

Пространства имен контролируют доступ к структурам данных
ядра. Фактически это означает изоляцию процессов друг от друга и
возможность иметь параллельно «одинаковые», но не пересекаю-
щиеся друг с другом иерархии процессов, пользователей и сетевых
интерфейсов. При желании разные сервисы могут иметь даже свои
собственные loopback-интерфейсы.

Примеры пространств имен:

�� PID, Process ID – изоляция иерархии процессов;
�� NET, Networking – изоляция сетевых интерфейсов;
�� PC, InterProcess Communication – управление взаимодейст
вием между процессами;

�� MNT, Mount – управление точками монтирования;
�� UTS, Unix Timesharing System – изоляция ядра и идентифи-
каторов версии.

Нас будут интересовать сетевые пространства имен. Данная ко-
манда покажет список существующих сетей:
$ openstack network list
+--------------------------------------+----------+--------------------------------------+
| ID | Name | Subnets |

 12 / 30

Виртуальный коммутатор Open vSwitch    193

+--------------------------------------+----------+--------------------------------------+
| 1d25a0b0-f1a4-49c2-9388-bed695c11267 | ext-net | 18b64199-932b-46ee-9537-06bf83f6d4d7 |
| 330c12e5-d560-4b85-abc0-05de6ee7cff4 | demo-net | e3729508-98d6-4fd1-856d-03602c6b178e |
+--------------------------------------+----------+--------------------------------------
++--+

Сравним его со списком сетевых пространств имен на сетевом
узле:

[root@network ~]# ip netns
qrouter-eb5aa33d-726a-46a7-a589-d78f99d1c2eb
qdhcp-330c12e5-d560-4b85-abc0-05de6ee7cff4

Можно заметить, что у нас есть одно пространство имен с иден-
тификатором, совпадающим с внутренней сетью. Кроме того,
существует сетевое пространство с id, совпадающим с иденти-
фикатором единственного маршрутизатора. Сравнить id можно
при помощи команды neutron router-list. Пространства имен
создаются только тогда, когда в них появляется необходимость, и
автоматически не удаляются. Отсюда можно сделать вывод, что на
демосистеме нет экземпляров виртуальных машин, обращающих-
ся к ext-net.

Для сетей создаются пространства имен с префиксом «qdhcp-», а
для маршрутизаторов – с префиксом «qrouter-». За их создание от-
вечает neutron-l3-agent. Список агентов можно вывести командой
openstack network agent list.

В восьмой главе мы уже сталкивались с командой, управляющей
Open vSwitch (OVS). Прежде чем смотреть на конфигурацию OVS,
чуть подробнее остановимся на самом сервисе. Архитектура сер-
виса приведена на рис. 10.1. Обратите внимание, что мы сейчас не
рассматриваем контроллер SDN, и эту часть рисунка можно пока
игнорировать. Кроме того, на рисунке представлен Open vSwitch
(OVS) без поддержки Intel DPDK, и начиная с версии 2.4 порт по
умолчанию для OpenFlow – 6653, а OVSDB – 6640 (в соответствии с
закрепленными IANA портами).

OpenFlow – это протокол, который является одним из ключевых
компонентов, позволяющих строить программно определяемые
сети передачи данных (SDN). При помощи данного протокола кон-
троллер сети SDN может удаленно контролировать таблицы пото-
ков на коммутаторах и маршрутизаторах.

Протокол Open vSwitch Database (OVSDB) изначально являлся
частью OVS. Сейчас этот протокол управления коммутаторами за-
явлен как RFC 7047 – https://tools.ietf.org/html/rfc7047.

 13 / 30

https://tools.ietf.org/html/rfc7047

194    Глава 10. За фасадом Neutron

Рис. 10.1. Компоненты Open vSwitch (OVS)

Коммутатор состоит из трех основных компонентов:

�� модуль ядра openswitch_mod.ko. Можно условно сравнить
его с микросхемами ASIC аппаратных коммутаторов. Отве-
чает за работу с пакетами;

�� демон ovs-vswitchd. Отвечает за управление, программи-
рование логики пересылки пакетов, VLAN’ы и объединение
сетевых карт;

�� сервер базы данных ovsdb-server. Отвечает за ведение базы
данных с конфигурацией.

Из полезных команд администратора при работе с Open vSwitch
можно выделить:

�� ovs-vsctl show – вывод общей информации по коммутатору;
�� ovs-vsctl add-br/del-br – добавить или удалить мост;
�� ovs-vsctl add-port/del-port – добавить или удалить порт;
�� ovs-ofctl dump-flows – запрограммированные потоки для
конкретного коммутатора. За их определение отвечает
агент neutron-openvswitch-agent. По умолчанию они выво-
дятся в том порядке, в каком поступили от агента. Для выво-
да в порядке приоритета, в порядке, в котором они обраба-
тываются, необходимо добавить опцию --resort;

�� ovsdb-tool show-log – показать все команды настройки, от-
данные OVS, при помощи утилит пространства пользовате-
ля. Именно так и работает с OVS агент Neutron.

 14 / 30

Виртуальный коммутатор Open vSwitch    195

Open vSwitch поддерживает протокол OpenFlow и может вы-
ступать в качестве коммутаторов для Software Defined Network
(SDN). Помимо коммутаторов, такое решение должно включать в
себя контроллер, который будет выступать в качестве централь-
ной точки управления. На настоящий момент существует как ряд
коммерческих контроллеров, так и ряд проектов с открытым ис-
ходным кодом, разрабатывающих подобные решения, например
OpenDaylight или OpenContrail.

Прежде чем двигаться вперед, приведем снимок с экрана сете-
вой топологии рассматриваемой конфигурации в Horizon. Он дан
на рис. 10.2.

Рис. 10.2. Рассматриваемая топология сети в интерфейсе Horizon

Выведем список всех портов и после посмотрим на конфигура-
цию OVS:

 15 / 30

196    Глава 10. За фасадом Neutron

$ openstack port list
+--------------------------------------+------+-------------------+----------------
---+--------+
| ID | Name | MAC Address | Fixed IP
Addresses | Status |
+--------------------------------------+------+-------------------+----------------
---+--------+
| 118776a5-cb5a-4b07-a340-a0c33a4d3b57 | | fa:16:3e:79:ea:e4 | ip_
address='10.100.1.108', subnet_id='18b64199-932b-46ee-9537-06bf83f6d4d7' | DOWN |
| 4194b0a8-77ff-4b72-b744-5d3cd86c5c7f | | fa:16:3e:95:67:8b | ip_
address='172.16.0.5', subnet_id='e3729508-98d6-4fd1-856d-03602c6b178e' | ACTIVE |
| 656bbfee-1642-4837-8af0-f11ae7fa5184 | | fa:16:3e:75:bb:20 | ip_
address='10.100.1.109', subnet_id='18b64199-932b-46ee-9537-06bf83f6d4d7' | N/A |
| 866cd6d8-7e1f-43a8-a25b-cffb29347ec3 | | fa:16:3e:8d:ea:4b | ip_
address='172.16.0.1', subnet_id='e3729508-98d6-4fd1-856d-03602c6b178e' | ACTIVE |
| cf666fec-a9b3-4e28-840e-01008e03cb6d | | fa:16:3e:c6:79:ac | ip_
address='172.16.0.2', subnet_id='e3729508-98d6-4fd1-856d-03602c6b178e' | ACTIVE |
+--------------------------------------+------+-------------------+----------------
---+--------+

Посмотрим на конфигурацию Open vSwitch на сетевом узле:
[root@network ~]# ovs-vsctl show
d9eb006a-b746-4875-947a-ef9dc0190975
 Manager "ptcp:6640:127.0.0.1"
 is_connected: true
 Bridge br-ex
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "qg-118776a5-cb"
 Interface "qg-118776a5-cb"
 type: internal
 Port "eth1"
 Interface "eth1"
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal
 Bridge br-tun
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port br-tun
 Interface br-tun
 type: internal
 Port patch-int
 Interface patch-int

 16 / 30

Виртуальный коммутатор Open vSwitch    197

 type: patch
 options: {peer=patch-tun}
 Port "gre-c0a87ad7"
 Interface "gre-c0a87ad7"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.220", out_key=flow, remote_ip="192.168.122.215"}
 Port "gre-c0a87ad2"
 Interface "gre-c0a87ad2"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.220", out_key=flow, remote_ip="192.168.122.210"}
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "qr-866cd6d8-7e"
 tag: 1
 Interface "qr-866cd6d8-7e"
 type: internal
 Port "tapcf666fec-a9"
 tag: 1
 Interface "tapcf666fec-a9"
 type: internal
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}
 Port br-int
 Interface br-int
 type: internal
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 ovs_version: "2.8.2"

И на узле, где запущен экземпляр виртуальной машины. В дан-
ном случае это compute-opt:
[root@compute-opt ~]# ovs-vsctl show
9a15c9b2-2347-4263-9105-0e95c300090c
 Manager "ptcp:6640:127.0.0.1"
 is_connected: true
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port patch-tun
 Interface patch-tun
 type: patch

 17 / 30

198    Глава 10. За фасадом Neutron

 options: {peer=patch-int}
 Port br-int
 Interface br-int
 type: internal
 Port "qvo4194b0a8-77"
 tag: 1
 Interface "qvo4194b0a8-77"
 Bridge br-tun
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port "gre-c0a87ad2"
 Interface "gre-c0a87ad2"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.215", out_key=flow, remote_ip="192.168.122.210"}
 Port "gre-c0a87adc"
 Interface "gre-c0a87adc"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.215", out_key=flow, remote_ip="192.168.122.220"}
 Port br-tun
 Interface br-tun
 type: internal
 ovs_version: "2.8.2"

В дополнение к этой распечатке автор привел на рис. 10.3 и 10.4
результат работы команды plotnetcfg для сетевого и вычисли-
тельного узлов. Эти диаграммы также помогут нам при разборе
упражнений данного раздела. Информация про установку и ис-
пользование plotnetcfg будет приведена далее в этой главе. Для
использования диаграмм она пока не нужна.

Возвращаемся к выводу ovs-vsctl show и иллюстрациям. Как мы
видим, на узле network созданы три моста: br-int, br-tun и br-ex. На
compute-opt один из них, br-ext, отсутствует.

Br-int – интеграционный мост, предназначенный для подклю-
чения экземпляров виртуальных машин. Он осуществляет VLAN-
тегирование и снятие VLAN-тегов для трафика приходящего с/на
вычислительные узлы. Br-int существует на вычислительных и се-
тевых узлах и создается автоматически при первом старте аген-
та Neutron для Open vSwitch. На узле network к нему в настоящий
момент подключены пять портов. Один из них соответствует са-

 18 / 30

Виртуальный коммутатор Open vSwitch    199

мому мосту, один – порт с IP 172.16.0.2. Его имя tapcf666fec-a9.
То, что он соответствует именно этому порту, мы можем опреде-
лить по идентификатору подсети – см. вывод команды openstack
port list ранее. Порт patch-tun – соединение с мостом tun. Порт
qr-866cd6d8-7e – подключение интеграционного моста к единст
венному маршрутизатору. И наконец, int-br-ex – подключение к
мосту br-ex.

Рис. 10.3. Упрощенный вывод диаграммы plotnetcfg для сетевого узла

Рис. 10.4. Упрощенный вывод диаграммы plotnetcfg
для вычислительного узла

На compute-opt у нас отсутствуют интерфейсы tapcf666fec-a9 и
qr-866cd6d8-7e, зато присутствует qvo4194b0a8-77 для единствен-
ной виртуальной машины с IP-адресом 172.16.0.5. При этом поле
tag идентифицирует VLAN. Обратите внимание, что эти теги уни-
кальны только в пределах одного узла. Они не передаются при по-
мощи туннелей.

Tap-устройства эмулируют устройства 2-го уровня стека, опери-
рующие фреймами. Они часто используются в системах, связан-
ных с сетевой безопасностью или мониторингом для перехвата
трафика. В OpenStack они реализуют виртуальные сетевые карты
виртуальных машин (VIF или vNIC) и порты на мостах, реализо-
ванных Linux Bridge. Virtual Ethernet (vEth) устройства, в нашем
случае qvo (в сторону Open vSwitch) и qvb (в сторону моста), всегда
идут парами и позволяют связывать сетевые пространства имен с
«внешним миром».

 19 / 30

200    Глава 10. За фасадом Neutron

Мост br-tun – в нашем случае это GRE-туннель. Связывает се-
тевые и вычислительные узлы, передавая тегированный трафик
с интеграционного моста, используя правила OpenFlow. В выводе
команды мы видим связанность сетевого узла (192.168.122.210) и
обоих вычислительных (192.168.122.210 и 192.168.122.215).

Br-ex – мост, осуществляющий взаимодействие с внешним ми-
ром. Существует только на сетевых узлах. В нашем примере видно,
что среди портов присутствуют физический интерфейс eth1 и порт
qg-118776a5-cb, который обслуживает «внешние» IP-адреса марш-
рутизатора. В этом можно убедиться, введя команду, позволяю-
щую посмотреть IP-адреса пространства имен маршрутизатора:

[root@network ~]# ip netns exec qrouter-eb5aa33d-726a-46a7-a589-
d78f99d1c2eb ip a
...
14: qg-118776a5-cb: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UNKNOWN qlen 1000
 link/ether fa:16:3e:79:ea:e4 brd ff:ff:ff:ff:ff:ff
 inet 10.100.1.108/24 brd 10.100.1.255 scope global qg-118776a5-cb
 valid_lft forever preferred_lft forever
 inet 10.100.1.109/32 brd 10.100.1.109 scope global qg-118776a5-cb
 valid_lft forever preferred_lft forever
 inet6 fe80::f816:3eff:fe79:eae4/64 scope link
 valid_lft forever preferred_lft forever
...

Суммарно информация по конфигурации Open vSwitch приве-
дена в табл. 5.

Таблица 5. Конфигурация Open vSwitch

Интерфейс Описание

br-ex Мост, осуществляющий взаимодействие с внешним миром. Че-
рез tap-интерфейс подключается к порту маршрутизатора qg

br-int Интеграционный мост. Предназначен для передачи входящего
и исходящего трафиков виртуальных машин. Отвечает за созда-
ние и удаление VLAN-тегов

br-tun Связывает сетевые и вычислительные узлы, передавая тегиро-
ванный трафик с интеграционного моста, используя правила
OpenFlow

qvo Подключение в сторону Open vSwitch (veth-пара)

qvb Подключение в сторону моста qbr (veth-пара)

 20 / 30

Группы безопасности    201

Интерфейс Описание

qbr Мост Linux bridge, предназначенный для создания групп безопас-
ности. Фактически это – сетевой интерфейс виртуальной машины

qg Подключение маршрутизатора к шлюзу

qr Подключение маршрутизатора к интеграционному мосту

Напоследок приведем пример части вывода команды ovs-
vsctl show в том случае, если бы мы использовали VXLAN-тун
нелирование:

[root@compute-opt ~]# ovs-vsctl show
...
 Bridge br-tun
 fail_mode: secure
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port br-tun
 Interface br-tun
 type: internal
 Port "vxlan-ac19fc0a"
 Interface "vxlan-ac19fc0a"
 type: vxlan
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.215", out_key=flow, remote_ip="192.168.122.210"}
...

Группы безопасности
Правила группы безопасности преобразуются в цепочку Netfilter и
применяются к мосту qbrfID, который управляется не Open vSwitch,
а Linux Bridge на вычислительном узле.

Собственно, единственная причина появления Linux bridge – это
то, что Open vSwitch не может работать с правилами iptables, ко-
торые применяются на виртуальный интерфейс, непосредственно
подключенный к порту коммутатора. Отсюда и появилась «про-
кладка» в виде моста qbr. Посмотреть, как преобразовались пра-
вила группы безопасности в правила iptables, можно командой
iptables -S. Пример вывода для рассматриваемой конфигурации
приведен в приложении 1 в конце книги. Важно отметить, что в
новых версиях OpenStack появилась возможность избавиться от
qbr за счет реализации правил iptables в правилах потоков OVS.

 21 / 30

202    Глава 10. За фасадом Neutron

Посмотрим, как это работает. Выведем конфигурацию Linux
bridge:

[root@compute-opt ~]# brctl show
bridge name bridge id STP enabled interfaces
qbr4194b0a8-77 8000.82c16873e5c4 no qvb4194b0a8-77
 tap4194b0a8-77

В нашем случае искомый интерфейс – это tap4194b0a8-77. Дан-
ное TAP-устройство – фактически сетевой интерфейс виртуальной
машины. Посмотрим на правила брандмауэра, связанные с этим
интерфейсом:

[root@compute-opt ~]# iptables -S | grep tap4194b0a8-77
-A neutron-openvswi-FORWARD -m physdev --physdev-out tap4194b0a8-77
--physdev-is-bridged -m comment --comment "Direct traffic from the VM
interface to the security group chain." -j neutron-openvswi-sg-chain
-A neutron-openvswi-FORWARD -m physdev --physdev-in tap4194b0a8-77
--physdev-is-bridged -m comment --comment "Direct traffic from the VM
interface to the security group chain." -j neutron-openvswi-sg-chain
-A neutron-openvswi-INPUT -m physdev --physdev-in tap4194b0a8-77
--physdev-is-bridged -m comment --comment "Direct incoming traffic
from VM to the security group chain." -j neutron-openvswi-o4194b0a8-7
-A neutron-openvswi-sg-chain -m physdev --physdev-out tap4194b0a8-77
--physdev-is-bridged -m comment --comment "Jump to the VM specific
chain." -j neutron-openvswi-i4194b0a8-7
-A neutron-openvswi-sg-chain -m physdev --physdev-in tap4194b0a8-77
--physdev-is-bridged -m comment --comment "Jump to the VM specific
chain." -j neutron-openvswi-o4194b0a8-7

В цепочке neutron-openvswi-sg-chain применяются группы
безопасности. Цепочка neutron-openvswi-o4194b0a8-7 относится к
исходящему трафику из виртуальной машины, а цепочка neutron-
openvswi-i4194b0a8-7 отвечает за трафик, отправляемый в вир-
туальную машину. Приведем пример вывода iptables -L для этой
цепочки:

Chain neutron-openvswi-i4194b0a8-7 (1 references)
target prot opt source destination
RETURN all -- anywhere anywhere state RELATED,ESTABLISHED
/* Direct packets associated with a known session to the RETURN chain. */
RETURN udp -- anywhere 172.16.0.5 udp spt:bootps dpt:bootpc
RETURN udp -- anywhere 255.255.255.255 udp spt:bootps dpt:bootpc
RETURN tcp -- anywhere anywhere tcp dpt:ssh
RETURN icmp -- anywhere anywhere
DROP all -- anywhere anywhere state INVALID /* Drop
packets that appear related to an existing connection (e.g. TCP ACK/FIN) but do not
have an entry in conntrack. */

 22 / 30

Утилита для визуализации сети plotnetcfg    203

neutron-openvswi-sg-fallback all -- anywhere anywhere /*
Send unmatched traffic to the fallback chain. */

Как вы помните, единственными разрешающими правилами
для созданной нами группы безопасности было разрешение ssh-
трафика и протокола ICMP (выделено в листинге).

Другой способ ограничения трафика в OpenStack – это исполь-
зование Firewall-as-a-Service (FWaaS). В отличие от групп безопас
ности, которые работают с трафиком на уровне интерфейсов
виртуальных машин, FWaaS позволяет защитить сразу несколько
виртуальных машин.

Рис. 10.5. Диаграмма сетевых подключений Neutron

В заключение раздела приведем рис. 10.5 с упрощенной диа-
граммой сетевых подключений Neutron. Как получить реальную
диаграмму с реально работающей системой, мы рассмотрим далее
в этой главе.

Утилита для визуализации сети
plotnetcfg
Одним из полезных инструментов для изучения и отладки сете-
вой подсистемы OpenStack является plotnetcfg. Этот инструмент
позволяет просканировать текущую сетевую конфигурацию и
представить ее в виде диаграммы. Примеры результата работы
plotnetcfg приведены ранее на рис. 10.3 и 10.4.

Установить утилиту в учебную среду можно командой
yum -y install plotnetcfg graphviz

 23 / 30

204    Глава 10. За фасадом Neutron

Первый пакет содержит непосредственно утилиту plotnetcfg, а
второй добавит в систему ряд утилит, включая dot. Вы, возмож-
но, уже использовали утилиту визуализации графов dot, если ана-
лизировали зависимости модулей systemd при помощи systemd-
analyze. Запуск производим следующим образом:

$ plotnetcfg | dot -Tpdf > config.pdf

Одна из задач, поставленных при создании plotnetcfg, – легко-
весность. В «боевой» среде рекомендуется просто скопировать би-
нарный файл на исследуемый узел. Исходный код и инструкции
по сборке находятся на сайте проекта: https://github.com/jbenc/
plotnetcfg.

Зеркалирование трафика
на Open vSwitch для мониторинга
сети в OpenStack
Зачастую перед администратором встает задача отладки приложе-
ний в виртуальной сети OpenStack, и тогда возникает необходи-
мость воспользоваться привычными инструментами наподобие
tcpdump и Wireshark.

Запустим один экземпляр виртуальной машины:

$ nova boot --flavor m2.tiny --image cirros-raw --key-name demokey1
--security-groups demo-sgroup test-vm

Далее, определив, на каком из вычислительных узлов запустилась
виртуальная машина test-vm, посмотрим топологию Open vSwitch:

[root@compute-opt ~]# ovs-vsctl show
20eab69c-e759-41b0-a480-97688ec0b4b8
 Bridge br-int
 fail_mode: secure
 Port "qvobee51cf7-fb"
 tag: 1
 Interface "qvobee51cf7-fb"
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Port br-int
 Interface br-int
 type: internal

 24 / 30

https://github.com/jbenc/plotnetcfg
https://github.com/jbenc/plotnetcfg

Зеркалирование трафика на Open vSwitch для мониторинга сети в OpenStack    205

 Bridge br-tun
 fail_mode: secure
 Port "gre-c0a87adc"
 Interface "gre-c0a87adc"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.215", out_key=flow, remote_ip="192.168.122.220"}
 Port br-tun
 Interface br-tun
 type: internal
 Port "gre-c0a87ad2"
 Interface "gre-c0a87ad2"
 type: gre
 options: {df_default="true", in_key=flow, local_
ip="192.168.122.215", out_key=flow, remote_ip="192.168.122.210"}
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 ovs_version: "2.4.0"

Для наглядности на рис. 10.6 приведена релевантная часть диа-
граммы, сформированной на этом узле при помощи plotnetcfg.
Пока не обращайте внимания на интерфейс br-int-tcpdump, кото-
рый сейчас отсутствует в топологии.

Рис. 10.6. Сетевая диаграмма вычислительного узла
при зеркалировании порта OVS

Теперь из виртуальной машины test-vm попробуем «достучать-
ся» до виртуального маршрутизатора:

$ ping 172.16.0.1
PING 172.16.0.1 (172.16.0.1) 56 data bytes
64 bytes from 172.16.0.1: icmp_seq=0 ttl=64 time=1.766 ms
64 bytes from 172.16.0.1: icmp_seq=1 ttl=64 time=0.617 ms
...

Эти ICMP-пакеты мы и хотим перехватить. Попробуем с вычис-
лительного узла захватить пакеты при помощи tcpdump. Однако,
как мы видим, все попытки приведут к ошибкам:

 25 / 30

206    Глава 10. За фасадом Neutron

[root@compute-opt ~]# tcpdump -npi patch-tun -vvvs0 -w /tmp/dump.cap
tcpdump: patch-tun: No such device exists
(SIOCGIFHWADDR: No such device)
[root@compute-opt ~]# tcpdump -npi br-int -vvvs0 -w /tmp/dump.cap
tcpdump: br-int: That device is not up

Это связано с тем, что внутренние устройства Open vSwitch не
видимы для большинства утилит «извне» OVS. В частности, имен-
но из-за этого для реализации групп безопасности в Neutron ис-
пользуется Linux Bridge. Open vSwitch не может работать с прави-
лами iptables, которые применяются на виртуальный интерфейс,
непосредственно подключенный к порту коммутатора.

Мы бы могли снимать трафик с интерфейса qvobee51cf7-fb, но в
случае рестарта виртуальной машины или если бы нам надо было
бы зеркалировать весь трафик, это бы решение нам не подошло
бы. В качестве выхода мы создадим dummy-интерфейс:

[root@compute-opt ~]# ip link add name br-int-tcpdump type dummy
[root@compute-opt ~]# ip link set dev br-int-tcpdump up

Затем добавим br-int-tcpdump к мосту br-int, трафик с которого
мы хотим перехватывать:

[root@compute-opt ~]# ovs-vsctl add-port br-int br-int-tcpdump

Проверяем:
[root@compute-opt ~]# ovs-vsctl show
20eab69c-e759-41b0-a480-97688ec0b4b8
 Bridge br-int
 fail_mode: secure
 Port "qvobee51cf7-fb"
 tag: 1
 Interface "qvobee51cf7-fb"
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Port br-int
 Interface br-int
 type: internal
 Port br-int-tcpdump
 Interface br-int-tcpdump
...

Именно текущей конфигурации соответствует рис. 10.5. Оста-
лось открыть man ovs-vsctl и поискать фразу «Port Mirroring».
В результате поиска по инструкции из man-страницы задаем сле-

 26 / 30

Зеркалирование трафика на Open vSwitch для мониторинга сети в OpenStack    207

дующую команду, при помощи которой мы будем зеркалировать
трафик со внутреннего порта на br-int-tcpdump:

[root@compute-opt ~]# ovs-vsctl -- set Bridge br-int mirrors=@m
-- --id=@br-int-tcpdump get Port br-int-tcpdump -- --id=@br-int
get Port br-int -- --id=@m create Mirror name=mirrortest select-
dst-port=@br-int select-src-port=@br-int output-port=@br-int-
tcpdump select_all=1

Наконец, можно начать перехватывать трафик:

[root@compute-opt ~]# tcpdump -npi br-int-tcpdump -vvvs0 -w /tmp/dump.cap
tcpdump: WARNING: br-int-tcpdump: no IPv4 address assigned
tcpdump: listening on br-int-tcpdump, link-type EN10MB (Ethernet), capture
size 65535 bytes
^C23 packets captured
23 packets received by filter
0 packets dropped by kernel

После чего копируем дамп на машину с установленным Wireshark
для удобного анализа:

andrey@elx:~$ scp root@192.168.122.215:/tmp/dump.cap .
root@192.168.122.215’s password:
dump.cap 100% 2626 2.6KB/s 00:00

И наконец, наша задача выполнена. Открываем дамп – рис. 10.7.

Рис. 10.7. Перехваченный трафик в Wireshark

 27 / 30

208    Глава 10. За фасадом Neutron

Балансировщик нагрузки как сервис
(LBaaS)
Рассмотрим реализацию LBaaS в OpenStack при помощи подклю-
чаемого модуля Neutron LBaaS и HAProxy. По плану сообщества в
дальнейшем, стандартной реализацией балансировщика нагруз-
ки как сервиса должен стать проект Octavia (https://github.com/
openstack/octavia).

При помощи подключаемого модуля Neutron LBaaS становится
возможным средствами самого облака производить балансиров-
ку входящих сетевых подключений между экземплярами вирту-
альных машин, входящих в один кластер. Подключаемый модуль
LBaaS по умолчанию использует HAProxy (http://www.haproxy.
org/) – быстрый и широко известный в мире GNU/Linux баланси-
ровщик нагрузки, написанный на языке программирования C.

По умолчанию HAProxy использует тот же порт, что и сервис
Keystone, – 5000. Поэтому если вы устанавливаете сервис на тот же
узел, что и сервис идентификации, то вам необходимо поменять
в конфигурационном файле HAProxy на какой-либо другой неза-
нятый порт. В нашем случае сетевой узел и управляющий разне-
сены, поэтому в подобной настройке необходимость отсутствует.
Ставим прокси:

[root@network ~]# yum -y install haproxy

Укажем в качестве сервисного подключаемого модуля LBaaS:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
DEFAULT service_plugins neutron.services.loadbalancer.plugin.
LoadBalancerPlugin

В качестве service_provider мы укажем HAProxy:

[root@controller ~]# crudini --set /etc/neutron/neutron.conf
service_provider service_provider LOADBALANCER:Haproxy:neutron.
services.loadbalancer.drivers.haproxy.plugin_driver.HaproxyOnHos
tPluginDriver:default

Если бы мы использовали какой-либо аппаратный балансиров-
щик нагрузки, его драйвер как раз бы стоило указывать в этом
параметре. Проверить список доступных сервисных провайде-
ров по окончании настройки можно командой neutron service-
provider-list:

 28 / 30

https://github.com/openstack/octavia
https://github.com/openstack/octavia

Балансировщик нагрузки как сервис (LBaaS)    209

$ neutron service-provider-list
+--------------+----------+---------+
| service_type | name | default |
+--------------+----------+---------+
| VPN | openswan | True |
| LOADBALANCER | haproxy | True |
+--------------+----------+---------+

Настраиваем агент LBaaS на сетевом узле:
[root@network ~]# crudini --set /etc/neutron/lbaas_agent.ini DEFAULT
interface_driver neutron.agent.linux.interface.OVSInterfaceDriver
[root@network ~]# crudini --set/etc/neutron/lbaas_agent.ini DEFAULT
device_driver neutron.services.loadbalancer.drivers.haproxy.
namespace_driver.HaproxyNSDriver
[root@network ~]# crudini --set /etc/neutron/lbaas_agent.ini haproxy
user_group haproxy

Запускаем сервисы:
[root@controller ~]# systemctl restart neutron-server.service
[root@network ~]# systemctl start neutron-lbaas-agent.service
[root@network ~]# systemctl enable neutron-lbaas-agent.service

Теперь осталось проверить секцию OPENSTACK_NEUTRON_
NETWORK в конфигурационном файле /etc/openstack-dashboard/
local_settings, если вы уже установили веб-интерфейс Horizon, ко-
торый рассматривается в следующей главе. Соответствующая сек-
ция должна выглядеть примерно так:

OPENSTACK_NEUTRON_NETWORK = {
 'enable_lb': True,
 'enable_firewall': True,
 'enable_quotas': True,
 'enable_security_group': True,
 'enable_vpn': False,
}

Нас в данном случае интересует параметр 'enable_lb': True,
который отвечает за появление соответствующей вкладки для ра-
боты с LBaaS.

Балансировщик нагрузки поддерживает три типа политики:
подключения принимаются по очереди всеми виртуальными ма-
шинами, с одного IP-адреса подключения принимает одна и та же
виртуальная машина, и, наконец, подключение принимает маши-
на с наименьшим числом подключений. Реализован LBaaS по ана-
логии с пространствами имен DHCP. По команде ip netns list вы
можете найти пространства имен вида qlbaas-*.

 29 / 30

210    Глава 10. За фасадом Neutron

Попробуем создать сервис при помощи LbaaS. Запускаем не-
сколько экземпляров виртуальных машин, которые составят клас
тер, с которым будет работать балансировщик.

1.	 Создаем пул виртуальных машин командой:
	 neutron lb-pool-create --lb-method ROUND_ROBIN --protocol

HTTP --name pool1 --subnet privsub.

2.	 Создаем членов пула, используя IP виртуальных машин:
	 neutron lb-member-create --subnet privsubnet --address

<ip_сервера> --protocol-port 80 pool1.

3.	 Создаем сервис мониторинга доступности сервиса, обеспе-
чиваемого виртуальными машинами:

	 neutron lb-healthmonitor-create --delay 3 --type HTTP
--max-retries 3 --timeout 3.

4.	 Создаем виртуальный IP-адрес кластера:
	 neutron lb-vip-create --name vip1 –protocol-port 80 --protocol

HTTP --subnet subpriv pool1.

5.	 Создаем новый плавающий IP:
	 neutron floatingip-create ext.

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Глава 11
Веб-панель управления

Horizon и работа
пользователя

из графического
интерфейса

Название: OpenStack Dashboard (Horizon)
Назначение: веб-интерфейс управления OpenStack
Пакет: openstack-dashboard
Имена сервисов: httpd.service, memcached.service
Порты: 80, 443
Конфигурационные файлы: /etc/openstack-dashboard/local_settings
Файлы журнала: /var/log/httpd/error_log, /var/log/horizon/horizon.log

В этой главе мы рассмотрим, как установить и работать с графичес
ким интерфейсом OpenStack Dashboard (Horizon). Horizon представ-
ляет собой веб-приложение, написанное с использованием Django
Python. Для работы с OpenStack Dashboard нужен браузер, поддержи-
вающий HTML5 со включенными cookies и JavaScript. Обратите вни-
мание, что через Horizon доступны только около 70% функционала
управления облаком. Все 100% доступны лишь из командной строки.

Установка веб-интерфейса
Запускать сервис мы будем на узел контроллера controller, но с та-
ким же успехом мы могли бы вынести Horizon на отдельную вир-
туальную машину. Устанавливаем необходимые пакеты:

 1 / 30

212    Глава 11. Веб-панель управления Horizon и работа пользователя из интерфейса

[root@controller ~]# yum -y install httpd mod_ssl mod_wsgi
memcached python-memcached openstack-dashboard

Далее необходимо отредактировать конфигурационный файл
/etc/openstack-dashboard/local_settings. Нужно изменить следую-
щие опции:

ALLOWED_HOSTS = [‘*’]
OPENSTACK_HOST = "192.168.122.200"

Опция OPENSTACK_HOST – это самая главная опция при на-
стройке Horizon. Это IP-адрес сервиса, где запущен Keystone. Же-
лательно при промышленной эксплуатации ограничить доступ-
ность сервиса для конкретных IP-адресов и имен узлов. Их можно
перечислить через запятую в опции ALLOWED_HOSTS. «Звездоч-
ка» означает любое имя узла. В ALLOWED_HOSTS должны быть
перечислены имена хостов, которые будут приниматься сервером
от браузера в качестве директивы host. Там можно указать, напри-
мер, IP-адрес сетевой карты узла и FQDN имя сервера.

Параметр OPENSTACK_HOST указывает на местоположение сер-
виса Keystone.

Существует достаточно много опциональных параметров, ко-
торые также можно указать в конфигурационном файле /etc/
openstack-dashboard/local_settings. Например, время жизни сессии
в Horizon:

SESSION_TIMEOUT=3600

Время задается в секундах. По умолчанию – 30 минут. При ис-
пользовании медленного канала бывает полезным увеличить это
время, если ваши пользователи загружают образы виртуальных
машин большего размера или запускаются шаблоны Heat с долгим
временем исполнения. Этот параметр не может быть больше, чем
время expiration=3600 секции [Token] конфигурационного файла
keystone.conf.

Также полезно увеличить параметр в keystone.conf, если поль-
зователи работают даже без применения Horizon, но с виртуаль-
ными машинами с большими образами дисков, например 150 Гб
и больше.

Вернемся к настройке. Надо найти секцию CACHES, удалить или
закомментировать второй блок и убрать комментарии с первого,
чтобы он выглядел следующим образом:

 2 / 30

Установка веб-интерфейса    213

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.
MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 }
}

Включаем третью версию Keystone API:

OPENSTACK_KEYSTONE_URL = "http://%s:5000/v3" % OPENSTACK_HOST

и поддержку доменов:

OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True

Зададим поддерживаемые версии API сервисов:

OPENSTACK_API_VERSIONS = {
 "identity": 3,
 "image": 2,
 "volume": 2,
}

Зададим имя домена по умолчанию, которое будет автоматиче-
ски подставляться на странице регистрации:

OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "default"

На момент написания книги существовала ошибка, связанная с
некорректными разрешениями на директорию в CentOS 7. Необхо-
димо исправить их командой:

[root@controller ~]# chown -R apache:apache /usr/share/openstack-
dashboard/static

Если вы не отключали SELinux, то необходимо выставить пере-
ключатель:

[root@controller ~]# setsebool -P httpd_can_network_connect on

Для исправления одной из возможных в некоторых конфигура-
циях проблем необходимо добавить строку WSGIApplicationGroup
%{GLOBAL} в конфигурационный файл /etc/httpd/conf.d/openstack-
dashboard.conf. Наконец, включаем сервисы и перезапускаем:

[root@controller ~]# systemctl enable memcached.service
[root@controller ~]# systemctl restart httpd.service memcached.service

 3 / 30

214    Глава 11. Веб-панель управления Horizon и работа пользователя из интерфейса

Теперь можно открыть в браузере адрес http://controller.test.
local/dashboard и подключиться одним из существующих пользо-
вателей, указав в качестве домена Default.

Работа с OpenStack в интерфейсе
Horizon
Кратко рассмотрим работу с веб-интерфейсом Horizon. Обратите
внимание, что число аккордеонов (accordion) – сворачивающихся
элементов интерфейса в левой части экрана – зависит от того, ад-
министративным или простым пользователем вы зашли в Horizon.
Также не отображаются аккордеоны, отвечающие за службы, кото-
рые у вас не установлены, например если вы выполняете упраж-
нения последовательно глава за главой, то Orchestration внутри
Project у вас будет отсутствовать.

Начнем с простого пользователя demo и аккордеона Project,
внутри которого скрывается большинство необходимых пользо-
вателю инструментов работы с облаком:

Рис. 11.1. Общий обзор ресурсов пользователя

 4 / 30

http://controller.test.local/dashboard
http://controller.test.local/dashboard

Работа с OpenStack в интерфейсе Horizon    215

�� Compute
•	 Overview – общий обзор ресурсов пользователя. Вкладка

приведена на рис. 11.1. Помимо гистограмм, отображаю-
щих текущее потребление ресурсов, можно задать пери-
од и получить краткий отчет за это время.

•	 Instances – на этой вкладке приведен список виртуаль-
ных машин для текущего проекта, а также имеется воз-
можность производить с виртуальными машинами раз-
личные действия. С этой же вкладки открывается диалог
создания новой виртуальной машины. Его внешний вид
приведен на рис. 11.2. Обратите внимание, что в этом
диалоге вкладки, помеченные звездочкой, содержат
обязательные для заполнения параметры. Возможность
подключиться к консоли и просмотреть вывод термина-
ла виртуальной машины – также на вкладке Instances.

•	 Volumes – вкладка предназначена для управления тома-
ми и снимками Cinder. Соответственно, состоит из двух
вкладок – Volumes и Volume Snapshots.

•	 Images – управление образами Glance. Снимок с экрана
приведен на рис. 14.1. В верхней части экрана имеется
возможность отсортировать образы по общедоступным
образам, к которым вам дали доступ, и частным образам.
Из образов тут же можно стартовать виртуальную маши-
ну и создать том.

•	 Access&Security – на этой заключительной части ак-
кордеона Compute собраны настройки, относящиеся к
безопасности и контролю доступа. Разделена на четыре
вкладки: Security Groups (группы безопасности), Key
Pairs (ключи доступа по SSH), Floating IPs («плавающие»
IP-адреса), API Access (URL, по которым доступны API
соответствующих служб облака).

�� Network
•	 Network Topology – топология сети проекта. Пример

снимка с экрана приведен на рисунке в главе, посвящен-
ной работе с сетью.

•	 Networks – список сетей проекта. Тут же создаются под-
сети, а также находится список портов и возможность их
редактирования.

•	 Routers – список маршрутизаторов проекта и управле-
ние ими.

 5 / 30

216    Глава 11. Веб-панель управления Horizon и работа пользователя из интерфейса

�� Object Store
•	 Containers – тут вы можете создавать контейнеры и

псевдопапки, а также загружать в объектное хранилище
файлы и скачивать их. Пример снимка с экрана приведен
на рис. 6.2 в главе, рассказывающей о Swift.

�� Orchestration
•	 Stacks – снимки с экрана представлены на рис. 13.1 и

13.2. На этой вкладке располагается единая точка управ-
ления стеками, включая их запуск и мониторинг.

Рис. 11.2. Создание новой виртуальной машины

Для непривилегированного пользователя второй доступный ак-
кордеон Identity предоставляет только справочную информацию,
поэтому перейдем к рассмотрению веб-клиента Horizon для поль-
зователя, прошедшего аутентификацию как администратор.

Первое, что мы увидим, – это дополнительный аккордеон Admin.
С его описания мы и начнем:

�� Overview – тут располагается статистика по всем проектам
за заданный период времени;

�� Resource Usage – эта вкладка отвечает за вывод информа-
ции от OpenStack Telemetry (Ceilometer). Пример снимка
экрана приведен на рис. 12.1;

 6 / 30

Работа с OpenStack в интерфейсе Horizon    217

�� Hypervisors – информация по всем гипервизорам, управ-
ляемым OpenStack. Кликнув по имени выбранного узла,
можно посмотреть, какие виртуальные машины он обслу-
живает;

�� Host Aggregates – на этой вкладке администратор может
настроить группировку узлов как на логические группы, так
и сгруппировать их по физическому месторасположению;

�� Instances – вкладка соответствует аналогичной вкладке
Projects, только отображает все виртуальные машины;

�� Volumes – аналогична вкладке Projects, однако включа-
ет дополнительную подвкладку Volume Types, на которой
можно определить типы томов и соответствующие им па-
раметры качества обслуживания (QOS);

�� Flavors – управление типами экземпляров виртуальных ма-
шин;

�� Images – управление образами Glance. Отображаются все
образы;

�� Networks – аналогична вкладке Projects, но включает в себя
сети всех проектов. Тут администратор также может задать
внешнюю сеть;

�� Routers – опять же как и в аккордеоне Projects, но включает
в себя все маршрутизаторы;

�� Defaults – тут администратор может задать квоты для про-
ектов, действующие по умолчанию;

�� System Information – на этой вкладке представлена инфор-
мация о сервисах облака и их текущем состоянии. Пример
снимка с экрана вкладки System Information приведен на
рис. 11.3.

Самый последний аккордеон Identity состоит всего из двух
разделов: Projects и Users. На вкладке Projects можно создавать
и управлять проектами. Вкладка Users предназначена для анало-
гичных действий с пользователями.

Существует возможность переключить язык интерфейса Heat
на русский язык. Если щелкнуть по имени пользователя в правом
верхнем углу и выбрать из выпадающего меню пункт Settings, то
откроется экран, показанный на рис. 11.4, где вы можете поменять
выбор языка интерфейса и локальную зону времени. Кроме того,
на этом рисунке продемонстрирована вторая, поставляющаяся в
комплекте с Horizon тема оформления – material.

 7 / 30

218    Глава 11. Веб-панель управления Horizon и работа пользователя из интерфейса

Рис. 11.3. Информация о системе в веб-клиенте Horizon

Рис. 11.4. Настройки интерфейса пользователя

 8 / 30

Работа с OpenStack в интерфейсе Horizon    219

Хотя в настоящее время «ванильный» OpenStack поставляется
с двумя темами оформления Horizon (default и material), некото-
рые из дистрибутивов OpenStack поставляются со своей «корпо-
ративной» темой оформления. Например, на рис. 11.5 приведе-
но оформление дистрибутива Red Hat Enterprise Linux OpenStack
Platform, а на рис. 11.6 – внешний вид веб-клиента Ericsson Cloud
Execution Environment.

Рис. 11.5. Тема оформления Horizon в Red Hat OpenStack Platform

Рис. 11.6. Внешний вид веб-клиента Ericsson Cloud Execution

 9 / 30

220    Глава 11. Веб-панель управления Horizon и работа пользователя из интерфейса

Environment (Atlas)
Привести оформление к стандартному в таких случаях можно,

просто удалив соответствующий пакет. Для Red Hat OpenStack
Platform это можно сделать командой

rpm -e openstack-dashboard-theme --nodeps

Сanonical также поставляет свою тему оформления. В случае с
Ubuntu:

apt-get remove --auto-remove openstack-dashboard-ubuntu-theme

Вообще, ряд изменений интерфейса можно сделать и через конфи-
гурационный файл Horizon. Например, можно добавить в заголовок
окна браузера название своей компании или имя облачного сервиса:

SITE_BRANDING = "Мое облако"

Подробнее про настройку интерфейса и темы оформления
можно почитать в официальной документации: http://docs.
openstack.org/newton/config-reference/dashboard/config-options.html

На рис. 11.7 в качестве справочной информации приведены все
основные меню Horizon.

Рис. 11.7. Диаграмма меню Horizon

 10 / 30

http://docs.openstack.org/newton/config-reference/dashboard/config-options.html
http://docs.openstack.org/newton/config-reference/dashboard/config-options.html

Глава 12
Сервис сбора телеметрии

Название: OpenStack Telemetry
Назначение: сбор информации об использовании ресурсов облака
Пакеты: openstack-ceilometer-*, openstack-aodh-*
Имена сервисов: openstack-ceilometer-*, openstack-aodh-*,
openstack-gnocchi-*
Порты: 8041,8042
Конфигурационные файлы: /etc/ceilometer/ceilometer.conf, /etc/
aodh/aodh.conf, /etc/gnocchi/gnocchi.conf
Файлы журнала: /var/log/ceilometer/*, /var/log/gnocchi/

Сервис OpenStack Telemetry – компонент облака OpenStack, от-
вечающий за сбор, хранение метрик (как самостоятельно в про-
шлом, так и используя новый бэкэнд Gnocchi в настоящее время)
и мониторинг использования ресурсов в первую очередь для целей
биллинга. Помимо сбора метрик работы облака, Ceilometer также
собирает информацию о событиях, происходящих в работающей
системе. Название сервиса Ceilometer происходит от названия
прибора, используемого метеорологами для измерения высоты
облаков над поверхностью земли.

Сервис телеметрии в настоящий момент состоит из нескольких
отдельных проектов:

�� Ceilometer – отвечает за мониторинг и сбор данных;
�� Aodh – отвечает за обработку триггеров (alarm). Ранее дан-
ный функционал входил в обязанности Ceilometr, соответ-
ственно, в первом и втором изданиях книги он не рассмат
ривался;

�� Gnocchi – бэкэнд для хранения метрик, собранных серви-
сом телеметрии. Причиной его появления стало желание
снизить накладные расходы и обеспечить возможность
хранения данных на облачных масштабируемых файловых
системах, таких как Ceph. Ceilometer может хранить данные
как в Gnocchi, так и в MongoDB (устаревший функционал).

 11 / 30

222    Глава 12. Сервис сбора телеметрии

Сервис спроектирован как расширяемый за счет подключаемых
агентов сбора информации и легко масштабируемый горизонталь-
но. Ceilometer поддерживает два способа сбора данных. Предпоч
тительный метод сбора – при помощи очереди сообщений. Реали
зуется сервисом ceilometer-collector. Данный сервис запускается
на одном или более управляющих узлах и отслеживает очередь со-
общений. Сборщик получает уведомления от инфраструктурных
сервисов (Nova, Glance, Cinder, Neutron, Swift, Keystone, Heat), затем
преобразует их в сообщения телеметрии и отправляет обратно в
очередь сообщений. Сообщения телеметрии записываются в хра-
нилище без преобразований. Второй, менее предпочтительный
способ – через опрашивающие инфраструктуру агенты. При помо-
щи вызовов API или других инструментов агенты периодически
запрашивают у сервисов необходимую информацию.

В релизе Havana также появилась возможность запуска событий
по срабатываниям триггеров при достижении метрикой заданно-
го значения. В качестве действия может быть задано обращение по
HTTP на определенный адрес или запись события в журнал. В цик
ле разработки Liberty данный сервис был вынесен в отдельный
проект Aodh.

Сервис состоит из ряда компонентов, часть из которых запуска-
ется на управляющих узлах, а часть – на вычислительных. Пере-
числим их:

�� Gnocchi (openstack-gnocchi-api и openstack-gnocchi-
metricd) – используется для хранения данных и вычисления
в реальном времени статистики. Данные индексируются
для возможности быстрого их получения. Индексы хра-
нятся в реляционной базе данных. Мы будем использовать
MariaDB;

�� openstack-ceilometer-notification – агент, отправляющий
по протоколу AMQP метрики сборщику от различных сер-
висов;

�� openstack-ceilometer-central – агент, запускаемый на цен-
тральном сервере для запроса статистики по загрузке, не
связанной с экземплярами виртуальных машин или вычис-
лительными узлами. В целях горизонтального масштабиро-
вания допускается запуск нескольких агентов;

�� openstack-ceilometer-compute – агент, запускаемый на
всех вычислительных узлах для сбора статистики по узлам
и экземплярам виртуальных машин;

 12 / 30

Установка служб Gnocchi и Ceilometr управляющего узла    223

�� API-сервер openstack-aodh-api – запускается на одном или
более узлах. Служит для предоставления доступа к инфор-
мации о сработавших триггерах (alarms);

�� openstack-aodh-evaluator – сервис, определяющий, срабо-
тал ли триггер при достижении метриками заданных значе-
ний в течение определенного измеряемого периода;

�� openstack-aodh-notifier – сервис, запускающий те или
иные действия при срабатывании триггера;

�� openstack-aodh-listener – сервис, определяющий, когда
триггер сработает. Срабатывание определяется сравнени-
ем правил триггера и событий, полученных агентами сбора
телеметрии.

Список собираемых метрик с описаниями можно взять с офици-
ального сайта в руководстве администратора облака OpenStack –
http://docs.openstack.org/admin-guide/telemetry.html. Метрики мо-
гут быть трех типов:

�� накопительные счетчики (cumulative) – постоянно увеличи-
вающиеся со временем значения;

�� индикаторы (gauge) – дискретные и плавающие значения,
например ввод/вывод диска или присвоенные «плавающие
IP»;

�� дельта (delta) – изменение со временем, например пропуск-
ная способность сети.

Некоторые метрики собираются раз в тридцать минут, для иных
требуется более частая периодичность, например раз в минуту.

Установка служб Gnocchi и Ceilometr
управляющего узла
Вы можете установить сервер API, сборщик сообщений, централь-
ный агент и базу на разные узлы. Мы все эти сервисы будем запус
кать на управляющем узле, а на вычислительном узле установим
соответствующий агент вычислительного узла. Также нам пона-
добится внести изменения в конфигурационные файлы других
служб, например Glance, для того чтобы они начали передавать
информацию о событиях в шину брокера сообщений.

Устанавливаем пакеты openstack-gnocchi-* и клиента команд-
ной строки:

 13 / 30

http://docs.openstack.org/admin-guide/telemetry.html

224    Глава 12. Сервис сбора телеметрии

[root@controller ~]# yum -y install openstack-gnocchi-api
openstack-gnocchi-metricd python-gnocchiclient

Продолжаем установку уже привычными командами из прош
лых глав. Создаем пользователей ceilometer и gnocchi:
$ source keystonerc_admin
$ openstack user create --domain default --password openstack
ceilometer
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	e7fbdb6eaecc493e9f1f60a37c52e518
name	ceilometer
options	{}
password_expires_at	None
+---------------------+----------------------------------+	
$ openstack user create --domain default --password openstack	
gnocchi	
+---------------------+----------------------------------+	
Field	Value
+---------------------+----------------------------------+	
domain_id	default
enabled	True
id	4e27f716410d45848c0e84a1f2deb3f8
name	gnocchi
options	{}
password_expires_at	None
+---------------------+----------------------------------+

Затем добавляем пользователей ceilometer и gnocchi в проект
service с ролью admin:

$ openstack role add --project service --user ceilometer admin
$ openstack role add --project service --user gnocchi admin

Создаем сервис gnocchi:

$ openstack service create --name gnocchi --description "Metric
Service" metric
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Metric Service
enabled	True
id	27c82194ea0844ed8fbd59e9798e3337
name	gnocchi
type	metric
+-------------+----------------------------------+

 14 / 30

Установка служб Gnocchi и Ceilometr управляющего узла    225

Создаем точки входа в сервис:

$ openstack endpoint create --region RegionOne metric public
http://controller.test.local:8041
+--------------+-----------------------------------+
| Field | Value |
+--------------+-----------------------------------+
enabled	True
id	52e5ffb0065d4b67be8692446a2df32b
interface	public
region	RegionOne
region_id	RegionOne
service_id	27c82194ea0844ed8fbd59e9798e3337
service_name	gnocchi
service_type	metric
url	http://controller.test.local:8041
+--------------+-----------------------------------+	
$ openstack endpoint create --region RegionOne metric internal	
http://controller.test.local:8041	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	8eb125cc5b3d412aafa74e308ad9a53a
interface	internal
region	RegionOne
region_id	RegionOne
service_id	27c82194ea0844ed8fbd59e9798e3337
service_name	gnocchi
service_type	metric
url	http://controller.test.local:8041
+--------------+-----------------------------------+	
$ openstack endpoint create --region RegionOne metric admin	
http://controller.test.local:8041	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	cd65af6592764986ab18691cb276cacd
interface	admin
region	RegionOne
region_id	RegionOne
service_id	27c82194ea0844ed8fbd59e9798e3337
service_name	gnocchi
service_type	metric
url	http://controller.test.local:8041
+--------------+-----------------------------------+

Создадим базу для службы индекса Gnocchi:

 15 / 30

226    Глава 12. Сервис сбора телеметрии

[root@controller ~]# mysql -u root -p
MariaDB [(none)]> CREATE DATABASE gnocchi;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON gnocchi.* TO
'gnocchi'@'localhost' IDENTIFIED BY 'openstack';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON gnocchi.* TO
'gnocchi'@'%' IDENTIFIED BY 'openstack'
MariaDB [(none)]> exit

Указываем параметры службы идентификации Keystone:

[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf api
auth_mode keystone
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken auth_url http://controller.test.local:5000/v3
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken auth_type password
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken project_domain_name Default
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken user_domain_name Default
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken project_name service
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken username gnocchi
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken password openstack
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken interface internalURL
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf
keystone_authtoken region_name RegionOne

Укажем параметры подключения к базе данных индексатора:

[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf indexer
url mysql+pymysql://gnocchi:openstack@controller.test.local/gnocchi

Также укажем место на файловой системе, где будут хранить-
ся данные метрик. Локальная файловая система – самый простой
для демонстрационного стенда способ. В документации приведе-
ны другие, более подходящие для промышленного применения
варианты.

[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf storage
file_basepath /var/lib/gnocchi
[root@controller ~]# crudini --set /etc/gnocchi/gnocchi.conf storage
driver file

Инициализируем gnocchi:

 16 / 30

Установка служб Gnocchi и Ceilometr управляющего узла    227

[root@controller ~]# gnocchi-upgrade

Последним шагом перед переходом к установке пакетов Ceilo
meter будут включение и запуск установленных служб Gnocchi:

[root@controller ~]# systemctl enable openstack-gnocchi-api.service
openstack-gnocchi-metricd.service
[root@controller ~]# systemctl start openstack-gnocchi-api.service
openstack-gnocchi-metricd.service

На момент написания этой главы существовала не исправлен-
ная в пакетах RDO проблема – https://goo.gl/u7bbR6. Возможно,
вам придется внести изменения в код.

Устанавливаем пакеты Ceilometer:

[root@controller ~]# yum -y install openstack-ceilometer-notification
openstack-ceilometer-central

Добавляем в конфигурационные файлы информацию по серви-
су RabbitMQ и реквизиты сервиса:

[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
DEFAULT transport_url rabbit://openstack:openstack@controller.test.
local
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials auth_type password
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials auth_url http://controller.test.local:5000/v3
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials project_domain_id default
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials user_domain_id default
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials project_name service
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials username ceilometer
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials password openstack
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials interface internalURL
[root@controller ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials region_name RegionOne

Создаем ресурсы в Gnocchi:

[root@controller ~]# ceilometer-upgrade

Включаем и стартуем сервисы:

 17 / 30

https://goo.gl/u7bbR6

228    Глава 12. Сервис сбора телеметрии

[root@controller ~]# systemctl enable openstack-ceilometer-
notification.service openstack-ceilometer-central.service
[root@controller ~]# systemctl start openstack-ceilometer-
notification.service openstack-ceilometer-central.service

Установка службы триггеров Aodh
Создадим базу для хранения информации о триггерах:

[root@controller ~]# mysql -u root -p
MariaDB [(none)]> CREATE DATABASE aodh;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON aodh.* TO
'aodh'@'localhost' IDENTIFIED BY 'openstack';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON aodh.* TO 'aodh'@'%'
IDENTIFIED BY 'openstack';
MariaDB [(none)]> exit

Как всегда, создаем пользователя, сервис и конечные точки сер-
виса:

$ openstack user create --domain default --password openstack aodh
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	a1b44510220145da83c70f4a9e9706d8
name	aodh
options	{}
password_expires_at	None
+---------------------+----------------------------------+	
$ openstack role add --project service --user aodh admin	
$ openstack service create --name aodh --description "Telemetry"	
alarming	
+-------------+----------------------------------+	
Field	Value
+-------------+----------------------------------+	
description	Telemetry
enabled	True
id	674b422d44fa435c9c05f5bc79293d67
name	aodh
type	alarming
+-------------+----------------------------------+	
$ openstack endpoint create --region RegionOne alarming public	
http://controller.test.local:8042	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True

 18 / 30

Установка службы триггеров Aodh    229

id	07cfee43478541918f07b0b6a10c7a34
interface	public
region	RegionOne
region_id	RegionOne
service_id	674b422d44fa435c9c05f5bc79293d67
service_name	aodh
service_type	alarming
url	http://controller.test.local:8042
+--------------+-----------------------------------+	
$ openstack endpoint create --region RegionOne alarming internal	
http://controller.test.local:8042	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	5613210263ae43fc8716520b1a645905
interface	internal
region	RegionOne
region_id	RegionOne
service_id	674b422d44fa435c9c05f5bc79293d67
service_name	aodh
service_type	alarming
url	http://controller.test.local:8042
+--------------+-----------------------------------+	
$ openstack endpoint create --region RegionOne alarming admin	
http://controller.test.local:8042	
+--------------+-----------------------------------+	
Field	Value
+--------------+-----------------------------------+	
enabled	True
id	6ebc9226ba144a058b51090d2418d369
interface	admin
region	RegionOne
region_id	RegionOne
service_id	674b422d44fa435c9c05f5bc79293d67
service_name	aodh
service_type	alarming
url	http://controller.test.local:8042
+--------------+-----------------------------------+

Устанавливаем необходимые пакеты:

yum -y install openstack-aodh-api openstack-aodh-evaluator
openstack-aodh-notifier openstack-aodh-listener openstack-aodh-expirer
python-aodhclient

Далее необходимо добавить в файл /etc/aodh/aodh.conf настрой-
ки сервиса идентификации Keystone и указать, с какими реквизи-
тами подключается пользователь aodh.

 19 / 30

230    Глава 12. Сервис сбора телеметрии

[root@controller ~]# crudini --set /etc/aodh/aodh.conf DEFAULT
auth_strategy keystone
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken auth_type password
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken project_domain_id default
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken user_domain_id default
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken project_name service
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken username aodh
[root@controller ~]# crudini --set /etc/aodh/aodh.conf keystone_
authtoken password openstack

Те же действия для самого сервиса:

[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials auth_type password
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials auth_url http://controller.test.local:5000/v3
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials project_domain_id default
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials user_domain_id default
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials project_name service
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials username aodh
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials password openstack
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials interface internalURL
[root@controller ~]# crudini --set /etc/aodh/aodh.conf service_
credentials region_name RegionOne

Помимо этого, укажем параметры подключения к базе данных:

[root@controller ~]# crudini --set /etc/aodh/aodh.conf database
connection mysql+pymysql://aodh:openstack@controller.test.local/aodh

И добавим в конфигурационные файлы информацию по серви-
су RabbitMQ:

[root@controller ~]# crudini --set /etc/aodh/aodh.conf DEFAULT
transport_url rabbit://openstack:openstack@controller.test.local

 20 / 30

Установка служб вычислительного узла для отправки сообщений телеметрии    231

Для инициализации базы данных запускаем скрипт:

[root@controller ~]# aodh-dbsync

Теперь можно включить и стартовать сервисы:

[root@controller ~]# systemctl enable openstack-aodh-api.service
openstack-aodh-evaluator.service openstack-aodh-notifier.service
openstack-aodh-listener.service
[root@controller ~]# systemctl start openstack-aodh-api.service
openstack-aodh-evaluator.service openstack-aodh-notifier.service
openstack-aodh-listener.service

Установка служб вычислительного
узла для отправки сообщений
телеметрии
Переходим к вычислительным узлам. Дальнейшие действия не-
обходимо выполнить на обоих узлах: compute и compute-opt. Тут
количество устанавливаемых пакетов значительно меньше:

[root@compute ~]# yum -y install openstack-ceilometer-compute

Затем добавляем в конфигурационные файлы информацию по
сервису RabbitMQ и реквизиты сервиса:

[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf DEFAULT
transport_url rabbit://openstack:openstack@controller.test.local
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials auth_type password
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials auth_url http://controller.test.local:5000/v3
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials project_domain_id default
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials user_domain_id default
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials project_name service
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials username ceilometer
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials password openstack
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials interface internalURL
[root@compute ~]# crudini --set /etc/ceilometer/ceilometer.conf
service_credentials region_name RegionOne

 21 / 30

232    Глава 12. Сервис сбора телеметрии

Отредактируем файл настроек сервиса Nova, для того чтобы сер-
вис начал отправлять сообщения через брокер сообщений:

[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
instance_usage_audit_period hour
[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
notify_on_state_change vm_and_task_state
[root@compute ~]# crudini --set /etc/nova/nova.conf oslo_
messaging_notifications driver messagingv2

Для сбора статистики по «memory.usage», «disk.usage» и «disk.de-
vice.usage» необходимо включить параметр instance_usage_audit:

[root@compute ~]# crudini --set /etc/nova/nova.conf DEFAULT
instance_usage_audit True

Теперь нужно включить и стартовать сервис Ceilometer, а также
перезапустить Nova:

[root@compute ~]# systemctl enable openstack-ceilometer-compute.
service
[root@compute ~]# systemctl start openstack-ceilometer-compute.
service
[root@compute ~]# systemctl restart openstack-nova-compute.
service

Интеграция с сервисами Glance и Cinder
В качестве примера настроим отправку сообщений в сервис теле-
метрии для сервисов Glance и Cinder. Для информации о настройке
других служб автор переадресует читателя к официальной доку-
ментации.

На узле, где запущены сервисы glance-api и glance-registry, не-
обходимо отредактировать конфигурационные файлы, настроив
службу на отправку сообщений для Ceilometer по AMQP:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
oslo_messaging_notifications driver messagingv2
[root@controller ~]# crudini --set /etc/glance/glance-api.conf.
conf oslo_messaging_notifications driver messagingv2
[root@controller ~]# crudini --set /etc/glance/glance-api.conf
DEFAULT transport_url rabbit://openstack:openstack@controller.
test.local
[root@controller ~]# crudini --set /etc/glance/glance-registry.conf
DEFAULT transport_url rabbit://openstack:openstack@controller.test.
local

 22 / 30

Работа со службой телеметрии в современных версиях OpenStack    233

Затем рестартуйте обе службы: openstack-glance-api и openstack-
glance-registry:

systemctl restart openstack-glance-api.service openstack-glance-
registry.service

Завершим установку настройкой блочного хранилища Cinder.
Изменения необходимо произвести как на узлах хранения, так и
на управляющем узле. В нашем лабораторном окружении обе роли
исполняет узел controller.test.local:

[root@controller ~]# crudini --set /etc/cinder/cinder.conf oslo_
messaging_notifications driver messagingv2

Кроме того, необходимо создать периодически запускаемую ра-
боту в cron для сбора информации. Например, раз в пять минут:

*/5 * * * * /path/to/cinder-volume-usage-audit --send_actions

Для завершения настройки следует рестартовать сервисы Cinder:

[root@controller ~]# systemctl restart openstack-cinder-api.service
openstack-cinder-scheduler.service openstack-cinder-volume.service

Теперь перейдем непосредственно к работе с сервисом.

Работа со службой телеметрии
в современных версиях OpenStack
Посмотрим, какие типы ресурсов доступны:

$ openstack metric resource-type list -c name
+----------------------------+
| name |
+----------------------------+
| ceph_account |
| generic |
| host |
| host_disk |
| host_network_interface |
| identity |
| image |
| instance |
| instance_disk |
| instance_network_interface |
| ipmi |
| manila_share |

 23 / 30

234    Глава 12. Сервис сбора телеметрии

| network |
| nova_compute |
| port |
| stack |
| swift_account |
| switch |
| switch_port |
| switch_table |
| volume |
| volume_provider |
| volume_provider_pool |
+----------------------------+

Далее посмотрим, какие ресурсы доступны текущему пользова-
телю:

$ openstack metric resource list -c type -c id
+--------------------------------------+----------------------------+
| id | type |
+--------------------------------------+----------------------------+
| 484ee4ef-84bd-4f12-a093-3b62c56c29f0 | instance |
| 29ddb3c7-b418-557f-90e2-f7a3f90d20ff | instance_disk |
...
671a756b-0423-4300-a0c7-5b03b621a1e8	instance
ae6ad5eb-58b6-50f9-9149-a4b603110b67	instance_network_interface
c10229e0-1dc2-543b-b272-26f5c9708310	instance_disk
35923211-ec9d-4f0a-8d5c-2cec96a427d8	instance
e36d78b3-b767-57a5-a839-8f5d7cd752ce	instance_disk
bead1067-20dc-58db-a785-bc110bc6e0fb	instance_network_interface
+--------------------------------------+----------------------------+

Как мы видим, присутствует несколько ресурсов типа instance.
Можно сравнить и убедиться, что их ID совпадают с ID двух имею-
щихся в наличии экземпляров виртуальных машин:

$ openstack server list -c ID -c Name
+--------------------------------------+-------+
| ID | Name |
+--------------------------------------+-------+
| 35923211-ec9d-4f0a-8d5c-2cec96a427d8 | myvm2 |
| 671a756b-0423-4300-a0c7-5b03b621a1e8 | myvm1 |
+--------------------------------------+-------+

Можно посмотреть все метрики, ассоциированные, например, с
экземпляром myvm1:

$ openstack metric resource show 35923211-ec9d-4f0a-8d5c-2cec96a427d8
+-----------------------+--+
| Field | Value |
+-----------------------+--+

 24 / 30

Работа со службой телеметрии в современных версиях OpenStack    235

created_by_project_id	c19f44553ab640779672e2321364e6ce
created_by_user_id	e7fbdb6eaecc493e9f1f60a37c52e518
creator	e7fbdb6eaecc493e9f1f60a37c52e518:c19f44553ab64..
ended_at	None
id	c418c348-94f9-4d99-981b-e41e7d34d286
metrics	compute.instance.booting.time: 81da677f-1e28-4..
	cpu.delta: d35aab34-3347-4701-9aaa-3fce10765d93
	cpu: 2580fa7a-8e78-4514-b445-f118d419970a
	cpu_l3_cache: 7dd54beb-4ee0-4ea3-99a3-45e3e33a8
	cpu_util: df31a8d0-ce7a-4f71-8506-fd1acb30431b
	disk.allocation: 793c5989-1448-4bff-9aef-9431e..
	disk.capacity: 8b7a4034-52a1-4340-9775-258bab3..
	disk.ephemeral.size: b27317f0-3077-4f92-aad3-6..
	disk.iops: f065823f-bc19-4c46-a1fd-f96426ee793d
	disk.latency: 8b1d2adb-3d4e-47b8-847b-61f7026b..
	disk.read.bytes.rate: df2dd949-bc30-4316-8872-..
	disk.read.bytes: ff0d9068-cc01-4e39-999e-a070b..
	disk.read.requests.rate: 1a38d66f-81ae-445e-b7..
	disk.read.requests: 627bc618-dbea-494b-a57c-12..
	disk.root.size: 0fa5905f-18de-4408-828b-5dea0c..
	disk.usage: d279c119-42d3-4cea-8a0e-3df2723b34..
	disk.write.bytes.rate: 53c9e49e-15f2-4fe2-8613..
	disk.write.bytes: 33d782b3-bda9-44b3-aca0-7ffa..
	disk.write.requests.rate: bc9406c9-e677-48e1-8..
	disk.write.requests: c482e1f1-b334-495b-872c-1..
	memory.bandwidth.local: e2ebd189-242c-4e8c-b2a..
	memory.bandwidth.total: 8c8e5bf3-2656-4505-b4b..
	memory.resident: 7f497d55-e3f9-4546-83fb-44093..
	memory.swap.in: 41935ec0-6592-4eac-a364-60b598..
	memory.swap.out: d52a0774-4c57-447a-b31d-d20f8..
	memory.usage: 7feb9c6f-1e95-4ec8-9b58-3f665bcf..
	memory: 9cc65602-e775-44f4-a0de-51ff1ca492b4
	perf.cache.misses: 78c07416-b67b-4292-a313-83f..
	perf.cache.references: 88b5e885-68c9-4158-bec5..
	perf.cpu.cycles: bbd56f3d-2fda-4484-b358-e269f..
	perf.instructions: 3e3e2709-e487-4193-bed9-ab3..
	vcpus: 7bb09bfd-394e-4b3c-b887-322002d14292
original_resource_id	35923211-ec9d-4f0a-8d5c-2cec96a427d8
project_id	bc10ac4b71164550a363b8098e8ad270
revision_end	None
revision_start	2018-03-18T13:41:32.690577+00:00
started_at	2018-03-18T13:41:32.690550+00:00
type	instance
user_id	3b76dece42b140e092dc1a76a85c1879
+-----------------------+--+

Далее, используя идентификатор ресурса, можно смотреть кон-
кретную метрику, ассоциированную с экземпляром виртуальной
машины:

 25 / 30

236    Глава 12. Сервис сбора телеметрии

$ openstack metric measures show --resource-id 35923211-ec9d-4f0a-
8d5c-2cec96a427d8 cpu_util
+---------------------------+-------------+--------------+
| timestamp | granularity | value |
+---------------------------+-------------+--------------+
2018-03-18T14:50:00+01:00	300.0	0.3566421273
2018-03-18T14:55:00+01:00	300.0	0.4333532502
2018-03-18T15:00:00+01:00	300.0	0.4066271235
2018-03-18T15:05:00+01:00	300.0	0.4033385404
2018-03-18T15:10:00+01:00	300.0	0.3933495747
+---------------------------+-------------+--------------+

Попробуем познакомиться с триггерами или сигналами опо-
вещения (alarms). Триггер может быть в трех состояниях: «Ok»,
«Тревога» и «Недостаточно данных». Правила триггеров могут
объединяться при помощи операторов AND и OR. К триггеру мож-
но привязать определенное правило, которое чаще всего HTTP-
команда POST использует для заданного URL. Можно также в
качестве действия выбрать запись в файл журнала, но это приме-
няется только для отладки, поскольку необходим доступ с правами
администратора облака.

Создадим триггер для виртуальной машины с ID 35923211-ec9d-
4f0a-8d5c-2cec96a427d8:

$ openstack alarm create --type gnocchi_aggregation_by_resources_threshold
--name myalarm1 --metric cpu_util --aggregation-method mean --comparison-
operator 'ge' --threshold 60 --evaluation-periods 2 --granularity 300 --alarm-
action 'log://' --resource-type instance --query '{"=": {"id": "35923211-ec9d-
4f0a-8d5c-2cec96a427d8"}}'
+---------------------------+---+
| Field | Value |
+---------------------------+---+
aggregation_method	mean
alarm_actions	[u'log://']
alarm_id	5db57222-97ec-4dde-baa3-a2ca3fac472e
comparison_operator	ge
description	gnocchi_aggregation_by_resources_threshold alarm rule
enabled	True
evaluation_periods	2
granularity	300
insufficient_data_actions	[]
metric	cpu_util
name	myalarm1
ok_actions	[]
project_id	7fe2a6ef08df4a749f3bad1fceb055b9
query	{"=": {"id": "35923211-ec9d-4f0a-8d5c-2cec96a427d8"}}
repeat_actions	False
resource_type	instance

 26 / 30

Работа со службой телеметрии в современных версиях OpenStack    237

severity	low
state	insufficient data
state_reason	Not evaluated yet
state_timestamp	2018-03-18T15:19:28.306432
threshold	60.0
time_constraints	[]
timestamp	2018-03-18T15:19:28.306432
type	gnocchi_aggregation_by_resources_threshold
user_id	a37a67fdf3dc4e9c9e5251754b26770d
+---------------------------+---+

Данный триггер сработает, если средняя загрузка виртуального
процессора экземпляра превысит 60% в течение двух промежут-
ков измерений по 300 секунд. Проверим, как последовательно ста-
тус сменится с «Недостаточно данных» на «Ok»:

$ openstack alarm list -c name -c state -c enabled
+----------+-------------------+---------+
| name | state | enabled |
+----------+-------------------+---------+
| myalarm1 | insufficient data | True |
+----------+-------------------+---------+
$ openstack alarm list -c name -c state -c enabled
+----------+-------+---------+
| name | state | enabled |
+----------+-------+---------+
| myalarm1 | ok | True |
+----------+-------+---------+

Теперь можно нагрузить процессор виртуальной машины, под-
ключившись к ней и запустив команду

$ md5sum /dev/zero

Через некоторое время проверим загрузку и убедимся, что
триггер сработал:

$ openstack metric measures show --resource-id 35923211-ec9d-
4f0a-8d5c-2cec96a427d8 cpu_util
+---------------------------+-------------+---------------+
| timestamp | granularity | value |
+---------------------------+-------------+---------------+
| 2018-03-18T14:50:00+01:00 | 300.0 | 0.3566421273 |
...
2018-03-18T16:25:00+01:00	300.0	0.3933242633
2018-03-18T16:30:00+01:00	300.0	0.3866072657
2018-03-18T16:35:00+01:00	300.0	94.2390209724
2018-03-18T16:40:00+01:00	300.0	99.6113294916
+---------------------------+-------------+---------------+

 27 / 30

238    Глава 12. Сервис сбора телеметрии

$ openstack alarm list -c name -c state -c enabled
+----------+-------+---------+
| name | state | enabled |
+----------+-------+---------+
| myalarm1 | alarm | True |
+----------+-------+---------+

Работа со службой телеметрии
Ceilometer в версиях Newton и ранее
Если вы по каким-то причинам вынуждены работать с более ста-
рыми версиями OpenStack, в этом разделе приведены примеры
работы с использованием устаревшего клиента ceilometer.

В веб-интерфейсе OpenStack за отображение информации
Ceilometer отвечают две вкладки на странице Admin → System →
Resource Usage. Намного больше возможностей предоставляет
клиент командной строки ceilometer, который использует RESTful
API.

Рис. 12.1. Пример данных Ceilometer в веб-интерфейсе (OpenStack Newton)

Попробуем запросить метрики телеметрии, для которых уже
есть записи в базе данных:

$ ceilometer meter-list
+-------------------------------+------------+----------+-------------+---------+------------+

 28 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    239

| Name | Type | Unit | Resource ID | User ID | Project ID |
+-------------------------------+------------+----------+-------------+---------+------------+
compute.instance.booting.time	gauge	sec	877b0a5e-..	372dd..	9c1258e1..
cpu	cumulative	ns	877b0a5e-..	372dd..	9c1258e1..
disk.allocation	gauge	B	877b0a5e-..	372dd..	9c1258e1..
disk.capacity	gauge	B	877b0a5e-..	372dd..	9c1258e1..
disk.device.allocation	gauge	B	877b0a5e-..	372dd..	9c1258e1..
instance	gauge	instance	877b0a5e-..	372dd..	9c1258e1..
memory	gauge	MB	877b0a5e-..	372dd..	9c1258e1..
memory.resident	gauge	MB	877b0a5e-..	372dd..	9c1258e1..
network.incoming.bytes	cumulative	B	instance-5	372dd..	9c1258e1..
...
+-------------------------------+------------+----------+-------------+---------+------------+

Нужно обратить внимание, что данная команда выведет дан-
ные, только если они были предварительно собраны. Поэтому ес-
ли вы запускаете команду ceilometer первый раз после установки
сервиса, запустите при помощи nova boot хотя бы одну виртуаль-
ную машину.

Ограничить вывод по конкретному ресурсу, например по опре-
деленному экземпляру виртуальной машины, можно, добавив оп-
ции --query resource=<ID виртуальной машины>.

Можно также попробовать вывести все измерения для заданной
метрики:

$ceilometer sample-list -m memory
+--------------+--------+-------+--------+------+----------------------------+
| Resource ID | Name | Type | Volume | Unit | Timestamp |
+--------------+--------+-------+--------+------+----------------------------+
| 877b0a5e-e.. | memory | gauge | 300.0 | MB | 2016-12-17T19:36:48.956000 |
| 877b0a5e-e.. | memory | gauge | 300.0 | MB | 2016-12-17T19:36:19.067000 |
+--------------+--------+-------+--------+------+----------------------------+

Или получить статистику, опять же в разрезе заданной метрики:

$ ceilometer statistics -m memory
+--------+--------------+--------------+-------+-------+-------+--------+-------+----------+----------------+---------------+
| Period | Period Start | Period End | Max | Min | Avg | Sum | Count | Duration | Duration Start | Duration End |
+--------+--------------+--------------+-------+-------+-------+--------+-------+----------+-----------------+--------------+
| 0 | 2016-12-17.. | 2016-12-17.. | 300.0 | 300.0 | 300.0 | 1800.0 | 6 | 145.624 | 2016-12-17T0.. | 2016-12-17T.. |
+--------+--------------+--------------+-------+-------+-------+--------+-------+----------+----------------+---------------+

Более сложные запросы можно создавать при помощи команды
ceilometer query-samples, используя опции --filter, --orderby
и --limit.

Данные, собранные сервисом ceilometer-collector, также можно
отправлять в различные внешние сервисы и системы при помощи

 29 / 30

240    Глава 12. Сервис сбора телеметрии

механизма публикаций. За эти настройки отвечает файл pipeline.
yaml, находящийся в директории /etc/ceilometer. Для дальнейших
экспериментов поправим в этом файле периодичность снятия
метрик по процессору с десяти минут до одной минуты. Соот
ветствующая часть файла должна выглядеть так:

 – name: cpu_source
 interval: 60

Попробуем создать простой триггер для виртуальной машины.
Для начала запустим экземпляр:

$ source keystonerc_demo
$ nova boot --flavor m2.tiny --image cirros-0.3.4-x86_64 --key-name demokey1
--security-groups demo-sgroup mytest1
$ nova add-floating-ip mytest1 10.100.1.110
$ nova list
+-------+---------+--------+------------+-------------+-----------------------+
| ID | Name | Status | Task State | Power State | Networks |
+-------+---------+--------+------------+-------------+-----------------------+
| b99.. | mytest1 | ACTIVE | – | Running | demo-net=172.16.0.8, |
| | | | | | 10.100.1.110 |
+-------+---------+--------+------------+-------------+-----------------------+

В выводе последней команды нас интересует ID экземпляра
(в таблице для экономии места первый столбец сокращен). Созда-
дим триггер, используя этот ID:

$ source keystonerc_admin
$ ceilometer alarm-threshold-create --name myalarm1 --meter-name
cpu_util --threshold 60.0 --comparison-operator gt --statistic avg
--period 60 --evaluation-periods 3 --alarm-action 'log://' --query
resource_id=b99e45af-95d2-436f-bfc6-64e5bfa999de
+---------------------------+--------------------------------------+
| Property | Value |
+---------------------------+--------------------------------------+
alarm_actions	[u'log://']
alarm_id	c33000db-a4eb-41ea-9742-96e5d7b4d034
comparison_operator	gt
description	Alarm when cpu_util is gt a avg of
	60.0 over 60 seconds
enabled	True
evaluation_periods	3
exclude_outliers	False
insufficient_data_actions	[]
meter_name	cpu_util
name	myalarm1
ok_actions	[]
period	60

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    241

project_id	
query	resource_id == b99e45af-95d2-436f-..
repeat_actions	False
state	insufficient data
statistic	avg
threshold	90.0
type	threshold
user_id	595c7da34b8e41bb812a0f3ecd6e7260
+---------------------------+--------------------------------------+

Мы создали триггер с именем myalarm1, который сработает, ес-
ли средняя загрузка процессора виртуальной машины превысит
60% для трех измерений подряд через каждые 60 секунд. Как вид-
но из вывода команды, сразу после создания триггер находится в
состоянии «Недостаточно данных» (insufficient data). Подождем
несколько минут и выполним команду:

$ ceilometer alarm-list
+-----------+----------+-------+---------+------------+--------------------------------+------------------+
| Alarm ID | Name | State | Enabled | Continuous | Alarm condition | Time constraints |
+-----------+----------+-------+---------+------------+--------------------------------+------------------+
| c33000d.. | myalarm1 | ok | True | False | cpu_util > 60.0 during 3 x 60s | None |
+-----------+----------+-------+---------+------------+--------------------------------+------------------+

Состояние триггера изменилось на «Ok». Это значит, что данные
собираются, но заданное условие не наступило. Проверим загруз-
ку процессора:

$ ceilometer sample-list --meter cpu_util -q 'resource_id=b99e45af-95d2-436f-bfc6-
64e5bfa999de'
+-------------+------- --+----- -+---------------+------+---------------------+
| Resource ID | Name | Type | Volume | Unit | Timestamp |
+-------------+----------+-------+---------------+------+---------------------+
b99e45af-..	cpu_util	gauge	10.868852459	%	2015-06-02T19:05:09
b99e45af-..	cpu_util	gauge	9.81632653061	%	2015-06-02T19:04:08
b99e45af-..	cpu_util	gauge	6.875	%	2015-06-02T19:03:19
+-------------+----------+-------+---------------+------+---------------------+

или суммарную статистику:

$ ceilometer statistics -m cpu_util -q 'resource_id=b99e45af-95d2-436f-bfc6-64e5bfa999de'
+--------+-------------+------------+-------+------+------+-------+-------+----------+---------------+--------------+
| Period | Period Start| Period End | Max | Min | Avg | Sum | Count | Duration | Duration Start| Duration End |
+--------+-------------+------------+-------+------+------+-------+-------+----------+---------------+--------------+
| 0 | 2015-06-02T1| 2015-06-02T| 14.35 | 6.87 | 11.9 | 250.6 | 21 | 1189.0 | 2015-06-02T19 | 2015-06-02T1 |
+--------+-------------+------------+-------+------+------+-------+-------+----------+---------------+--------------+

Действительно, значение около десяти процентов. «Исправим»
это, подключившись к виртуальной машине:

 1 / 30

242    Глава 12. Сервис сбора телеметрии

$ ssh -i demokey1 cirros@10.100.1.110
$ md5sum /dev/zero

Проверим, что команда md5sum действительно загрузила про-
цессор более чем на шестьдесят процентов:
$ ceilometer sample-list --meter cpu_util -q 'resource_id=b99e45af-95d2-436f-bfc6-
64e5bfa999de'
+-------------+----------+-------+---------------+------+---------------------+
| Resource ID | Name | Type | Volume | Unit | Timestamp |
+-------------+----------+-------+---------------+------+---------------------+
b99e45af-..	cpu_util	gauge	69.7666666667	%	2015-06-02T20:20:37
b99e45af-..	cpu_util	gauge	88.7627118644	%	2015-06-02T20:19:37
b99e45af-..	cpu_util	gauge	82.6	%	2015-06-02T20:18:38
+-------------+----------+-------+---------------+------+---------------------+

и триггер сработал:

$ ceilometer alarm-list
+-----------+----------+-------+---------+------------+--------------------------------+------------------+
| Alarm ID | Name | State | Enabled | Continuous | Alarm condition | Time constraints |
+-----------+----------+-------+---------+------------+--------------------------------+------------------+
| c33000d.. | myalarm1 | alarm | True | False | cpu_util > 60.0 during 3 x 60s | None |
+-----------+----------+-------+---------+------------+--------------------------------+------------------+

При необходимости можно также обновить триггер, например
задать границу срабатывания в 75 процентов:

$ ceilometer alarm-threshold-update --threshold 75.0 c33000db-
a4eb-41ea-9742-96e5d7b4d034

Наконец, можно просмотреть историю по триггеру:
$ ceilometer alarm-history -a c33000db-a4eb-41ea-9742-96e5d7b4d034
+------------------+----------------------------+----------------------+
| Type | Timestamp | Detail |
+------------------+----------------------------+----------------------+
rule change	2015-06-..	rule: cpu_util > 75.0 during 3 x 60s
state transition	2015-06-..	state: ok
state transition	2015-06-..	state: alarm
creation	2015-06-..	name: myalarm1
		description: Alarm when cpu_util is
		gt a avg of 60.0 over 60 seconds
		type: threshold
		rule: cpu_util > 60.0 during 3 x 60s
		time_constraints: None
+------------------+----------------------------+----------------------+

Когда триггер нам больше не нужен, его можно удалить коман-
дой ceilometer alarm-delete.

 2 / 30

Глава 13
Сервис оркестрации Heat

Название: OpenStack Orchestration
Назначение: управление жизненным циклом инфраструктуры и приложений
Пакет: openstack-heat-*, python-heatclient
Имена сервисов: openstack-heat-api, openstack-heat-api-cfn,
openstack-heat-engine
Порт: 8000, 8004
Конфигурационный файл: /etc/heat/heat.conf
Файлы журнала: /var/log/heat/heat-*

Последний из основных проектов OpenStack, с которым мы позна-
комимся в книге, – это сервис оркестрации OpenStack Orchestration
или Heat. Службы Heat позволяют автоматизировать управление
жизненным циклом наборов облачных сервисов (виртуальными
машинами, сетями, томами, группами безопасности и т. д.) как еди-
ным целым, объединяя их в так называемые стеки (stack). Задачи
могут быть как простыми, например развертывание виртуальной
машины, так и более сложными, например старт комплексного при-
ложения из многих машин и его масштабирование в зависимости
от информации, передаваемой модулем телеметрии. Для описания
стеков используются специальные, одновременно легко читаемые
человеком и дружественные к обработке машиной форматы описа-
ния ресурсов, их ограничений, зависимостей и параметров:

�� HOT (Heat Orchestration Template) – формат, предназначен-
ный исключительно для OpenStack. Представляет собой до-
кумент формата YAML. Данный формат появился начиная с
версии Icehouse и считается стандартным в Heat. Именно с
ним мы и будем работать;

�� CFТ (AWS CloudFormation) – документ формата JSON в фор-
мате, совместимом с шаблонами сервиса CloudFormation
(http://aws.amazon.com/ru/cloudformation/). Наличие воз-
можности работать с этим типом форматов позволяет ис-
пользовать множество уже существующих для AWS шаб

 3 / 30

http://aws.amazon.com/ru/cloudformation/

244    Глава 13. Сервис оркестрации Heat

лонов. В качестве стартовой точки можно рекомендовать
https://aws.amazon.com/cloudformation/aws-cloudformation-
templates/.

Архитектура сервиса
К числу основных компонентов службы оркестрации относятся:

�� openstack-heat-engine – основной сервис, обеспечиваю-
щий обработку шаблонов и отправляющий события поль-
зователям API;

�� openstack-heat-api – сервис, отвечающий за предостав-
ление основного REST API Heat. Сервис взаимодействует с
openstack-heat-engine через вызовы RPC;

�� openstack-heat-api-cfn – аналогичен предыдущему сер-
вису, но обеспечивает работу с API, совместимым с AWS
CloudFormation. Также взаимодействует с openstack-heat-
engine;

�� клиент командной строки heat – интерфейс взаимодейст
вия с Heat API. Помимо командной строки, разработчики
могут напрямую вызывать REST API, а пользователи об-
лака могут запускать стеки через веб-интерфейс Horizon
(Project → Orchestration → Stacks). Снимок экрана одной
из вкладок веб-интерфейса представлен на рис. 13.1.

Установка сервисов Heat
Мы установим сервисы Heat на узел controller.test.local. Для начала
установим необходимые пакеты:

[root@controller ~]# yum -y install openstack-heat-api openstack-heat-
api-cfn openstack-heat-engine python2-heatclient openstack-heat-ui

Затем нам необходимо создать базу данных MariaDB с необхо-
димыми привилегиями. По соглашению, принятому в книге, в ка-
честве пароля используем имя сервиса «heat»:
[root@controller ~]# mysql -u root -p
MariaDB [(none)]> CREATE DATABASE heat;
MariaDB [(none)]> GRANT ALL PRIVILEGES ON heat.* TO
'heat'@'localhost' IDENTIFIED BY 'heat';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%'
IDENTIFIED BY 'heat';
MariaDB [(none)]> exit

 4 / 30

https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://aws.amazon.com/cloudformation/aws-cloudformation-templates/

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    245

Рис. 13.1. Внешний вид интерфейса Horizon для работы со стеками

Затем создаем пользователя heat в сервисе Keystone и добавляем
ему роль admin в проекте service:

$ source keystonerc_admin
$ openstack user create --domain default --password openstack heat
$ openstack role add --project service --user heat admin

Для сервиса оркестрации также понадобится домен, который
будет содержать проекты и пользователей стека:

$ openstack domain create --description "Stack projects and users" heat

В новом домене heat нам нужен пользователь heat_domain_
admin, который будет управлять проектами и пользователями:

$ openstack user create --domain heat --password openstack heat_
domain_admin
$ openstack role add --domain heat --user-domain heat --user
heat_domain_admin admin

 5 / 30

246    Глава 13. Сервис оркестрации Heat

Теперь создадим роль владельца стека и добавим эту роль в
проект и пользователю demo, тем самым дав ему возможность
управлять стеками:

$ openstack role create heat_stack_owner
$ openstack role add --project demo --user demo heat_stack_owner

Также нам понадобится роль пользователя стека, который будет
получать данные о прогрессе выполнения операций. Сервис ор-
кестрации будет автоматически добавлять роль heat_stack_user
пользователям, запускающим стек во время его запуска.

$ openstack role create heat_stack_user

Как это делали не раз, создадим сервисы. В данном случае два: для
основного сервиса heat-api и для совместимого с CloudFormation
heat-api-cfn:

$ openstack service create --name heat --description "Orchestration"
orchestration
$ openstack service create --name heat-cfn --description "Orchestration"
cloudformation

Создаем точки входа в сервисы Heat:

$ openstack endpoint create --region RegionOne orchestration
public http://controller.test.local:8004/v1/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne orchestration
internal http://controller.test.local:8004/v1/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne orchestration
admin http://controller.test.local:8004/v1/%\(tenant_id\)s
$ openstack endpoint create --region RegionOne cloudformation
public http://controller.test.local:8000/v1
$ openstack endpoint create --region RegionOne cloudformation
internal http://controller.test.local:8000/v1
$ openstack endpoint create --region RegionOne cloudformation
admin http://controller.test.local:8000/v1

Затем приступаем к редактированию конфигурационного
файла /etc/heat/heat.conf. Первое, что необходимо указать, – это
параметры подключения к базе данных MariaDB:

[root@controller ~]# crudini --set /etc/heat/heat.conf database
connection mysql+pymysql://heat:heat@controller.test.local/heat

Дальше добавляем в конфигурационные файлы информацию о
сервисе RabbitMQ:

 6 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    247

[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
transport_url rabbit://openstack:openstack@controller.test.local

Производим настройки сервиса идентификации Keystone. Эти
параметры мы уже задавали в конфигурационных файлах других,
уже рассмотренных сервисов. Также добавляются секции [trustee]
и [clients_keystone]:

[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken auth_uri http://controller.test.local:5000
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken auth_type password
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken project_domain_name default
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken user_domain_name default
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken project_name service
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken username heat
[root@controller ~]# crudini --set /etc/heat/heat.conf keystone_
authtoken password openstack
[root@controller ~]# crudini --set /etc/heat/heat.conf trustee
auth_type password
[root@controller ~]# crudini --set /etc/heat/heat.conf trustee
auth_url http://controller.test.local:35357
[root@controller ~]# crudini --set /etc/heat/heat.conf trustee
username heat
[root@controller ~]# crudini --set /etc/heat/heat.conf trustee
password openstack
[root@controller ~]# crudini --set /etc/heat/heat.conf trustee
user_domain_name default
[root@controller ~]# crudini --set /etc/heat/heat.conf clients_
keystone auth_uri http://controller.test.local:5000

Задаем URL сервера метаданных и сервера, сообщающего о до-
ступности ресурсов при создании шаблонов, где один ресурс созда-
ется после того, как стал доступен ресурс, от которого он зависит:

[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
heat_metadata_server_url http://controller.test.local:8000
[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
heat_waitcondition_server_url = http://controller.test.
local:8000/v1/waitcondition

Для ряда операций, используемых в шаблонах, требуется соз-
дание отдельного домена Keystone для сервиса оркестрации. При-

 7 / 30

248    Глава 13. Сервис оркестрации Heat

менение отдельного домена позволяет разделить виртуальные ма-
шины и пользователей, запускающих стеки. Это дает возможность
простым пользователям без административных прав работать со
стеками. Как была выбрана данная модель и каковы были сообра-
жения разработчиков, можно почитать в блоге одного из инжене-
ров, реализовавшего данный функционал, – hardysteven.blogspot.
com. Указываем выделенный под запуск стеков домен и учетные
данные:

[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
stack_domain_admin heat_domain_admin
[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
stack_domain_admin_password openstack
[root@controller ~]# crudini --set /etc/heat/heat.conf DEFAULT
stack_user_domain_name heat

Последним шагом в настройке заполняем базу данных:

[root@controller ~]# su -s /bin/sh -c "heat-manage db_sync" heat

Включаем и стартуем сервисы:

[root@controller ~]# systemctl enable openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service
[root@controller ~]# systemctl start openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

Проверим, что сервисы стартовали и доступны:

$ openstack orchestration service list
+-----------------------+-------------+-----------+-----------------------+--------+-----------------+--------+
| hostname | binary | engine_id | host | topic | updated_at | status |
+-----------------------+-------------+-----------+-----------------------+--------+-----------------+--------+
controller.test.local	heat-engine	edcc580..	controller.test.local	engine	2018-03-18T17..	up
controller.test.local	heat-engine	e67b25c..	controller.test.local	engine	2018-03-18T17..	up
controller.test.local	heat-engine	6737c1d..	controller.test.local	engine	2018-03-18T17..	up
controller.test.local	heat-engine	dc9e7fe..	controller.test.local	engine	2018-03-18T17..	up
+-----------------------+-------------+-----------+-----------------------+--------+-----------------+--------+

Теперь можем начать разбираться с шаблонами и работой сер-
виса оркестрации.

Запуск простого стека
Начнем с того, что со страницы блога автора книги http://markelov.
blogspot.ru/p/openstack.html скачаем архив с примерами кон-
фигурационных файлов и шаблонов. Нам понадобится файл

 8 / 30

http://markelov.blogspot.ru/p/openstack.html
http://markelov.blogspot.ru/p/openstack.html

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    249

/config_files/HOT/test-server.yml. Также его текст приведен в при-
ложении 2.

Данный шаблон является одной из многих вариаций «Hello,
World!» для Heat. Создается стек, состоящий из одной виртуальной
машины, которой во время старта передается скрипт, выводящий
сообщение «Instance STARTED!» на стандартный вывод. Прежде
чем запустить стек, рассмотрим листинг.

Строки с первой по четвертую – это заголовок шаблона и опи-
сание. Дата в версии heat_template_version выбирается не произ-
вольно, а задается одним из следующих вариантов, соответствую-
щих релизу OpenStack:

�� 2013-05-23 – Icehouse;
�� 2014-10-16 – Juno;
�� 2015-03-30 – Kilo;
�� 2015-10-15 – Liberty;
�� 2016-04-08 – Mitaka;
�� 2016-10-14 – Newton;
�� 2017-02-24 – Ocata;
�� 2017-09-01 – Pike;
�� 2018-03-02 – Queens.

Описание опционально, и если оно не помещается в одну стро-
ку, то, как в примере, разбивается на несколько строк в соответ-
ствии со спецификацией YAML.

Далее следуют три секции, первая из которых – parameters – на-
чинается с шестой строки. В данной части шаблона определяются
параметры network и image, которые можно задать во время запус
ка стека. Оба параметра имеют тип – строка. У каждого из парамет
ров есть значения по умолчанию, используемые, если во время за-
пуска стека их не задали, – это строки десятая и четырнадцатая.
В шаблоне также могла быть секция parameter_groups, в которой
описывалось бы, как параметры должны быть сгруппированы, и их
порядок. В данном шаблоне секция parameter_groups отсутствует.

Следующая секция – resources, которая описывает ресурсы
шаблона. В этой секции должен быть описан как минимум один
ресурс. В данном случае как раз и описан один ресурс с именем
my_server типа OS::Nova::Server. В подсекции properties определе-
ны параметры сервера, которые мы обычно задаем командой nova
boot. Три из них, а именно размер виртуальной машины (flavor),
имя открытого SSH-ключа и скрипт, который будет исполнен при

 9 / 30

250    Глава 13. Сервис оркестрации Heat

старте при помощи cloud-init, жестко заданы в теле шаблона. Еще
два параметра, которые ранее были описаны в секции parameters,
подставляются при помощи функции get_param.

Наконец, третья секция – outputs – задает параметры, которые
будут выводиться пользователю, когда шаблон отработает в выво-
де heat stack-show, в интерфейсе Horizon или при запросе через
API. Секция outputs является необязательной.

Теперь, когда мы разобрали шаблон, попробуем его запустить
командой openstack stack create. Нам нужно указать путь к
файлу шаблона и, по желанию, после опции --parameter парамет
ры, которые были определены в секции parameters. По желанию,
потому что в шаблоне для них заданы значения по умолчанию.

$ source keystonerc_demo
$ openstack stack create --parameter network=demo-net --parameter
image=c8ccc9b3-29bb-4220-be38-8f261ac8b99a -t test-server.yml
teststack
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
id	15cd8428-3787-4fad-95ea-aec1ec2eec81
stack_name	teststack
description	OpenStack. Практическое знакомство
	с облачной операционной системой.
	Пример запуска одной ВМ
creation_time	2018-03-20T16:44:35Z
updated_time	None
stack_status	CREATE_IN_PROGRESS
stack_status_reason	Stack CREATE started
+---------------------+--------------------------------------+

При помощи следующей команды мы можем следить за процес-
сом отработки стека, дождавшись, пока статус не поменяется на
CREATE_COMPLETE:

$ openstack stack list
+------+------------+-----------------+-----------------------+--------------+
| ID | Stack Name | Stack Status | Creation Time | Updated Time |
+------+------------+-----------------+-----------------------+--------------+
| 10.. | tteststack | CREATE_COMPLETE | 2018-03-20T16:44:35Z | None |
+------+------------+-----------------+-----------------------+--------------+

Проверим, что у нас действительно была создана виртуальная
машина. При этом обратите внимание, что ее имя было сформи-
ровано из имени стека и имени ресурса:

 10 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    251

$ openstack server list
+--------------------------------------+----------------------------------+--------+----------------------+---------------------+---------+
| ID | Name | Status | Networks | Image | Flavor |
+--------------------------------------+----------------------------------+--------+----------------------+---------------------+---------+
| e1a98861-27d9-4640-aafb-24e159f5d7d2 | teststack-my_server-g6m7qyi7jsn4 | ACTIVE | demo-net=172.16.0.12 | cirros-0.4.0-x86_64 | m2.tiny |
+--------------------------------------+----------------------------------+--------+----------------------+---------------------+---------+

Команда openstack stack show вместе с именем стека пока-
жет его детали, включая параметры, которые попросили вывести в
секции outputs. Будут показаны имя экземпляра виртуальной ма-
шины и IP-адрес виртуальной машины в сети demo-net:

$ openstack stack show teststack
+-----------------------+---+
| Field | Value |
+-----------------------+---+
id	15cd8428-3787-4fad-95ea-aec1ec2eec81
stack_name	teststack
description	OpenStack. Практическое знакомство с облачной
	операционной системой. Пример запуска одной ВМ
creation_time	2018-03-20T16:44:35Z
updated_time	None
stack_status	CREATE_COMPLETE
stack_status_reason	Stack CREATE completed successfully
parameters	OS::project_id: bc10ac4b71164550a363b8098e8ad270
	OS::stack_id: 15cd8428-3787-4fad-95ea-aec1ec2..
	OS::stack_name: teststack
	image: c8ccc9b3-29bb-4220-be38-8f261ac8b99a
	network: demo-net
outputs	– description: "Имя экземпляра ВМ"
	output_key: instance_name
	output_value: teststack-my_server-g6m7qyi7jsn4
	– description: "IP-адрес ВМ в частной сети"
	output_key: private_ip
	output_value: 172.16.0.12
links	– href: http://controller.test.local:8004/v1/9c..
parent	None
disable_rollback	True
deletion_time	None
stack_user_project_id	10fd4f2d320b4c94b79271219e560384
capabilities	[]
notification_topics	[]
stack_owner	None
timeout_mins	None
tags	null
+-----------------------+---+

 11 / 30

252    Глава 13. Сервис оркестрации Heat

Для того чтобы убедиться, что скрипт, выводящий сообщение
через cloud-init, сработал, можно либо подключиться к консоли
виртуальной машины в Horizon, либо ввести команду nova, кото-
рая показывает вывод консоли:

$ openstack console log show teststack-my_server-g6m7qyi7jsn4 |
grep STARTED
Instance STARTED!

Можно проверить список событий при создании стека:

$ openstack stack event list teststack
2018-03-20 16:44:36Z [teststack]: CREATE_IN_PROGRESS Stack CREATE started
2018-03-20 16:44:37Z [teststack.my_server]: CREATE_IN_PROGRESS state changed
2018-03-20 16:44:59Z [teststack.my_server]: CREATE_COMPLETE state changed
2018-03-20 16:44:59Z [teststack]: CREATE_COMPLETE Stack CREATE completed
successfully

Список ресурсов включает в себя только один ресурс – сервер
my_server:

$ openstack stack resource list teststack
+---------------+----------------------+------------------+-----------------+--------------+
| resource_name | physical_resource_id | resource_type | resource_status | updated_time |
+---------------+----------------------+------------------+-----------------+--------------+
| my_server | e1a98861-27d9-464.. | OS::Nova::Server | CREATE_COMPLETE | 2018-03-20.. |
+---------------+----------------------+------------------+-----------------+--------------+

Команда openstack stack template show teststack покажет
шаблон, из которого был создан стек. В конце работы удаляем стек:

$ openstack stack delete teststack
Are you sure you want to delete this stack(s) [y/N]? y

На рис. 13.2 представлена топология более сложного стека, как
она отображается в веб-интерфейсе. Эта вкладка позволяет на-
глядно представить связи между ресурсами.

 12 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    253

Рис. 13.2. Топология шаблона Heat

 13 / 30

Глава 14
Контейнеры и OpenStack

Контейнеры Docker, как и OpenStack, в последнее время являются
«горячей темой» в мире DevOps и виртуализации. Неудивительно,
что OpenStack также может интегрироваться с контейнерами. Для
начала кратко рассмотрим, что же представляет из себя Docker.

Краткое знакомство с Docker
В отличие от «вертикального» абстрагирования в случае виртуа-
лизации, контейнеры, в частности Docker, обеспечивают гори-
зонтальное разбиение операционной системы на отдельные изо-
лированные окружения. За счет того, что в каждом контейнере, в
отличие от виртуализации, обходятся без использования отдель-
ного экземпляра операционной системы, значительно ниже на-
кладные расходы. С другой стороны, вы не сможете на одном узле
в контейнерах запускать разные операционные системы, напри-
мер Windows и GNU/Linux.

Контейнеры используются для замены виртуализации там, где
они справляются лучше:

�� горизонтальная изоляция приложений;
�� делегирование окружений;
�� «виртуализация приложений»;
�� максимальная плотность.

Также необходимо отметить, что зачастую контейнеры исполь-
зуются поверх виртуальных машин.

Проще всего дать определение контейнеру Docker как запущен-
ному из образа приложению. Кстати, именно этим идеологически
и отличается Docker, например, от LXC (Linux Containers), хотя они
используют одни и те же технологии ядра Linux. Docker исповедует
принцип: один контейнер – это одно приложение. Образ Docker –

 14 / 30

Работа со службой телеметрии Ceilometer в версиях Newton и ранее    255

статический снимок конфигурации контейнера. Образы могут за-
висеть от других образов. Образ всегда находится в режиме «только
чтение», а изменения сохраняются созданием образа поверх образа.

Для обеспечения изоляции приложений в контейнерах исполь-
зуются стандартные Linux-технологии: пространства имен (с ни-
ми мы уже сталкивались в главе, посвященной Neutron), Cgroups –
средство распределения ресурсов и технологии мандатного
контроля доступа SELinux. Для разделения различных уровней
контейнера на уровне файловой системы могут использоваться
AUFS, btrfs, vfs и Device Mapper.

Готовые образы в формате Docker можно скачивать как из пуб
личных репозиториев, так и создавать свои, приватные.

Более подробно с использованием Docker можно ознакомиться
при помощи документации на сайте https://www.docker.com/.

Важно отметить, что в июле 2015 года Linux Foundation анон-
сировала запуск нового проекта Open Container Project (OCP), ко-
торый призван установить общие стандарты и обеспечить фун-
дамент совместимости для продолжения развития контейнерных
решений без дальнейшей фрагментации этого направления. Ини-
циативу OCP поддержали многие крупные компании и организа-
ции, среди которых можно упомянуть Amazon Web Services, Apcera
(компания принадлежит Ericsson), Cisco, CoreOS, EMC, Google, HP,
IBM, Intel, Microsoft, Red Hat, Vmware и др. В качестве основы Open
Container Project будут выступать в значительной степени нара-
ботки Docker.

Второе событие июля, которое хотелось бы отметить, – это вхож-
дение Google в состав OpenStack Foundation в качестве корпора-
тивного спонсора. Google планирует сконцентрировать свои уси-
лия на интеграции системы управления контейнерами Kubernetes
с OpenStack.

Совместное использование Docker
и OpenStack
Существует несколько проектов, направленных на организацию
совместной работы Docker и OpenStack, и все они находятся в ак-
тивной разработке.

Исторически первым появился драйвер Docker для OpenStack
Nova – https://github.com/stackforge/nova-docker. Для облака кон-
тейнеры в таком случае выглядят как другие экземпляры вирту-

 15 / 30

https://www.docker.com/
https://github.com/stackforge/nova-docker

256    Глава 14. Контейнеры и OpenStack

альных машин, а образы Docker загружаются из сервиса Glance.
Это наиболее простой способ совместного использования контей-
неров и OpenStack, и далее в главе мы рассмотрим именно его.

Следующий проект – Kolla (https://github.com/stackforge/
kolla). Его задачей является облегчение работы по обслуживанию
OpenStack. Kolla представляет собой сервис для контейнеризации
служб OpenStack как отдельных микросервисов. Каждый микро-
сервис представляет собой атомарный объект для развертывания,
обновлений и т. д. Kolla выступает как связывающее звено, позво-
ляя осуществлять упрощенное управление облаком при помощи
таких инструментов, как TripleO, Heat, Ansible и т. д. В качестве
источника готовых контейнеров с микросервисами OpenStack
можно использовать готовый репозиторий Kollaglue. На момент
написания этого текста в репозитории было около тридцати пяти
сервисов. Как многие другие идеи и проекты в мире OpenSource,
этот проект используется и в других разработках. Так, например,
разработчики oVirt, открытой системы управления виртуализаци-
ей, планируют в версии 3.6 при помощи Kolla осуществлять интег
рацию oVirt Manager со службами OpenStack.

Наконец, еще один проект – Magnum, который можно было
бы назвать CaaS – «контейнеры как сервис». Страница проекта –
https://github.com/openstack/magnum. В отличие от использова-
ния Docker при помощи драйвера Nova compute, где контейнеры
заменяют собой экземпляры виртуальных машин, при помощи
Magnum контейнеры работают поверх виртуальных машин, соз-
даваемых Heat.

Magnum управляет контейнерами не напрямую, а через один
из движков управления контейнерами (container orchestration
engines). Поддерживаются три варианта: Docker Swarm, Kubernetes
и Apache Mesos. Из них наиболее популярный – Kubernetes – систе
ма оркестрации контейнеров, разработка которой была начата
компанией Google. Именно Kubernetes используется в Magnum по
умолчанию.

В качестве операционной системы предполагается использо-
вание одной из ориентированных на контейнеры сборок: Atomic,
CoreOS, Snappy и им подобных. Можно сказать, что кластер контей-
неров Magnum запускается в кластере виртуальных машин Nova.

Еще один способ совместного использования OpenStack и
Docker – применение каталога Murano, для которого существу-
ет пакет, опубликованный в каталоге приложений сообщества:

 16 / 30

https://github.com/stackforge/kolla
https://github.com/stackforge/kolla
https://github.com/openstack/magnum

Настройка работы драйвера Docker для OpenStack Nova    257

http://apps.openstack.org/#tab=murano-apps&asset=Kubernetes%20
Cluster. Пакет Murano может развернуть и настроить кластер
Kubernetes, руководствуясь параметрами, которые пользователь
передает через API или графический интерфейс Murano. Предва-
рительным требованием является развернутый каталог приложе-
ний Murano, который не рассматривается в книге.

Настройка работы драйвера Docker
для OpenStack Nova
Первое, с чего мы начнем, – это с установки Docker и необходимых
пакетов. Обращаю внимание, что этот вариант установки подхо-
дит только для тестовых сред. Для «боевой установки» следует соб
рать rpm-пакет с драйвером Docker и не устанавливать на вычис-
лительные узлы средства, применяемые при разработке. Действия
выполняем на вычислительном узле:
[root@compute ~]# yum -y install net-tools docker-io python-pip git

Также обратите внимание на то, что мы устанавливаем пакет
net-tools, который в современных дистрибутивах при установке
по умолчанию заменен на iproute, а утилиты из его состава имеют
статус устаревших. Нам он понадобится ради команды ifconfig,
которая используется драйвером Docker.

Теперь забираем с Github исходный код драйвера и устанавли-
ваем:
[root@compute ~]# git clone https://github.com/stackforge/nova-
docker.git
[root@compute ~]# cd nova-docker
[root@compute nova-docker]# python setup.py install
[root@compute nova-docker]# pip install docker-py

Следующим шагом запускаем и включаем сервис Docker и вы-
полняем не очень «чистый» обходной прием с правами, для того
чтобы в CentOS драйвер получил доступ к Docker:

[root@compute ~]# systemctl start docker
[root@compute ~]# systemctl enable docker
[root@compute ~]# chmod 666 /var/run/docker.sock

Нам необходимо в соответствии с инструкцией на Github на-
строить драйвер. Создаем файл с инструкциями по настройке сети
для Docker:

 17 / 30

http://apps.openstack.org/#tab=murano-apps&asset=Kubernetes Cluster
http://apps.openstack.org/#tab=murano-apps&asset=Kubernetes Cluster

258    Глава 14. Контейнеры и OpenStack

[root@compute ~]# mkdir /etc/nova/rootwrap.d
[root@compute ~]# vi /etc/nova/rootwrap.d/docker.filters

и в файл docker.filters копируем следующее содержимое:

nova-rootwrap command filters for setting up network in the docker
driver
This file should be owned by (and only-writeable by) the root user
[Filters]
nova/virt/docker/driver.py: 'ln', '-sf', '/var/run/netns/.*'
ln: CommandFilter, /bin/ln, root

Наконец, на узле Glance (это в нашем стенде controller) добавля-
ем к форматам контейнеров docker:

[root@controller ~]# crudini --set /etc/glance/glance-api.conf
DEFAULT container_formats ami,ari,aki,bare,ovf,ova,docker
[root@controller ~]# systemctl restart openstack-glance-api

А на вычислительном узле compute в качестве драйвера указы-
ваем драйвер Docker. Других изменений производить не надо:

[root@compute]# crudini --set /etc/nova/nova.conf DEFAULT
compute_driver novadocker.virt.docker.DockerDriver
[root@compute]# systemctl restart openstack-nova-compute

Теперь тестируем нашу конфигурацию. Для начала ограничим-
ся работоспособностью контейнеров Docker. Попробуем запустить
контейнер с дистрибутивом Fedora:

[root@compute ~]# docker run -i -t fedora /bin/bash
Unable to find image 'fedora:latest' locally
Trying to pull repository docker.io/fedora ...
...
Status: Downloaded newer image for docker.io/fedora:latest
[root@4f3f76431725 /]# cat /etc/redhat-release
Fedora release 23 (Twenty Three)

Как мы видим, из репозитория docker.io был скачан последний
образ Fedora и запущен. Если посмотреть на список контейнеров,
мы также это увидим:

[root@compute ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
19e4bb1d36ab fedora "/bin/bash" 3 minutes ago Up 3 minutes prickly_ardinghelli

Теперь скачаем образ с минимальным http-сервером thttpd, ко-
торый будем использовать для проверки работы:

 18 / 30

Настройка работы драйвера Docker для OpenStack Nova    259

[root@compute ~]# docker pull larsks/thttpd
Trying to pull repository docker.io/larsks/thttpd ...
...
Status: Downloaded newer image for docker.io/larsks/thttpd:latest

После этого загрузим его в Glance:

[root@compute ~]# source keystonerc_admin
[root@compute ~]# docker save larsks/thttpd | glance image-create
--visibility public --container-format docker --disk-format raw
--name larsks/thttpd
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	01453bf647d22c7824e3b5eb1534812c
container_format	docker
created_at	2015-12-22T11:42:47Z
direct_url	rbd://1d618cdf-c648-4e9c-8aed-c170..
	b6b3520ba0fc/snap
disk_format	raw
id	b3194d6e-2886-430f-bffc-b6b3520ba0fc
min_disk	0
min_ram	0
name	larsks/thttpd
owner	8cc74ebe8da94fe0a7ac6cf54f31b420
protected	False
size	1081856
status	active
tags	[]
updated_at	2015-12-22T11:42:50Z
virtual_size	None
visibility	public
+------------------+--------------------------------------+

Проверяем список образов:

$ openstack image list
+--------------------------------------+
| ID | Name |
+------+-------------------------------+
b3..	larsks/thttpd
15..	cirros-raw
1a..	apcera-trusty-orchestrator_..
08..	apcera-trusty-deploy_143717..
f3..	ManageIQ-devel
a9..	fedora-20.x86_64
42..	cirros-0.3.4-x86_64
+------+-------------------------------+

И в графическом интерфейсе Horizon:

 19 / 30

260    Глава 14. Контейнеры и OpenStack

Рис. 14.1. Список образов

Наконец, можно попробовать создать экземпляр контейнера:

$ source keystonerc_demo
$ nova boot --image larsks/thttpd --flavor m1.small test1
+--------------------------------------+--------------------------------------+
| Property | Value |
+--------------------------------------+--------------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	–
OS-SRV-USG:terminated_at	–
accessIPv4	
accessIPv6	
adminPass	zgcbrCvq7v9v
config_drive	
created	2015-12-22T13:47:25Z
flavor	m1.small (2)
hostId	
id	ee032b15-c2d1-4523-a3bd-810cd9a75d01
image	larsks/thttpd (b3194d6e-2886-430f..
key_name	–
metadata	{}
name	test1
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default

 20 / 30

Настройка работы драйвера Docker для OpenStack Nova    261

status	BUILD
tenant_id	eca00feab38e4aa5b462bd31af0b9dca
updated	2015-12-22T13:47:25Z
user_id	924c18c923654d7c930bcb1044580d8b
+--------------------------------------+--------------------------------------+

Проверяем, что контейнер запущен:

[root@compute ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
7bfa3c489c16 larsks/thttpd "/thttpd -D -l /dev/s" 3 minutes ago
Up 3 minutes nova-ee032b15-c2d1-4523-a3bd-810cd9a75d01
nova-65de57d0-f033-4818-a522-2c3291dc516b

В графическом интерфейсе это выглядит следующим образом:

Рис. 14.2. Контейнер Docker в OpenStack

Для доступа к http-серверу присвоим экземпляру внешний
floating IP:

$ nova floating-ip-associate test1 10.100.1.105

Проверяем:

$ nova list
+------+-------+--------+------------+-------------+------------------------+
| ID | Name | Status | Task State | Power State | Networks |
+------+-------+--------+------------+-------------+------------------------+
| ee.. | test1 | ACTIVE | – | Running | demo-net=172.16.0.149, |
| | | | | | 10.100.1.105 |
+------+-------+--------+------------+-------------+------------------------+

 21 / 30

262    Глава 14. Контейнеры и OpenStack

И из тестовой машины со внешней сети пробуем подключиться
к серверу:

$ curl http://10.100.1.105

 ____ _ _ _ _
 / ___|___ _ __ __ _ _ __ __ _| |_ _ _| | __ _| |_(_) ___ _ __ ___
| | / _ \| ‘_ \ / _` | ‘__/ _` | __| | | | |/ _` | __| |/ _ \| ‘_ \/ __|
| |__| (_) | | | | (_| | | | (_| | |_| |_| | | (_| | |_| | (_) | | | __ \
 _______/|_| |_|__, |_| __,_|__|__,_|_|__,_|__|_|___/|_| |_|___/
 |___/

Рассмотренному варианту интеграции недостает ряда функ-
ций, которые реализованы для экземпляров виртуальных машин.
Например, не поддерживается подключение блочных устройств
Cinder. Также при обновлении образа в Glance приходится вручную
удалять образ в локальном репозитории Docker на гипервизоре.

 22 / 30

Глава 15
Программно-

определяемая система
хранения данных Ceph

Название: Ceph
Назначение: Программно-определяемая система хранения данных
Пакеты: ceph, ceph-radosgw
Имя сервиса: ceph.service
Конфигурационный файл: /etc/ceph/ceph.conf
Файлы журнала: /var/log/ceph/*
Сайт проекта: ceph.com

Согласно результатам опроса OpenStack User Survey от апреля
2017 года, проводившегося перед очередным саммитом OpenStack,
значительная часть внедрений OpenStack в качестве блочной си-
стемы хранения данных использует Ceph. На тот момент эта доля
составляла для всех типов внедрений 65%. Ceph – отдельный про-
ект с открытым исходным кодом, не входящий в число проектов
OpenStack. Однако, рассматривая службы OpenStack, нельзя не
упомянуть проект, чей код входит практически во все основные
дистрибутивы OpenStack.

Что же представляет из себя Ceph? Ceph – это проект с откры-
тым исходным кодом по построению унифицированного про-
граммно-определяемого хранилища данных. Отличительными
особенностями Ceph являются высокая масштабируемость, про-
изводительность и отсутствие единой точки отказа. В качестве
аппаратного обеспечения предполагается использование серве-
ров стандартной x86 архитектуры. Под унификацией понимается
возможность хранилища предоставлять объектный, блочный и
файловый доступы.

 23 / 30

264    Глава 15. Программно-определяемая система хранения данных Ceph

Основные принципы, которыми руководствовались разработ-
чики при создании архитектуры Ceph:

�� отказ компонента системы – это обычное поведение си-
стемы, а не исключительная ситуация. Соответственно, не
должно быть единой точки отказа;

�� каждый компонент системы должен масштабироваться го-
ризонтально;

�� по возможности, все компоненты для своего обслуживания
и управления должны требовать минимального вмешатель-
ства администратора;

�� решение должно работать на серверах стандартной архи-
тектуры (сейчас есть коммерческие решения и на ARM-
архитектуре);

�� решение должно быть с открытым исходным кодом.

Изначально Ceph был разработан в 2003 году в Калифорнийском
университете (University of California, Santa Cruz). В 2006-м он был
выпущен как продукт с открытым исходным кодом. В промышлен-
ной эксплуатации проект использовался с 2007 года хостинговой
компанией DreamHost. А в 2012 году первоначальный разработчик
проекта Sage Wail при поддержке DreamHost основал компанию
Inktank, которая начала оказывать коммерческую поддержку для
Ceph. Кстати, Ceph – это сокращение от «cephalopod». Отсюда ста-
новится понятным выбор названия для компании – Inktank. В се-
редине 2014 года Inktank купила компания Red Hat. Для Red Hat
на тот момент это было второе поглощение компании, создающей
программно-определяемую систему хранения данных. Предыду-
щей покупкой была GlusterFS. На настоящий момент поддержку
Ceph в составе OpenStack, помимо Red Hat, оказывает большинство
компаний, имеющих свои дистрибутивы облачного программного
обеспечения: SUSE, Mirantis, Canonical и др.

OpenStack и Ceph совместно используются достаточно давно,
начиная с релиза Grizzly, и эта связка является проработанной и
надежной. Со стороны OpenStack программно-определяемую си-
стему хранения данных могут использовать компоненты Glance,
Cinder и Nova. Также Ceph может использоваться вместо объект-
ного хранилища Swift.

Фактически вышесказанное означает, что Ceph может заме-
нить все другие типы хранилищ при использовании совмест-
но с OpenStack. В целом это так, однако конкретная архитектура

 24 / 30

Архитектура Ceph    265

определяется в зависимости от требований, предъявляемых к об-
лаку. Например, некоторые аргументы в сторону Swift или Ceph
при выборе объектного хранилища приведены в блоге компании
Mirantis (https://www.mirantis.com/blog/ceph-vs-swift-architects-
perspective/).

Проект Ceph именует каждую версию по аналогии с OpenStack
именем, начинающимся с буквы латинского алфавита: A, B, C, D…
Начиная с версии Infernalis каждый релиз имеет основную версию
и минорную, после точки. Минорная версия 0 соответствует рели-
зу, находящемуся в разработке, 1 – релиз-кандидат и 2 – стабиль-
ная версия. Например, стабильный релиз Jewel (версия 10):

ceph -v
ceph version 10.2.3-17.el7cp (ca9d57c0b140eb5cea9de7f7133260271e57490e)

Архитектура Ceph
В «крупную клетку» основные компоненты Ceph приведены на
рис. 15.1.

Рис. 15.1. Архитектура Ceph

Давайте рассмотрим эти компоненты. Основой Ceph является
кластер RADOS (Reliable Autonomic Distributed Object Store). Да,

 25 / 30

https://www.mirantis.com/blog/ceph-vs-swift-architects-perspective/
https://www.mirantis.com/blog/ceph-vs-swift-architects-perspective/

266    Глава 15. Программно-определяемая система хранения данных Ceph

в основе Ceph лежит именно объектное хранилище. Данные при
этом хранятся без использования какой-либо иерархии, в «плос
ком» пространстве имен. У каждого объекта имеется уникальный
во всем кластере идентификатор. Объект состоит из непосредст
венно самих бинарных данных и метаданных. Метаданные пред-
ставляют собой пары имя/значение.

Кластер RADOS состоит из узлов, на которых работают два типа
демонов:

�� Object Storage Device (OSD) – отвечает непосредственно за
хранение данных. Обычно один демон OSD связан с одним
физическим диском. Таким образом, на одном узле хране-
ния может быть одновременно несколько OSD, и число де-
монов OSD в кластере обычно соответствует общему числу
физических дисков. OSD сами непосредственно выполняют
операции по репликации, ребалансировке и восстановле-
нию данных. Информацию о состоянии данных они переда-
ют мониторам. Для объектов OSD могут выполнять главную
(primary) или вспомогательную (secondary) роль. Именно
OSD с первичной ролью выполняют запросы на ввод/вывод,
отвечают за репликацию и целостность данных, ребаланси-
ровку данных и восстановление;

�� Ceph monitors (MON) – поддерживает мастер-копию карты
состояния кластера и информацию о его текущем состоянии.
Карта состояния кластера состоит из пяти карт, хранящих
информацию о кластере и конфигурации. Все узлы класте-
ра отправляют информацию мониторам о каждом измене-
нии в их состоянии. В кластере должно быть нечетное число
MON. Минимальное число мониторов для отказоустойчивой
инфраструктуры – три. Для тестов и в лабораторном окруже-
нии можно использовать один. Кластер будет доступным до
тех пор, пока доступно более половины MON.

Нужно также отметить важную роль файловой системы, с ко-
торой работают OSD. Файловая система, созданная на диске для
хранения данных, должна поддерживать расширенные атрибуты
файлов. В расширенных атрибутах файлов хранится информация
о состояниях объектов, моментальных снимков и списков контро-
ля доступа. Для промышленной эксплуатации на настоящий мо-
мент рекомендуются в первую очередь XFS. Также можно выбрать
ext4, но она не настолько популярна при работе с Ceph. Лучших

 26 / 30

Архитектура Ceph    267

результатов при тестировании производительности кластера Ceph
позволяет добиться Btrfs. Однако по ряду мнений она на настоя-
щий момент недостаточно стабильна для промышленного при-
менения. В любом случае, решение о выборе файловой системы
как множества других параметров внедрения стоит принимать
в зависимости от конкретного проекта. Для тестовых внедрений
Ceph файловую систему Btrfs с большой долей уверенности мож-
но назвать хорошим кандидатом. В версии Jewel также появилась
технология под названием BlueStore. BlueStore использует для хра-
нения данных «сырые» диски без файловой системы. В этой книге
BlueStore не рассматривается.

Также, говоря о хранении данных, нужно отметить, что OSD ис-
пользует отдельный небольшой раздел или диск, а иногда и файл
в качестве журнала, по аналогии с журналами файловых систем.
При этом Ceph сначала пишет все данные в журнал, а потом пере-
носит их в место постоянного хранения. Данные считаются за-
писанными на кластер Ceph, когда из журнала скопировано ми-
нимальное число реплик. Рекомендуется размещать журналы на
SSD-дисках.

Для определения местоположения данных кластер использу-
ет псевдослучайный алгоритм распределения данных CRUSH
(Controlled Replication Under Scalable Hashing), который эффек-
тивно распределяет реплики объектов по узлам кластера. Описа-
ние CRUSH доступно по ссылке http://ceph.com/papers/weil-crush-
sc06.pdf. Вместо того чтобы обращаться к некой центральной точке
хранения информации о расположении объектов для каждого за-
проса, CRUSH вычисляет положение данных. Алгоритм CRUSH при
помощи созданных под конкретное внедрение карт (CRUSH map)
учитывает физическую инфраструктуру кластера в виде иерархии
(диски, пулы¸узлы и т. д.) и политику распределения данных. Это
отличает CRUSH, например, от подобного же принципа определе-
ния места положения данных в другом SDS с открытым исходным
кодом GlusterFS.

Объекты хранятся в логических группах – пулах. Пул можно рас-
сматривать как тег, привязанный к ряду объектов. На пулы также
можно привязать, например, права пользователей. Разные пулы
могут иметь разное число реплик или использовать технологию
erasure coding (EC). EC в настоящее время рекомендуется только
при работе Ceph в качестве объектного хранилища. При использо-
вании пула erasure coding в Ceph как блочного или файлового хра-

 27 / 30

http://ceph.com/papers/weil-crush-sc06.pdf
http://ceph.com/papers/weil-crush-sc06.pdf

268    Глава 15. Программно-определяемая система хранения данных Ceph

нилища значительно падает производительность. Таким образом,
вы также при помощи пулов можете разделять данные по методу
доступа.

Пулы делятся на группы (placement groups, PG). PG – это набор
объектов, которые реплицируются OSD для обеспечения сохран-
ности данных. Объект принадлежит одной PG, и все объекты, при-
надлежащие одной PG, имеют один хэш, используемый алгорит-
мом CRUSH. Рекомендуется от пятидесяти до ста PG в расчете на
один OSD. PG решают проблему масштабирования пулов при зна-
чениях в миллионы объектов.

Вкратце поиск объекта клиентом происходит следующим обра-
зом. Клиент обращается к монитору и получает последнюю карту
кластера, которая помогает клиенту понять состояние и конфигу-
рацию кластера. Далее, обладая картой, на основании имени объ-
екта и имени пула CRUSH может вычислить PG и главный OSD для
записи или чтения данных. При этом клиент напрямую обращает-
ся к OSD.

Следующий уровень на нашем рисунке, описывающем архи-
тектуру Ceph, – библиотека librados. Эта библиотека написана на
языке программирования C и позволяет приложениям работать
напрямую с RADOS, не используя каких-либо иных интерфейсов.
Другие интерфейсы, такие как RBD, RADOSGW и CephFS, работают
поверх librados. Подобные librados библиотеки также позволяют
разработчикам на других языках программирования получать на-
прямую доступ к кластеру RADOS. В число языков программиро-
вания входят: С++, Java, Python, Ruby и PHP. Возможность работы
напрямую с кластером RADOS может быть дополнительным пре-
имуществом хранилища данных при построении своих сервисов
поверх IaaS.

Одним из наиболее востребованных методов доступа к класте-
ру Ceph является блочный доступ, осуществляемый при помощи
RBD (RADOS block device). Чаще всего блочное устройство Ceph
используется библиотекой librbd совместно с QEMU и libvirt. Также
имеется драйвер RBD, интегрированный в ядро Linux (Kernel RDB,
или сокращенно KRDB). Вместе с сервисами OpenStack Glance и
Cinder в качестве хранилища Ceph RDB представляет собой деше-
вую альтернативу проприетарным SAN. Поддерживаются copy-on-
write и мгновенное клонирование виртуальных машин, мгновен-
ные снимки и загрузка виртуальных машин с образов, хранящихся
в кластере Ceph.

 28 / 30

Архитектура Ceph    269

В качестве примера ниже приведен вывод с одного из вычисли-
тельных узлов OpenStack, где в качестве системы хранения данных
используется Ceph. Приведена только часть командной строки за-
пуска виртуальной машины, а именно опция «-drive». Это лучшим
образом иллюстрирует интеграцию Ceph с QEMU/KVM:

ps aux | grep qemu-kvm
5636 ? Sl 1:49 /usr/libexec/qemu-kvm -name instance-…
-drive file=rbd:vms/73f…_disk:id=openstack:key=BF3…==:auth_
supported=cephx\;none:mon_host=192.168.0.24\:6789\;192.16
8.0.25\:6789\;192.168.0.26\:6789,if=none,id=drive-virtio-
disk0,format=raw,cache=none…

Минусом для других применений Ceph RBD является отсутствие
поддержки в иных операционных системах, кроме Linux, и дру-
гих распространенных гипервизорах, например VMware ESXi или
Hyper-V.

Следующим компонентом является RADOSGW (Ceph Object
Gateway). Данный компонент проксирует HTTP-запросы от и к
RADOS, предоставляя объектное хранилище, совместимое с OpenStack
Swift и Amazon S3. Третьим поддерживаемым является Admin API для
управления кластером через RESTful-интерфейс. S3 и Swift API мож-
но использовать одновременно и для общего пространства имен.

Еще один тип доступа – файловый при помощи CephFS (Ceph
file system). Файловая система требует не показанного на рисун-
ке компонента – сервиса метаданных MDS. В настоящий момент
CephFS не готова для промышленного применения и далее в книге
не рассматривается.

Наконец, последний опциональный компонент, не показанный
на рисунке, – это Calamari, который является веб-инструментом
мониторинга и управления кластером Ceph. Изначально этот
инструмент был частью проприетарного продукта Inktank Ceph
Enterprise. В 2014 году исходный код Calamari был открыт (https://
github.com/ceph/calamari).

Начнем с установки и подготовки операционной системы для
узлов кластера. Как и в предыдущих главах, воспользуемся дис-
трибутивом CentOS 7. Нам необходимы минимум три виртуальные
машины. Каждая виртуальная машина должна иметь два сетевых
адаптера и минимум 1 Гб оперативной памяти. К каждой вирту-
альной машине подключим по четыре виртуальных диска. Один
будет использоваться под операционную систему, и три – под хра-
нение данных кластером Ceph.

 29 / 30

https://github.com/ceph/calamari
https://github.com/ceph/calamari

270    Глава 15. Программно-определяемая система хранения данных Ceph

Быстрая установка кластера Ceph
при помощи ceph-deploy
Покажем два варианта установки кластера: при помощи утилиты
ceph-deploy и вручную. Также распространенным вариантом яв-
ляется установка при помощи Ansible. Для первого варианта нам
нужна «машина администратора», где запускается ceph-deploy. Мы
используем для этих целей узел ceph1 для экономии ресурсов. На
практике, как правило, это отдельный узел, не входящий в кластер.

Первое, что необходимо, – установить саму операционную си-
стему. В качестве варианта установки можно выбрать Minimal или
Server with GUI.

После установки операционной системы обновите все установ-
ленные пакеты командой

yum -y update

Следующее – это добавление репозиториев с пакетами OpenStack
и дополнительных пакетов. Начнем с необходимого репозитория
Extra Packages for Enterprise Linux (EPEL). Данный репозиторий со-
держит пакеты, предназначенные для RHEL и его производных, ко-
им является CentOS. Как правило, там содержатся пакеты, которые
присутствуют в Fedora, но которые компания Red Hat не включила
в свой промышленный дистрибутив. В частности, пакеты Ceph мы
будем ставить именно оттуда:

yum -y install epel-release

Далее для упрощения отладки мы отключим сервис брандмауэ
ра:

systemctl stop firewalld.service
systemctl disable firewalld.service

Для версий Ceph вплоть до Infernalis необходимо отключить или
перевести в режим Permissive SELinux.

Также убедитесь, что все взаимодействующие виртуальные ма-
шины могут разрешать имена друг друга.

В первом варианте для установки кластера мы будем исполь-
зовать стандартную для Ceph утилиту ceph-install. Безусловно, это
только один из возможных методов. Зачастую кластер Ceph уста-
навливается теми же инструментами, что и компоненты OpenStack.

Powered by TCPDF (www.tcpdf.org)

 30 / 30

Быстрая установка кластера Ceph при помощи ceph-deploy    271

Одну из виртуальных машин мы будем использовать в качестве
узла, с которого произведем установку при помощи утилиты ceph-
install. В качестве предварительного требования для ceph-install
необходимо на всех трех машинах создать пользователя, которым
будет осуществляться установка. Этот пользователь на всех трех
узлах должен иметь право выполнять команды при помощи sudo
с привилегиями администратора и без ввода пароля. В качест
ве имени пользователя нельзя использовать «ceph», поскольку
это имя зарезервировано для демонов. Кроме того, пользователь
должен иметь право подключаться по ssh с узла, где выполняется
ceph-install, на все остальные узлы без ввода пароля.

Создадим на всех трех виртуальных машинах пользователя
cephinstall и настроим sudo:

[root@ceph1 ~]# useradd cephinstall
[root@ceph1 ~]# passwd cephinstall
[root@ceph1 ~]# cat << EOF >/etc/sudoers.d/cephinstall
> cephinstall ALL = (root) NOPASSWD:ALL
> Defaults:cephinstall !requiretty
> EOF
[root@ceph1 ~]# chmod 0440 /etc/sudoers.d/cephinstall

Обратите внимание, что также необходимо отключить в sudo
параметр requiretty.

Теперь разрешаем с узла ceph1 подключаться на все три вирту-
альные машины по ssh без пароля:

[root@ceph1 ~]# su – cephinstall
[cephinstall@ceph1 ~]$ ssh-keygen
[cephinstall@ceph1 ~]$ ssh-copy-id cephinstall@ceph1
[cephinstall@ceph1 ~]$ ssh-copy-id cephinstall@ceph2
[cephinstall@ceph1 ~]$ ssh-copy-id cephinstall@ceph3

Рекомендуется создать конфигурационный файл ~/.ssh/config,
указав, каким пользователем мы подключаемся к каждому из уз-
лов:

Host ceph1
 Hostname ceph1
 User cephinstall
Host ceph2
 Hostname ceph2
 User cephinstall
Host ceph3
 Hostname ceph3
 User cephinstall

 1 / 30

272    Глава 15. Программно-определяемая система хранения данных Ceph

Не забудьте про правильные разрешения, которые более стро-
гие, чем задающиеся по умолчанию:

[cephinstall@ceph1 test-cluster]$ chmod 600 /home/cephinstall/.ssh/config

Утилита ceph-deploy сохраняет конфигурационные файлы и
ключи в текущей рабочей директории. Создадим директорию для
файлов нашего тестового кластера:

[cephinstall@ceph1 ~]$ mkdir test-cluster
[cephinstall@ceph1 ~]$ cd test-cluster

Первым шагом создадим новый кластер. По окончании выпол-
нения команды убедимся, что в рабочей директории появились
три файла: конфигурационный файл, файл связки ключей и жур-
нал установки:

[cephinstall@ceph1 test-cluster]$ ceph-deploy new ceph1
[cephinstall@ceph1 test-cluster]$ ls
ceph.conf ceph.log ceph.mon.keyring

Теперь можно начать править конфигурационный файл. Мы соз-
давали виртуальные машины с двумя сетевыми интерфейсами. Один
из них предназначен для внешних клиентов, другой – для внутрен-
ней сети кластера. Добавим в ceph.conf соответствующие опции:

public_network = 192.168.122.11/24
cluster_network = 192.168.222.11/24

По умолчанию число реплик равняется трем, и минимальное
число реплик, для того чтобы кластер оставался в работоспособ-
ном состоянии, – две. Для нашего тестового окружения уменьшим
эти числа до двух и одного соответственно:

osd_pool_default_size = 2
osd_pool_default_min_size = 1

Необходимо заметить, что вместо символов подчеркивания
можно использовать пробелы.

Установим на все три узла пакеты. Можно открыть на узле ceph2
или ceph3 файл системного журнала для мониторинга происходя-
щего:

[root@ceph2 ~]# tail -f /var/log/messages
[cephinstall@ceph1 test-cluster]$ ceph-deploy install ceph1 ceph2
ceph3

 2 / 30

Быстрая установка кластера Ceph при помощи ceph-deploy    273

…
[ceph3][DEBUG] Complete!
[ceph3][INFO] Running command: sudo ceph --version
[ceph3][DEBUG] ceph version 0.94.5 (9764da52395923e0b32908d83a9
f7304401fee43)

Вывод говорит о том, что пакеты версии Hammer (0.94) установ-
лены. Если по каким-то причинам, например в случае сбоя, вам
необходимо будет начать все заново, то это можно сделать, отдав
команды

[cephinstall@ceph1 test-cluster]$ ceph-deploy purgedata ceph1
ceph2 ceph3
[cephinstall@ceph1 test-cluster]$ ceph-deploy forgetkeys

Создадим наш первый монитор на узле ceph1:

[cephinstall@ceph1 test-cluster]$ ceph-deploy mon create-initial

После добавим OSD сначала на узле ceph2. На каждом из узлов
ceph2 и ceph3 у нас по четыре диска. Первый занят операционной
системой. Три оставшихся мы используем под данные кластера.
Первым делом рекомендуется дать команду ceph-deploy disk
zap, которая удалит разделы с дисков. Перед запуском команды
уточните имена дисков в вашей тестовой среде. Далее приведен
пример для VirtIO дисков в KVM/QEMU, где они имеют имена
vda, vdb и т. д. Помним, что первый диск занимает операционная
система:

[cephinstall@ceph1 test-cluster]$ ceph-deploy disk zap ceph2:vdb
ceph2:vdc ceph2:vdd

Теперь подготовим диски на узле ceph2. На каждом из них бу-
дет создано по два раздела, второй из них будет использован под
журнал. Мы также могли бы задать конкретное расположение
журнала, указав имя раздела после каждого диска через двоето-
чие. Зачастую несколько журналов одного сервера помещают на
выделенный ssd-диск.

[cephinstall@ceph1 test-cluster]$ ceph-deploy osd prepare
ceph2:vdb ceph2:vdc ceph2:vdd
...
[ceph_deploy.osd][DEBUG] Host ceph2 is now ready for osd use.

Можно проверить для одного из дисков непосредственно на уз-
ле ceph2:

 3 / 30

274    Глава 15. Программно-определяемая система хранения данных Ceph

[root@ceph2 ~]# fdisk -l /dev/vdb
...
Disk label type: gpt
Start End Size Type Name
 1 10487808 104857566 45G unknown ceph data
 2 2048 10485760 5G unknown ceph journal

Шага активации OSD, как это описано в документации на сайте
проекта, больше не требуется. Теперь те же действия можно повто-
рить для узла ceph3. Способ с использованием ceph-deploy подхо-
дит, когда нужно быстро развернуть кластер ceph. Для того чтобы
лучше разобраться с настройками, установим кластер вручную.

Установка кластера ceph вручную
Установим на всех узлах пакеты ceph:

yum -y install ceph ceph-radosgw

Теперь начнем на узле ceph1, который играет роль монито-
ра, создавать конфигурационный файл /etc/ceph/ceph.conf. Во-
первых, нам понадобится уникальный идентификатор кластера
UUID. Проще всего сгенерировать случайный UUID при помощи
стандартной утилиты из пакета util-linux:

$ uuidgen
1d618cdf-c648-4e9c-8aed-c170577a5d83

Добавим в /etc/ceph/ceph.conf первую строчку:
fsid = 1d618cdf-c648-4e9c-8aed-c170577a5d83

Дальше пропишем имя нашего первого MON-узла и его IP-
адрес. Можно было бы указать их не один, а несколько, но в нашем
случае это только узел ceph1:

mon initial members = ceph1
mon host = 192.168.122.11

Нам нужно создать два набора ключей: monitor keyring и
administrator keyring, которые будут использоваться в качестве об-
щего секрета для взаимодействия мониторов и для доступа адми-
нистратора к управлению кластером при помощи утилиты ceph:

[root@ceph1 ~]# ceph-authtool --create-keyring /tmp/ceph.mon.keyring
--gen-key -n mon. --cap mon 'allow *'

 4 / 30

Установка кластера ceph вручную    275

creating /tmp/ceph.mon.keyring
[root@ceph1 ~]# ceph-authtool --create-keyring /etc/ceph/ceph.client.
admin.keyring --gen-key -n client.admin --set-uid=0 --cap mon 'allow *'
--cap osd 'allow *' --cap mds 'allow'
creating /etc/ceph/ceph.client.admin.keyring

Теперь необходимо добавить ключ client.admin в связку ключей
ceph.mon.keyring:

[root@ceph1 ~]# ceph-authtool /tmp/ceph.mon.keyring --import-keyring
/etc/ceph/ceph.client.admin.keyring
importing contents of /etc/ceph/ceph.client.admin.keyring into /tmp/
ceph.mon.keyring

Утилитой monmaptool создадим карту монитора:

[root@ceph1 ~]# monmaptool --create --add ceph1 192.168.122.11
--fsid 1d618cdf-c648-4e9c-8aed-c170577a5d83 /tmp/monmap
monmaptool: monmap file /tmp/monmap
monmaptool: set fsid to 1d618cdf-c648-4e9c-8aed-c170577a5d83
monmaptool: writing epoch 0 to /tmp/monmap (1 monitors)

После создания можно просмотреть содержимое карты, которая
задает фиксированные адреса узлов:
[root@ceph1 ~]# monmaptool --print /tmp/monmap
monmaptool: monmap file /tmp/monmap
epoch 0
fsid 1d618cdf-c648-4e9c-8aed-c170577a5d83
last_changed 2015-11-13 07:15:04.636212
created 2015-11-13 07:15:04.636212
0: 192.168.122.11:6789/0 mon.ceph1

Создадим директорию вида /var/lib/ceph/mon/имя_кластера-
имя_монитора, где монитор будет хранить свои данные:

[root@ceph1 ~]# mkdir /var/lib/ceph/mon/ceph-ceph1/

Заполним директорию данными демона монитора (карта и
связка ключей):

[root@ceph1 ~]# ceph-mon --mkfs -i ceph1 --monmap /tmp/monmap --keyring
/tmp/ceph.mon.keyring
ceph-mon: set fsid to 1d618cdf-c648-4e9c-8aed-c170577a5d83
ceph-mon: created monfs at /var/lib/ceph/mon/ceph-ceph1 for mon.ceph1
[root@ceph1 ~]# ls /var/lib/ceph/mon/ceph-ceph1/
keyring store.db

Добавим общие настройки в файл конфигурации /etc/ceph/ceph.
conf:

 5 / 30

276    Глава 15. Программно-определяемая система хранения данных Ceph

 1 [global]
 2 fsid = 1d618cdf-c648-4e9c-8aed-c170577a5d83
 3 mon initial members = ceph1
 4 mon host = 192.168.122.11
 5 public network = 192.168.122.0/24
 6 auth cluster required = cephx
 7 auth service required = cephx
 8 auth client required = cephx
 9 osd journal size = 1024
 10 osd pool default size = 2
 11 osd pool default min size = 1
 12 osd pool default pg num = 128
 13 osd pool default pgp num = 128

Номера строк приведены для удобства. В реальный конфигура-
ционный файл их добавлять не надо. Прокомментируем настрой-
ки. Строки с шестой по восьмую указывают на механизм аутенти-
фикации. Далее – размер журнала в килобайтах. В двенадцатой
и тринадцатой строках задано число групп (placement groups, PG)
для пула по умолчанию. Как обсуждалось ранее, PG – это набор объ-
ектов, которые реплицируются OSD для обеспечения сохранности
данных. Pg_num и pgp_num должны совпадать. PGP (placment group
for placment) влияет на ребалансировку кластера при увеличении
числа PG. В конце добавим в конфигурационный файл секцию,
описывающую наш единственный монитор:

[mon.ceph1]
host = ceph1
mon addr = 192.168.122.11:6789

Создадим файл, указывающий, что настройка монитора закон-
чена:

[root@ceph1 ~]# touch /var/lib/ceph/mon/ceph-ceph1/done

Теперь можно попытаться стартовать монитор:

[root@ceph1 ~]# /etc/init.d/ceph start mon.ceph1
=== mon.ceph1 ===
Starting Ceph mon.ceph1 on ceph1...
Running as unit run-1045.service.
Starting ceph-create-keys on ceph1...

Проверим, что создан пул по умолчанию rbd:

[root@ceph1 ~]# ceph osd lspools
0 data,1 metadata,2 rbd,

 6 / 30

Установка кластера ceph вручную    277

и что монитор запущен:

[root@ceph1 ~]# ceph -s | grep mon
 monmap e1: 1 mons at {ceph1=192.168.122.11:6789/0}, election
epoch 1, quorum 0 ceph1

Перейдем к установке OSD на узлы ceph2 и ceph3. Предполагаем,
что на каждом из них по четыре диска, три из которых мы будем
использовать под хранение данных. На дисках, которые предпола-
гается использовать под данные, создайте по разделу и файловую
систему XFS на каждом. Также добавьте все три диска в /etc/fstab.
По умолчанию предполагается, что раздел монтируется в дирек-
торию /var/lib/ceph/osd/имя_кластера-идентификатор_OSD. Про-
демонстрируем на примере одного из разделов:

[root@ceph2 ~]# mkfs.xfs /dev/vdb1
[root@ceph2 ~]# mkdir /var/lib/ceph/osd/ceph-0
[root@ceph2 ~]# echo "/dev/vdb1 /var/lib/ceph/osd/ceph-0 xfs
defaults 0 1" >> /etc/fstab
[root@ceph2 ~]# mount -a

Добавим в конфигурационный файл на узле ceph1 описание
шести OSD, по три на узел. OSD с номерами от нуля до двух будут
на узле ceph2, а с трех до пяти – на узле ceph3:

[osd.0]
host = ceph2
...
[osd.5]
host = ceph3

Скопируем отредактированный конфигурационный файл с пер-
вого узла на оба оставшихся. То же самое проделаем с файлом /etc/
ceph/ceph.client.admin.keyring.

По числу OSD на каждом из узлов запускаем команду

[root@ceph3 ~]# ceph osd create
5

При этом будет выдаваться номер идентификатора OSD. По-
скольку у нас по три диска и соответственно три OSD на каждом
узле, то всего мы выдаем эту команду шесть раз, по три раза на
каждом из двух узлов. В примере выше это – вывод последнего вы-
полнения команды из шести (OSD нумеруются начиная с нуля).

Для каждого из дисков/OSD выполняем команды вида:

 7 / 30

278    Глава 15. Программно-определяемая система хранения данных Ceph

[root@ceph3 ~]# ceph-osd -i 5 --mkfs --mkkey
[root@ceph3 ~]# ceph auth add osd.5 osd 'allow *' mon 'allow
profile osd' -i /var/lib/ceph/osd/ceph-5/keyring

Первой командой мы инициализируем директорию, в которую
смонтирована каждая из файловых систем. Второй командой мы
регистрируем ключ аутентификации этого конкретного OSD. Ключ
создавался во время инициализации предыдущей командой. Про-
смотреть список ключей кластера можно командой ceph auth list.

Для каждого из двух узлов выполняем команды:

[root@ceph2 ~]# ceph --cluster ceph osd crush add-bucket ceph2 host
added bucket ceph3 type host to crush map
[root@ceph2 ~]# ceph osd crush move ceph2 root=default
moved item id -2 name 'ceph2' to location {root=default} in crush map

Тем самым мы добавили узел в карту алгоритма CRUSH и помес
тили его в корень default.

По окончании настройки просмотреть карту и веса OSD можно
будет командой

[root@ceph1 ~]# ceph osd tree
id weight type name up/down reweight
-1 6 root default
-2 3 host ceph2
0 1 osd.0 up 1
1 1 osd.1 up 1
2 1 osd.2 up 1
-3 3 host ceph3
3 1 osd.3 up 1
4 1 osd.4 up 1
5 1 osd.5 up 1

Для каждого из шести OSD выполняем следующую команду, до-
бавляя их в CRUSH-карту:

[root@ceph3 ~]# ceph osd crush add osd.5 1.0 host=ceph3
add item id 5 name 'osd.5' weight 1 at location {host=ceph3} to
crush map

После этого можно запустить скрипт /etc/init.d/ceph start и про-
верить состояние нашего кластера:

[root@ceph1 ~]# ceph -s
 cluster 1d618cdf-c648-4e9c-8aed-c170577a5d83
 health HEALTH_OK
 monmap e1: 1 mons at {ceph1=192.168.122.11:6789/0}, election
epoch 1, quorum 0 ceph1

 8 / 30

Интеграция Ceph с сервисами OpenStack    279

 osdmap e38: 6 osds: 6 up, 6 in
 pgmap v94: 192 pgs, 3 pools, 0 bytes data, 0 objects
 3275 MB used, 593 GB / 596 GB avail
 192 active+clean

Также нужно знать команду ceph –w, которая аналогична пре-
дыдущей, но позволяет отслеживать состояние кластера в реаль-
ном времени. Приведем еще несколько полезных команд. Ceph
df покажет свободное место в кластере и распределение его по
пулам:

[root@ceph1 ~]# ceph df
GLOBAL:
 SIZE AVAIL RAW USED %RAW USED
 596G 593G 3275M 0.54
POOLS:
 NAME ID USED %USED MAX AVAIL OBJECTS
 data 0 0 0 296G 0
 metadata 1 0 0 296G 0
 rbd 2 0 0 296G 0

Естественно, что у нас доступно все пространство на дисках
кластера.

Интеграция Ceph с сервисами
OpenStack
Начнем с интеграции Ceph с Cinder. Первым делом установим на
все вычислительные узлы и контроллер OpenStack пакеты Ceph:

yum -y install python-rbd ceph

Далее нужно на эти же узлы скопировать с одной из машин клас
тера Ceph конфигурационный файл /etc/ceph/ceph.conf.

Создадим для Cinder новый пул, как мы обсуждали это ранее.
Выполнять команду необходимо на узле, где присутствует связка
ключей /etc/ceph/ceph.client.admin.keyring:

[root@ceph1 ~]# ceph osd pool create cinder-volumes 128
pool 'cinder-volumes' created

Поскольку мы используем аутентификацию cephx, то создаем
пользователя для сервиса Cinder и даем ему права на пул cinder-
volumes:

 9 / 30

280    Глава 15. Программно-определяемая система хранения данных Ceph

[root@ceph1 ~]# ceph auth get-or-create client.cinder mon 'allow r'
osd 'allow class-read object_prefix rbd_children, allow rwx pool=cinder-
volumes'
[client.cinder]
 key = AQAIsW1WMIoLCBAA9xvL26nqMFVeIURAOyqBTA==

Создаем и копируем связку ключей для cinder на управляющий
узел и на все вычислительные узлы:

[root@ceph1 ~]# ceph auth get-or-create client.cinder | ssh root@controller
tee /etc/ceph/ceph.client.cinder.keyring
[root@ceph1 ~]# ssh root@controller chown cinder:cinder /etc/ceph/ceph.client.
cinder.keyring
[root@ceph1 ~]# ceph auth get-or-create client.cinder | ssh root@compute tee
/etc/ceph/ceph.client.cinder.keyring
[root@ceph1 ~]# ceph auth get-key client.cinder | ssh root@compute tee client.
cinder.key

На вычислительных узлах нам необходимо добавить в libvirt об-
щий секрет. Сгенерируем случайный uuid, например при помощи
команды uuidgen:

$ uuidgen
7651c383-1aef-4644-b7fe-d9cbbd9fe116

Далее, используя этот uuid, вы должны создать файл такого со-
держания:

<secret ephemeral='no' private='no'>
 <uuid>7651c383-1aef-4644-b7fe-d9cbbd9fe116</uuid>
 <usage type='ceph'>
 <name>client.cinder secret</name>
 </usage>
</secret>

Про формат файла секрета можно почитать по ссылке http://
libvirt.org/formatsecret.html. На всех вычислительных узлах вы-
полним команды:

[root@compute ~]# virsh secret-define --file имя_файла.xml
Secret 7651c383-1aef-4644-b7fe-d9cbbd9fe116 created
[root@compute ~]# virsh secret-set-value --secret 7651c383-1aef-
4644-b7fe-d9cbbd9fe116 --base64 $(cat client.cinder.key) && rm
client.cinder.key secret.xml

Первой мы создали секрет согласно описанию из XML-файла,
а второй командой мы присвоили ему в качестве содержимого
client.cinder.key, предварительно переведя в кодировку Base64.

 10 / 30

http://libvirt.org/formatsecret.html
http://libvirt.org/formatsecret.html

Интеграция Ceph с сервисами OpenStack    281

Теперь перейдем на управляющий узел OpenStack. Нам нужно
внести дополнения в конфигурационный файл Cinder /etc/cinder/
cinder.conf:

[DEFAULT]
enabled_backends = rbd
[rbd]
volume_driver = cinder.volume.drivers.rbd.RBDDriver
rbd_pool = cinder-volumes
rbd_ceph_conf = /etc/ceph/ceph.conf
rbd_flatten_volume_from_snapshot = false
rbd_max_clone_depth = 5
rbd_store_chunk_size = 4
rados_connect_timeout = -1
glance_api_version = 2
rbd_user = cinder
rbd_secret_uuid = 7651c383-1aef-4644-b7fe-d9cbbd9fe116

После чего осталось отредактировать только /etc/nova/nova.conf
на вычислительных узлах. Нам необходимо добавить секцию libvirt:

[libvirt]
rbd_user = cinder
rbd_secret_uuid = 7651c383-1aef-4644-b7fe-d9cbbd9fe116

Потом рестартуем сервисы nova-compute и cinder. Теперь можно
попробовать создать том блочного устройства:

$ cinder create --display-name chephtest1 1
+---------------------------------------+--------------------------------------+
| Property | Value |
+---------------------------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2015-12-13T19:18:34.000000
description	None
encrypted	False
id	417d122b-55a3-4667-95be-7beb34a5a93d
metadata	{}
migration_status	None
multiattach	False
name	chephtest1
os-vol-host-attr:host	None
os-vol-mig-status-attr:migstat	None
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	8cc74ebe8da94fe0a7ac6cf54f31b420
os-volume-replication:driver_data	None

 11 / 30

282    Глава 15. Программно-определяемая система хранения данных Ceph

os-volume-replication:extended_status	None
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	creating
user_id	6310882678344e8183f2d7e886088293
volume_type	None
+---------------------------------------+--------------------------------------+

Проверим список томов и убедимся, что chephtest1 доступен:

$ cinder list
+------+-----------+------------------+------------+------+-------------+----------+-------------+-------------+
| ID | Status | Migration Status | Name | Size | Volume Type | Bootable | Multiattach | Attached to |
+------+-----------+------------------+------------+------+-------------+----------+-------------+-------------+
| 41.. | available | – | chephtest1 | 1 | – | false | False | |
+------+-----------+------------------+------------+------+-------------+----------+-------------+-------------+

Проверим на узле Ceph, что том действительно занял место и
хранится в пуле cinder-volumes:

[root@ceph1 ~]# ceph df
GLOBAL:
 SIZE AVAIL RAW USED %RAW USED
 596G 593G 3276M 0.54
POOLS:
 NAME ID USED %USED MAX AVAIL OBJECTS
 data 0 0 0 296G 0
 metadata 1 0 0 296G 0
 rbd 2 0 0 296G 0
 cinder-volumes 3 16 0 296G 3
[root@ceph1 ~]# rados -p cinder-volumes ls
rbd_id.volume-417d122b-55a3-4667-95be-7beb34a5a93d
rbd_directory
rbd_header.121a4262753d

Следующим шагом настроим интеграцию с Glance. Сразу отме-
тим, что с Ceph рекомендуется использовать RAW-образы дисков,
а не QCOW2, как мы это делали ранее. Это связано с тем, что при
загрузке с RAW-диска Ceph делает мгновенную копию образа (zero
byte). При этом мгновенные копии делаются даже не на уровне
RADOS, а на уровне RBD, так что тип локальной файловой системы
на узлах хранения в этом случае не важен. Если используется фор-
мат QCOW2, то Ceph придется полностью копировать весь образ,
поскольку «родной» функционал copy-on-write образов QCOW2 в
данном случае не поддерживается.

 12 / 30

Интеграция Ceph с сервисами OpenStack    283

В случае если вы все-таки используете QCOW2-формат, Nova и
Cinder при запуске виртуальной машины должны конвертировать
образ в RAW, перед тем как передать его драйверу RBD в эмуляторе
QEMU. Это значит, что сперва QCOW2-образ выкачивается на вы-
числительный узел, конвертируется и потом закачивается в виде
RAW обратно в Ceph.

Как и в случае с Cinder, первым делом создадим пул для хране-
ния образов:

[root@ceph1 ~]# ceph osd pool create images 128

Затем знакомая операция по созданию пользователя и выдаче
ему права на пул images:

[root@ceph1 ~]# ceph auth get-or-create client.glance mon 'allow r' osd
'allow class-read object_prefix rbd_children, allow rwx pool=images'
[client.glance]
 key = AQDoxW1WiGBrLhAA3ydL2Lr6eHNjBh6u4w0AMw==

Создаем и копируем связку ключей на управляющий узел и вы-
ставим соответствующие права доступа к файлу:

[root@ceph1 ~]# ceph auth get-or-create client.glance | ssh root@
controller tee /etc/ceph/ceph.client.glance.keyring
[root@ceph1 ~]# ssh root@controller chown glance:glance /etc/
ceph/ceph.client.glance.keyring

Теперь добавим в /etc/glance/glance-api.conf секцию glance_store
и в default – show_image_direct_url. Последняя опция включает кло-
нирование «copy-on-write»:

[glance_store]
default_store = rbd
stores = rbd
rbd_store_pool = images
rbd_store_user = glance
rbd_store_ceph_conf = /etc/ceph/ceph.conf
rbd_store_chunk_size = 8
[DEFAULT]
show_image_direct_url = True

Важное замечание: в версиях OpenStack Juno или младше пара-
метр default_store = rbd должен быть в секции default. Последним
шагом настройки рестартуем сервисы glance-api и glance-registry.

Можно попробовать загрузить образ в сервис Glance. Для этого
скачаем образ cirros и сконвертируем его из QCOW2 в формат RAW:

 13 / 30

284    Глава 15. Программно-определяемая система хранения данных Ceph

$ wget -P /tmp http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-
disk.img
$ qemu-img convert -O raw /tmp/cirros-0.3.4-x86_64-disk.img /tmp/cirros-raw.
img

Загружаем образ в Glance:

$ glance image-create --name "cirros-raw" --visibility public
--disk-format raw --container-format=bare --file /tmp/cirros-raw.img
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	56730d3091a764d5f8b38feeef0bfcef
container_format	bare
created_at	2015-12-13T19:47:05Z
disk_format	raw
id	153618d8-c4e2-4983-8b94-756285194489
min_disk	0
min_ram	0
name	cirros-raw
owner	8cc74ebe8da94fe0a7ac6cf54f31b420
protected	False
size	41126400
status	active
tags	[]
updated_at	2015-12-13T19:47:11Z
virtual_size	None
visibility	public
+------------------+--------------------------------------+

И по аналогии с Cinder, командами rados -p images ls и ceph
df убеждаемся, что Ceph используется для хранения образов.

Последним шагом настраиваем сервис Nova. Создадим пул vms
для виртуальных машин:

[root@ceph1 ~]# ceph osd pool create vms 128

В конфигурационный файл ceph.conf на всех узлах добавляем
настройки клиента:

[client]
 rbd cache = true
 rbd cache writethrough until flush = true
 admin socket = /var/run/ceph/guests/$cluster-$type.$id.$pid.$cctid.asok
 log file = /var/log/qemu/qemu-guest-$pid.log
 rbd concurrent management ops = 20

Создаем объявленные в конфигурационном файле директории
и выставляем права файловой системы:

 14 / 30

Интеграция Ceph с сервисами OpenStack    285

[root@compute ~]# mkdir -p /var/run/ceph/guests/ /var/log/qemu/
[root@compute ~]# chown qemu.qemu /var/run/ceph/guests /var/log/qemu/

Теперь обновляем nova.conf на вычислительных узлах:

[libvirt]
images_type = rbd
images_rbd_pool = vms
images_rbd_ceph_conf = /etc/ceph/ceph.conf
disk_cachemodes="network=writeback"
hw_disk_discard = unmap

После чего рестартуем сервис nova-compute. Последнее, что нам
нужно, – это обновить права клиента client.cinder, которого мы бу-
дем использовать при запуске экземпляров виртуальных машин.
Для корректной работы требуется доступ rwx для пулов cinder-
volumes и vms. Для images достаточно rx:

[root@ceph1 ~]# ceph auth caps client.cinder mon 'allow r'
osd 'allow class-read object_prefix rbd_children, allow rwx
pool=cinder-volumes, allow rwx pool=vms, allow rx pool=images'
updated caps for client.cinder

Проверяем разрешения:

[root@ceph1 ~]# ceph auth list
...
client.cinder
 key: AQAIsW1WMIoLCBAA9xvL26nqMFVeIURAOyqBTA==
 caps: [mon] allow r
 caps: [osd] allow class-read object_prefix rbd_children, allow
rwx pool=cinder-volumes, allow rwx pool=vms, allow rx pool=images
client.glance
 key: AQDoxW1WiGBrLhAA3ydL2Lr6eHNjBh6u4w0AMw==
 caps: [mon] allow r
 caps: [osd] allow class-read object_prefix rbd_children, allow
rwx pool=images

Теперь можно попробовать запустить виртуальную машину:

$ nova boot --flavor m2.tiny --image cirros-raw --key-name demokey1 --security-
groups demo-sgroup test-vm
+--------------------------------------+---------------------------------------+
| Property | Value |
+--------------------------------------+---------------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling

 15 / 30

286    Глава 15. Программно-определяемая система хранения данных Ceph

OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	–
OS-SRV-USG:terminated_at	–
accessIPv4	
accessIPv6	
adminPass	ZcEMr8RVHZ9q
config_drive	
created	2015-12-14T12:52:16Z
flavor	m2.tiny (98cb36fb-3541-415b-9835-b..)
hostId	
id	eec707f7-55f4-4ac3-9df8-7a684048aac1
image	cirros-raw (153618d8-c4e2-4983-8b9..)
key_name	demokey1
metadata	{}
name	test-vm
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	demo-sgroup
status	BUILD
tenant_id	eca00feab38e4aa5b462bd31af0b9dca
updated	2015-12-14T12:52:16Z
user_id	924c18c923654d7c930bcb1044580d8b
+--------------------------------------+---------------------------------------+

Перейдем на тот вычислительный узел, где запущена виртуаль-
ная машина, и посмотрим параметры запуска процесса, для то-
го чтобы убедиться, что виртуальная машина стартовала с Ceph.
В выводе интересующая нас опция выделена жирным:
[root@compute-opt ~]# ps aux | grep qemu-kvm
qemu 2751 8.0 2.9 852144 118200 ? Sl 15:52 0:20 /usr/
libexec/qemu-kvm -name instance-00000100 -S -machine pc-i440fx-… -drive
file=rbd:vms/eec707f7-55f4-4ac3-9df8-7a684048aac1_disk:id=cinder:key=AQ
AIsW1WMIoLCBAA9xvL26nqMFVeIURAOyqBTA==:auth_supported=cephx\;none:mon_
host=192.168.122.11\:6789,...

Ну и посмотрим на пул vms:
[root@ceph1 ~]# ceph df
GLOBAL:
 SIZE AVAIL RAW USED %RAW USED
 596G 593G 3425M 0.56
POOLS:
 NAME ID USED %USED MAX AVAIL OBJECTS
...
 vms 5 32768k 0 296G 11

На этом базовую интеграцию Ceph и OpenStack можно считать
законченной.

 16 / 30

Глава 16
Отказоустойчивость

и производительность
OpenStack

В данной главе кратко рассматриваются лишь некоторые из во-
просов, которые следует иметь в виду при промышленном исполь-
зовании OpenStack.

Обзор способов обеспечения высокой
доступности сервисов облака
Под высокой доступностью понимается минимизация времени
недоступности системы и потери данных.

Большинство служб OpenStack является сервисами без сохране-
ния состояния (stateless), предоставляющими свой API клиентам
этих служб. В противоположность сервисам с сохранением состоя-
ния (stateful), для них легче обеспечить отказоустойчивость и мас-
штабирование. Проще всего описать работу такой службы на бы-
товом уровне «сделал и забыл». Отказоустойчивость в подобном
случае достигается введением избыточного числа взаимозаменя-
емых узлов, на которых запускаются экземпляры сервиса и балан-
сировщика нагрузки. В этом случае, если один из узлов выйдет из
строя, балансировщик нагрузки просто перенаправит запросы на
оставшиеся серверы.

Обслуживают сервисы OpenStack служебные инфраструктурные
компоненты, например база данных и брокер сообщений. Их на-
значение – хранение постоянной информации и межсервисное
взаимодействие. Большинство инфраструктурных служб может

 17 / 30

288    Глава 16. Отказоустойчивость и производительность OpenStack

работать в режиме «active-active», когда все узлы кластера могут
обрабатывать запросы, в этом случае за операции запуска, оста-
новки и мониторинга сервисов отвечает systemd. Однако часть из
сервисов поддерживает только «active-passive». В случае «active-
passive» активным является лишь один из узлов, а остальные ра-
ботают в так называемом «холодном резерве». При этом обычно
запросы идут на виртуальный IP-адрес, который в конкретный
момент времени принадлежит одному, активному узлу. Монито-
рингом сервиса и переключением ресурсов поверх systemd в этом
случае занимается ПО кластера, как правило, Pacemaker (http://
clusterlabs.org/).

Отдельно автор хочет отметить наличие руководства по высокой
доступности сервисов среди документации на сайте OpenStack –
https://docs.openstack.org/ha-guide/index.html. Для целей обучения
данное руководство, скорее всего, будет полезнее документации,
которую можно найти в комплекте конкретных дистрибутивов
OpenStack, поскольку их разработчики при развертывании отка-
зоустойчивой конфигурации, как правило, полагаются на свою си-
стему инсталляции (Fuel, Crowbar, TripleO и др.). Также в качестве
полезного ресурса можно назвать руководство Understanding Red
Hat OpenStack Platform High Availability из комплекта справочной
документации RHOSP – https://access.redhat.com/documentation/
en-us/red_hat_openstack_platform/.

На рис. 16.1 приведен пример того, как обеспечивается отказо-
устойчивость сервисов OpenStack, распределенных по трем управ-
ляющим узлам после установки RHOSP 10 (Newton). Настройка и
установка производились автоматически с использованием за-
ранее подготовленных шаблонов. Рассмотрение промышленной
установки OpenStack не входит в задачи этой книги. Однако дан-
ная диаграмма может дать представление, как сервисы распреде-
ляются в реальной жизни в «боевых» внедрениях. В верхней части
изображены сервисы в кластере Pacemaker плюс ресурсы класте-
ра, в частности виртуальные IP-адреса. В нижней части автор изо-
бразил сервисы, доступ к которым осуществляет HAProxy. Справа
приведен вывод команды netstat для публичного виртуального
IP-aреса (ресурса кластера Pacemaker), который на данном развер-
тывании был 172.17.2.19. Как вы видите, перечисленные порты со-
впадают с портами служб, работающими с HAProxy.

В двух словах перечислим, как организуется отказоустойчивость
для ряда основных сервисов.

 18 / 30

http://clusterlabs.org/
http://clusterlabs.org/
https://docs.openstack.org/ha-guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/

Обзор способов обеспечения высокой доступности сервисов облака    289

Рис. 16.1. Пример отказоустойчивости сервисов overcloud в RHOSP 10

База данных – один из важнейших компонентов, для которого
необходимо обеспечить высокую доступность. В случае MySQL/
MariaDB доступны два варианта обеспечения отказоустойчивости:
при помощи кластера Pacemaker и общей системы хранения дан-
ных. При ее отсутствии можно использовать, например, систему
репликации DRBD (http://drbd.linbit.com/). Второй вариант – это
при помощи кластера Galera, который является подключаемым
модулем репликации для MySQL. На момент написания этой гла-
вы вариант при помощи Galera являлся предпочтительным. Нужно
отметить, что Galera является системой, работающей на основе
кворума, что значит – у вас должно быть минимум три узла в клас
тере.

Большинство высокоуровневых компонентов OpenStack обща-
ется друг с другом посредством шины сообщений. Выход из строя
брокера сообщений повлечет за собой нарушение работоспособ-
ности сервисов облака. Согласно информации почтовой рассылки
openstack-operators, в большинстве внедрений вместо балансиров-
щика нагрузки предпочитают использовать режим «active-active»
при помощи нескольких экземпляров RabbitMQ. Три возможных
варианта построения распределенной архитектуры рассмотрены

 19 / 30

http://drbd.linbit.com/

290    Глава 16. Отказоустойчивость и производительность OpenStack

на странице https://www.rabbitmq.com/distributed.html. Самый
распространенный в настоящее время – это зеркалирование оче-
редей.

Как правило, для обеспечения работы в режиме «active-active»
для сервисов без сохранения состояния из свободных баланси-
ровщиков нагрузки выбирают HAProxy (http://www.haproxy.org/).
Такие сервисы, как nova-api, glance-api, keystone-api, neutron-api,
cinder-api и nova-scheduler, не требуют особого внимания. Однако,
как и для многих веб-приложений, для Horizon необходима при-
вязка сессии к серверу, которая осуществляется средствами балан-
сировщика нагрузки.

К числу сервисов, как правило, работающих в режиме «active-
passive», относят в первую очередь Cinder-volume, ceilometer-
central и агенты Neutron. Их отказоустойчивость обеспечивается
при помощи Pacemaker. При этом обеспечить отказоустойчивость
L3 агента (в режиме «active-passive») можно также при помощи
протокола Virtual Router Redundancy Protocol (VRRP, RFC 3768).
В последнем случае виртуальный маршрутизатор выбирается
случайным образом из нескольких сетевых узлов, остальные при
этом работают в «горячем резерве». Второй способ, появившийся
в OpenStack, позднее заключается в использовании распределен-
ного виртуального маршрутизатора (DVR). В случае DVR не только
сетевые, но и каждый из вычислительных узлов обладает функ
ционалом маршрутизации.

Выделение вычислительных ресурсов
Говоря о ресурсах, нужно заметить, что OpenStack позволяет под-
тверждать виртуальным машинам больше физической памяти и
вычислительных ресурсов, чем имеется в наличии. По умолча-
нию планировщик ассоциирует с одним физическим или Hyper-
threading-ядром 16 виртуальных процессоров (vCPU). За это зна-
чение в конфигурационном файле /etc/nova/nova.conf отвечает
параметр

cpu_allocation_ratio=16.0

К примеру, по умолчанию один восьмиядерный процессор со
включенной технологией Hyper-threading даст нам 8*2*16 = 256
vCPU.

 20 / 30

https://www.rabbitmq.com/distributed.html
http://www.haproxy.org/

Выделение оперативной памяти    291

Если запускается много требовательных к процессору приложе-
ний типа Hadoop или виртуальных машин с сетевыми функциями
(NFV), то коэффициент выставляется ближе к 2, а иногда и к 1. Если
основная нагрузка веб-сервера, то число можно увеличить вплоть до
16, заданного по умолчанию. Если вы не можете разделить типы на-
грузки, то можно попробовать использовать коэффициент от 2 до 5.

Рекомендуется, по возможности, ограничить в своем облаке ис-
пользование flavor (типы виртуальных машин) с числом vCPU более
одного. Для гипервизоров первого типа намного проще выделить
ресурсы виртуальной машине с 1 vCPU. Например, для выделения
вычислительных ресурсов машине типа m1.xlarge планировщику
гипервизора необходимо будет ждать, пока не освободятся восемь
физических ядер центрального процессора. Также использование
виртуальных машин с меньшим числом vCPU снижает риск того,
что эти vCPU будут выделены на разных физических процессорах.

В современных системах рекомендуется включать технологию
Hyper-threading. Производительность Hyper-threading, по сравне-
нию с физическим ядром, отличается от приложения к приложе-
нию. Потенциально могут существовать достаточно редкие прило-
жения, которые выиграют от отключения Hyper-threading. Вместо
отключения Hyper-threading в таких случаях рекомендуется доба-
вить виртуальной машине с таким приложением дополнительные
vCPU.

Выделение оперативной памяти
Объем памяти, выделяемой виртуальным машинам по умолча-
нию, в полтора раза больше, чем имеющийся физический. За это
значение в конфигурационном файле /etc/nova/nova.conf отвечает
параметр

ram_allocation_ratio=1.5

В целом по рекомендациям в списках рассылки OpenStack для
памяти выбирают значение 0,9. Также рекомендуется задать
резервирование оперативной памяти при помощи параметра
reserved_host_memory_mb в nova.conf. Обычно в расчетах можно
руководствоваться закладыванием на накладные расходы порядка
100 Мб на одну виртуальную машину. Обязательно нужно преду
смотреть swap, как минимум вдвое больший, чем этот параметр.
Для процессора коэффициент сильно зависит от нагрузки. Обычно

 21 / 30

292    Глава 16. Отказоустойчивость и производительность OpenStack

память становится раньше «бутылочным горлышком», чем ресур-
сы центрального процессора.

Параметры ram_allocation_ratio и cpu_allocation_ratio необходи-
мо менять на всех управляющих узлах, если у вас их более одно-
го. После изменения параметров необходимо рестартовать сервис
планировщика nova-scheduler.

Полезной командой для сбора статистики по использованию
оперативной памяти будет nova diagnostics. По умолчанию ее
выполнять может только пользователь admin. В качестве аргумен-
та команде необходим идентификатор экземпляра виртуальной
машины:

$ nova diagnostics 6aec269e-2633-4c56-9a61-7b8cb084995e
+---------------------------+-------------+
| Property | Value |
+---------------------------+-------------+
cpu0_time	34150000000
memory	307200
memory-actual	307200
memory-rss	127812
tap6fc6b1e7-e7_rx	10177
tap6fc6b1e7-e7_rx_drop	0
tap6fc6b1e7-e7_rx_errors	0
tap6fc6b1e7-e7_rx_packets	97
tap6fc6b1e7-e7_tx	11576
tap6fc6b1e7-e7_tx_drop	0
tap6fc6b1e7-e7_tx_errors	0
tap6fc6b1e7-e7_tx_packets	116
vda_errors	-1
vda_read	17636864
vda_read_req	731
vda_write	324608
vda_write_req	98
+---------------------------+-------------+

Суммарную статистику по гипервизорам можно посмотреть
при помощи команды nova hypervisor-stats:

$ nova hypervisor-stats
+----------------------+-------+
| Property | Value |
+----------------------+-------+
count	2
current_workload	0
disk_available_least	95
free_disk_gb	97
free_ram_mb	6580

 22 / 30

Повышение производительности виртуальных машин    293

local_gb	98
local_gb_used	1
memory_mb	7904
memory_mb_used	1324
running_vms	1
vcpus	8
vcpus_used	1
+----------------------+-------+

Еще одна полезная подкоманда – virsh dommemstat, которую
необходимо использовать непосредственно на вычислительном
узле. Для начала следует узнать имя виртуальной машины:

[root@compute ~]# virsh list
 Id Name State
--
 2 instance-00000007 running

После чего можно отдать непосредственно команду virsh dom-
memstat:
[root@compute ~]# virsh dommemstat instance-00000007
actual 307200
rss 129636

Также автор может порекомендовать запись в личном блоге
о структурах памяти Linux: http://markelov.blogspot.ru/2009/01/
linux-procmeminfo.html.

Повышение производительности
виртуальных машин
Поскольку виртуальные машины в случае использования гипер-
визора KVM – это процессы GNU/Linux, к ним применимы многие
«общие» технологии настройки производительности. Рассмотрим
одну из технологий – закрепление за виртуальными машинами
определенных процессоров (CPU pinning). При закреплении про-
цессоров за виртуальными машинами обеспечивается сопоставле-
ние ядер процессора и vCPU виртуальной машины. Это делается,
во-первых, для того чтобы убедиться, что виртуальные машины
запускаются на определенных ядрах при планировании нагрузки,
во-вторых, что ресурсы этих ядер не используются процессами
операционной системы гипервизора. Продемонстрируем это на
практике. Начнем с изменения коэфициента сопоставления физи-
ческих и виртуальных процессоров на единицу:

 23 / 30

http://markelov.blogspot.ru/2009/01/linux-procmeminfo.html
http://markelov.blogspot.ru/2009/01/linux-procmeminfo.html

294    Глава 16. Отказоустойчивость и производительность OpenStack

[root@compute-opt ~]# crudini --set /etc/nova/nova.conf DEFAULT
cpu_allocation_ratio 1

Просмотрим конфигурацию узлов NUMA, которая необходима
нам для дальнейшего планирования:
[root@compute-opt ~]# yum -y install numactl
[root@compute-opt ~]# numactl --hardware
available: 1 nodes (0)
node 0 cpus: 0 1 2 3
node 0 size: 8095 MB
node 0 free: 6828 MB
node distances:
node 0
 0: 10

В нашем случае у нас только одна зона, и вся память с точки зре-
ния доступа стоит одинаково. Кроме того, мы видим, что у нас че-
тыре ядра. Зададим в настройках Nova, что виртуальные машины
будут изолированы на ядрах с первого по второе:

[root@compute-opt ~]# crudini --set /etc/nova/nova.conf DEFAULT
vcpu_pin_set 2-3

Зарезервируем память под процессы операционной системы
гипервизора:
[root@compute-opt ~]# crudini --set /etc/nova/nova.conf DEFAULT
reserved_host_memory_mb 512

Теперь необходимо убедиться, что процессы операционной
системы не будут запускаться на ядрах, зарезервированных для
Nova. Добавим в конце командной строки загрузки ядра параметр
isolcpus:
[root@compute-opt ~]# cat /etc/default/grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rd.lvm.
lv=centos/swap rhgb quiet isolcpus=2-3"
GRUB_DISABLE_RECOVERY="true"
[root@compute-opt ~]# grub2-mkconfig > /boot/grub2/grub.cfg
Generating grub configuration file ...
...
done

После чего необходимо перезагрузить сервер.

 24 / 30

Повышение производительности виртуальных машин    295

В девятой главе мы уже рассматривали агрегаторы узлов (Host
Aggregates). Для запуска виртуальных машин, чьи vCPU должны
быть изолированы на выделенных ядрах гипервизора, мы и вос-
пользуемся агрегаторами совместно со специально созданным ти-
пом виртуальных машин (flavor). Создаем агрегатор:
$ source keystonerc_admin
$ openstack aggregate create perfvnf
+-------------------+----------------------------+
| Field | Value |
+-------------------+----------------------------+
availability_zone	None
created_at	2018-03-12T10:45:08.142708
deleted	False
deleted_at	None
id	1
name	perfvnf
updated_at	None
+-------------------+----------------------------+

Добавляем свойство, при помощи которого будем сопоставлять
агрегатор с типом виртуальной машины:
$ openstack aggregate set --property pinned=true perfvnf

Включаем хост compute-opt.test.local в созданный агрегатор:
$ openstack aggregate add host perfvnf compute-opt.test.local
+-------------------+-----------------------------+
| Field | Value |
+-------------------+-----------------------------+
availability_zone	None
created_at	2018-03-12T10:45:08.000000
deleted	False
deleted_at	None
hosts	[u'compute-opt.test.local']
id	1
metadata	{u'pinned': u'true'}
name	perfvnf
updated_at	None
+-------------------+-----------------------------+

Создадим второй агрегатор со свойством pinned=false, в который
включим оставшийся гипервизор. На втором гипервизоре будут за-
пускаться виртуальные машины, не требующие привязки к ядрам:
$ openstack aggregate create perfitapp
+-------------------+----------------------------+
| Field | Value |
+-------------------+----------------------------+
| availability_zone | None |

 25 / 30

296    Глава 16. Отказоустойчивость и производительность OpenStack

created_at	2018-03-12T11:04:10.859056
deleted	False
deleted_at	None
id	2
name	perfitapp
updated_at	None
+-------------------+----------------------------+	
$ openstack aggregate set --property pinned=false perfitapp	
$ openstack aggregate add host perfitapp compute.test.local	
+-------------------+----------------------------+	
Field	Value
+-------------------+----------------------------+	
availability_zone	None
created_at	2018-03-12T11:04:10.000000
deleted	False
deleted_at	None
hosts	[u'compute.test.local']
id	2
metadata	{u'pinned': u'false'}
name	perfitapp
updated_at	None
+-------------------+----------------------------+

Создадим новый тип виртуальной машины с соответствующи-
ми свойствами:
$ source keystonerc_admin
$ openstack flavor create --ram 2048 --disk 1 --vcpus 2 vnf
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	1
id	9ef16daa-08de-4d64-8f70-5df9dda34a85
name	vnf
os-flavor-access:is_public	True
properties	
ram	2048
rxtx_factor	1.0
swap	
vcpus	2
+----------------------------+--------------------------------------+
$ openstack flavor set --property hw:cpu_policy=dedicated vnf
$ openstack flavor set --property hw:cpu_thread_policy=prefer vnf
$ openstack flavor set --property aggregate_instance_extra_
specs:pinned=true vnf

Осталось добавить два фильтра, ServerGroupAntiAffinityFilter и
ServerGroupAffinityFilter, в число включенных фильтров планиров-
щика на управляющем узле:

 26 / 30

Повышение производительности виртуальных машин    297

[root@controller ~]# crudini --set /etc/nova/nova.conf enabled_filters
RetryFilter,AvailabilityZoneFilter,ComputeFilter,ComputeCapabilitiesFilter,
ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter
[root@controller ~]# systemctl restart openstack-nova-scheduler

Теперь можно попробовать создать виртуальную машину:

$ source keystonerc_demo
$ openstack server create --image cirros-0.4.0-x86_64 --flavor vnf --key-name
demokey1 --nic net-id=demo-net myvnf1
+-----------------------------+---+
| Field | Value |
+-----------------------------+---+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	NOSTATE
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	None
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	
adminPass	mnYzp4UVtbNp
config_drive	
created	2018-03-12T12:45:20Z
flavor	vnf (9ef16daa-08de-4d64-8f70-5df9dda34a85)
hostId	
id	ed1e84ed-6194-437d-8b72-36b0178fe9c9
image	cirros-0.4.0-x86_64 (c8ccc9b3-29bb-4220-be38-8f261ac8b99a)
key_name	demokey1
name	myvnf1
progress	0
project_id	bc10ac4b71164550a363b8098e8ad270
properties	
security_groups	name='default'
status	BUILD
updated	2018-03-12T12:45:20Z
user_id	3b76dece42b140e092dc1a76a85c1879
volumes_attached	
+-----------------------------+---+

Убеждаемся, что она создана на узле compute-opt и использует-
ся привязка к конкретным ядрам:
[root@compute-opt ~]# virsh list
 Id Name State
--
 1 instance-00000013 running
[root@compute-opt ~]# virsh dumpxml instance-00000013
<domain type='kvm' id='1'>

 27 / 30

298    Глава 16. Отказоустойчивость и производительность OpenStack

 <name>instance-00000013</name>
 <uuid>ed1e84ed-6194-437d-8b72-36b0178fe9c9</uuid>
 <metadata>
 <nova:instance xmlns:nova="http://openstack.org/xmlns/libvirt/
nova/1.0">
 <nova:package version="17.0.0-1.el7"/>
...
 <cputune>
 <shares>2048</shares>
 <vcpupin vcpu='0' cpuset='2'/>
 <vcpupin vcpu='1' cpuset='3'/>
 <emulatorpin cpuset='2-3'/>
 </cputune>
...

Если запустить несколько новых виртуальных машин с типом,
отличным от vnf, мы увидим, что все они запускаются на гиперви-
зоре compute.test.local.

Повышение производительности сети
В порядке снижения производительности сети виртуальных ма-
шин можно расположить технологии, используемые в OpenStack,
следующим образом: SR-IOV, коммутатор Open vSwitch с поддерж-
кой Intel DPDK и, наконец, стандартный Open vSwitch.

Сетевые карты с поддержкой расширения PIC Single Root I/O
Virtualization (SR-IOV) позволяют предоставлять как изолирован-
ный, так и общий доступ к аппаратным возможностям функций
PCIe «железа» (физическим и виртуальным). Cетевую карту может
между собой делить несколько виртуальных машин. Трафик, ми-
нуя гипервизор, поступает от виртуальной функции сетевой карты
к виртуальной машине. Благодаря этому достигается производи-
тельность, близкая к производительности самой физической кар-
ты, и практически исключаются накладные расходы на виртуали
зацию. Как минус технологии можно отметить то, что при этом не
поддерживается живая миграция виртуальных машин и экземпляр
виртуальной машины становится «привязан» к физическому хосту.

Intel Data Plane Development Kit – это набор библиотек, обес
печивающий быструю обработку пакетов в пространстве пользо
вателя. Приложения могут обрабатывать трафик напрямую с
сетевой карты. В RDO Open vSwitch с поддержкой DPDK постав-
ляется в пакете openvswitch-dpdk. Это медленнее, чем исполь-
зование SR-IOV, но быстрее, чем стандартный OVS. Для работы

 28 / 30

Определение аппаратных требований к оборудованию    299

Open vSwitch с поддержкой DPDK требуется одна из совместимых
сетевых карт. Пример вывода скрипта из состава DPDK, опреде-
ляющего наличие совместимой карты:
dpdk_nic_bind.py --status

Network devices using DPDK-compatible driver
==
0000:08:00.0 '82599 10 Gigabit Dual Port Backplane Connection'
drv=igb_uio unused=ixgbe
0000:08:00.1 '82599 10 Gigabit Dual Port Backplane Connection'
drv=igb_uio unused=ixgbe

Network devices using kernel driver
===================================
0000:06:00.0 'BCM57840 NetXtreme II 10/20-Gigabit Ethernet'
if=eth0 drv=bnx2x unused=igb_uio
0000:06:00.1 'BCM57840 NetXtreme II 10/20-Gigabit Ethernet'
if=eth1 drv=bnx2x unused=igb_uio
0000:87:00.0 '82599 10 Gigabit Dual Port Backplane Connection'
if=eth4 drv=ixgbe unused=igb_uio
0000:87:00.1 '82599 10 Gigabit Dual Port Backplane Connection'
if=eth5 drv=ixgbe unused=igb_uio

Other network devices
=====================
<none>

В случае использования DPDK ускорение осуществляется за счет
того, что ядро не участвует в обработке пакетов.

Нужно отметить, что каждая сетевая карта создает дополни-
тельную нагрузку на процессор, таким образом, рекомендуется ис-
пользовать в виртуальных машинах меньшее число сетевых карт,
насколько это возможно.

Определение аппаратных требований
к оборудованию
Для целей приблизительного «сайзинга» (определения достаточ-
ных аппаратных требований) можно воспользоваться калькуля-
тором от Mirantis – https://www.mirantis.com/openstack-services/
bom-calculator/.

Еще один калькулятор приводится в руководстве по планиро-
ванию архитектуры OpenStack на официальном сайте OpenStack:
https://github.com/noslzzp/cloud-resource-calculator/blob/master/
cloud-resource-calculator.ods.

 29 / 30

https://www.mirantis.com/openstack-services/bom-calculator/
https://www.mirantis.com/openstack-services/bom-calculator/
https://github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-resource-calculator.ods
https://github.com/noslzzp/cloud-resource-calculator/blob/master/cloud-resource-calculator.ods

Заключение

Если вы добрались до заключения, пройдя вместе с автором путь по
созданию своего первого демонстрационного стенда OpenStack, то
цель, которая ставилась при написании книги, достигнута. Однако
при этом вы только в начале пути по изучению и работе с проек-
том OpenStack. Не забывайте, что название книги содержит слово
«введение». Следующим шагом автор рекомендует изучение доку-
ментации с сайта http://docs.openstack.org. Также небесполезным
будет подписаться на списки рассылки – https://www.openstack.
org/community/. В первую очередь будет полезен список Operators
и Announcements. Во время написания книги появился официаль-
ный список рассылки на русском языке, однако за последние пол-
года там не появилось ни одного сообщения. Из полезных ресур-
сов еще можно порекомендовать подписаться на рассылки статей
http://superuser.openstack.org/articles и читать блоги сообщества:
http://planet.openstack.org. К сожалению, русскоязычных матери-
алов в Сети не так уж и много, но надеюсь, что с популяризацией
OpenStack их число будет возрастать.

Ну и в конце хотелось бы поблагодарить читателя за то, что про-
делал этот путь с автором.

Powered by TCPDF (www.tcpdf.org)

 30 / 30

http://docs.openstack.org/
https://www.openstack.org/community/
https://www.openstack.org/community/
http://superuser.openstack.org/articles
http://planet.openstack.org/

Приложение 1
Пример правил

брандмауэра,
реализующих

группы безопасности
на вычислительном узле

 1 -P INPUT ACCEPT
 2 -P FORWARD ACCEPT
 3 -P OUTPUT ACCEPT
 4 -N neutron-filter-top
 5 -N neutron-openvswi-FORWARD
 6 -N neutron-openvswi-INPUT
 7 -N neutron-openvswi-OUTPUT
 8 -N neutron-openvswi-i4194b0a8-7
 9 -N neutron-openvswi-local
 10 -N neutron-openvswi-o4194b0a8-7
 11 -N neutron-openvswi-s4194b0a8-7
 12 -N neutron-openvswi-sg-chain
 13 -N neutron-openvswi-sg-fallback
 14 -A INPUT -j neutron-openvswi-INPUT
 15 -A INPUT -i virbr0 -p udp -m udp --dport 53 -j ACCEPT
 16 -A INPUT -i virbr0 -p tcp -m tcp --dport 53 -j ACCEPT
 17 -A INPUT -i virbr0 -p udp -m udp --dport 67 -j ACCEPT
 18 -A INPUT -i virbr0 -p tcp -m tcp --dport 67 -j ACCEPT
 19 -A FORWARD -j neutron-filter-top
 20 -A FORWARD -j neutron-openvswi-FORWARD
 21 -A FORWARD -d 192.168.124.0/24 -o virbr0 -m conntrack
--ctstate RELATED,ESTABLISHED -j ACCEPT
 22 -A FORWARD -s 192.168.124.0/24 -i virbr0 -j ACCEPT
 23 -A FORWARD -i virbr0 -o virbr0 -j ACCEPT

 1 / 6

302    Приложение 1

 24 -A FORWARD -o virbr0 -j REJECT --reject-with icmp-port-
unreachable
 25 -A FORWARD -i virbr0 -j REJECT --reject-with icmp-port-
unreachable
 26 -A OUTPUT -j neutron-filter-top
 27 -A OUTPUT -j neutron-openvswi-OUTPUT
 28 -A OUTPUT -o virbr0 -p udp -m udp --dport 68 -j ACCEPT
 29 -A neutron-filter-top -j neutron-openvswi-local
 30 -A neutron-openvswi-FORWARD -m physdev --physdev-out
tap4194b0a8-77 --physdev-is-bridged -m comment --comment "Direct
traffic from the VM interface to the security group chain." -j
neutron-openvswi-sg-chain
 31 -A neutron-openvswi-FORWARD -m physdev --physdev-in
tap4194b0a8-77 --physdev-is-bridged -m comment --comment "Direct
traffic from the VM interface to the security group chain." -j
neutron-openvswi-sg-chain
 32 -A neutron-openvswi-INPUT -m physdev --physdev-in
tap4194b0a8-77 --physdev-is-bridged -m comment --comment "Direct
incoming traffic from VM to the security group chain." -j neutron-
openvswi-o4194b0a8-7
 33 -A neutron-openvswi-i4194b0a8-7 -m state --state
RELATED,ESTABLISHED -m comment --comment "Direct packets
associated with a known session to the RETURN chain." -j RETURN
 34 -A neutron-openvswi-i4194b0a8-7 -d 172.16.0.5/32 -p udp
-m udp --sport 67 --dport 68 -j RETURN
 35 -A neutron-openvswi-i4194b0a8-7 -d 255.255.255.255/32 -p
udp -m udp --sport 67 --dport 68 -j RETURN
 36 -A neutron-openvswi-i4194b0a8-7 -p tcp -m tcp --dport 22
-j RETURN
 37 -A neutron-openvswi-i4194b0a8-7 -p icmp -j RETURN
 38 -A neutron-openvswi-i4194b0a8-7 -m state --state INVALID
-m comment --comment "Drop packets that appear related to an
existing connection (e.g. TCP ACK/FIN) but do not have an entry
in conntrack." -j DROP
 39 -A neutron-openvswi-i4194b0a8-7 -m comment --comment
"Send unmatched traffic to the fallback chain." -j neutron-
openvswi-sg-fallback
 40 -A neutron-openvswi-o4194b0a8-7 -s 0.0.0.0/32 -d
255.255.255.255/32 -p udp -m udp --sport 68 --dport 67 -m comment
--comment "Allow DHCP client traffic." -j RETURN
 41 -A neutron-openvswi-o4194b0a8-7 -j neutron-openvswi-
s4194b0a8-7
 42 -A neutron-openvswi-o4194b0a8-7 -p udp -m udp --sport 68
--dport 67 -m comment --comment "Allow DHCP client traffic." -j
RETURN
 43 -A neutron-openvswi-o4194b0a8-7 -p udp -m udp --sport 67
--dport 68 -m comment --comment "Prevent DHCP Spoofing by VM." -j DROP
 44 -A neutron-openvswi-o4194b0a8-7 -m state --state
RELATED,ESTABLISHED -m comment --comment "Direct packets
associated with a known session to the RETURN chain." -j RETURN

 2 / 6

Пример правил брандмауэра, реализующих группы безопасности на узле    303

 45 -A neutron-openvswi-o4194b0a8-7 -j RETURN
 46 -A neutron-openvswi-o4194b0a8-7 -m state --state INVALID
-m comment --comment "Drop packets that appear related to an
existing connection (e.g. TCP ACK/FIN) but do not have an entry
in conntrack." -j DROP
 47 -A neutron-openvswi-o4194b0a8-7 -m comment --comment
"Send unmatched traffic to the fallback chain." -j neutron-
openvswi-sg-fallback
 48 -A neutron-openvswi-s4194b0a8-7 -s 172.16.0.5/32 -m mac
--mac-source FA:16:3E:95:67:8B -m comment --comment "Allow traffic
from defined IP/MAC pairs." -j RETURN
 49 -A neutron-openvswi-s4194b0a8-7 -m comment --comment
"Drop traffic without an IP/MAC allow rule." -j DROP
 50 -A neutron-openvswi-sg-chain -m physdev --physdev-out
tap4194b0a8-77 --physdev-is-bridged -m comment --comment "Jump
to the VM specific chain." -j neutron-openvswi-i4194b0a8-7
 51 -A neutron-openvswi-sg-chain -m physdev --physdev-in
tap4194b0a8-77 --physdev-is-bridged -m comment --comment "Jump
to the VM specific chain." -j neutron-openvswi-o4194b0a8-7
 52 -A neutron-openvswi-sg-chain -j ACCEPT
 53 -A neutron-openvswi-sg-fallback -m comment --comment
"Default drop rule for unmatched traffic." -j DROP

 3 / 6

Приложение 2
Листинг шаблона Heat

Запуск одной виртуальной машины –
test-server.yml
 1 heat_template_version: 2014-10-16
 2 description: >
 3 OpenStack. Практическое знакомство с облачной операционной системой.
 4 Пример запуска одной ВМ
 5
 6 parameters:
 7 network:
 8 type: string
 9 description: Сеть экземпляра ВМ
10 default: demo-net
11 image:
12 type: string
13 description: Образ для запуска ВМ
14 default: cirros-0.3.4-x86_64
15
16 resources:
17 my_server:
18 type: OS::Nova::Server
19 properties:
20 flavor: m2.tiny
21 key_name: demokey1
22 networks:
23 – network: { get_param: network }
24 image: { get_param: image }
25 user_data: |
26 #!/bin/sh
27 echo "Instance STARTED!"
28 user_data_format: RAW
29
30 outputs:
31 instance_name:
32 description: Имя экземпляра ВМ
33 value: { get_attr: [my_server, name] }
34 private_ip:
35 description: IP-адрес ВМ в частной сети
36 value: { get_attr: [my_server, first_address] }

 4 / 6

Приложение 3
Список основных

используемых службами
OpenStack сетевых портов

Служба Номер сетевого порта

Keystone – точка входа API администратора 35357

Keystone – точка входа публичного API 5000

Сервис Glance 9292

Glance реестр образов 9191

Блочное хранилище Сinder и iSCSI target 8776, 3260

Nova 8774

Nova API 8773, 8775

Доступ к консолям ВМ по протоколу VNC 5900–5999

VNC прокси для доступа к консоли ВМ
браузером

6080

Прокси для клиента HTML5 при доступе
к консоли ВМ

6082

Swift объектное хранилище и rsync 8080, 6000, 6001, 6002, 873

Сервис оркестрации Heat 8004

Сервис сети Neutron 9696

Сервис телеметрии 8041, 8042

Брокер сообщений AMQP 5672

База данных MySQL 3306

 5 / 6

Маркелов Андрей Александрович

OpenStack. Практическое знакомство
с облачной операционной системой

	 Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

	 Корректор	 Синяева Г. И.
	 Верстка	 Паранская Н. В.
	 Дизайн обложки	 Мовчан А. Г.

Формат 60×90 1/16.
Печать офсетная. Усл. печ. л. 18,74.

Тираж 200 экз.

Веб-сайт издательства: www.дмк.рф

Книги издательства «ДМК Пресс» можно заказать в торгово-издательском
холдинге «Планета Альянс» наложенным платежом, выслав открытку или
письмо по почтовому адресу: 115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью), по которому
должны быть высланы книги; фамилию, имя и отчество получателя. Жела-
тельно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-kniga.ru.
Оптовые закупки: тел. +7 (499) 782-38-89.
Электронный адрес: books@alians-kniga.ru.

Powered by TCPDF (www.tcpdf.org)

 6 / 6

mailto:dmkpress@gmail.com
http://www.дмк.рф
http://www.alians-kniga.ru
mailto:books@alians-kniga.ru

	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_1-30
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_31-60
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_61-90
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_91-120
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_121-150
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_151-180
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_181-210
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_211-240
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_241-270
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_271-300
	openstack_prakticeskoe_znakomstvo_s_oblacnoj_operacionnoj_sistemoj_301-306

