
ЛЕРНЕР РЕУВЕН

ИНТЕНСИВ

•

•

) - ----

REUVEN LERNER

PYTHON WORKOUT:
50 TEN-MINUTE

EXERCISES

РЕУВЕН ЛЕРНЕР

PYTHON-ИНТЕНСИВ:
50 БЫСТРЫХ

УПРАЖНЕНИЙ

УДК 004.43
ББК 32.973

Л49
This translation is published and sold by permission

of Manning Publications, the owner of all rights to publish
and sell the same.

 Лернер, Реувен.
Л49 Python-интенсив: 50 быстрых упражнений / Р. Лернер; пере-

вод с английского Г. Ярошенко — Москва: Издательство АСТ,
2024. – 368 с. – (Программирование для всех)

ISBN 978-5-17-155721-8

Автор, Реувен М. Лернер преподает Python и data science
компаниям по всему миру.

«Python-интенсив: 50 быстрых упражнений» - пособие по
программированию для продолжающих, тех, кто владеет тео-
ретической базой языка Python.

Книга отлично подойдет всем, кто хочет применить свои
знания на практике. Перед каждым упражнением вы найдете
теоретическую выжимку, необходимую для успешного вы-
полнения заданий. Пособие также содержит ссылки на разбор
упражнений и полезные материалы.

С помощью этой книги вы освоите такие базовые понятия
языка Python, как:

• основные структуры данных,
• функции,
• генераторы,
• объектно-ориентированное программирование
• итераторы.

УДК 004.43
ББК 32.973

ISBN 978-5-17-155721-8

© LICENSEE 2024. Authorized translation of the
English edition
© 2020 Manning Publications.
© ООО «Издательство АСТ», 2024
© Г. Ярошенко, перевод

Предисловие

Во многом изучение языка программирования похоже
на изучение иностранного (человеческого) языка. Вы мо-
жете пройти курс, понять предмет и даже хорошо сдать

выпускной экзамен. Но, когда приходит время использовать язык
на практике, вы можете оказаться в замешательстве, не зная, ка-
кой синтаксис использовать, или каким наиболее подходящим
способ выразить свою мысль — не говоря уже о том, что вы не мо-
жете понять носителей языка.

Вот тут-то и приходит на помощь практика. Практика ино-
странного языка повышает уровень беглости и уверенности, поз-
воляя вам вести более глубокие и интересные беседы. Практика
Python позволит вам быстрее и проще решать проблемы и од-
новременно писать более читаемый и сопровождаемый код.
Улучшение навыков происходит со временем, по мере того как вы
используете язык в новых и разнообразных ситуациях. Зачастую
легко не заметить свой прогресс. Но если вспомнить, как вы пи-
сали код всего несколько месяцев назад, разница будет очевидной.

Эта книга не предназначена для того, чтобы научить вас
Python. Скорее, ее цель — дать вам практику, необходимую для
свободного владения Python. После выполнения упражнений
в этой книге — а не просто беглого просмотра вопросов и под-
глядывания в ответы — вы будете писать более читабельный, бо-
лее правильный и удобный в сопровождении код на Python.

Упражнения на Python появились в результате бесед с моими
студентами на корпоративных занятиях по обучению Python.
После окончания курса они часто спрашивали, где можно найти

6 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

упражнения для дополнительной практики и улучшения своих
навыков. Эта книга основана на практических занятиях, которые
я провожу для своих студентов, а также на обсуждениях, возни-
кающих во время и после занятий.

Упражнения призваны помочь вам усвоить некоторые из основ-
ных понятий языка Python: основные структуры данных, функ-
ции, генераторы, объектно-ориентированное программирование
и итераторы. Эти темы могут показаться простыми, возможно,
даже слишком простыми для книги упражнений. Но весь Python,
от самого большого приложения до самого маленького скрипта,
основан на этих фундаментальных вещах. Чтобы чувствовать
себя уверенным при разработке на Python, очень важно знать эти
основы. Я часто говорю, что игнорирование фундаментальных
основ в пользу более сложных тем сродни тому, как если бы сту-
дент-химик игнорировал элементы в пользу «настоящих» хими-
ческих веществ.

Я могу лично подтвердить важность практики не только как
преподаватель Python, но и как студент. В течение нескольких
лет я изучаю китайский язык, во многом из-за того, что каж-
дые несколько месяцев я езжу в Китай для проведения курсов
на Python. Каждый урок, который я беру, и каждое упражнение,
которое я делаю, кажется, не сильно продвигает мое свободное
владение языком. Но когда я возвращаюсь в Китай после несколь-
ких месяцев отсутствия, я понимаю, что практика действительно
помогла и что мне легче общаться с местными.

Мне еще далеко до свободного владения китайским языком,
но я делаю успехи, и мне приятно оглядываться назад и видеть,
как далеко я продвинулся. Я надеюсь и рассчитываю, что Упраж-
нения на Python сделает то же самое для вас, улучшая ваше по-
нимание и свободное владение языком с каждым днем.

Благодарности

Возможно, это клише, что написание книги является совмест-
ной работой, но тем не менее это чистая правда. Поэтому
я хочу поблагодарить и выразить признательность людям,

без которых этой книги не было бы.
Прежде всего я хочу поблагодарить тысячи студентов, кото-

рым я имел честь преподавать на моих корпоративных курсах
по Python. Именно благодаря их вопросам, предложениям, со-
ображениям и исправлениям решения и объяснения приобрели
свой нынешний вид.

Спасибо также многим подписчикам моей еженедельной рас-
сылки «Лучшие разработчики», которые часто находят время,
чтобы прокомментировать и исправить темы, о которых я писал.
Я многому научился у них и часто использую эти знания в своей
преподавательской деятельности.

Далее Филип Гуо — доцент кафедры когнитивных наук Кали-
форнийского университета в Сан-Диего. Он также является авто-
ром и владельцем сайта Python Tutor, бесценного инструмента,
который я часто использую в своих курсах и к которому я реко-
мендую своим студентам обращаться в случае, когда у них воз-
никают сложности с написанием кода. В этой книге я использо-
вал много скриншотов с Python Tutor, и почти каждое решение
содержит ссылку на этот сайт, чтобы вы могли самостоятельно
разобраться в коде.

Спасибо всем, кто работает над Python, начиная с основных
разработчиков, тех, кто пишет и ведет блог о языке, и заканчи-
вая теми, кто создает пакеты. Экосистема Python — это впечат-

8 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ляющее технологическое достижение, но меня также поразило
огромное количество по-настоящему отзывчивых, порядочных
и дружелюбных людей, стоящих за этими достижениями.

Множество людей из Manning внесли свой вклад в эту книгу
и сделали ее намного лучше, чем я бы сделал в одиночку. (И вот
доказательство: прототип этой книги, опубликованный само-
стоятельно, был не так хорош, как тот, что вы сейчас читаете!)
Я тесно сотрудничал с несколькими людьми, и все они благодаря
мастерству и терпению помогли этой книге воплотиться в жизнь.
Майкл Стивенс увидел перспективность книги, ориентирован-
ной на отработку упражнений, и предложил мне поработать
с Manning. Фрэнсис Лефковиц не только умело отредактировала
текст и указала, где его можно улучшить, разбить или проиллю-
стрировать; она также была со мной во время всего процесса на-
писания книги. Гэри Хаббард и Игнасио Белтран Торрес дали
мне бесчисленное количество технических советов и правок, на-
ходя ошибки и помогая улучшить неудачные объяснения. А Карл
Кеснель произвел на меня неизгладимое впечатление своими по-
дробными правками окончательного текста.

Всем рецензентам: Аннет Девинд, Билл Бейли, Чарльз Дэни-
елс, Кристоффер Финк, Дэвид Криф, Дэвид Моравек, Дэвид Р.
Снайдер, Гэри Хаббард, Джефф Крейг, Глен Сиракавит, Жан-
Франсуа Морен, Джефф Смит, Йенс Кристиан Б. Мадсен, Джим
Амрхайн, Джо Юстесен, Киран Кут-Динь, Марк Элстон, Майур
Патил, Мередит Годар, Стефан Трост, Стив Лав, Сушант Бхо-
сале, Тамара Л. Фульц, Тони Холдройд и Уоррен Майерс — ваши
предложения помогли сделать эту книгу лучше.

Наконец, моя семья была терпелива на протяжении всей моей
деловой и академической карьеры. Они поддерживали и помо-
гали мне, пока я занимался развитием своих курсов, получал PhD
и путешествовал по миру, преподавая Python. Они дважды про-
явили терпение касательно это книги: когда я самостоятельно
опубликовал ее на своем сайте, и когда она была обновлена, до-
полнена и улучшена (довольно значительно), чтобы стать тем,
что вы сейчас читаете. Спасибо моей жене, Шире, и моим детям,
Атаре, Шикме и Амоцу, за их понимание и признательность.

Об этой книге

Python Workout не предназначена для обучения вас Python,
хотя я надеюсь и ожидаю, что вы узнаете много нового. Она
призвана помочь вам улучшить понимание языка Python

и его использование для решения проблем. Воспринимайте ее
как сборник упражнений, силу и потенциал которого вы можете
использовать. Чем больше усилий вы вложите в эту книгу, тем
больше вы получите от нее.

Другими словами, это книга, которую нужно не просто прочи-
тать или пролистать. Чтобы обучение прошло успешно, вам при-
дется потратить время на поиск ответов на вопросы, неизбежно со-
вершая ошибки. Есть большая разница между тем, чтобы прочитать
о поиске решения, и тем, чтобы написать его самому. Я надеюсь,
что вы потратите время на то, чтобы ответить на эти вопросы; я обе-
щаю, что это с лихвой окупится в будущем.

За время работы с Python Workout вы решите множество задач,
связанных с основными структурами данных, функциями, гене-
раторами, модулями, объектами и итераторами. Вы поймете, как
использовать их эффективно, и узнаете, как применять различ-
ные идиоматические способы. После выполнения этих упражне-
ний вам будет легче разрабатывать и писать программы на Python
для работы и для развлечения.

Обратите внимание, что не стоит искать помощи в документа-
ции Python или даже на таких сайтах, как Stack Overflow. Ни один
разработчик не может запомнить все, что ему нужно в повседнев-
ной работе. Я надеюсь, что по мере изучения книги и дальнейшей
работы с Python вы будете обращаться к подобной документации
реже или только для ознакомления с более сложными темами.

10 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Для кого эта книга
Эта книга предназначена для разработчиков, которые про-

шли курс Python или, возможно, прочитали вводную книгу
по этому языку. Фактически большая часть этих упражне-
ний предназначена для тех, кто проходит мой вводный курс
по Python или недавно закончил его. Вы должны иметь пред-
ставление об основных конструкциях, таких как if и for,
а также об основных структурах данных, таких как строки,
списки, кортежи и словари.

Но есть разница между мимолетным знакомством с этими те-
мами и умением применять их для решения реальных проблем.
Если вы умеете работать с Python, но каждый день по многу раз
обращаетесь к Stack Overflow, то эта книга поможет вам стать бо-
лее уверенным и независимым в написании кода на Python. Ду-
маю, что если вы регулярно программируете на Python не менее
шести месяцев, то эта книга будет вам полезна.

Из чего состоит эта книга:
дорожная карта

Эта книга состоит из десяти глав, каждая из которых по-
священа отдельным аспектам Python. Однако в упражнениях
каждой главы будут использоваться методы из других глав.
Например, почти в каждом упражнении вас попросят напи-
сать функцию или класс, хотя функции представлены в главе
6, а классы — в главе 9. Воспринимайте эти названия как об-
щие рекомендации, а не строгие правила для того, что вы будете
практиковать и изучать в каждой главе.

Главы
1. Числовые типы: Целые числа и числа с плавающей за-

пятой — преобразования значений между числами и строками.
2. Строки: Работая со строками, рассматривайте их не только

как текст, но и как последовательности, которые можно итери-
ровать.

11Об этой книге

3. Списки и кортежи: Создание, изменение (в случае
списков) и извлечение из списков и кортежей.

4. Словари и множества: Различные способы использования
словарей и некоторых их полезных методов. Кроме того, в не-
которых случаях используются множества, связанные со слова-
рями.

5. Файлы: Чтение и запись в файл.
6. Функции: Написание функций, включая вложенные

функции. Изучение области видимости переменных в Python.
7. Функциональное программирование с генерато-

рами: Решение задач при помощи списков, множеств и генера-
торов словарей.

8. Модули и пакеты: Написание и использование модулей
в Python-программе.

9. Объекты: Создание классов, написание методов, исполь-
зование атрибутов и объяснение наследования.

10. Итераторы и генераторы: Добавление протокола
итератора в классы, написание функций-генераторов и пред-
ставлений генераторов.

Об этой книге
Упражнения составляют основную часть каждой главы. Каж-

дое упражнение состоит из пяти компонентов:
1. Упражнение: Постановка проблемы, которую вам пред-

стоит решить.
2. Обсуждение: Подробное обсуждение

проблемы и способов ее решения.
3. Решение: Код решения, а также ссылка

на код на сайте Python Tutor [qr1], чтобы вы
могли его запустить. Код доступен на GitHub
[qr2].

4. Скринкаст решения: Короткое видео,
представляющее собой запись экрана с объяс-
нением решения. В видео будет показан

1

2

12 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

не только ответ, но и процесс поиска решения. При чтении книги
на liveBook, платформе Manning, видео появляются сразу после
каждого решения. В печатной и электронной книге есть ссылка
на навигационную страницу [qr3], нужное упражнение можно
найти по номеру и названию.

5. После выполнения упражнения:
Три дополнительных, связанных между со-
бой задания. На эти задания нет ни ответов,
ни обсуждений в книге, но вы можете ска-
чать соответствующий код. (Подробности
см. в следующем разделе.) Вы можете обсудить эти дополни-
тельные задания и сравнить решения с другими читателями
Python Workout на онлайн-форуме, посвященному книге,
платформы Manning — liveBook.

В дополнение к упражнениям приводятся многочисленные
сноски со справочной информацией, в которых объясняется
тема, часто ставящая разработчиков Python в тупик. Напри-
мер, в сносках рассказывается про f-строки, определение об-
ласти видимости переменной и о том, что происходит при со-
здании нового объекта. В книге также содержится множество
подсказок, советов и примечаний — все они призваны помочь
вам улучшить навыки программирования на Python и предо-
стеречь от повторения ошибок, которые я неоднократно совер-
шал на протяжении многих лет.

О коде
В этой книге содержится большое количество кода на языке

Python. В отличие от большинства книг, вы должны скорее на-
писать код, чем просто прочитать его. Возможно, некоторые чи-
татели (возможно, вы!) придумают решения лучше, чем у меня,
более правильные или более элегантные. Если это так, то не
стесняйтесь написать мне об этом.

Решения всех упражнений, включая задачи из «После выпол-
нения упражнения», доступны в двух местах: на сайте Python

3

13Об этой книге

Tutor, который предоставляет среду для выполнения кода, или
на GitHub по адресу, где вы можете скачать код. Этот репозиторий
не только содержит все решения, но и включает тесты pytest для
каждого из них. (Не знакомы с pytest? Я настоятельно рекомен-
дую вам прочитать о нем здесь [qr4] и использовать его для про-
верки вашего кода.)

Между кодом в репозитории GitHub и тем,
что опубликован в книге, есть небольшие
различия. В частности, решения в книге
не включают строки документации для
 функций, классов и модулей, в отличие от репозитория.

Эта книга содержит множество примеров исходного кода
как в пронумерованных листингах, так и в строках обычного
текста. В обоих случаях исходный код оформляется моноши-
ринным шрифтом, в котором все знаки имеют одинаковую
ширину, чтобы выделить его в тексте. Иногда код также вы-
деляется жирным шрифтом, чтобы подчеркнуть изменения
в коде, например, добавление новой функции к существующей
строке кода.

Во многих случаях исходный код был переформатирован; мы
добавили переносы строк и изменили отступы, чтобы уместить
их на свободных страницах книги. В редких случаях этого было
недостаточно, и мы включили в списки маркеры перевода строки
(?). Кроме того, комментарии в исходном коде часто удалялись
из листингов, если код описывался в тексте. В большинстве лис-
тингов содержатся аннотации к коду, подчеркивающие важные
концепции.

Как я уже говорил ранее, приобретая эту книгу, вы также по-
лучаете доступ к скринкастам, в которых я показываю решения
упражнений. Я надеюсь, что благодаря решениям задач (в печат-
ном виде), объяснениям, ссылкам на Python Tutor, коду из репо-
зитория, тестам pytest и скринкастам, вы сможете в полной мере
понять каждое решение и применить его в своем собственном
коде.

4

14 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Требования к программному/
аппаратному обеспечению

Прежде всего, вам нужно установить python.
Загрузить и установить его проще всего с сайта
[qr5]. Я рекомендую установить последнюю
доступную версию. Существуют также альтер-
нативные способы установки Python, включая
Windows Store или Homebrew для Mac.

Для работы с этой книгой подойдет любая версия Python 3.6
и выше. В нескольких местах текст описывает возможности, ко-
торые являются новыми в Python 3.7 и 3.8, но все решения ис-
пользуют методы, которые работают с 3.6. Все программы ра-
ботают в разных операционных системах, поэтому независимо
от того, какую платформу вы используете, упражнения в этой
книге будут работать.

Технически вам не нужно устанавливать редактор или IDE
(интегрированную среду разработки) для Python, но они обяза-
тельно пригодятся. Двумя наиболее популярными IDE являются
PyCharm (от JetBrains) и VSCode (от Microsoft). Более консерва-
тивные разработчики Python используют vim или Emacs (мой
личный фаворит). Но в конце концов, вы можете (и должны) ис-
пользовать тот редактор, который вам больше подходит. Языку
Python неважно, какую IDE вы используете.

Форум
для обсуждений liveBook

Покупая книгу Python Workout, вы получа-
ете бесплатный доступ к частному веб-фо-
руму Manning Publications, где вы можете
оставить комментарии о книге, задать техни-
ческие вопросы и получить помощь от ав-
тора и других пользователей. Чтобы получить доступ к фо-
руму, перейдите по этому адресу [qr6]. Вы также можете

5

6

15Об этой книге

узнать больше о форумах Manning и правилах поведения
на сайте [qr7].

Manning предоставляет площадку, где наши
читатели могут обсудить интересующие их
вопросы, а также пообщаться с автором. Это
не накладывает обязательства на автора участ-
вовать в обсуждении, его вклад в форум оста-
ется добровольным (и неоплачиваемым). Мы предлагаем вам по-
пробовать задать автору несколько сложных вопросов, чтобы его
интерес не пропал! Форум и архивы предыдущих обсуждений
будут доступны на сайте издательства до тех пор, пока книга на-
ходится в печати.

7

Об авторе

Реувен М. Лернер — преподаватель
по Python на постоянной основе. Он
преподает в компаниях США, Европы,

Израиля, Индии и Китая, а также ведет он-
лайн-курсы для частных лиц по всему миру.
Он часто пишет в соцсетях о Python и при-
нимает участие в дискуссиях подкаста Business of Freelancing.
Реувен живет в Модиине, расположенном в Израиле, вместе
с женой и тремя детьми. Вы можете узнать больше о Реувене
на сайте [qr8].

8

Об иллюстрации
на обложке1

Рисунок на обложке Python Workout называется Homme de la
Terre de Feu или «Человек с Огненной Земли». Иллюстра-
ция взята из сборника костюмов разных стран Жака Грассе

де Сен-Совера (1757–1810) под названием Costumes civils actuel de
tous les peoples connus, опубликованного во Франции в 1784 году.
Каждая иллюстрация превосходно нарисована и разукрашена
вручную. Богатое разнообразие коллекции Grasset de Saint-Sauveur
напоминает нам о культурных различиях между разными ча-
стями света всего 200 лет назад. Изолированные друг от друга,
люди говорили на разных диалектах и языках. По одежде чело-
века легко было определить, где он живет, чем занимается и ка-
кое положение занимает в обществе.

Мы стали одеваться по-другому, а когда-то такое богатое раз-
нообразие регионов исчезло. Теперь трудно различить жителей
разных континентов, не говоря уже о разных городах, регионах
или странах. Возможно, мы обменяли культурное разнообра-
зие на более насыщенную жизнь — определенно более разно-
образную с быстроразвивающимися технологиями.

Во времена, когда трудно отличить одну компьютерную книгу
от другой, Мэннинг проявляет изобретательность и инициативу
компьютерного бизнеса в обложках книг, основанных на бога-
том разнообразии региональной жизни двухвековой давности,
оживленной иллюстрациями Грассе де Сен-Совера.

1 В оригинале произведения была обложка, отличная от издания на рус-
ском языке

1. Числовые типы

Неважно, рассчитываете ли вы зарплату, банковский про-
цент или сотовые частоты, трудно представить про-
грамму, которая совсем не использует числа. В Python

есть три разных числовых типа: int, fl oat и complex.
Большинству читателей достаточно будет знать int (целые
числа) и fl oat (числа с дробной частью).

Числа не только лежат в основе программирования, но и дают
нам хорошее представление о том, как работает язык програм-
мирования. Понимание того, как присвоенные переменные
и аргументы функций работают с целыми и плавающими чис-
лами, поможет вам рассуждать о более сложных типах, таких
как строки, кортежи и словари.

В этой главе содержатся упражнения по работе с числами как
на ввод, так и на вывод. Хотя работа с числами может быть до-
вольно простой и понятной, иногда требуется время привыкнуть
к преобразованию и взаимодействию с другими типами данных.

Полезные ссылки
Таблица 1.1. Что вам нужно знать

Понятие Что это? Пример
Чтобы узнать

подробнее

random Модуль для генера-
ции рандомных чи-
сел и выбора слу-
чайных элементов.

number =
random.
randint (1,
100)

191. Числовые типы

Сравнение Операторы для
сравнения значе-
ний.

x < y

f — строки Строки, при по-
мощи которых
можно интерполи-
ровать выражения.

f’It is
currently
{datetime.
datetime.now
()}’

Циклы for Итерации по эле-
ментам итерируе-
мого объекта.

for i in
range
(10):print
(i*i)

input Предлагает поль-
зователю ввести
строку, затем воз-
вращает строку.

input (‘Вве-
дите ваше
имя: ‘)

enumerate Помогает нам про-
нумеровать итери-
руемые объекты.

for index,
item in
enumerate
(‘abc’): print
(f’{index}:
{item}’)

reversed Возвращает итера-
тор с элементами
итерируемого
объекта, располо-
женными в обрат-
ном порядке.

r = reversed
(‘abcd’)

Окончание таблицы

20 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 1.
Игра «Угадай число»

Цель первого упражнения — подготовить вас к работе с осталь-
ной частью книги. Оно также поможет познакомиться с рядом
тем, которые вам понадобятся на протяжении всей карьеры при
работе с Python: циклы, ввод данных пользователем, преобразо-
вание типов и сравнение значений.

Проще говоря, все программы должны получать что-то
на вход, чтобы сделать что-то интересное, и этот ввод часто ис-
ходит от пользователя. Знание того, как запрашивать ввод у поль-
зователя, не только полезно, но и позволит нам лучше понимать,
какой тип данных мы получаем, как преобразовывать в формат,
который мы можем использовать, и что это будет за формат.

Как вы, наверное, знаете, в Python предусмотрено только два
вида циклов: for и while. Знание того, как их писать и исполь-
зовать, пригодится вам на протяжении всей вашей карьеры при
работе с Python. Почти каждый тип данных умеет работать вну-
три цикла for, благодаря чему такие циклы являются распро-
страненными и весьма полезными. Если вы работаете с запи-
сями базы данных, элементами в XML-файле или результатами
поиска текста с помощью регулярных выражений, вы будете
использовать циклы for довольно часто. Для работы с этим
упражнением:

1. Напишите функцию (guessing_game), которая не при-
нимает аргументы.

2. При вызове функция выбирает случайное целое число от 0
до 100 (включительно).

3. Затем попросите пользователя угадать, какое число было
выбрано.

4. Каждый раз, когда пользователь будет вводить значение,
программа будет показывать одно из следующих сообще-
ний:
— Слишком большое
— Слишком маленькое
— То, что нужно

211. Числовые типы

5. Если пользователь угадает число, программа завершит
свою работу. В противном случае пользователю предложат
повторить попытку.

6. Программа завершается только после того, как пользова-
тель угадал.

Мы будем использовать функцию randint из модуля random
для генерации случайного числа. Таким образом, вы можете на-
писать:

import random
number = random.randint (10, 30)

и number будет хранить число от 10 до 30 включительно. Затем
мы можем делать с number все, что захотим: печатать его, хранить,
передавать в функцию или использовать в вычислениях.

Мы также предложим пользователю ввести текст с помощью
функции input. В этой книге мы будем довольно часто использо-
вать input, чтобы попросить пользователя сообщить нам что-ни-
будь. Функция будет принимать в качестве аргумента строку, кото-
рая затем будет выведена на экран. После чего функция возвращает
строку, содержащую все, что ввел пользователь, например:

name = input (‘Введите ваше имя: ‘)
print (f’Привет, {name}!’)

ПРИМЕЧАНИЕ Если пользователь нажимает на Enter,
то значением, возвращаемым input, будет пустая строка,
а не None. Фактически возвращаемое значение input всегда
будет строкой, независимо от того, что ввел пользователь.

ПРИМЕЧАНИЕ В Python 2 вы бы попросили пользователя
ввести данные с помощью функции raw_input. Использова-
ние функции input в Python 2 считалось рискованным, по-
скольку она запрашивала у пользователя ввод, а затем оце-
нивала полученную строку с помощью функции eval. (Если
вам интересно, ознакомьтесь с дополнительной информацией
по ссылке). В Python 3 опасная функция исчезла, и теперь ввод
осуществляется при помощи input.

22 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обсуждение
В основе этой программы лежит простое применение опера-

торов сравнения ((==, < и >), чтобы пользователь мог угадать слу-
чайное целое число, которое выбрал компьютер. Однако стоит
уделить внимание некоторым особенностям данной программы.

Первое и наиболее важное — мы используем модуль random
для генерации случайного числа. После импортирования random
мы можем вызвать random.randint, которая принимает два па-
раметра и возвращает случайное целое число. В целом модуль
random является полезным инструментом для тех случаев, когда
вам нужно выбрать случайное значение.

Обратите внимание, что максимальное число в random.
randint является инклюзивным, т.е. входит в диапазон, что яв-
ляется необычным для Python. В большинстве случаев крайние
значения диапазонов являются эксклюзивными, т.е. не входят
в диапазон.

СОВЕТ Модуль random используется не только для гене-
рации случайных чисел. Он также содержит ряд функций для
выбора одного или нескольких элементов из последователь-
ности Python.

Теперь, когда компьютер «загадал» число, пользователь
должен его угадать. Ниже мы запускаем бесконечный цикл
в Python, который проще всего создать с помощью while
True. Несомненно важно, чтобы существовал способ выйти
из цикла; в данном случае это произойдет, когда пользователь
правильно угадает значение answer. Когда это произойдет,
внутренний цикл завершится при помощи команды break.

Функция Input всегда возвращает строку. Это означает, что,
если мы хотим угадать число, мы должны превратить введенную
строку в целое число. Это делается так же, как и все преобразо-
вания в Python: целевой тип передается как параметр в соответ-
свующую функцию. Таким образом, int (‘5’) вернет целое
число 5, а str (5) — строку ‘5’. Вы также можете создавать но-

231. Числовые типы

вые экземпляры более сложных типов, вызывая класс как функ-
цию, например, list (‘abc’) и dict ([(‘a’, 1), (‘b’, 2),
(‘c’, 3)]).

В Python 3 вы не можете использовать < и > для сравнения раз-
личных типов. Если вы пренебрежете преобразованием введен-
ного пользователем значения в целое число, программа завер-
шится с ошибкой, сообщив, что она не может сравнить строку
(т.е. введенное пользователем значение) с целым числом.

ПРИМЕЧАНИЕ В Python 2 сравнение объектов разных ти-
пов не вызывает ошибку. Результаты могут быть неожидан-
ными, если вы не знаете, что именно хотите получить. Это
потому, что Python сначала сравнивает их по типу, а затем
внутри этого типа. Другими словами, все целые числа меньше
всех списков, а все списки меньше всех строк. Так ли нужно
использовать < и > для объектов разных типов? Скорее всего,
нет, и я обнаружил, что эта функциональность больше путает
людей, чем помогает им. В Python 3 вы не можете выполнить
такое сравнение: попытка проверить 1 < [10, 20, 30] при-
ведет к исключению TypeError.

В этом упражнении и в остальных частях этой книги я исполь-
зую f-строки для вставки значений из переменных в наши строки.
Я большой поклонник f-строк, советую вам попробовать порабо-
тать с ними. (См. сноски про f-строки в этой главе.)

Спасительный моржовый оператор
Люди, которые перешли на Python с других языков, ча-

сто удивляются, что в циклах while True мы обрабаты-
ваем пользовательский ввод и прерываем его. Неужели нет
способа получше? Некоторые предлагают использовать
следующий код:

while s = input (‘Введите ваши мысли:’):
print (f’Ваши мысли: {s}’)

24 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Действительно, в этом больше смысла — мы просим поль-
зователя ввести данные и присваиваем их s. Однако значе-
ние, присвоенное s, затем будет передано в while, который
определит его как логическое значение. Если мы получаем
пустую строку, то логическое значение равно False, и мы
выходим из цикла.

Есть только одна проблема с этим кодом: он не будет рабо-
тать. Это потому, что присваивание в Python не является вы-
ражением, т.к. оно не возвращает значение. Если оно не воз-
вращает значение, то его нельзя использовать в цикле while.

Начиная с версии Python 3.8, ситуация несколько из-
менилась. В этой версии появился оператор «присваи-
вания выражения», который выглядит как := (двоеточие,
за которым следует знак равенства). Но на самом деле ни-
кто не называет его «оператором присваивания выраже-
ния», с самого начала его прозвали «моржовым опера-
тором». Также с самого начала этот оператор вызывал
много споров. Некоторые люди говорили, что он привнес
в язык ненужную сложность и потенциальные ошибки.

Вот как предыдущий цикл будет выглядеть в Python 3.8:

while s:= input (‘Введите ваши мысли:’):
print (f’Ваши мысли: {s}’)

Благодаря моржовому оператору мы можем наконец-то
избавиться от циклов while True и возможного хаоса
с ними! Но подождите: разве нам не нужно беспокоиться
о странных последствиях присваивания в условии цикла
while? Возможно, и это часть противоречия. Но меня убе-
дил, в немалой степени, тот факт, что обычное присваивание
и оператор присваивания не являются взаимозаменяемыми;
там, где можно использовать одно, другое нельзя. Я думаю,
это уменьшает вероятность неправильного использования.

251. Числовые типы

Если вы хотите узнать больше про
моржовый оператор, его противоречиях
и о том, почему он на самом деле весьма
полезен, я предлагаю вам ознакомиться
со следующим докладом с PyCon 2019,
в котором Дастин Ингрэм приводит ве-
сомые аргументы: [qr20].

Вы также можете прочитать больше
об этом операторе в PEP 572, где он был
представлен и определен: [qr21].

Решение
import random
def guessing_game ():
answer = random.randint (0, 100)

 while True:
 user_guess = int (input (‘Каковы ваши предпо-
ложения?’))

if user_guess == answer:
print (f’Правильно! Ответ {user_guess}’)

 break

if user_guess < answer:
 print (f’Ваше число {user_guess} слишком
маленькое!’)

 else:
 print (f’Ваше число {user_guess} слишком
большое!’)

guessing_game ()

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr22].

22

21

20

26 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ПРИМЕЧАНИЕ В рамках данного упражнения мы будем
считать, что наш пользователь будет вводить только правиль-
ные данные, а именно целые числа. Помните, что функция
int обычно предполагает, что мы передаем ей десятичное
число, а это значит, что ее аргумент может содержать только
цифры. Если вы предпочитаете педантично подходить к ра-
боте, вы можете использовать метод str.isdigit для про-
верки того, что строка содержит только цифры. Или вы можете
обработать исключение ValueError, которое вы получите,
если выполните int для того, что не может быть превращено
в целое число.

 Пройдитесь по своему коду
с помощью Python Tutor
В этой книге я использую многие диаграммы из Python

Tutor, удивительного онлайн-ресурса для преподавания
и изучения Python. (Я часто использую его на своих очных
занятиях). Вы можете ввести практически любой код Python
на сайте, а затем пройтись по его выполнению, фрагмент
за фрагментом. Большинство решений в этой книге содержат
ссылку, указывающую на код в Python Tutor, чтобы вы могли
запустить его, не вводя на сайте.

В Python Tutor глобальные переменные (включая
функции и классы) отображаются в глобальном фрейме.
Помните, что, если вы определяете переменную вне
функции, вы создаете глобальную переменную. Лю-
бые переменные, которые вы создаете внутри функции,
являются локальными переменными и отображаются
в Python Tutor в затененных областях. Простые структуры
данных, такие как целые числа и строки, отображаются
вместе с переменными, указывающими на них, в то время
как списки, кортежи и словари отображаются в графиче-
ском формате.

271. Числовые типы

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr25].

После выполнения упражнения
Вы часто будете работать с вводом, и поскольку он представ-

ляет собой строку, вам, скорее всего, придется преобразовывать
его в другие типы, такие как целые числа (в данном упражне-
нии). Вот несколько дополнительных вариантов, как реализовать
эту идею на практике:

1. Измените эту программу так, чтобы она давала пользова-
телю только три шанса угадать правильное число. После
трех безуспешных попыток программа сообщит, что по-
пытки закончились, и завершится.

2. Вы должны не только выбрать случайное число, но и вы-
брать случайно основание системы счисления от 2 до 16,
в которой пользователь должен представить свой ввод. Если
пользователь введет число «10», вам нужно будет учесть си-
стему счисления: «10» может означать 10 (десятичная си-
стема), или 2 (двоичная система), или 16 (шестнадцатерич-
ная система).

3. Попробуйте сделать то же самое, но попросите программу
выбрать случайное слово из словаря, а затем попросите
пользователя угадать это слово. (Возможно, вы захотите
ограничиться словами из двух-пяти букв, чтобы не услож-
нять задачу.) Вместо того, чтобы говорить пользователю, что
он должен угадать меньшее или большее число, попросите
его выбрать предыдущее или следующее из словаря.

f-строки
Большинство людей при выполнении упражнения «Уга-

дай число» пытаются напечатать комбинацию строки и
числа, например, «Вы угадали 5». Однако они быстро осо-
знают, что в Python нельзя складывать (используя +) строки

25

28 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

и целые числа. Как же тогда можно вывести на экран строку,
содержащую оба типа?

Эта проблема давно беспокоит тех, кто перешел на Python
с других языков. Раньше проблему решали при помощи
оператора%:

‘Hello,%s’% ‘world’

В то время как программисты, пишущие на C, радовались
аналогу printf, все остальные считали этот метод неудач-
ным. Среди прочего,% не был суперинтуитивно понятным
для новичков, требовал использовать круглые скобки при
передаче более одного аргумента и не позволял легко ссы-
латься на повторяющиеся значения.

Поэтому огромным шагом вперед стало появление
в Python метода str.format:

‘Hello, {0}’.format (‘world’)

Мне нравился str.format, однако многие новички на-
ходили его немного сложным в использовании и очень
длинным. В частности, им не понравилась идея ссылаться
на переменные слева и давать значения справа. А синтаксис
внутри фигурных скобок был специфичным для Python, что
огорчало всех.

В Python 3.6 появились f-строки, похожие на строки
с двойными кавычками, которыми программисты пользо-
вались десятилетиями в Perl, PHP, Ruby и в оболочках Unix.
f-строки работают практически так же, как str.format, но без
необходимости передачи параметров:

name = ‘world’
f’Hello, {name}’

На самом деле это даже лучше. Вы можете поместить лю-
бое выражение внутри фигурных скобок, и оно будет обра-
ботано после анализа строки, например:

291. Числовые типы

name = ‘world’
x = 100
y = ‘abcd’
f’x * 2 = {x*2}, and y.capitalize () is

{y.capitalize ()}’

В Python 3.6 появились f-строки, похожие на строки
с двойными кавычками, которыми программисты пользо-
вались десятилетиями в Perl, PHP, Ruby и в оболочках Unix.
f-строки работают практически так же, как str.format,
но без необходимости передачи параметров:

name = ‘world’
f’Hello, {name}’

На самом деле это даже лучше. Вы можете поместить лю-
бое выражение внутри фигурных скобок, и оно будет обра-
ботано после анализа строки, например:

name = ‘world’
x = 100
y = ‘abcd’
f’x * 2 = {x*2}, and y.capitalize () is

{y.capitalize ()}’

Вы также можете управлять форматированием каждого
типа данных, поместив код после двоеточия (:) внутри фигур-
ных скобок. Например, можно выровнять строку влево или
вправо на поле из 10 хэш-знаков (#), следующим образом:

name = ‘world’
fi rst = ‘Reuven’
last = ‘Lerner’

 f’Hello, {fi rst:#<10}
{last:#>10}’

Код формата #<10 означает,
что строка, выровненная
по левому краю, будет рас-
полагаться в поле из 10 сим-
волов, при этом # заполнит
пустое пространство.
Код формата #>10 означает
то же самое, но с правым
выравниванием.

30 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Я определенно рекомендую вам обратить внимание
на f-строки и использовать их. Это одно из моих любимых
усовершенствований Python за последние несколько лет.

Для получения дополнительной ин-
формации об f-строках ознакомьтесь
со следующими ресурсами:

1. Сравнение возможностей форма-
тирования в Python, включая ин-
формацию об f-строках: [qr26]

2. Длинная статья о f-строках и о том,
как их можно использовать: [qr27]

3. PEP, в котором были введены
f-стро ки: [qr28]

Что делать, если вы все еще использу-
ете Python 2 и не можете использовать
f-строки? Вы можете прибегнуть к стро-
ковому методу str.format, который
работает примерно так же, но с мень-
шей гибкостью. Кроме того, вы должны
вызвать метод и сослаться на аргументы по номеру или
имени.

Упражнение 2. Сложение чисел
Один из моих любимых типов упражнений включает в себя

повторную реализацию функциональности, которую мы уже ви-
дели в Python и в Unix. Это подготовка к следующему упраж-
нению, в котором вам предстоит реализовать функцию sum.
Эта функция принимает последовательность чисел и возвра-
щает сумму этих чисел. Таким образом, если вы вызовете sum
([1,2,3]), то получите в результате 6.

Задача состоит в том, чтобы написать функцию mysum, кото-
рая делает то же самое, что и встроенная функция sum. Однако
вместо того чтобы принимать в качестве параметра одну после-

26

27

28

311. Числовые типы

довательность, он должен принимать переменное количество
аргументов. В результате вместо sum ([1,2,3]) вы вызовете
mysum (1,2,3) или mysum (10,20,30,40,50).

ПРИМЕЧАНИЕ Встроенная функция sum принимает
также необязательный второй аргумент, который мы здесь иг-
норируем.

И нет, вы не должны использовать для этого встроенную функ-
цию sum! (Вы удивитесь, как часто мне задают этот вопрос, когда
я читаю лекции.)

Это упражнение призвано помочь вам задуматься не только
о числах, но и об устройстве функций. В частности, вам следует
подумать о том, какие типы параметров могут принимать функ-
ции в Python. Во многих языках вы можете определять функции
несколько раз, каждая из которых имеет свою сигнатуру типа (т.е.
количество параметров и типы параметров). В Python сохраня-
ется только одно определение функции (т.е. последний раз, когда
функция была определена). Гибкость достигается за счет пра-
вильного использования различных типов параметров.

СОВЕТ Если вы не знакомы с оператором
splat (звездочка), вам вероятно захочется
узнать больше о нем в этом учебнике
по Python: [qr30].

Обсуждение
Функция mysum — простой пример того, как можно исполь-

зовать оператор Python splat (он же *), чтобы позволить функции
принимать любое количество аргументов. Добавляя к numbers
символ *, мы говорим Python, что этот параметр должен получать
все аргументы и что numbers всегда будут кортежем.

Даже если в нашу функцию не будет передано никаких аргу-
ментов, numbers все равно будут кортежем. Это будет пустой
кортеж, но тем не менее кортеж.

30

32 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Оператор splat особенно полезен, когда вы хотите получить
неизвестное количество аргументов. Обычно предполагается,
что все аргументы будут одного типа, хотя в Python это пра-
вило не соблюдается. По моему опыту, вы берете кортеж (в дан-
ном случае numbers) и перебираете каждый элемент с помощью
цикла for или генератора списка.

ПРИМЕЧАНИЕ Если вы получаете элементы из *args
с числовыми индексами, то, вероятно, вы делаете что-то не так.
Используйте отдельные именованные параметры, если вы хо-
тите отбирать их по одному.

Поскольку мы ожидаем, что все аргументы будут числовыми,
мы устанавливаем локальной переменной output значение
0, помещаем ее в начало функции, а затем добавляем к ней все
отдельные числа с помощью цикла for. Мы можем вызвать эту
функцию для любого списка, множества или кортежа чисел.

Хотя sum (или ее аналоги) используется не очень часто,
*args является чрезвычайно распространенным способом (для
функции) принять неизвестное количество аргументов.

 Преобразование итерируемых объектов
в аргументы
Что если у нас есть список чисел, например [1,2,3],

и мы хотим использовать mysum? Мы не можем просто вы-
звать mysum ([1,2,3]), в результате аргумент numbers бу-
дет кортежем, первым и единственным элементом которого
является список [1,2,3], что выглядит следующим образом:

([1,2,3],).

Python будет итерировать наш одноэлементный кортеж,
пытаясь добавить 0 к [1,2,3]. Это приведет к появле-
нию исключения TypeError, причем Python сообщит, что
не может добавить целое число в список.

331. Числовые типы

Решением в таком случае является предварительное
обозначение аргумента символом * при вызове функ-
ции. Если мы вызовем mysum (* [1,2,3]), наш список
превратится в три отдельных аргумента, что позволит вы-
звать функцию обычным способом.

Это обычно верно при вызове функций. Если у вас есть
итерируемый объект и вы хотите передать его элементы
в функцию, просто добавьте * в вызов функции.

Решение
def mysum (*numbers):

output = 0
for number in numbers:

output += number
 return output

print (mysum (10, 20, 30, 40))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr31].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr32].

После выполнения упражнения
Очень часто приходится перебирать элементы списка или

кортежа, выполняя операцию над каждым элементом, а затем,
например, суммировать их. Вот несколько примеров:

1. Встроенная функция sum принимает опциональный вто-
рой аргумент, который используется в качестве начальной
точки для суммирования. (Вот почему она принимает спи-
сок чисел в качестве первого аргумента, в отличие от нашей
реализации mysum.) Так sum ([1,2,3], 4) возвращает

31

32

34 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

10, потому что 1+2+3 — это 6, которые будут добавлены
к начальному значению 4. Доработайте свою функцию
mysum так, чтобы она работала подобным образом. Если
второй аргумент не указан, то по умолчанию он равен 0.
Обратите внимание, что, хотя в Python 3 можно написать
функцию, которая определяет параметр после *args, я бы
предложил избегать этого и просто принимать два аргу-
мента: список и опциональную начальную точку.

2. Напишите функцию, которая принимает список чисел. Он
должен вернуть среднее значение (т.е. среднее арифмети-
ческое) этих чисел.

3. Напишите функцию, которая принимает список слов
(строк). Она должна возвращать кортеж, содержащий три
целых числа: длина самого короткого слова, самого длин-
ного слова и средняя длина слова.

4. Напишите функцию, которая принимает список объектов
Python. Суммируйте те объекты, которые либо являются
целыми числами, либо могут быть преобразованы в целые
числа, остальные игнорируйте.

Упражнение 3. Время выполнения
Системные администраторы часто используют Python для вы-

полнения различных задач, включая создание отчетов на основе
пользовательских данных и файлов. Нет ничего необычного
в том, чтобы сообщить, как часто возникает то или иное сообще-
ние об ошибке, или какие IP-адреса обращались к серверу в по-
следнее время, или какие пользователи чаще всего вводят не-
правильный пароль. Таким образом, важно уметь накапливать
информацию и создавать некоторые базовые отчеты (включая
среднее время). Кроме того, важно знать, как работать со значени-
ями с плавающей запятой и чем они отличаются от целых чисел.

Для этого упражнения мы предположим, что вы каждый день
пробегаете 10 км согласно плану тренировок. Вы хотите знать,
сколько времени в среднем занимает бег.

351. Числовые типы

Напишите функцию (run_timing), которая спрашивает,
сколько времени вам понадобилось, чтобы пробежать 10 км.
Функция продолжит спрашивать, сколько времени (в минутах)
потребовалось для дополнительных пробежек, пока пользова-
тель не нажмет Enter. После этого функция вычислит и отобразит
среднее время, потраченное на бег 10 км, а затем завершит работу.

Например, вот, как будет выглядеть вывод, если пользователь
введет три примера данных:

Введите время пробега 10 км: 15
Введите время пробега 10 км: 20
Введите время пробега 10 км: 10
Введите время пробега 10 км:<enter>

Средний показатель 15.0, более 3 пробежек

Обратите внимание, что числовые входные и выходные значе-
ния должны быть значениями с плавающей точкой. Это упраж-
нение призвано помочь вам потренироваться в преобразовании
входных данных в соответствующие типы, а также в отслежива-
нии информации во времени. Вы, вероятно, будете отслеживать
данные более сложные, чем время и дистанция, но идея накопле-
ния данных с течением времени часто встречается в программах,
и важно понять, как это сделать в Python.

Обсуждение
В предыдущем упражнении мы увидели, что input — это

функция, которая возвращает строку, содержащую введеные
пользователем данные. Однако пользователь может ввести как
и число, так и пустую строку.

Пустые строки, как и число 0, оператором if будут рассмат-
риваться как False. Обычно в программах на Python исполь-
зуют следующий способ:

if not one_run:
 break

36 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Это необычно, и было бы немного странно сказать

if len (one_run) == 0:
 break

Такой код будет работать, однако, согласно общепринятым дого-
воренностям, такой стиль считается плохим. Следование этим до-
говоренностям сделает ваш код более питоничным, а значит, более
читабельным для других разработчиков. В данном случае рекомен-
дуется указать not перед переменной, которая может быть пустой,
таким образом, значение будет False.

В реальном приложении Python, если вы принимаете ввод
от пользователя и вызываете fl oat, вам, вероятно, следует обер-
нуть его в try, на случай, если пользователь введет недопусти-
мое значение:

try:
n = fl oat (input (‘Введите число: ‘))
print (f’n = {n}’)

except ValueError as e:
print (‘Эй! Это недопустимое число!’)

Также помните, что значения чисел с плавающей точкой
не являются абсолютно точными. Они подойдут для задач, свя-
занных с измерением времени, затрачиваемого на бег, но не для
чувствительных измерений, таких как научные или финансовые
расчеты.

Если вы ранее не знали об этом, то я предла-
гаю открыть ваш локальный интерактивный ин-
терпретатор Python и спросить у него значение
0.1 + 0.2. Вы можете быть удивлены результа-
тами. (Вы также можете зайти на сайт [qr33] и по-
смотреть, как это работает в других языках программирования.)

Одним из распространенных решений этой проблемы яв-
ляется использование целых чисел. Вместо того чтобы вести учет
долларов и центов (как fl oat), вы можете просто вести учет цен-
тов (как int).

33

371. Числовые типы

Контролирование при помощи f-строк
Если вы хотите напечатать в Python число с плавающей

точкой, то лучше использовать f-строку. Почему? Потому
что таким образом можно указать количество цифр, кото-
рые будут выведены на печать. Приведем пример:

>>> s = 0.1 + 0.7
>>> print (s)
0,7999999999999999

Это, вероятно, не то, чего вы хотите. Однако, поместив s
внутрь f-строки, вы можете ограничить вывод:

>>> s = 0.1 + 0.7
>>> print (f’{s:.2f}’)
0.80

Здесь я сообщил f-строке, что хочу взять значение s и отоб-
разить его как число с плавающей точкой (f) с максимум двумя
цифрами в дробной части числа. См. справочную таблицу (та-
блица 1.1) в начале этой главы для получения полной доку-
ментации по f-строкам и кодам форматирования, которые вы
можете использовать для различных типов данных.

Решение
def run_timing ():
“””Просим пользователя несколько раз ввести чи-

словые данные. Печатает среднее время и количество
запусков.””””

 number_of_runs
 total_time = 0

 while True:
one_run = input (‘Enter 10 km run time: ‘)

Смотрите, это бесконечный цикл! Мо-
жет показаться странным наличие while
True, действительно, это очень плохая
идея не использовать в цикле оператор
break для завершения работы при до-
стижении соответствующего условия.
Но я думаю, подойдет как общий способ
получить неизвестное количество вход-
ных данных от пользователей.

38 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

if not one_run: Если one_run — пустая
строка, остановитесь.break

number_of_runs += 1
total_time += fl oat (one_run)

average_time = total_time / number_of_runs

 print (f’Среднее значение {average_time}, для
{number_of_runs} пробежек’)

run_timing ()

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr34].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr35].

После выполнения упражнения
Числа с плавающей точкой одновременно необходимы и од-

новременно потенциально опасны в мире программирования:
необходимы, потому что многие вещи могут быть представлены
только дробными числами, но потенциально опасны, потому что
они не точны. Таким образом, вы должны задумываться о том, где
и когда использовать их. Вот два упражнения, в которых вы захо-
тите использовать fl oat:

R Напишите функцию, которая принимает число fl oat и два
целых числа (before и after). Функция должна возвра-
щать fl oat, состоящее из before (цифры до десятичной
точки) и after (цифры после). Таким образом, если мы
вызываем функцию с 1234.5678, 2 и 3, возвращаемое
значение будет равно 34.567.

R Изучите класс Decimal, который содержит альтернатив-
ное представление с плавающей точкой, настолько точное,

34

35

391. Числовые типы

насколько может быть точным любое десятичное число.
Напишите функцию, которая принимает от пользователя
две строки, превращает их в экземпляры decimal, а за-
тем печатает сумму двух введенных пользователем чи-
сел с плавающей точкой. Другими словами, сделайте так,
чтобы пользователь ввел 0.1 и 0.2, а мы получили 0.3.

Упражнение 4.
Шестнадцатеричный вывод

В Python циклы встречаются повсюду, а тот факт, что
большинство встроенных структур данных являются итериру-
емыми объектами, позволяет легко работать с ними по одному
элементу за раз. Однако обычно мы итерируем от первого эле-
мента к последнему. Более того, Python не предоставляет нам ав-
томатически индексы элементов. В этом упражнении вы увидите,
как немного творчества, а также встроенные функции reversed
и enumerate помогут вам обойти эти проблемы.

Шестнадцатеричные числа довольно распространены в мире
компьютеров. На самом деле это не совсем так. Некоторые про-
граммисты используют их постоянно. Однако другие програм-
мисты, обычно использующие языки высокого уровня и занима-
ющиеся, например, веб-разработкой, даже не помнят, как ими
пользоваться.

Дело в том, что я почти не использую шестнадцатеричные
числа в своей повседневной работе. И даже если бы они мне по-
надобились, я мог бы воспользоваться встроенной в Python функ-
цией hex и префиксом 0x. В первом варианте на вход прини-
мается целое число и возвращается шестнадцатеричная строка;
во втором — вводится число в шестнадцатеричной системе счис-
ления, что может быть более удобным. Так, 0x50 равно 80,
и hex (80) вернет строку 0x50.

Для этого упражнения вам нужно написать функцию (hex_
output), которая принимает шестнадцатеричное число и возвра-
щает его десятичный эквивалент. То есть, если пользователь введет

40 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

50, вы будете считать, что это шестнадцатеричное число (рав-
ное 0x50), и на экран выведется значение 80. И нет, вы не должны
преобразовывать число сразу, используя функцию int, хотя допу-
стимо использовать int по одной цифре за раз.

Это упражнение не предназначено для проверки ваших ма-
тематических навыков, вы можете получить шестнадцатерич-
ный эквивалент целых чисел с помощью функции hex, при
этом большинству людей это даже не нужно в повседнев-
ной жизни. Тем не менее, это касается преобразования (раз-
личными способами) типов, которое мы можем выполнять
в Python благодаря тому, что последовательности (например,
строки) являются итерируемыми объектами. Рассмотрим также
встроенные функции, использовать которые проще, чем писать
все с нуля.

СОВЕТ В Python оператором возведения в степень яв-
ляется **. Поэтому результатом 2**3 будет целое число 8.

Обсуждение
Ключевым аспектом строк Python является то, что они пред-

ставляют собой последовательности символов, над которыми мы
можем выполнять итерации в цикле for. Однако циклы for
в Python, в отличие от их аналогов в C, не дают нам (и даже не ис-
пользуют) индексы символов. Скорее, они выполняют итерацию
над самими символами.

Если нам нужен числовой индекс каждого символа, мы мо-
жем использовать встроенную функцию enumerate. Эта функ-
ция возвращает кортеж из двух элементов на каждой итерации,
используя синтаксис Python для множественного присваивания
(«распаковки»), мы можем захватить каждое из этих значений
и поместить их в наши переменные power и digit.

Вот пример того, как мы можем использовать enumerate для
вывода первых четырех букв алфавита вместе с индексами букв
в строке:

411. Числовые типы

for index, one_letter in enumerate (‘abcd’):

print (f’{index}: {one_letter}’)

ПРИМЕЧАНИЕ Почему в Python вообще есть enumerate?

Потому что во многих других языках, таких как C, цикл for

выполняет итерации по последовательностям чисел, которые

используются для извлечения элементов из последователь-

ности. Но в Python наши циклы for получают элементы

напрямую, без необходимости в явной индексной перемен-

ной. enumerate таким образом создает индексы на основе

элементов — в точности противоположно тому, как это рабо-

тает в других языках.

Вы также видите здесь использование reversed, т.е. мы на-

чинаем с последней цифры и идем к первой. reversed — это

встроенная функция, которая возвращает новую строку, значе-

ние которой является обратным значению старой. Мы могли бы

получить тот же результат, используя синтаксис среза (slice),

hexnum [::-1], но я пришел к выводу, что многие люди не по-

нимают этого синтаксиса. Кроме того, срез возвращает новую

строку, тогда как reversed возвращает итератор, который по-

требляет меньше памяти.

Нам нужно преобразовать каждую цифру нашего десятич-

ного числа, которое было введено как строка, в целое число.

Мы делаем это с помощью встроенной функции int, которую

можно представить как создание нового экземпляра класса или

типа int. Мы также видим, что int принимает два аргумента.

Первый является обязательным и представляет собой строку,

которую мы хотим превратить в целое число. Второй является

необязательным и содержит основание числа. Поскольку мы

конвертируем из шестнадцатеричной системы счисления (т.е.

по основанию 16), мы передаем 16 в качестве второго аргу-

мента.

42 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение
def hex_output ():

decnum = 0
 hexnum = input (‘Введите
шестнадцатеричное число
для преобразования: ‘)

 for power, digit in
enumerate (reversed
(hexnum)):

 decnum += int (digit, 16)
* (16 ** power)

print (decnum)

hex_output ()

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr36].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr37].

После выполнения упражнения
Каждый разработчик Python должен хорошо понимать про-

токол итератора, который используют циклы for и многие
другие функции. Комбинирование циклов for с другими
объектами, такими как enumerate и срезы, может помочь
сделать ваш код короче и удобнее в обслуживании.

1. Реализуйте решение этого упражнения так, чтобы оно
вообще не использовало функцию int, а использовало
встроенные функции ord и chr для идентификации
символа. Эта реализация должна быть более надежной,

reversed возвращает но-
вый итерируемый объект,
который возвращает эле-
менты другого итериру-
емого объекта в обрат-
номпорядке. Вызвав
enumerate на выходе из
reversed, мы получим
каждый элемент hexnum,
по одному за раз, вместе с
его индексом, начиная с 0.

Оператор ** в Python ис-
пользуется для возведения
в степень.

36

37

431. Числовые типы

т.к. игнорирует символы, которые не являются допусти-
мыми для введенного основания чисел.

2. Напишите программу, которая запрашивает у пользователя
его имя, а затем выдает «треугольник имен»: первая буква
имени, затем первые две буквы, затем первые три и так да-
лее, пока все имя не будет записано на последней строке.

Подводя итоги
Трудно представить себе программу на Python, в которой

не используются числа. Будь то числовые индексы (в строке,
списке или кортеже), подсчет количества появлений IP-адреса
в лог-файле или расчет процентных ставок по банковским кре-
дитам, вы будете постоянно использовать числа.

Помните, что Python сильно типизирован, а это значит, что,
например, целые числа и строки — это разные типы. Вы можете
превратить строки в целые числа с помощью int, а целые числа
в строки с помощью str. И вы можете превратить любой из этих
типов в число с плавающей точкой с помощью fl oat.

В этой главе мы рассмотрели несколько способов работы с чис-
лами различных типов. Вы вряд ли будете писать программы, ис-
пользующие числа только таким образом, но чувствовать уве-
ренность в том, что они работают и вписываются в большую
экосистему Python, очень важно.

2. Строки

Строки в Python — это способ работы с текстом. Слова,
предложения, абзацы и даже целые файлы читаются
и обрабатываются с помощью строк. Поскольку большая

часть нашей работы связана с текстом, неудивительно, что

строки являются одним из самых распространенных типов

данных.

Вы должны помнить о двух важных вещах касательно строк

в Python: (1) они неизменяемы, и (2) в Python 3 они содержат

символы Unicode, закодированные в UTF-8. (См. сноски по каж-

дому из этих вопросов.)

В Python нет такого понятия, как «символьный» тип. Мы мо-

жем говорить об «односимвольной строке», но это означает лишь

строку, длина которой равна 1.

Строки в Python интересны и полезны не только потому, что

они позволяют работать с текстом, но и потому, что они являются

последовательностью Python. Это означает, что мы можем вы-

полнять итерации по ним (символ за символом), получать их

элементы с помощью числовых индексов и выполнять поиск

с помощью оператора in.

В этой главе содержатся упражнения, которые помогут вам ра-

ботать со строками различными способами. Чем лучше вы зна-

комы с техникой работы со строками в Python, тем легче вам бу-

дет работать с текстом.

452. Строки

Полезные ссылки
Таблица 2.1. Что вам нужно знать

Понятие Что это? Пример
Чтобы узнать

подробнее

in Оператор для по-
иска в последова-
тельности.

‘a’ in ‘abcd’

Срез Извлекает подмно-
жество элементов
из последователь-
ности.

возвра-
щает ‘bdf’
‘abcdefg’
[1:7:2]

str.split Разбивает строки
на части, возвращая
список.

возвращает
[‘abc’, ‘def’,
‘ghi’] ‘abc
def ghi’.split
()

str.join Объединяет строки
для создания новой
строки.

возвращает
‘abc*def*ghi’
‘*’.join
([‘abc’,
‘def’, ‘ghi’])

list.
append

Добавляет элемент
в список.

mylist.append
(‘hello’)

sorted Возвращает отсор-
тированный спи-
сок, основанный
на входной после-
довательности.

возвращает
[10, 20, 30]
sorted ([10,
30, 20])

Итера-
ция над
файлами

Открывает файл
и итерирует по-
строково.

for one_
line in open
(fi lename):

46 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 5. Поросячья латынь
Поросячья латынь — распространенный детский «секрет-

ный» язык в англоязычных странах. (Он обычно является секрет-
ным для детей, которые забывают, что их родители когда-то сами
были детьми.) Правила перевода слов с английского на порося-
чью латынь довольно просты:

1. Если слово начинается с гласной (a, e, i, o или u), добавьте
way к концу слова. Таким образом, air становится airway,
а eat — eatway.

2. Если слово начинается с любой другой буквы, то мы берем
первую букву, ставим ее в конец слова, а затем добавляем
ay. Следовательно, python становится ythonpay, а computer —
omputercay.

(И да, я понимаю, что правила можно сделать более сложными.
Для целей данного упражнения давайте оставим их простыми.)

Для этого упражнения напишите функцию Python (pig_latin),
которая принимает на вход строку, предположительно являющу-
юся английским словом. Функция должна возвращать перевод
этого слова на поросячью латынь. Вы можете работать со словами,
не содержащими заглавных букв и знаков препинания.

Это упражнение не предназначено для того, чтобы помочь
вам перевести документы на поросячью латынь для вашей ра-
боты. (Если это ваша работа, то я должен поставить под сомне-
ние ваш выбор профессии.) Однако оно демонстрирует неко-
торые мощные приемы, которые вы должны знать при работе
с последовательностями, включая поиск, итерацию и срезы.
Трудно представить себе программу на Python, которая не со-
держит любую из вышеупомянутых техник.

Обсуждение
Это упражнение уже давно является одним из моих любимых

упражнений для студентов на моих вводных занятиях по про-
граммированию. Оно было вдохновлено Брайаном Харви, чья
превосходная серия Computer Science Logo Style давно стала одной
из моих любимых для начинающих программистов.

472. Строки

Прежде всего рассмотрим проверку того, чтобы word [0],
первая буква в слове, была гласной. Я часто встречал людей, ко-
торые начинают использовать цикл следующим образом:

starts_with_vowel = False
for vowel in ‘aeiou’:

if word [0] == vowel:
starts_with_vowel = True
break

Даже если этот код будет работать, он уже начинает выглядеть
немного громоздким и запутанным.

Еще одно решение, которое я часто встречаю:

if (word [0] == ‘a’ or word [0] == ‘e’ or
 word [0] == ‘i’ or word [0] == ‘o’ or
word [0] == ‘u’):

 break
Я люблю говорить своим студентам: «К сожалению, этот код

работает». Почему мне так не нравится этот код? Он не только
длиннее, чем нужно, но и сильно повторяется. Правило «не по-
вторяйся» (DRY) всегда должно быть на задворках вашего созна-
ния при написании кода.

Более того, программы на Python, как правило, короткие. Если
вы обнаружите, что повторяетесь и пишете необычно длинное
выражение или условие, то, скорее всего, вы пропустили более
питоновский способ выполнения задач.

Мы можем воспользоваться тем, что Python воспринимает
строку как последовательность, и использовать встроенный опе-
ратор in для поиска word [0] в строке, содержащей гласные
буквы:

if word [0] in ‘aeiou’:

Преимущество этой единственной строки в том, что она чи-
табельна, коротка, точна и достаточно эффективна. Правда,

48 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

время, необходимое для поиска по строке или любой другой
последовательности в Python, растет вместе с длиной последо-
вательности. Но такое линейное время, иногда выражаемое как
O(n), часто достаточно хорошо, особенно когда строки, в ко-
торых мы будем искать, довольно короткие.

СОВЕТ Оператор in работает со всеми последователь-
ностями (строками, списками и кортежами) и многими дру-
гими коллекциями Python. Он эффективно запускает цикл
for для элементов. Соответственно, оператор in для сло-
варя будет выполняться, но при этом будет выполняться по-
иск только по ключам, игнорируя значения.

После того как мы определили, начинается ли слово с гласной,
мы можем применить соответствующее правило поросячьей ла-
тыни.

Срезы
Все последовательности Python — строки, списки и кор-

тежи — поддерживают срезы. Идея заключается в том, что
если я напишу,

s = ‘abcdefgh’ print (s [2:6]) Возвращает cdef

я получу все символы из s, начиная с индекса 2 и до ин-
декса 6 (не включая), а именно строку cdef. Срез также мо-
жет указывать размер шага:

s = ‘abcdefgh’ print (s [2:6:2] Возвращает ce

Этот код выведет строку ce, поскольку мы начинаем
с индекса 2 (c), продвигаемся на два индекса вперед к e,
а затем доходим до конца.

Срезы — это питоновский способ получить подмно-
жество элементов из последовательности. Вы можете даже
опустить начальный и/или конечный индекс, чтобы ука-

492. Строки

зать, что вы хотите начать с первого элемента последова-
тельности или закончить ее последним элементом. Напри-
мер, мы можем получить каждый второй символ из нашей
строки с помощью функции

s = ‘abcdefgh’
print (s [::2]) Возвращает aceg

Решение
def pig_latin (word):

if word [0] in ‘aeiou’:
return f’{word} way’

return f’{word [1:]} {word [0]} ay’

print (pig_latin (‘python’))
Вы можете ознакомиться с одной из версий

этого кода в Python Tutor [qr45].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr46].

После выполнения упражнения
Трудно преувеличить, насколько часто вам

придется работать со строками в Python. Более того, Python ча-
сто используется для анализа и работы с текстом. Вот несколько
способов, которыми вы можете дополнить это упражнение,
чтобы продвинуться дальше:

1. Поработайте со словами, написанными с заглавной буквы.
Если слово написано с заглавной буквы (т.е. первая буква
написана с заглавной, а остальная часть слова нет), то пере-
вод на поросячью латынь должен быть написан аналогич-
ным образом.

45

46

50 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Поработайте с пунктуацией. Если слово заканчивается
пунктуацией, то эту пунктуацию следует перенести в ко-
нец переведенного слова.

3. Рассмотрите альтернативную версию поросячьей латыни.
Мы не проверяем, является ли первая буква гласной, мы
проверяем, содержит ли слово две разные гласные. Если
да, то мы не переносим первую букву в конец. Поскольку
слово wine содержит две разные гласные (i и e), мы доба-
вим к нему way, что даст нам wineway. Слово wind, напро-
тив, содержит только одну гласную, поэтому мы перене-
сем первую букву в конец и добавим ay, получим indway.
Как бы вы проверили наличие двух разных гласных в слове?
(Подсказка: здесь могут пригодиться множества.)

Неизменяемость?
Одним из наиболее важных концептов в Python является

различие между изменяемыми и неизменяемыми структу-
рами данных. Основная идея проста: если структура дан-
ных неизменяема, то она никогда не может быть изменена.

Например, вы можете определить строку, а затем попы-
таться изменить ее:

s = ‘abcd’ Вы получите исключение при
s [0] = ‘!’ выполнении этого кода.

Но этот код не будет работать: вы получите исключе-
ние, и Python сообщит вам, что вам не разрешено изменять
строку.

Многие структуры данных в Python неизменяемы, вклю-
чая такие базовые, как целые числа и булевы значения.
Но именно на строках люди чаще всего спотыкаются, отча-
сти потому, что строки часто используются, а отчасти по-
тому, что во многих других языках есть изменяемые строки.
Почему в Python именно так? Есть несколько причин, глав-

512. Строки

ная из которых заключается в том, что это делает реализа-
цию более эффективной. Но это также связано с тем, что
строки являются наиболее распространенным типом, ис-
пользуемым в качестве ключей словарей. Если бы строки
были изменяемыми, их нельзя было бы использовать в ка-
честве ключей словарей, или нам пришлось бы разрешить
использование изменяемых ключей в словарях, что со-
здало бы целый ряд других проблем.

Поскольку неизменяемые данные не могут быть изме-
нены, мы можем сделать ряд предположений о них. Если
мы передаем неизменяемый тип в функцию, то функция
не будет его изменять. Если мы разделяем неизменяемые
данные между потоками, то нам не нужно беспокоиться
об их блокировке, поскольку они не могут быть изменены.
А если мы вызываем метод для неизменяемого типа, то по-
лучаем обратно новый объект — потому что мы не можем
изменять неизменяемые данные.

Обучение работе с неизменяемыми строками занимает
некоторое время, но компромиссы в целом оправдывают
себя. Если вам понадобится изменяемый тип строки, обра-
тите внимание на StringIO, который обеспечивает файло-
подобный доступ к неизменяемому типу в памяти.

Многие новички в Python думают, что неизменяемость —
это просто другое слово для обозначения константы, но это
не так. Константы, которые есть во многих языках про-
граммирования, постоянно связывают имя со значением.
В Python нет такого понятия, как константа: вы всегда мо-
жете переназначить имя, указывающее на новое значение.
Но вы не можете изменить строку или кортеж, как бы вы
ни старались, например:

s = ‘abcd’
s [0] = ‘!’
t = s

Не допускается, так как строки
неизменяемы.

Теперь переменные s и t относятся
к одной и той же строке.

52 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

s = ‘!bcd’ Переменная s теперь ссылается на новую
строку, но t продолжает ссылаться на ста-
рую строку без изменений.

Упражнение 6. Предложения
на поросячьей латыни

Теперь, когда вы успешно написали переводчик для одного
английского слова, давайте усложним задачу: переведите ряд ан-
глийских слов на поросячью латынь. Напишите функцию pl_
sentence, которая принимает строку, содержащую несколько
слов, разделенных пробелами. (Чтобы упростить задачу, мы
не будем запрашивать реальное предложение. В частности, в нем
не будет заглавных букв и знаков препинания.) Итак, если кто-то
вызовет

pl_sentence (‘this is a test translation’

вывод будет таким:

histay isway away estay ranslationtay

Печать вывода на одной строке, а не каждого слова на отдель-
ной строке.

Это упражнение может показаться поверхностным, по-
хожим на предыдущее. Но здесь акцент делается не на пере-
воде с поросячьей латыни. Скорее, речь идет о том, как мы
обычно используем циклы в Python, и как циклы сочетаются
с разбиением строк на части и собиранием их обратно. Также
часто возникает необходимость взять последовательность строк
и вывести их в одной строке. Есть несколько способов сде-
лать это, мы рассмотрим преимущества и недостатки каждого
из них.

532. Строки

Обсуждение
Суть решения практически идентична решению из предыду-

щего раздела, в котором мы переводили одно слово на поросячью
латынь. И снова мы получаем от пользователя текстовую строку.
Разница в том, что в данном случае мы не рассматриваем строку
как отдельное слово, а рассматриваем ее как предложение, то есть
нам нужно разделить ее на отдельные слова. Это можно сделать
с помощью функции str.split. str.split может прини-
мать аргумент, который определяет, какая строка должна исполь-
зоваться в качестве разделителя между полями.

Часто бывает так, что для разделения полей необходимо ис-
пользовать все символы пробелов, независимо от их количества.
В таком случае не передавайте аргумент вообще;

Python будет рассматривать любое количество пробелов, табу-
ляций и новых строк как один символ разделения. Разница мо-
жет быть значительной:

s = ‘abc def ghi’ Два разделяющих пробела.

s = ‘abc def ghi’ Возвращает [‘abc’, ‘’, ‘def’, ‘’, ‘ghi’].

s.split () Возвращает [‘abc’, ‘def’, ‘ghi’].

ПРИМЕЧАНИЕ Если вы не передаете никакие аргументы
в str.split, это фактически то же самое, что передать None.
Вы можете передать в str.split любую строку, а не только
строку с одним символом. Это означает, что если вы хотите
разделить строку на ::, вы можете это сделать. Однако вы
не можете разделить более чем на одну, используя одновре-
менно , и :: в качестве разделителей полей. Для этого нужно
использовать регулярные выражения и функцию re.split
из стандартной библиотеки Python.

Таким образом, мы можем разбить ввод пользователя на
слова — опять же, предполагая, что нет знаков препинания, —
и затем перевести каждое отдельное слово в поросячью ла-
тынь. Если однословная версия нашей программы могла про-
сто сразу вывести результат, то эта программа должна хранить

54 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

результаты, а затем вывести их сразу. Конечно, можно исполь-
зовать для этого строку и вызывать += на строке с каждой итера-
цией. Но, как правило, не стоит строить строки таким образом.
Лучше добавлять элементы в список с помощью list.append,
а затем вызывать str.join, чтобы превратить элементы списка
в длинную строку.

Это связано с тем, что строки неизменяемы, а += в строке за-
ставляет Python создавать новую строку. Если мы продолжим до-
бавлять к строке, то каждый раз будет создаваться новый объект,
содержимое которого будет больше, чем на предыдущей итера-
ции. Однако, списки являются изменяемыми, и добавление к ним
с помощью list.append относительно не требует больших за-
трат как памяти, так и вычислений.

Решение
def pl_sentence (sentence):

output = []
for word in sentence.split ():

if word [0] in ‘aeiou’:
output.append (f’{word} way’)

else:
 output.append (f’{word [1:]} {word
[0]} ay’)

return ‘ ‘.join (output)

print (pl_sentence (‘this is a test’))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr47].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr48].

47

48

552. Строки

После выполнения упражнения
Разделение, объединение и управление строками — обычные

действия в Python. Вот некоторые дополнительные действия, ко-
торые вы можете попробовать, чтобы продвинуться еще дальше:

1. Возьмите текстовый файл, создайте (и распечатайте) бес-
смысленное предложение из n-го слова в каждой из пер-
вых 10 строк, где n — номер строки.

2. Напишите функцию, которая транспонирует список строк,
в котором каждая строка содержит несколько слов, разде-
ленных пробелами. В частности, она должна работать та-
ким образом, что, если вы передаете функции список,
например, [‘abc def ghi’, ‘jkl mno pqr’, ‘stu
vwx yz’], она возвращает [‘abc jkl stu’, ‘def mno
vwx’, ‘ghi pqr yz’].

3. Прочитайте лог-файл Apache. Если там есть ошибка 404 —
вы можете просто поискать ‘ 404 ‘, если вы хотите отоб-
разить IP-адрес, который должен быть первым элементом.

Упражнение 7. Убби-Дубби
Услышав, что строки в Python неизменяемы, многие задаются

вопросом, как можно использовать этот язык для обработки тек-
ста. В конце концов, если строки нельзя изменять, то как можно
с ними работать?

Более того, бывают случаи, когда простой цикл for, который
мы использовали в примере с поросячьей латынью, не подхо-
дит. Если мы изменяем каждое слово только один раз, то все хо-
рошо, но, если мы потенциально изменяем его несколько раз, мы
должны быть уверены, что каждая из модификаций не повлияет
на будущие модификации.

Это упражнение призвано помочь вам научиться думать та-
ким образом. Здесь вы будете использовать переводчик с англий-
ского на другой секретный детский язык — Убби-Дубби. (Этот
язык был популяризирован в замечательной американской дет-
ской программе Zoom, которая шла по телевидению во времена

56 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

моего детства.) Правила Убби-Дубби даже проще, чем правила
поросячьей латыни, хотя программировать переводчик сложнее
и требует немного больше размышлений.

В Убби-Дубби перед каждой гласной (a, e, i, o или u) ставится
ub. Таким образом, milk становится mubilk (m — ub — ilk),
а program — prubogrubam (prub — ogrub — am). Теоре-
тически вы ставите ub только перед гласным звуком, а не перед
каждой гласной буквой. Учитывая, что это книга о Python,
а не о лингвистике, я надеюсь, что вы простите небольшое расхо-
ждение в определении.

На языке Убби-Дубби очень весело говорить, и это в ка кой- то
степени волшебно, когда вы начинаете понимать другого чело-
века, говорящего на нем. Даже если вы не понимаете его, Уб-
би-Дубби звучит очень забавно.

Для этого упражнения вы напишете функцию ubbi_dubbi,
которая принимает в качестве аргумента одно слово (строку). Она
возвращает строку — перевод этого слова на язык Убби-Дубби.
Таким образом, если вызвать функцию с аргументом octopus,
она вернет строку uboctubopubus. А если пользователь пере-
даст аргумент elephant, то будет выведен ubelubephubant.

Как и в оригинальном переводчике с поросячьей латыни, вы мо-
жете игнорировать заглавные буквы, пунктуацию и угловые слу-
чаи, например, когда несколько гласных сочетаются, образуя новый
звук. Когда две гласные находятся рядом друг с другом, перед каж-
дой из них ставится ub. Таким образом, soap станет suboubap,
несмотря на то что oa объединяется в один гласный звук.

Подобно заданию «Поросячья латынь», в этом упражнении
применяются различные способы, которыми нам часто прихо-
дится сканировать строки в поисках определенных шаблонов
или переводить из одной структуры данных Python или шаблона
в другую; а также показывается, как итерации могут играть цен-
тральную роль в этом.

Обсуждение
Задача состоит в том, чтобы спросить у пользователя слово,

а затем перевести это слово в Убби-Дубби. Это немного дру-

572. Строки

гая задача, чем в случае с поросячьей латынью, потому что нам
нужно работать побуквенно. Мы не можем просто проанализи-
ровать слово и выдать результат на основе всего слова. Более того,
мы не должны попасть в бесконечный цикл, в котором мы пыта-
емся добавить ub перед u в ub.

Решение заключается в итерационном переборе каждого сим-
вола в слове, добавлении его в список, выводе. Если текущий
символ является гласным, то мы добавляем ub перед буквой.
В противном случае мы просто добавляем букву. В конце про-
граммы мы соединяем, а затем печатаем буквы вместе. На этот
раз мы соединяем буквы не с помощью символа пробела (‘ ‘),
а с помощью пустой строки (‘ ‘). Это означает, что результи-
рующая строка будет состоять из букв, соединенных между со-
бой ничем, или, как мы часто называем такие коллекции, — word.

Решение
def ubbi_dubbi (word):

output = []
for letter in word:

if letter in ‘aeiou’:
output.append (f’ub {letter}’)

else:
output.append (letter)

return ‘’.join (output)

print (ubbi_dubbi (‘python’))

Почему нужно добавлять к спис ку, а не к строке? Чтобы не
выделять слишком много памяти. Для корот ких строк это не
имеет большого значения.
Но для длинных циклов и больших строк
это будет плохой идеей.

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr49].

49

58 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr50].

После выполнения упражнения
Часто возникает необходимость заменить в строке одно зна-

чение на другое. В Python есть несколько различных способов

сделать это. Вы можете использовать str.replace или str.
translate, два строковых метода, которые переводят строки

и множества символов, соответственно. Но иногда нет другого

выбора, кроме как просмотреть строку итерациями, найти нуж-

ный нам шаблон, а затем добавить измененную версию в список,

который будет расти со временем:

1. Работа словами, написанными с заглавной буквы. Если слово

написано с заглавной буквы (т.е. первая буква заглавная,

а остальная часть слова — нет), то перевод на Убби-Дубби

должен быть написан с такой же заглавной буквы.

2. Удаление имен авторов. В научных кругах принято удалять

имена авторов из статьи, представленной на рецензирова-

ние. Получив строку со статьей и отдельный список строк

с именами авторов, замените все имена в статье симво-

лами _.

3. URL-кодирование символов. В URL-адресах мы часто заме-

няем специальные и непечатные символы знаком %, за ко-

торым следует значение ASCII символа в шестнадцатерич-

ной системе. Например, если в URL должен быть символ

пробела (ASCII 32, он же 0x20), мы заменим его на %20.

Получив строку, закодируйте в URL любой символ, не яв-

ляющийся буквой или цифрой. Для целей этого упраж-

нения мы будем считать, что все символы являются ASCII

(т.е. длиной в один байт), а не многобайтовыми символами

UTF-8. Возможно, вам будет полезно узнать о функциях

ord и hex.

50

592. Строки

Упражнение 8. Сортировка строк
Если строки неизменяемы, значит ли, что они навсегда останутся

в том виде, в каком существуют сейчас? Отчасти. Мы не можем из-
менить сами строки, но мы можем создавать новые строки на их
основе, используя комбинацию встроенных функций и строковых
методов. Умение обходить неизменяемость строк и создавать функ-
ции, которые эффективно изменяют строки, несмотря на их неиз-
меняемость, — полезный навык.

В этом упражнении вы рассмотрите эту идею, написав функ-
цию strsort, которая принимает на вход строку и возвращает
строку. Возвращаемая строка должна содержать те же символы,
что и входная, за исключением того, что ее символы должны
быть отсортированы в порядке от наименьшего значения к наи-
большему Unicode. Например, результатом вызова команды
strsort (‘cba’) будет строка abc.

Обсуждение
В реализации решения strsort используется тот факт, что

строки Python являются последовательностями. Обычно мы счи-
таем, что это уместно в цикле for, поскольку можем перебирать
символы в строке. Однако нам не нужно ограничиваться такими
ситуациями.

Например, мы можем использовать встроенную функцию
sorted, которая принимает итерируемый объект, — что озна-
чает не только последовательность, но и все, что мы можем ите-
рировать, например, множество файлов — и возвращает его эле-
менты в отсортированном порядке.

В результате sorted отсортирует символы в порядке Unicode.
Однако она возвращает список, а не строку.

Чтобы превратить наш список в строку, мы используем метод
str.join. Используем пустую строку (‘’) в качестве клея, кото-
рый будем использовать для соединения элементов, таким образом
возвращая новую строку, символы которой будут такими же, как
и во входной строке, но в отсортированном порядке.

60 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Unicode
Что такое Unicode? Идея проста, но ее реализация мо-

жет показаться чрезвычайно сложной и сбить с толку мно-
гих разработчиков.

Идея Unicode заключается в том, что мы должны ис-
пользовать компьютеры для представления любого сим-
вола, задействованного в любом языке в любое время. Это
очень важная цель, поскольку она означает, что у нас не бу-
дет проблем с созданием документов, в которых мы хотим
отобразить русский, китайский и английский языки на од-
ной странице. До появления Unicode смешивать множества
символов из нескольких языков было сложно или даже не-
возможно.

Unicode присваивает каждому символу уникальный но-
мер. Но эти номера могут (как вы понимаете) быть очень
большими. Поэтому мы должны взять номер символа
Unicode (кодовую точку) и перевести его в формат, который
можно хранить и передавать в виде байтов. В Python и мно-
гих других языках используется UTF-8, который пред-
ставляет собой кодировку переменной длины, то есть для
разных символов может потребоваться разное количество
байт. Символы, существующие в ASCII, кодируются в UTF-8
с тем же номером, который они используют в ASCII, в од-
ном байте. Французский, испанский, иврит, арабский, гре-
ческий и русский языки используют два байта для своих
символов, не входящих в ASCII. А китайский, как и ваши
детские эмодзи, — три байта или больше.

Насколько это важно для нас? Одновременно очень
и не очень. С одной стороны, хорошо иметь простой способ
работы с разными языками. С другой стороны, легко забыть,
что существует разница между байтами и символами и что
иногда (например, при работе с файлами на диске) нужно
переводить из байтов в символы, или наоборот.

612. Строки

Для получения более подробной инфор-
мации о символах и строках, а также о том,
как Python хранит символы в наших стро-
ках, я рекомендую ознакомиться с выступле-
нием Неда Батчелдера с PyCon 2012: [qr51].

Решение
def strsort (a_string):

return ‘’.join (sorted (a_string))

print (strsort (‘cbjeaf’))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr52].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr53].

После выполнения упражнения
Это упражнение призвано дополнительно напомнить вам, что

строки — это последовательности, и поэтому их можно исполь-
зовать везде, где можно использовать другие последовательно-
сти (списки и кортежи). Мы нечасто думаем о сортировке строк,
но нет никакой разницы в использовании sorted для строк,
списков или кортежей. Элементы (в случае строки — символы)
возвращаются в отсортированном порядке.

Однако sorted возвращает список, а мы хотели получить
строку. Поэтому нам нужно превратить полученный список
обратно в строку — то, для чего предназначен str.join. str.
split и str.join — два метода, с которыми вы должны быть
хорошо знакомы, потому что они очень полезны и помогают
во многих случаях.

52

53

51

62 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Рассмотрим несколько других вариаций и дополнений к этому
упражнению, в которых используются str.split и str.join,
а также sorted:

1. Возьмите строку Tom Dick Harry и разбейте ее на отдель-
ные слова, а затем отсортируйте эти слова по алфавиту.
После сортировки напечатайте их с запятыми (,) между
именами.

2. Какое слово является последним в текстовом файле?
3. Какое самое длинное слово в текстовом файле?
Обратите внимание, что для второй и третьей задач вам, воз-

можно, захочется почитать о ключевом па-
раметре и типах значений, которые можно ему
передавать. Хорошее введение с примерами
находится здесь: [qr54].

Подводя итоги
Программисты Python постоянно имеют дело с текстом. Будь

то чтение из файлов, вывод на экран или просто использование
словарей, строки — это тип данных, с которым мы, скорее всего,
знакомы по другим языкам.

В то же время строки в Python необычны тем, что они также
являются последовательностями, а значит, мышление в Python
требует учета их свойств, подобных последовательностям. Это
означает поиск (с помощью in), сортировку (с помощью sorted)
и использование срезов. Также необходимо подумать о том, как
можно превратить строки в списки (используя str.split) и как
превратить последовательности обратно в строки (используя
str.join). Хотя эти задачи могут показаться простыми, они ре-
гулярно встречаются в производственном коде Python. Тот факт,
что эти структуры данных и методы написаны на языке C и су-
ществуют уже много лет, означает, что они по-прежнему очень
эффективны и нет необходимости в том, чтобы изобретать их за-
ново.

54

3. Списки и кортежи

Рассмотрим программу, которая работает с документами,
отслеживает пользователей, регистрирует IP-адреса, кото-
рые заходили на сервер, или хранит имена и даты рождения

детей в школе. Во всех этих случаях нам нужно хранить много
информации. Мы хотим отображать, искать, дополнять и изме-
нять эту информацию.

Это настолько распространенные задачи, что каждый язык
программирования поддерживает работу с коллекциями — струк-
турами данных, предназначенных для работы с такими случа-
ями. Списки и кортежи — это встроенные коллекции Python.
Технически они отличаются тем, что списки являются изменя-
емыми, а кортежи — неизменяемыми. Но на практике списки
предназначены для последовательностей одного типа, а кор-
тежи — для последовательностей разных типов.

Например, серию документов, пользователей или IP-адресов
лучше всего хранить в списке, потому что у нас много объектов
одного типа. Запись, содержащую чье-то имя и дату рождения,
лучше всего хранить в кортеже, поскольку имя и дата рожде-
ния относятся к разным типам. Однако множество таких корте-
жей с именами и датами рождения можно хранить в списке, по-
скольку он будет содержать последовательность кортежей и все
кортежи будут одного типа.

Поскольку списки являются изменяемыми, они поддерживают
работу с гораздо большим числом методов и операторов. В конце
концов, с кортежем мало что можно сделать, кроме как передать его,
получить его элементы и сделать несколько запросов о его содержи-

64 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

мом. Списки, напротив, можно расширять, сокращать и изменять,
а также искать, сортировать и заменять. Поэтому вы не можете доба-
вить размер обуви человека к кортежу «имя-дата рождения», кото-
рый вы для него создали. Но вы можете добавить множество допол-
нительных кортежей имя-дата рождения в созданный вами список,
а также удалить элементы из этого списка, если они больше не яв-
ляются учениками школы.

Потребуется время, чтобы научиться определять, в каких слу-
чаях стоит использовать списки, а в каких кортежи. Если вы еще
не поняли разницу, то это не ваша вина!

И списки, и кортежи являются последовательностями Python,
это означает, что мы можем использовать по отношению к ним
циклы for, искать с помощью оператора in и извлекать из них
данные как с помощью отдельных индексов, так и с помощью сре-
зов. Третий тип последовательности в Python — это строки, кото-
рые мы рассматривали в предыдущей главе. Я считаю, что полезно
думать о последовательностях в таком ключе.

Таблица 3.1. Сравнение последовательностей

Тип Изменяем? Содержит Синтаксис Использо-
вание

str Нет Одноэле-
ментные
строки.

s = ‘abc’ s [0] #
возвращает
‘a’

Список Да Любой тип
Python.

mylist =
[10, 20, 30,
40, 50]

mylist [2]
возвра-
щает 30

Кортеж Нет Любой тип
Python.

t = (100,
200, 300,
400, 500)

t [3] #
возвращает
400

В этой главе мы будем практиковаться в работе со списками
и кортежами. Мы рассмотрим, как создавать, изменять (в слу-
чае списков) и использовать их для отслеживания данных. Мы
также будем использовать генератор списков — синтаксис, кото-
рый многим кажется непонятным, но который позволяет нам

653. Списки и кортежи

взять один итерируемый объект Python и создать на его основе
новый список. В этой и последующих главах мы будем много
говорить про генераторы, если вы не знакомы с ними, озна-
комьтесь с ссылками, приведенным в таблице 3.2.

Таблица 3.2. Что вам нужно знать

Понятие Что это? Пример
Чтобы узнать

подробнее

Список Упорядочен-
ная, изменяе-
мая последо-
вательность.

 [10, 20, 30]

Кортеж Упорядочен-
ная, неиз-
меняемая
последова-
тельность.

 (3, ‘clubs’)

Генераторы
списков

Возвра-
щает список
на основе ите-
рируемого
объекта.

возвра-
щает [‘10’,
‘20’, ‘30] [str
(x) for x in
[10,20, 30]]

range Возвращает
итерируемую
последова-
тельность це-
лых чисел.

каждое тре-
тье целое
число, от 10
до (и не вклю-
чая) 50 numbers
= range (10,
50, 3)

operator.
itemgetter

Возвращает
функцию, ко-
торая ра-
ботает как
квадратные
скобки.

fi nal (‘abcd’)
== ‘d’ fi nal
= operator
.itemgetter
(–1)

66 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Понятие Что это? Пример
Чтобы узнать

подробнее

collections.
Counter

Подкласс сло-
варя, по-
лезный для
подсчета эле-
ментов ите-
рируемого
объекта.

примерно
то же самое,
что {‘a’:2,
‘b’:2, ‘c’:1,
‘d’:1} c =
collections
.Counter
(‘abcdab’)

max Встроен-
ная функция,
возвращаю-
щая самый
большой эле-
мент итериру-
емого объекта.

вернет 30 max
([10, 20, 30])

str.format Строковый
метод, возвра-
щающий но-
вую строку,
основан-
ную на ша-
блоне (похоже
на f-строки).

вернет ‘x =
100, y = [10,
20, 30] ’ ‘x =
{0}, y = {1}’
.format (100,
[10, 20, 30])

Упражнение 9. Первый-последний
Для многих программистов, имеющих опыт работы на Java

или C#, динамическая природа Python является довольно стран-
ной. Как язык программирования может не знать, какому типу
присвоена определенная переменная? Поклонники динамиче-
ских языков, таких как Python, отвечают, что это позволяет нам
писать общие функции, которые обрабатывают множество раз-
личных типов.

Окончание таблицы

673. Списки и кортежи

Действительно, нам необходимо это сделать. Во многих язы-
ках функцию можно определять несколько раз, при условии, что
каждое определение имеет разные параметры. В Python функцию
можно определить только один раз — точнее, определение функ-
ции во второй раз перезапишет первое определение, поэтому
нам нужно использовать другие методы для работы с разными
типами входных данных.

В Python можно написать одну функцию, которая работает
со многими типами, а не множество почти одинаковых функ-
ций, каждая из которых предназначена для определенного типа.
Такие функции демонстрируют элегантность и мощь динамиче-
ской типизации.

Тот факт, что последовательности — строки, списки и кортежи
реализуют многие из одинаковых API, не случаен. Python поз-
воляет нам писать общие функции, которые могут применяться
ко всем из них. Например, все три типа последовательностей
можно искать с помощью in, возвращать отдельные элементы
с помощью индекса и возвращать несколько элементов с помо-
щью среза.

Мы отработаем эти идеи при помощи данного упражнения.
Напишите функцию fi rstlast, которая принимает после-
довательность (строку, список или кортеж) и возвращает пер-
вый и последний элементы этой последовательности как двух-
элементную последовательность того же типа. Так fi rstlast
(‘abc’) вернет строку ac, а fi rstlast ([1,2,3,4]) вер-
нет список [1,4].

Обсуждение
Это упражнение настолько же сложное, насколько и ко-

роткое. Однако я считаю, что это поможет продемонстрировать
разницу между извлечением отдельного элемента из после-
довательности и между фрагментом из этой последователь-
ности. Это также показывает мощь динамического языка: нам
не нужно определять несколько различных версий fi rstlast,
каждая из которых работает с разными типами. Вместо этого мы

68 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

можем определить одну функцию, которая работает не только

со встроенными последовательностями, но и с любыми новыми

типами, которые мы можем определить для работы с индексами

и срезами.

В первую очередь программисты Python изучают способы

извлечения элемента из последовательности — строки, списка

или кортежа — с помощью квадратных скобок и числового ин-

декса. Так вы можете получить первый элемент s с помощью s

[0] и последний элемент s с помощью s [—1].

Но это еще не все. Вы также можете получить срез, или подмно-

жество элементов последовательности, используя двоеточие вну-

три квадратных скобок. Самый простой и очевидный способ —

это написать что-то вроде s [2:5], означающее, что вы хотите

получить строку, которая начинается с s, следуя от индекса 2

до индекса 5, но не включая его. (Помните, что в срезе конечное

число всегда «до, но не включая».)

Рисунок. 3.1.

При извлечении одного элемента из последовательности (ри-

сунок 3.1), вы можете получить любой тип. Строковые индексы

возвращают односимвольные строки, а списки и кортежи могут

содержать что угодно. Напротив, когда вы используете срез, вы

гарантированно получите тот же тип обратно — срез кортежа бу-

дет кортежем, независимо от размера среза или элементов, кото-

рые он содержит. А срез списка вернет список. Обратите внима-

ние, что на рисунках 3.2 и 3.3, взятых из Python Tutor, структуры

данных различны, а значит, и результаты извлечения из каждого

типа будут разными.

693. Списки и кортежи

Рисунок 3.2. Извлечение срезов из списка (из Python Tutor).
Frames — фреймы, Objects — объекты,

Global frame — глобальный фрейм, list — список.

Рисунок 3.3. Извлечение срезов из кортежа (из Python Tutor). Frames —
фреймы, Objects — объекты,

Global frame — глобальный фрейм, list — список.

Не выходите за пределы
При извлечении одного индекса нельзя выходить за гра-

ницы:

s = ‘abcd’
s [5] # вызывает исключение IndexError

Однако при извлечении среза, Python более великоду-
шен, игнорирует любой индекс, выходящий за границы
структуры данных:

70 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

s = ‘abcd’
s [3:100] # возвращает ‘d’

На рисунках 3.2 и 3.3 индекс 5 отсутствует. И все же
Python закрыл глаза на это, показав данные до конца. Мы
так же легко могли бы опустить последнее число.

Учитывая, что мы пытаемся получить первый и последний
элементы sequence, а затем соединить их вместе, может пока-
заться разумным взять их оба (с помощью индексов), а затем сло-
жить их вместе:

не является реальным решением!
def fi rstlast (sequence):

return sequence [0] + sequence [—1]

Но именно это и происходит на самом деле (рис. 3.4):

def fi rstlast (sequence):
return sequence [0] + sequence [—1]

t1 = (‘a’, ‘b’, ‘c’)
output1 = fi rstlast (t1)
print (output1)

t2 = (1,2,3,4)
output2 = fi rstlast (t2)
print (output2)

Мы не можем просто использовать + для отдельных эле-
ментов наших кортежей. Как показано на рисунке 3.4, если эле-
менты являются строками или целыми числами, то использова-
ние + для этих двух элементов даст нам неправильный ответ.
Мы хотим добавлять кортежи — или последовательность
любого типа.

Не является реальным
решением!

Печатает строку
‘ac’, а не (‘a’, ‘c’).

Печатает целое число
5, а не (1, 4).

713. Списки и кортежи

Рисунок 3.4. Наивное, неправильное добавление фрагментов (из Python
Tutor). (line that has just executed — строка, которая только что была
выполнена, next line to execute — следующая строка для выполнения, #
prints the string ‘ac’, not (‘a’, ‘c’) — печатает строку ‘ac’, а не (‘a’, ‘c’), #

prints 5, not (1, 4) — печатает целое число, Frames — фреймы, Objects —
объекты, Global frame — глобальный фрейм, list — список, function —

функция, print output (drag lower right corner to resize) — вывод на печать
(потяните за правый нижний угол, чтобы изменить размер).)

Самый простой способ сделать это — использовать срез, ис-
пользуя s [:1] для получения первого элемента и s [—1:]
для получения последнего элемента (рисунок 3.5). Обратите вни-
мание, что мы должны написать s [—1:], чтобы последователь-
ность началась с элемента по адресу –1 и закончилась в конце
самой последовательности.

Рисунок 3.5

72 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Суть в том, что, когда вы извлекаете срез из объекта x, вы по-
лучаете новый объект того же типа, что и x. Но если вы извле-
каете отдельный элемент из x, то получаете все, что было сохра-
нено в x — что может быть того же типа, что и x, но вы не можете
быть в этом уверены.

Решение
 def fi rstlast(sequence):

В обоих случаях мы исполь-
зуем срезы, а не индексы.

return sequence[:1] + sequence[—1:]

print(fi rstlast(‘abcd’))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr63].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr64].

После выполнения упражнения
Мы можем воспользоваться преимуществами динамической

типизации Python, то есть, хотя данные сильно типизированы,
переменные не имеют типов. Это означает, что мы можем напи-
сать функцию, которая примет любой индексируемый тип (т.е.
такой, который может получить в качестве аргумента либо оди-
ночный индекс, либо срез) и затем вернет что-то соответству-
ющее. Это распространенная техника в Python, с которой вы
должны быть хорошо знакомы, например:

1. Не пишите одну функцию, которая возводит в квадрат це-
лые числа, и другую, которая возводит в квадрат числа
с плавающей точкой. Напишите одну функцию, которая
обрабатывает все числа.

2. Не пишите одну функцию, которая находит наибольший
элемент строки, другую, которая делает то же самое для

63

64

733. Списки и кортежи

списка, и третью, которая делает то же самое для кортежа.
Напишите одну функцию для обоих случаев.

3. Не пишите одну функцию для поиска самого большого
слова в файле, которая работает с файлами, и другую, ко-
торая работает с симуляторами файлов io.StringIO, исполь-
зуемыми при тестировании. Напишите одну функцию для
обоих случаев.

Срезы — это отличный способ получить часть данных. Будь
то подстрока или часть списка, срезы позволяют получить
только часть последовательности. Студенты на моих курсах ча-
сто спрашивают, как они могут выполнить итерацию только
по последним n элементам списка. Когда я напоминаю им, что
это можно сделать с помощью среза mylist [—3:] и цикла
for, они несколько удивляются и смущаются, что не додума-
лись до этого сами: они были уверены, что это должно быть
сложнее.

Вот несколько идей для других задач, которые вы можете по-
пробовать решить, используя индексы и срезы:

1. Напишите функцию, которая принимает список или кор-
теж чисел. Функция должна возвращать двухэлемент-
ный список, содержащий сумму чисел с четным индек-
сом и сумму чисел с нечетным индексом соответственно.
Вызвав функцию even_odd_sums ([10, 20, 30, 40,
50, 60]), вы получите [90, 120].

2. Напишите функцию, которая принимает список или
кортеж чисел. Функция должна возвращать результат по-
очередного сложения и вычитания чисел друг из друга.
Вызвав функцию plus_minus ([10, 20, 30, 40,
50, 60]), вы получите результат 10+20–30+40–50+60
или 50.

3. Напишите функцию, которая частично эмулирует
встроенную функцию zip, принимая любое количе-
ство итерируемых объектов и возвращая список кортежей.
Каждый кортеж будет содержать по одному элементу ите-
рируемого объекта, переданного в функцию.

74 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 Следовательно, если я вызову myzip ([10, 20,30],
‘abc’), то получу [(10, ‘a’), (20, ‘b’), (30,
‘c’)]. Вы можете вернуть список (не итератор) и предпо-
ложить, что все итерируемые объекты имеют одинаковую
длину.

Являются ли списки массивами?
Те, кто только знакомится с Python, часто ищут такой тип,

как массив. Но в Python разработчики используют списки,
если им необходимы массивы или похожая структура.

Списки — это не массивы: массивы имеют фиксиро-
ванную длину, а также тип. И хотя потенциально можно
утверждать, что списки Python обрабатывают только один
тип, а именно все, что наследуется от встроенного класса
object, определенно неверно, что списки имеют фиксиро-
ванную длину. Упражнение 9 демонстрирует это довольно
наглядно, но без использования методов list.append
или list.remove.

ПРИМЕЧАНИЕ В стандартной библиотеке Python
есть тип array, а специалисты по анализу данных
обычно используют массивы NumPy. Однако по большей
части массивы в Python не нужны и не используются.
Они не соответствуют динамической природе языка.
Вместо этого мы обычно используем списки и кортежи.

По сути, списки Python реализуются как массивы указа-
телей на объекты Python. Но если массивы имеют фикси-
рованный размер, то как Python может использовать их для
реализации списков? Ответ заключается в том, что Python
выделяет некоторое дополнительное пространство в массиве
списка, чтобы мы могли добавить в него несколько элемен-
тов. Но в определенный момент, когда мы добавим доста-
точно элементов в наш список и эти свободные места будут

753. Списки и кортежи

использованы, Python выделит новый массив и переместит
все указатели в это место. Это делается для нас автоматиче-
ски, но это показывает, что добавление элементов в список
не полностью освобождает от вычислительных затрат. Вы
можете увидеть это в действии, используя sys.getsizeof,
который показывает количество байт, необходимых для хра-
нения списка (или любой другой структуры данных):

>>> import sys
>>> mylist = []
>>> for i in range (25):
… l = len (mylist)
… s = sys.getsizeof (mylist)
… print (f’len = {l}, size = {s}’)
… mylist.append (i)

Выполнение этого кода дает нам следующий результат:

len = 0, size = 64
len = 1, size = 96
len = 2, size = 96
len = 3, size = 96
len = 4, size = 96
len = 5, size = 128
len = 6, size = 128
len = 7, size = 128
len = 8, size = 128
len = 9, size = 192
len = 10, size = 192
len = 11, size = 192
len = 12, size = 192
len = 13, size = 192
len = 14, size = 192
len = 15, size = 192

76 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

len = 16, size = 192
len = 17, size = 264
len = 18, size = 264
len = 19, size = 264
len = 20, size = 264
len = 21, size = 264
len = 22, size = 264
len = 23, size = 264
len = 24, size = 264

Как видите, список растет по мере необходимости,
но всегда содержит свободное место, что позволяет ему
не увеличиваться, если вы добавляете всего несколько эле-
ментов.

ПРИМЕЧАНИЕ Различные версии Python, а также
различные операционные системы и платформы могут
распределять память иначе, чем я показал здесь.

Насколько это важно для повседневной разработки
на Python? Как и в случае с распределением памяти и ре-
ализацией языка Python, я считаю это полезными допол-
нительными знаниями, которые пригодятся вам, когда вы
столкнетесь с проблемами в оптимизации, или просто для
того, чтобы лучше понять процессы Python.

Но если вы регулярно беспокоитесь о размере ваших
структур данных или о том, как Python выделяет память,
то я бы сказал, что вы, вероятно, беспокоитесь не о тех ве-
щах — или используете не тот язык для работы. Python по-
трясающе подходит под решение множества задач, кроме
того, его сборщик мусора работает достаточно хорошо
большую часть времени. Но вы не можете контролировать
работу сборщика мусора, и Python в значительной сте-
пени предполагает, что вы передадите управление языку.

773. Списки и кортежи

Упражнение 10.
Суммируем что угодно

Мы рассмотрели, как можно написать функцию, которая при-
нимает несколько различных типов. Вы также узнали, как можно
написать функцию, которая получает на входе аргумент и на вы-
ходе возвращает различные типы.

В этом упражнении вы увидите, как можно еще работать с ти-
пами. Что произойдет, если вы будете применять методы не для
самого аргумента, а для элементов внутри аргумента? Например,
что, если вы хотите просуммировать сумму элементов списка —
независимо от того, являются ли эти элементы целыми числами,
числами с плавающей точкой, строками или даже списками?

Эта задача просит вас переопределить функцию mysum
из главы 1 так, чтобы она могла принимать любое количество ар-
гументов. Все аргументы должны быть одного типа и подходить
под работу с оператором +. (Таким образом, функция должна
работать с числами, строками, списками и кортежами, но не
с множествами и словарями.)

ПРИМЕЧАНИЕ Python 3.9, выпуск кото-
рого был запланирован на осень 2020 года,
очевидно включает поддержку | для сло-
варей. Более подробную информацию
см. в PEP 584 [qr65].

Результатом должна быть новая, более длинная последователь-
ность типа, заданного параметрами. Следовательно, результатом
mysum (‘abc’, ‘def’) будет строка abcdef, а результатом
mysum ([1,2,3], [4,5,6]) будет шестиэлементный список
[1,2,3,4,5,6]. Конечно, он также должен вернуть целое число
6, если мы вызовем mysum (1,2,3).

Выполнение этого упражнения даст вам возможность подумать
о последовательностях, типах и о том, как нам проще всего со-
здавать возвращаемые значения разных типов из одной и той же
функции.

65

78 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обсуждение
Реализация новой версии mysum сложнее той, которую мы

видели ранее. Она по-прежнему принимает любое количество
аргументов, которые помещаются в кортеж items благодаря
оператору splat (*).

СОВЕТ Хотя мы традиционно называем параметр, кото-
рый «принимает любое количество аргументов», как *args,
вы можете использовать любое имя. Важной частью является
*, а не имя параметра: он по-прежнему работает одинаково
и всегда является кортежем.

Первое, что мы делаем, это проверяем, получили ли мы какие-
либо аргументы. Если нет, мы возвращаем items — пустой кор-
теж. Это необходимо, потому что остальная часть функции тре-
бует, чтобы мы знали тип переданных аргументов и чтобы у нас
был элемент с индексом 0. Без аргументов ни то, ни другое рабо-
тать не будет.

Обратите внимание, что мы не проверяем пустой кортеж,
сравнивая его с () или проверяя, что его длина равна 0. Вместо
этого мы можем написать if not items, которое запросит бу-
лево значение нашего кортежа. Поскольку пустая последователь-
ность в Python в булевом контексте равна False, мы получим
False, если args пуст, и True в противном случае.

В следующей строке мы берем первый элемент items и при-
сваиваем его output (рис. 3.6). Если это число, то output бу-
дет числом, если строка, то строка, и так далее. Это дает нам ба-
зовое значение, к которому мы будем добавлять (используя +) все
последующие значения в items.

После этого мы делаем то же самое, что и в оригинальной вер-
сии mysum, но вместо итерации по всем items мы можем теперь
итерировать по items [1:] (рисунок 3.7), то есть по всем эле-
ментам, кроме первого. Здесь мы снова видим ценность фрагментов
Python и то, как мы можем использовать их для решения проблем.

793. Списки и кортежи

Рисунок 3.6. После присваивания первого элемента output
(из Python Tutor).

Рисунок 3.7. После добавления элементов в output
(из Python Tutor).

Вы можете считать эту реализацию mysum такой же, как
и нашу первоначальную версию, за исключением того, что вме-
сто добавления каждого элемента к 0, мы добавляем каждый эле-
мент к items [0].

Но подождите, а что, если человек передал нам только один
аргумент, и поэтому args не содержит ничего в индексе 1?
К счастью, срезы прощают нам это и позволяют указывать ин-
дексы за границами последовательности. В таком случае мы по-
лучим пустую последовательность, по которой цикл for будет
выполняться ноль раз. Это означает, что мы просто получим зна-
чение items [0], возвращенное нам в качестве output.

80 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение
def mysum (*items):

if not items:
return items

output = items [0]

for item in items [1:]:
output += item

 return output

print (mysum ())
print (mysum (10, 20, 30, 40)) print (mysum (‘a’,

‘b’, ‘c’, ‘d’))
print (mysum ([10, 20, 30], [40, 50, 60], [70,

80]))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr66].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr67].

После выполнения упражнения
Это упражнение демонстрирует некоторые способы использо-

вания преимуществ динамической типизации Python для созда-
ния функции, которая работает с различными типами входных
данных и даже производит различные типы выходных данных.
Вот несколько других задач, которые вы можете попробовать ре-
шить и которые имеют схожие цели:

1. Напишите функцию mysum_bigger_than, которая ра-
ботает так же, как mysum, за исключением того, что она
принимает первый аргумент, предшествующий *args.
Этот аргумент задает максимальное значение аргумента,
которое можно добавить в сумму. Таким образом, вызов

В Python все считается True в
if, кроме None, False, 0 и пустых
коллекций. Поэтому если кор-
теж items пуст, мы просто вер-
нем пустой кортеж.

Мы предполагаем, что
элементы items могут
быть сложены вместе.

66

67

813. Списки и кортежи

mysum_bigger _than (10, 5, 20, 30, 6) вернет
50 — потому что 5 и 6 не больше, чем 10. Эта функция
аналогично работает с любым типом и предполагает, что
все аргументы имеют одинаковый тип. Обратите внима-
ние, что > и < работают с различными типами в Python,
а не только с числами. Для строк, списков и кортежей это
относится к их порядку сортировки.

2. Напишите функцию sum_numeric, которая принимает
любое количество аргументов. Если аргумент является це-
лым числом или может быть преобразован в целое число,
то он должен быть добавлен к сумме. Аргументы, кото-
рые не могут быть преобразованы в целые числа, должны
быть проигнорированы. Результатом является сумма чисел.
Соответственно, sum_numeric (10, 20, ‘a’, ‘30’,
‘bcd’) вернет 60. Обратите внимание, что даже если
строка 30 является элементом списка, она преобразуется
в целое число и добавится к сумме.

3. Напишите функцию, которая принимает список слова-
рей и возвращает один словарь, объединяющий все ключи
и значения. Если ключ встречается в более чем одном аргу-
менте, то значением должен быть список, содержащий все
значения из аргументов.

Упражнение 11.
Упорядочение имен по алфавиту

Предположим, что у вас есть данные телефонного справоч-
ника в списке словарей, как показано ниже:

PEOPLE = [{‘fi rst’:’Reuven’, ‘last’:’Lerner’,
 ‘email’:’reuven@lerner.co.il’},
 {‘fi rst’:’Donald’, ‘last’:’Trump’,

‘email’:’president@whitehouse.gov’},
 {‘fi rst’:’Vladimir’, ‘last’:’Putin’,

‘email’:’president@kremvax.ru’}
]

82 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Прежде всего, если это единственные люди в вашей телефон-
ной книге, то вам следует переосмыслить, действительно ли про-
граммирование на Python является лучшей тратой вашего вре-
мени и связей.

В любом случае, напишите функцию alphabetize_names,
которая предполагает существование константы PEOPLE, опре-
деленной, как показано в коде. Функция должна возвращать спи-
сок словарей, отсортированных по фамилии и имени.

ПРИМЕЧАНИЕ В Python нет констант, за исключением
некоторых внутренних типов и структур данных, каждая пере-
менная, функция и атрибут всегда могут быть изменены. Тем
не менее переменные, определенные вне любой функции,
обычно называются «константами» и обозначаются ЗАГЛАВ-
НЫМИ БУКВАМИ.

Вы можете решить это упражнение несколь-
кими способами, но все они потребуют ис-
пользования метода sorted, который вы ви-
дели в прошлой главе, вместе с функцией,
переданной в качестве аргумента ее ключе-
вого (key) параметра. Подробнее о sorted
и о том, как его использовать, включая пользо-
вательские сортировки с помощью key, вы мо-
жете прочитать по ссылке [qr68]. Один из вари-
антов решения этого упражнения предполагает
использование operator.itemgetter, о котором вы можете
прочитать здесь: [qr69].

Обсуждение
Хотя структуры данных Python полезны сами по себе, они ста-

новятся еще более мощными и практичными, если их объеди-
нить вместе. Списки списков, списки кортежей, списки словарей
и словари словарей — все они встречаются довольно часто. Уме-
ние работать с этими структурами позволяет уверенно програм-

69

68

833. Списки и кортежи

мировать на Python. Это упражнение показывает, как можно
не только хранить данные в таких структурах, но и извлекать их,
управлять ими, сортировать и форматировать.

Решение, которое я предлагаю, состоит из двух частей. В пер-
вой части мы сортируем наши данные в соответствии с предло-
женными мною критериями, а именно: сначала фамилия, а за-
тем имя. Во второй части решения рассматривается, как мы будем
выводить данные для конечного пользователя.

Рассмотрим сначала вторую задачу. У нас есть список слова-
рей. Это означает, что, когда мы итерационно просматриваем
наш список, на каждой итерации person присваивается сло-
варь. Словарь имеет три ключа: fi rst, last и email. Мы хо-
тим использовать каждый из этих ключей для отображения каж-
дой записи телефонной книги.

Таким образом, мы можем написать:

for person in people:
 print (f’{person [“last”]}, {person [“fi rst”]}:

{person [“email”]}’)

Пока все хорошо. Но мы все еще не решили первую проблему,
а именно сортировку списка cловарей по фамилии, а затем
по имени. По сути, мы хотим, чтобы функция сортировки Python
не сравнивала словари. Скорее, она должна сравнивать значения
last и fi rst внутри каждого словаря.

Другими словами, мы хотим, чтобы

 {‘fi rst’:’Vladimir’, ‘last’:’Putin’,
‘email’:’president@kremvax.ru’}

стало

[‘Putin’, ‘Vladimir’]

Мы можем сделать это, воспользовавшись ключевым парамет-
ром sorted. Значение, передаваемое этому параметру, должно

84 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

быть функцией, принимающей один аргумент. Функция будет
вызываться один раз для каждого элемента, а возвращаемое зна-
чение функции будет использоваться для сортировки значений.

Таким образом, мы можем отсортировать элементы списка:

mylist = [‘abcd’, ‘efg’, ‘hi’, ‘j’]
mylist = sorted (mylist, key=len)

После выполнения этого кода mylist теперь будет отсорти-
рован в порядке возрастания длины, поскольку встроенная функ-
ция len будет применена к каждому элементу перед сравне-
нием с другими. В случае с нашим упражнением по составлению
алфавита мы могли бы написать функцию, которая принимает
на вход словарь и возвращает нужный список:

def person_dict_to_list (d):
return [d [‘last’], d [‘fi rst’]]

Затем мы можем применить эту функцию при сортировке на-
шего списка:

print (sorted (people, key=person_dict_to_list))

После этого мы могли бы пройтись по уже отсортированному
списку и отобразить имена людей.

Но подождите секунду: зачем нам писать специальную функ-
цию (person_dict_to_list), которая будет использоваться
только один раз? Разумеется, должен быть способ создать времен-
ную встраиваемую функцию. И он действительно есть, вы можете
использовать lambda, которая возвращает новую анонимную
функцию. Используя lambda, мы получаем следующее решение:

for p in sorted (people,
key=lambda x: [x [‘last’], x [‘fi rst’]]):

 print (f’{p [“last”]}, {p [“fi rst”]}: {p
[“email”]}’)

853. Списки и кортежи

Многие из разработчиков Python, с которыми я говорил на эту
тему, не в восторге от использования lambda, так как код стано-
вится менее читабельным и более запутанным. (Дополнительные
соображения по поводу лямбд см. в сноске на странице.)

К счастью, в модуле operator есть функция itemgetter.
itemgetter принимает любое количество аргументов и воз-
вращает функцию, которая применяет каждый из этих аргумен-
тов в квадратных скобках. Например, если я скажу:

s = ‘abcdef’
t = (10, 20, 30, 40, 50, 60)

get_2_and_4 = operator.itemgetter (2, 4)
print (get_2_and_4 (s)
print (get_2_and_4 (t))

Если мы вызовем itemgetter (‘last’, ‘fi rst’), мы по-
лучим функцию, которую можно применить к каждому из на-
ших словарей. Она вернет кортеж, содержащий значения, свя-
занные с last и fi rst.

Другими словами, мы можем просто писать:

from operator import itemgetter
for p in sorted (people,

key=itemgetter (‘last’, ‘fi rst’)):
 print (f’{p [“last”]}, {p [“fi rst”]}: {p

[“email”]}’)

Решение
import operator

PEOPLE = [{‘fi rst’: ‘Reuven’, ‘last’: ‘Lerner’,
‘email’: ‘reuven@lerner.co.il’},
{‘fi rst’: ‘Donald’, ‘last’: ‘Trump’,

Обратите внимание,
что itemgetter воз-
вращает функцию.

Возвращает кортеж (‘c’, ‘e’).

Возвращает кортеж (30, 50).

86 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

‘email’: ‘president@whitehouse.gov’},
{‘fi rst’: ‘Vladimir’, ‘last’: ‘Putin’,
‘email’: ‘president@kremvax.ru’}]

def alphabetize_names (list_of_dicts):
 return sorted (list_of_dicts, key=operator.

itemgetter (‘last’, ‘fi rst’))
print (alphabetize_names (PEOPLE))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr70].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr71].

После выполнения упражнения
Для Python-разработчика очень важно уметь работать с сор-

тировкой структур данных Python и особенно с комбинациями
встроенных структур данных Python. Недостаточно просто ис-
пользовать встроенную функцию sorted, но понимать, как ра-
ботает сортировка и как можно использовать ключевой пара-
метр, также очень важно. В этом упражнении мы познакомились
с этой идеей, но рассмотрим еще несколько возможностей сор-
тировки:

1. Учитывая последовательность положительных и отрица-
тельных чисел, отсортируйте их по абсолютной величине.

2. Задав список строк, отсортируйте их по количеству содер-
жащихся в них гласных.

3. Если дан список списков, каждый из которых содержит
ноль или более чисел, отсортируйте его по сумме чисел
каждого внутреннего списка.

70

71

Параметр key для sorted получает
функцию, результат которой ука-
зывает, как мы будем сортировать.

873. Списки и кортежи

Что такое лямбда?
Очень часто Python-разработчики спрашивают меня

о том, что такое лямбда, что она делает и где ее можно ис-
пользовать.

Ответ заключается в том, что лямбда возвращает объект
функции, позволяя нам создать анонимную функцию. И мы
можем использовать ее везде, где мы могли бы использо-
вать обычную функцию без необходимости использования
имени переменной.

Рассмотрим следующий код:

glue = ‘*’
s = ‘abc’
print (glue.join (s))

Этот код выводит строку a*b*c, полученную в результате
вызова glue.join для s. Но зачем вам нужно определять
либо glue, либо s? Разве вы не можете просто использо-
вать строки без каких-либо переменных? Конечно, можете:

print (‘*’.join (‘abc’))

Этот код дает тот же результат, что и раньше. Разница
в том, что вместо переменных мы используем строковые ли-
тералы. Они создаются, когда они нужны, и исчезают после
выполнения нашего кода. Можно сказать, что это аноним-
ные строки. Анонимные строки, также известные как стро-
ковые литералы, совершенно нормальны и естественны,
и мы используем их постоянно.

Теперь рассмотрим следующее: когда мы определяем
функцию с помощью def, мы фактически делаем две вещи:
создаем объект функции и присваиваем этот объект функ-
ции переменной. Мы называем эту переменную функцией,
но она настолько же функция, насколько х — целое по-
сле объявления х=5. Присвоение в Python всегда означает,

88 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

что имя ссылается на объект, а функции — это объекты, как
и все остальное в Python. Например, рассмотрим следую-
щий код:

mylist = [10, 20, 30]

def hello (name):
return f’Hello, {name}’

Если мы выполним этот код в Python Tutor, то увидим,
что мы определили две переменные (рисунок 3.8). Одна
(mylist) указывает на объект типа list. Вторая (hello)
указывает на объект функции.

Рисунок 3.8. И mylist, и hello указывают на объекты
(из Python Tutor).

Поскольку функции являются объектами, их можно
передавать в качестве аргументов другим функциям. Сна-
чала это покажется странным, но вы быстро привыкнете
к идее передачи всех объектов, включая функции.

Например, я собираюсь определить функцию (run_
func_with_world), которая принимает функцию в каче-
стве аргумента. Затем она вызывает эту функцию, передавая
ей в качестве аргумента строку world:

def hello (name):
return f’Hello, {name}’

893. Списки и кортежи

def run_func_with_world (func): return
func (‘world’)

print (run_func_with_world (hello))

Обратите внимание, что теперь мы передаем hello
в качестве аргумента функции run_func_with (рису-
нок 3.9). С точки зрения Python, это абсолютно разумно
и нормально.

Рисунок 3.9. Вызов hello из другой функции
(из Python Tutor).

Во многих случаях мы хотим написать функцию, кото-
рая принимает другую функцию в качестве аргумента. Од-
ним из таких примеров является sorted.

Какое отношение это имеет к lambda? Ну, мы всегда мо-
жем создать функцию с помощью def, но тогда мы создаем
новую переменную. И для чего? Чтобы использовать ее один
раз? Не обращая внимания на экологические проблемы, вы,
вероятно, не захотите покупать металлические вилки, ножи
и ложки для случайного пикника: скорее, вы можете про-
сто купить пластиковую посуду. Точно так же, если функ-
ция нужна только один раз, то зачем мне определять ее
формально и давать ей имя? Именно здесь в дело вступает
lambda — она позволяет нам создать анонимную функ-
цию, идеально подходящую для передачи другим функ-
циям. Она исчезает, удаляется из памяти, как только в ней
отпадает необходимость.

90 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Если мы думаем о def как о: (а) создании объекта
функции и (б) определении переменной, которая ссыла-
ется на этот объект, то мы можем думать о lambda как
о выполнении только первой из этих двух задач. То есть
lambda создает и возвращает объект функции. Код, кото-
рый я написал, вызвав run_func_with_world и передав
ей hello в качестве аргумента, можно переписать с помо-
щью lambda следующим образом:

def run_func_with_world (f):
return f (‘world’)

 print (run_func_with_world (lambda
name: f’Hello, {name}’))

Здесь (рисунок 3.10) я удалил определение функции
hello, которая делает то же самое, используя lambda.

Рисунок 3.10 Вызов анонимной функции из функции
(из Python Tutor).

Чтобы создать анонимную функцию с помощью lambda,
используйте зарезервированное слово lambda, а затем
перечислите все параметры перед двоеточием. Затем напи-
шите однострочное выражение, которое будет возвращать
lambda. И действительно, в Python lambda ограничена
одним выражением — присваивание не допускается, и все
должно быть на одной строке.

В настоящее время многие разработчики Python предпо-
читают не использовать lambda, отчасти из-за их ограни-

913. Списки и кортежи

ченного синтаксиса, а отчасти потому, что доступны более
читабельные варианты, такие как itemgetter, которые де-
лают то же самое. Я все еще либерален, когда дело касается
lambda, и люблю использовать их, когда могу, но я также
понимаю, что для многих разработчиков это делает код бо-
лее трудным для чтения и сопровождения. Вы должны сами
решить, сколько lambda будет в вашем коде.

Упражнение 12.
Слово с наибольшим количеством

повторяющихся букв
Напишите функцию most_repeating_word, которая при-

нимает на вход последовательность строк. Функция должна воз-
вращать строку, содержащую наибольшее количество повторяю-
щихся слов. Другими словами:

1. Для каждого слова найдите букву, которая встречается наи-
большее количество раз.

2. Найдите слово, в котором самая повторяющаяся буква
встречается чаще, чем любая другая.

То есть, если words представляет собой

 words = [‘this’, ‘is’, ‘an’, ‘elementary’,
‘test’, ‘example’]

то ваша функция должна возвращать elementary. Это проис-
ходит потому, что:

1. this не содержит повторяющихся букв.
2. is содержит повторяющиеся буквы.
3. an не содержит повторяющихся букв.
4. elementary содержит одну повторяющуюся букву — e,

которая появляется три раза.
5. test содержит одну повторяющуюся букву — t, которая

появляется дважды.

92 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

6. example содержит одну повторяющуюся букву — e, ко-
торая появляется дважды.

Таким образом, самая распространенная буква в elementary
встречается чаще, чем самые распространенные буквы в любом
из других слов. (Если это ничья, то можно вернуть любое из под-
ходящих слов.)

Скорее всего, вы захотите использовать
Counter из модуля collections, который
подходит для подсчета количества элементов
в последовательности. Более подробную ин-
формацию можно найти здесь: [qr72]. Обра-
тите особое внимание на метод most_common
[qr73], использование которого здесь будет ак-
туальнее.

Обсуждение
Это решение объединяет несколько моих любимых техник

Python в коротком фрагменте кода:
1. Counter, подкласс dict, определенный в модуле

collections, который позволяет легко подсчитывать
предметы.

2. Передача функции в качестве ключевого параметра
в max.

Чтобы наше решение работало, нам нужно найти способ опре-
делить, сколько раз каждая буква встречается в слове. Самый про-
стой способ сделать это — Counter. Это правда, что Counter
наследуется от dict и поэтому может делать все, что может де-
лать dict. Но обычно мы создаем экземпляр Counter, иници-
ализируя его последовательностью, например:

>>> Counter (‘abcabcabbbc’)
Counter ({‘a’: 3, ‘b’: 5, ‘c’: 3})

Таким образом, мы можем передать Counter слово, и он ска-
жет нам, сколько раз каждая буква встречается в этом слове. Ко-

72

73

933. Списки и кортежи

нечно, мы можем использовать Counter и узнать, какая буква
встречается чаще всего. Но зачем так напрягаться, если можно
вызвать Counter.most_common?

>>> Counter(‘abcabcabbbc’).most_common()
[(‘b’, 5), (‘a’, 3), (‘c’, 3)]

Результатом вызова Counter.most_common является список
кортежей с именами и значениями счетчика в порядке убывания.
В примере Counter.most_common мы видим, что b встреча-
ется пять раз, a и c встречаются по три раза. Если бы мы вы-
звали most_common с целочисленным аргументом n, мы бы
увидели только n наиболее часто встречающихся элементов:

>>> Counter (‘abcabcabbbc’).most_common (1)
[(‘b’, 5)]

Это идеально подходит для наших целей. Действительно, я ду-
маю, что было бы полезно обернуть это в функцию, которая будет
возвращать, сколько раз наиболее повторяющаяся буква встреча-
ется в слове:

def most_repeating_letter_count (word):
return Counter (word).most_common (1) [0] [1]

(1) [0] [1] в конце выглядит немного запутанным. Это озна-
чает следующее:

1 Нам нужна только наиболее повторяющаяся буква, воз-
вращаемая в виде одноэлементного списка кортежей.

2 Затем нам нужен первый элемент из этого списка, кортеж.
3 Затем нам нужен счетчик для наиболее повторяющегося

элемента с индексом 1 в кортеже.

Показывает, как часто
каждый элемент встреча-
ется в строке, от наиболее
распространенного к наи-
менее распространенному,
в виде списка кортежей.

Показывает только самый
распространенный элемент и
сколько раз он встречается.

94 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Помните, что нам неважно, какая именно буква повторяется.
Нам просто важно, как часто встречается наиболее повторяе-
мая буква. И да, мне тоже не нравятся множественные индексы
в конце вызова функции, отчасти поэтому я хочу «завернуть»
это в функцию. Мы можем вызвать most_common с аргумен-
том 1, чтобы сказать, что нас интересует только буква с наи-
большим количеством баллов, затем, что нас интересует первый
(и единственный) элемент этого списка, а затем, что нам нужен
второй элемент (т.е. счетчик) из кортежа.

Чтобы найти слово с наибольшим количеством совпадающих
букв, мы захотим применить most_repeating_letter_count
к каждому элементу WORDS, указывая, какой из них имеет наи-
больший результат. Один из способов сделать это — воспользо-
ваться sorted, используя most_repeating_letter_count
в качестве ключевой функции. То есть мы будем сортировать
элементы WORDS по количеству повторяющихся букв. Поскольку
sorted возвращает список, отсортированный от наименьшего
к наибольшему значению, последний элемент (т.е. с индексом
–1) будет самым повторяющимся словом.

Но мы можем сделать еще лучше: встроенная функция max
будет принимать ключевую функцию, как и sorted, и возвра-
щать элемент, получивший наибольшую оценку. Следовательно,
мы можем сэкономить немного времени на кодировании, ис-
пользуя однострочную версию most_repeating_word:

def most_repeating_word (words):
return max (words,

key=most_repeating_letter_count)

Решение
from collections import Counter
import operator

WORDS = [‘this’, ‘is’, ‘an’,
‘elementary’, ‘test’, ‘example’]

953. Списки и кортежи

def most_repeating_letter_count (word):
return Counter (word).most_common (1) [0] [1]

def most_repeating_word (words):
return max (words,

key-most_repeating_letter_count (1) {0] {1}

print (most_repeating_word (WORDS))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr74].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr75].

После выполнения упражнения
Сортировка, управление сложными структурами данных

и передача функций другим функциям — все это объемные темы,
заслуживающие вашего внимания и практики. Вот несколько ве-
щей, которые вы можете сделать, чтобы выйти за рамки этого
упражнения и изучить эти темы еще раз:

1. Вместо того, чтобы искать слово с наибольшим количе-
ством повторяющихся букв, найдите слово с наибольшим
количеством повторяющихся гласных.

2. Напишите программу для чтения /etc/passwd на компью-
тере Unix. Первое поле содержит имя пользователя, а по-
следнее — оболочку пользователя, командный интерпрета-
тор. Выведите оболочки в порядке убывания популярности

74

75

Какая буква встречается
чаще всего и сколько раз?

Counter.most_common возвращает список двухэлемент-
ных кортежей (value и count) в порядке убывания.

Точно так же, как вы можете передать ключ
в sorted, вы можете передать его в max и ис-
пользовать другой метод сортировки.

96 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

так, чтобы самая популярная оболочка была показана пер-
вой, вторая по популярности — второй, и так далее.

3. Для дополнительной сложности после отображения каж-
дой оболочки также покажите имена пользователей (от-
сортированные по алфавиту), которые используют каждую
из этих оболочек.

Упражнение 13.
Печать записей кортежей

Кортежи обычно используются в качестве записей, подобно
структурам в некоторых других языках. И, конечно, отображе-
ние этих записей в таблице — стандартная задача программ. В этом
упражнении мы сделаем и то, и другое: прочитаем список корте-
жей и превратим их в форматированный вывод для пользователя.

Например, предположим, что мы отвечаем за проведение
международного саммита в Лондоне. Мы знаем, за сколько часов
каждый мировой лидер прибудет на мероприятие:

PEOPLE = [(‘Donald’, ‘Trump’, 7.85),
(‘Vladimir’, ‘Putin’, 3.626),
(‘Jinping’, ‘Xi’, 10.603)]

План саммита должен содержать список мировых лидеров,
которые примут участие, а также время, которое они потратят
на дорогу. Однако в плане поездки не нужно указывать степень
точности, которую обеспечивает компьютер, нам достаточно бу-
дет двух цифр после запятой.

Для этого упражнения напишите функцию Python, format_
sort_records, принимающую на вход список PEOPLE и воз-
вращающую отформатированную строку, которая выглядит сле-
дующим образом:

Trump Donald 7.85
Putin Vladimir 3.63
Xi Jinping 10.60

973. Списки и кортежи

Обратите внимание, что фамилия печатается перед именем
(с учетом того, что китайские имена обычно отображаются
именно так), а затем следует указание с десятичным выравнива-
нием сколько времени потребуется каждому лидеру, чтобы при-
быть в Лондон. Каждое имя должно быть напечатано в 10-сим-
вольном поле, а время — в 5-символьном поле, с одним пробелом
между столбцами. Время в пути должно отображаться числом
с двумя цифрами после десятичной точки, что означает, что даже
если входные данные для рейса Си Цзиньпина составляют 10.603
часа, то отображаемое значение должно быть 10.60.

Обсуждение
Кортежи часто используются в контексте структурированных

данных и записей базы данных. В частности, вы можете ожидать
получить кортеж при получении одной или нескольких записей
из реляционной базы данных. Затем вам нужно будет получить
отдельные поля с помощью числовых индексов.

Это упражнение состояло из нескольких частей. Прежде всего
нам нужно было отсортировать людей в алфавитном порядке по фа-
милии и имени. Я использовал встроенную функцию sorted для
сортировки кортежей при помощи алгоритма, аналогичный тому,
который мы использовали со списком словарей в предыдущем
упражнении. Таким образом, цикл for итерировал каждый эле-
мент нашего отсортированного списка, получая кортеж (который
он назвал person) на каждой итерации. Вы можете часто вспоми-
нать о словаре как о списке кортежей, особенно когда дело касается
итерирования при помощи метода items (рисунок 3.11).

Затем необходимо вывести содержимое кортежа в строгом
формате. Хотя часто лучше использовать f-строки, str.format
все же может быть полезен в некоторых обстоятельствах. Здесь
я использую тот факт, что person — это кортеж, а *person
при передаче в функцию становится не кортежем, а элементами
этого кортежа. Это означает, что мы передаем три отдельных ар-
гумента в str.format, доступ к которым мы можем получить
через {0}, {1} и {2}.

98 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Рисунок 3.11. Итерация над списком кортежей
(из Python Tutor).

В случае с фамилией и именем мы хотели использовать
10-символьное поле, заполненное пробелами. Мы можем сделать
это в str.format, добавив символ двоеточия (:) после индекса,
который мы хотим отобразить. Таким образом, {1:10} указы-
вает Python отобразить элемент с индексом 1, добавляя пробелы,
если данные содержат менее 10 символов. Строки по умолчанию
выравниваются влево, поэтому имена будут отображаться по ле-
вому полю в своих столбцах.

Третий столбец немного сложнее, поскольку мы хотели отоб-
разить только две цифры после запятой, максимум пять симво-
лов, чтобы выровнять десятичную запятую времени в пути и (как
будто этого было недостаточно) заполнить столбец символами
пробела.

В str.format (и в f-строках) каждый тип обрабатыва-
ется по-разному. Так, если мы просто укажем {2:10} в ка-
честве параметра форматирования для наших чисел с плаваю-
щей точкой (например, person [2]), число будет выровнено

993. Списки и кортежи

по правому краю. Мы можем отобразить его как число с плава-
ющей точкой, если поставим в конце символ f, как в {2:10f},
но в этом случае после десятичной точки будут стоять нули.
Спецификатор для вывода двух цифр после десятичной точки,
максимум пяти цифр в сумме, будет {5.2f}, который выводит
то, что мы хотели.

Решение
import operator
PEOPLE = [(‘Donald’, ‘Trump’, 7.85),

(‘Vladimir’, ‘Putin’, 3.626),
(‘Jinping’, ‘Xi’, 10.603)]

def format_sort_records (list_of_tuples):
output = []
template = ‘{1:10} {0:10} {2:5.2f}’
for person in sorted (list_of_tuples,

key=operator.itemgetter (1, 0)):

output.append (template.format (*person))
 return output

print (‘\n’.join (format_sort_records (PEOPLE)))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr76].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr77].

Вы можете использовать operator.itemgetter с любой
структурой данных, которая принимает квадратные
скобки. Вы также можете передать ему более одного
аргумента, как показано здесь.

76

77

100 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

После выполнения упражнения
Вот несколько идей для дополнительных заданий к упражнению,

которые помогут узнать больше о подобных структурах данных:
1. Если кортежи раздражают вас тем, что в них используются

числовые индексы, вы не одиноки! Реализуйте это упражне-
ние, используя объекты namedtuple, определенные в мо-
дуле collections. Многим нравится использовать имено-
ванные кортежи, потому что они обеспечивают правильный
баланс между читабельностью и эффективностью.

2. Определите список кортежей, в котором каждый кортеж
содержит название, продолжительность (в минутах) и ре-
жиссера фильмов, номинированных на премию «Оскар»
за лучшую картину в прошлом году. Спросите пользова-
теля, хочет ли он отсортировать список по названию, длине
или имени режиссера, а затем представьте список, отсорти-
рованный по выбранному пользователем параметру.

3. Расширьте это упражнение, позволив пользователю сорти-
ровать не по одному, а по двум или трем из этих полей.
Пользователь может указать поля, введя их через запятую.
Вы можете использовать str.split, чтобы превратить их
в список.

Подводя итоги
В этой главе мы рассмотрели несколько способов исполь-

зования списков и кортежей и управления ими в программах
на Python. Трудно преувеличить, насколько распространены
списки и кортежи и насколько хорошо вы должны быть с ними
знакомы. Вкратце, вот некоторые из наиболее важных моментов,
которые следует помнить о них:

1. Списки являются изменяемыми, а кортежи — неизменя-
емыми, но реальная разница между ними заключается
в том, как они используются: списки предназначены для
последовательностей одного типа, а кортежи — для запи-
сей, содержащих разные типы.

2. Вы можете использовать встроенную функцию sorted

1013. Списки и кортежи

для сортировки списков или кортежей. В результате вызова
sorted вы получите список.

3. Вы можете изменить порядок сортировки, передав функ-
цию в ключевом параметре. Эта функция будет вызвана
один раз для каждого элемента в последовательности, и вы-
вод функции будет использован при упорядочивании эле-
ментов.

4. Если вы хотите подсчитать количество элементов, содер-
жащихся в последовательности, попробуйте использовать
класс Counter из модуля collections. Он не только
позволяет быстро и легко подсчитывать количество эле-
ментов и предоставляет нам метод most_common, но и на-
следует его от dict, предоставляя нам все функции слова-
рей, которые мы знаем и любим.

4. Словари
и множества

Словари являются одними из самых мощных и важных
структур данных в Python. Вы можете встретить их в дру-
гих языках программирования, в которых они известны

как «хэши», «ассоциативные массивы», «хэш-карты» или «хэ-
ш-таблицы».

В словаре мы не вводим отдельные элементы, как в списке
или кортеже. Скорее, мы вводим пары данных, где первый эле-
мент известен как ключ, а второй — как значение. В то время как
индекс в строке, списке или кортеже всегда является целым чис-
лом и всегда начинается с 0, ключи словаря могут быть самых
разных типов Python — как правило, целые числа или строки.

Это, казалось бы, небольшое различие — то, что мы можем ис-
пользовать произвольные ключи для поиска наших значений,
а не целочисленные индексы, — на самом деле имеет решающее
значение. Во многих задачах программирования используются
пары имя-значение — например, имена пользователей/идентифи-
каторы пользователей, IP-адреса/имена хостов, адреса электронной
почты/зашифрованные пароли. Более того, большая часть самого
языка Python реализована с использованием словарей. Поэтому
знание того, как работают словари и как их лучше использовать,
даст вам представление о фактической реализации Python.

Я использую словари тремя основными способами:
1. В качестве небольших баз данных или записей. Часто удобно

использовать словари для хранения пар имя-значение. Мы

1034. Словари и множества

можем загрузить файл конфигурации в Python в виде сло-
варя, получая значения, связанные с опциями конфигура-
ции. Мы можем хранить информацию о файле, или пред-
почтениях пользователя, или множество других вещей
со стандартными именами и неизвестными значениями.
При таком использовании вы определяете словарь один
раз, часто в начале программы, и он не изменяется.

2. Для хранения тесно связанных имен и значений. Вместо того
чтобы создавать несколько отдельных переменных, вы мо-
жете создать словарь с несколькими парами ключ-зна-
чение. Я делаю так, когда хочу сохранить (например)
несколько частей информации о веб-сайте, таких как его
URL, мое имя пользователя и последняя дата посещения.
Конечно, можно использовать несколько переменных для
отслеживания этой информации, но словарь позволяет
проще управлять ею — а также передавать ее в функцию
или метод сразу, через одну переменную.

3. Для накопления информации с течением времени. Если вы от-
слеживаете, какие ошибки произошли в вашей программе
и сколько раз произошла каждая ошибка, то словарь от-
лично подойдет для этой задачи. Вы также можете исполь-
зовать один из классов, наследующих от dict, например,
Counter или defaultdict, которые определены в мо-
дуле collections. При таком использовании словарь
растет со временем, добавляя новые пары ключ-значение
и обновляя значения по мере выполнения программы.

Несомненно, вы найдете другие способы использования сло-
варей в своих программах, но я перечислил три наиболее часто
встречающихся в моей работе.

Хэширование и словари
Из того, что я написал до сих пор, может показаться, что лю-

бой объект Python может быть использован в качестве ключа
или значения в словаре. Но это не так. Хотя в Python в значе-
ниях можно хранить абсолютно все, в качестве ключей можно

104 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

использовать только хэшируемые типы, то есть те, к которым
можно применить хэш-функцию. Эта же хэш-функция гаран-
тирует, что ключи словаря уникальны, а поиск ключа может быть
достаточно быстрым.

Что такое хэш-функция? Зачем она в Python? И как она влияет
на то, что мы делаем?

Основная идея заключается в следующем. Предположим,
что у вас есть здание с 26 офисами. Если посетитель приходит,
чтобы встретиться с г-жой Смит, как ему узнать, где ее найти?
Без секретаря или офисного справочника посетителю придется
пройти через все офисы один за другим в поисках кабинета
г-жи Смит.

Именно таким образом происходит поиск в строке, списке или
кортеже в Python. Время, необходимое для поиска значения в та-
кой последовательности, описывается в литературе по информа-
тике как O (n). Это означает, что по мере увеличения длины
последовательности поиск искомого значения занимает пропор-
ционально больше времени.

Теперь давайте представим себе нашу офисную среду. Здесь
по-прежнему нет ни справочника, ни приемной, но есть та-
бличка, гласящая, что если вы ищете сотрудника, то просто
зайдите в офис, номер которого совпадает с первой буквой его
фамилии — по схеме a=1, b=2, c=3 и так далее.

Поскольку посетитель хочет найти мисс Смит, он вычисляет,
что S — это 19-я буква английского алфавита, идет в комнату 19
и с радостью обнаруживает, что она там. Если бы посетитель ис-
кал мистера Джонса, он, конечно, пошел бы в комнату 10, по-
скольку J — 10-я буква алфавита.

Такой поиск, как видите, не требует много времени. Действи-
тельно неважно, сколько сотрудников в нашей компании — 2,
25 или даже 250 — если компания существенно вырастет, посе-
тители смогут найти офисы наших сотрудников за то же время.
В мире программирования это известно как O (1), или посто-
янное время, и его довольно трудно переоценить.

Конечно, есть одна загвоздка: что, если у нас есть два человека,
чьи фамилии начинаются на S? Мы можем решить эту проблему

1054. Словари и множества

несколькими разными способами. Например, мы можем ис-
пользовать первые две буквы фамилии или попросить всех лю-
дей, чьи фамилии начинаются на S, работать в одном офисе. То-
гда нам придется перебрать всех людей в данном офисе, что, как
правило, не так уж страшно.

Описание, которое я вам здесь дал, является упрощенной вер-
сией хэш-функции. Такие функции используются в самых разных
случаях в мире программирования. Например, они особенно
популярны в криптографии и компьютерной безопасности, по-
тому что, хотя их отображение входов на выходы детерминиро-
вано, его практически невозможно вычислить без использования
самой хэш-функции. Они также играют ключевую роль в работе
со словарями в Python.

Запись в словарь состоит из пары ключ-значение. Ключ пере-
дается хэш-функции в Python, которая возвращает адрес, в ко-
тором хранится пара ключ-значение. Так, если вы скажете
d [‘a’] = 1, Python выполнит hash (‘a’) и использует ре-
зультат для хранения пары ключ-значение. А когда вы запросите
значение d [‘a’], Python может вызвать hash (‘a’) и не-
медленно проверить в указанном слоте памяти, есть ли там пара
ключ-значение. В мире Python словари называются отображе-
ниями, потому что хэш-функция отображает наш ключ в целое
число, которое мы затем можем использовать для хранения пар
ключ-значение.

Я опускаю здесь ряд деталей, включая важные внутренние изме-
нения, которые произошли в Python 3.6. Данные изменения гаран-
тировали, что пары ключ-значения будут храниться (и извлекаться)
в хронологическом порядке, при этом использование памяти сок-
ратится на одну треть. Данная мысленная модель должна помочь
объяснить, как словари достигают времени поиска O (1) (посто-
янное время), независимо от количества добавленных пар
 ключ-значение и почему они используются
не только разработчиками Python, но и самим
языком. Вы можете узнать больше о новой реа-
лизации в потрясающем докладе Рэй-Монда
Хеттингера, перейдя по ссылке [qr78].

78

106 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Хэш-функция объясняет, почему словари в Python

1. всегда хранят пары ключ-значение вместе

2. гарантируют очень быстрый поиск ключей

3. обеспечивают уникальность ключей

4. не гарантируют ничего в отношении поиска значений

Что касается того, почему списки и другие изменяемые

встроенные типы считаются в Python «нехэшируемыми», то при-

чина проста: если ключ изменится, то изменится и результат вы-

полнения хэша над ним. Это означает, что пара ключ-значе-

ние может находиться в словаре, но быть ненайденной. Чтобы

избежать таких проблем, Python гарантирует, что наши ключи

не могут меняться. Термины хэшируемость и неизменяемость —

не одно и то же, но они во многом совпадают, и когда вы только

начинаете знакомиться с языком, не стоит сильно беспокоиться

о различиях.

Множества
Со словарями тесно связаны множества, которые можно

представить как словари без значений. (Я часто шучу, что это

означает, что множества на самом деле являются аморальными

словарями.) Множества чрезвычайно полезны, когда вам нужно

найти что-то в большой коллекции, например, имена файлов,

адреса электронной почты или почтовые индексы, потому что

поиск выполняется за O (1), как и в словаре. Я также все чаще

стал использовать множества для удаления дублирующихся

значений из входного списка — например, IP-адресов в файле

журнала или номерных знаков автомобилей, проехавших через

въезд на парковку за определенный день.

В этой главе вы будете использовать словари и множества раз-

личными способами для решения задач. Можно с уверенно-

стью сказать, что почти каждая программа на Python исполь-

зует словари, или, возможно, альтернативные словари, такие как

defaultdict из модуля collections.

1074. Словари и множества

Таблица 4.1. Что вам нужно знать

Понятие Что это? Пример Чтобы узнать
подробнее

input Предлагает пользователю
ввести строку и возвра-
щает строку.

input
(‘Введите
ваше имя:
‘)

dict Тип dict в Python для хра-
нения пар ключ-значе-
ние. dict также можно ис-
пользовать для создания
нового словаря.

d = {‘a’:1,
‘b’:2}
или
d =
dict’a’,
1), (‘b’, 2

d [k] Извлекает значение, свя-
занное с ключом k в сло-
варь d.

x = d [k]

dict.get Аналогично d [k] за ис-
ключением того, что воз-
вращает None (или второй
необязательный аргумент),
если k отсутствует в d.

x = d.get
(k)
или
x =d.get
(k, 10)

dict.
items

Возвращает итератор, ко-
торый на каждой итера-
ции возвращает пару
ключ-значение (в виде
кортежа).

for key,
value ind.
items ():

set Тип set в Python
 используется для хране-
ния уникальных, хэши-
руемых элементов. set
также можно использо-
вать для создания нового
множества.

s = {1,2,3}
создает
3—элемент-
ное множе-
ство

set.add Добавляет один элемент
во множество.

s.add (10)

108 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Понятие Что это? Пример Чтобы узнать
подробнее

set.
update

Добавляет элементы од-
ной или нескольких ите-
рируемых объектов
в множество.

s.update
([10, 20,
30, 40,
50])

str.
isdigit

Возвращает True, если
все символы в строке яв-
ляются цифрами 0–9.

‘12345’.
isdigit ()
Возвра-
щает True

Упражнение 14. Ресторан
Одно из распространенных применений словарей — это не-

большая база данных в нашей программе. Мы определяем сло-
варь в верхней части программы, а затем ссылаемся на нее во всей
программе.

Например, вы можете создать словарь месяцев, в котором на-
звания месяцев будут ключами, а числа — значениями. Или, воз-
можно, у вас будет словарь пользователей, где в качестве ключей
будут идентификаторы пользователей, а в качестве значений —
адреса электронной почты.

В этом упражнении я хочу, чтобы вы создали новый констант-
ный словарь под названием MENU, содержащий блюда, которые
вы можете заказать в ресторане. Ключами будут строки, а значени-
ями — цены (т.е. целые числа). Затем необходимо написать функ-
цию restaurant, которая попросит пользователя ввести заказ:

1. Если пользователь вводит название блюда в меню, про-
грамма печатает цену и итоговую сумму. Затем она снова
спрашивает пользователя о заказе.

2. Если пользователь вводит название блюда, которого нет
в меню, программа ругает пользователя (мягко). Затем она
снова спрашивает пользователя о заказе.

Окончание таблицы

1094. Словари и множества

3. Если пользователь вводит пустую строку, программа пре-
кращает запрос и печатает общую сумму.

Например, сеанс работы с пользователем может выглядеть сле-
дующим образом:

Заказ: сэндвич
сэндвич стоит 10, общая сумма 10 Заказ: чай
чай стоит 7, итого 17
Заказ: слон
Извините, но сегодня у нас нет слона.
Заказ: <enter>
Ваша сумма равна 17

Обратите внимание, что вы всегда можете проверить наличие
ключа в словаре с помощью оператора in. Он возвращает True
или False.

Обсуждение
В этом упражнении словарь определяется один раз и оста-

ется неизменным на протяжении всей программы. Конечно, мы
могли бы использовать список списков или даже список кор-
тежей, но, когда у нас есть пары имя-значение, для нас более
естественно поместить их в словарь, а затем извлекать элементы
из словаря через ключи.

Итак, что происходит в этой программе? Во-первых, мы со-
здаем наш словарь (menu) с его ключами и значениями. Мы также
задаем общую сумму, к которой будем суммировать в дальней-
шем. Затем мы просим пользователя ввести строку. Мы вызываем
функцию strip для строки пользователя, так что, если он вве-
дет кучу символов пробела (но больше ничего), мы будем считать
это пустой строкой.

Если пользователь вводит пустую строку, мы выходим из цикла.
Как обычно, мы проверяем пустую строку не с помощью явного
if order == ‘’, и даже не с помощью проверки len (order)
== 0, а с помощью if not order, как это принято в Python.

110 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Но если пользователь ввел строку, то мы будем искать ее в сло-
варе. Оператор in проверяет, существует ли там строка, если
да, то мы можем получить цену и добавить ее к общей.

Если order не пустой, но это не ключ в menu, мы сообщаем
пользователю, что товара нет на складе.

С одной стороны, такое использование словарей не является
очень продвинутым или сложным для понимания. С другой сто-
роны, оно позволяет нам работать с нашими данными доста-
точно простым способом, используя преимущества быстрого
поиска, который обеспечивают словари, и используя связанные
данные в наших программах.

Решение
MENU = {‘сэндвич’: 10, ‘чай’: 7, ‘салат’: 9}

def restaurant ():
total = 0

 while True:
order = input (‘Заказ: ‘).strip ()

if not order:
break

if order in MENU:
price = MENU [order]
total += price
 print (f’{order} стоит {price},
общая сумма {total}’)

Определяет константу сло-
варя с названиями позиций
меню (строки) и ценами
(целые числа).

Продолжает запрашивать
ввод данных у пользова-
теля до явного «прерыва-
ния» цикла.

Получает входные данные
пользователя и использует
str.strip для удаления про-
белов в начале и конце.

Если блюдо из заказа есть в
меню, то получаем его цену
и добавляем к общей сумме.

Если order (заказ) — пустая
строка, выходим из цикла.

1114. Словари и множества

else:
 print (f’Сегодня у нас только что
закончился {order}’)

print (f’Общая стоимость {total}’)

restaurant ()

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr88].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr89].

После выполнения упражнения
Поначалу может показаться странным рассматривать хра-

нилище ключевых значений (например, словарь) как базу дан-
ных. Но оказывается, что существует множество примеров того,
где и как можно использовать такую структуру данных. Вот
несколько дополнительных заданий, которые вы можете выпол-
нить для улучшения своих навыков в этой области:

1. Создайте словарь, в котором ключами являются имена поль-
зователей, а значениями — пароли, представленные в виде
строк. Создайте крошечную систему входа, в которой поль-
зователь должен ввести имя пользователя и пароль. Если
они совпадают, то укажите, что пользователь успешно во-
шел в систему. Если нет, то откажите ему во входе. (Приме-
чание: это хорошее небольшое упражнение, но, пожалуй-
ста, никогда не храните пароли в незашифрованном виде.
Это серьезный риск для безопасности.)

2. Задайте словарь, ключами которого будут являться даты
(представленные строками) за последнюю неделю, а значе-
ниями — температура. Попросите пользователя ввести дату

88

89

Если order не пуст и не содержится в
словаре, то мы не принимаем этот заказ.

112 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

и выведите температуру для этой даты, а также в предыду-
щую и последующую даты, если таковые имеются.

3. Определите словарь, ключами которого являются имена
людей в вашей семье, а значениями — даты их рождения,
представленные в Python date объектами. Попросите
пользователя ввести имя человека из вашей семьи и по-
просите программу вычислить, сколько дней ему испол-
нилось.

Упражнение 15.
Дождевые осадки

Еще одно применение словарей — накопление данных в тече-
ние жизни программы. В этом упражнении вы будете использо-
вать словарь именно для этого.

В частности, напишите функцию get_rainfall, которая от-
слеживает количество дождевых осадков в ряде городов. Поль-
зователи вашей программы будут вводить название города, если
название города пустое, то функция распечатает отчет (который
я опишу) перед выходом.

Если название города не пустое, то программа также должна
спросить пользователя, сколько осадков выпало в этом городе
(обычно измеряется в миллиметрах). После того как пользова-
тель введет количество осадков, программа снова спросит на-
звание города, количество осадков и так далее — до тех пор,
пока пользователь не нажмет Enter вместо того, чтобы ввести
название города.

Когда пользователь вводит пустое название города, про-
грамма завершает свою работу, но сначала она сообщает,
сколько всего осадков выпало в каждом городе. Таким образом,
если я введу

Бостон
5
Нью — Йорк

1134. Словари и множества

7
Бостон
5
[Enter; пустая строка]

программа должна вывести

Бостон: 10
Нью-Йорк: 7

Порядок, в котором появляются города, неважен, и города
неизвестны программе заранее.

Обсуждение
В этой программе словари используется классическим об-

разом как крошечная база данных имен и значений, которая рас-
тет по ходу работы программы. В случае с этой программой мы
используем словарь с количеством дождевых осадоков,
чтобы отслеживать города и количество осадков, выпавших в них
на сегодняшний день.

Мы используем бесконечный цикл, который легче всего реа-
лизовать в Python с помощью while True. Только когда про-
грамма дойдет до break, она выйдет из цикла.

В начале каждого цикла мы получаем название города, для
которого пользователь сообщает об осадках. Как мы уже видели,
программисты Python обычно не проверяют, пуста ли строка,
проверяя ее длину. Скорее, они проверяют, содержит ли строка
булевое значение True или False. Если строка пуста, то она
примет значение False в операторе if. Наше выражение if
not city_name означает: «если переменная city_name со-
держит значение False», или, если говорить более простым
языком: «если city_name пустая».

Давайте разберем работу программы с помощью примеров,
приведенных ранее в этом разделе, и посмотрим, как она функ-
ционирует. Когда пользователя просят ввести данные в первый

114 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

раз, перед ним появляется командная строка (рисунок 4.1). Сло-
варь rainfall уже определен, и мы хотим заполнить его па-
рой ключ-значение.

Рисунок 4.1. Запрашиваем у пользователя первый ввод.

После того как мы ввели название города (Бостон), мы вво-
дим количество выпавших осадков (5). Поскольку Бостон впер-
вые указан как город, мы добавляем новую пару ключ-значение
для rainfall. Для этого мы задаем ключ Boston и значение 5
нашему словарю (рисунок 4.2).

Обратите внимание, что этот код использует dict.get
по умолчанию, чтобы получить либо текущее значение, свя-
занное с Бостоном (если оно есть), либо 0 (если его нет).
В первый раз, когда мы спрашиваем о городе, нет ключа
с именем Бостон, и уж тем более нет информации о преды-
дущих осадках.

Это упражнение содержит две части, которые зачастую удив-
ляют, либо расстраивают новичков в Python. Первая заключа-
ется в том, что функция input возвращает строку. Это хорошо,
когда пользователь вводит город, но не так хорошо, когда поль-
зователь вводит количество выпавших осадков. Хранение ко-
личества осадков в виде строки работает относительно хорошо,
если город вводится только один раз. Однако если город вво-
дится более одного раза, то программа столкнется с необходи-
мостью сложить (с помощью оператора +) две строки вместе.

1154. Словари и множества

Python с удовольствием сделает это, но результатом будет но-
вая конкатенированная строка, а не значение сложенных це-
лых чисел.

Рисунок 4.2. После добавления пары ключ-значение
 в словарь.

По этой причине мы вызываем int для mm_rain, чтобы по-
лучить целое число. Если вы хотите, вы можете заменить int
на fl oat, и таким образом получить обратно значение с пла-
вающей точкой. Тем не менее, если вы используете input для
получения ввода от пользователя и если вы хотите использовать
числовое значение, а не строку, вы должны выполнить преоб-
разование.

Перехват ошибок при вводе
В моем решении намеренно не проверяется, может ли

пользовательский ввод быть преобразован в целое число.
Это означает, что если пользователь введет строку, содер-
жащую не цифры от 0 до 9, то вызов int вернет ошибку.
Я не хотел слишком усложнять код решения.

Если вы хотите перехватывать такие ошибки, то у вас
есть два основных варианта. Первый — обернуть вызов int
внутри блока try. Если вызов int завершится ошибкой, вы
можете поймать исключение, например:

116 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

try:
 mm_rain = int (input (‘Введите коли-
чество осадков в мм: ‘))

except ValueError:
 print (‘Вы ввели недопустимое целое
число; попробуйте еще раз.’)
continue

 rainfall [city_name] = rainfall.get (city_
name, 0) + mm_rain

В этом коде мы позволяем пользователю вводить все, что
он захочет. Если мы сталкиваемся с ошибкой (исключе-
нием) при преобразовании, мы отправляем пользователя
обратно в начало нашего цикла while, когда мы запраши-
ваем название города. В более сложной реализации пользо-
ватель просто повторно вводит значение mm_rain.

Второе решение — использовать метод str.isdigit,
который возвращает True, если строка содержит только
цифры 0–9, и False в противном случае, например:

 mm_rain = input (‘Введите количество осадков
в мм: ‘).strip ()
if mm_rain.isdigit ():

mm_rain = int (mm_rain)
else:

 print (‘Вы ввели недопустимое целое
число; попробуйте еще раз.’)
continue

И снова это вернет пользователя к началу цикла while,
попросив его еще раз ввести название города. Также пред-
полагается, что нас интересуют только целые значения, по-
тому что str.isdigit возвращает False, если вы зада-
дите ему число с плавающей запятой.

1174. Словари и множества

Вы могли заметить, что у строк Python есть три ме-
тода с похожими названиями: isdigit, isdecimal
и isnumeric. В большинстве случаев эти три метода взаи-
мозаменяемы.

Однако вы можете узнать больше
о том, чем они отличаются друг от друга,
по ссылке [qr90]

Вторая сложная часть этого упражнения заключается в том, что
вы должны обработать случай, когда город был назван первый
раз (т.е. до того, как название города стало ключом в rainfall),
а также последующие разы.

В первый раз, когда кто-то вводит Бостон в качестве на-
звания города, нам нужно будет добавить в наш словарь пару
 ключ-значение для этого города и количества осадков. Во вто-
рой раз, когда кто-то введет Бостон в качестве названия го-
рода, нам нужно будет добавить новое значение к уже суще-
ствующему.

Одним из простых решений этой проблемы является ис-
пользование метода dict.get с двумя аргументами. При од-
ном аргументе dict.get либо возвращает значение, связанное
с именованным ключом, либо None. Но с двумя аргументами
dict.get возвращает либо значение, связанное с ключом, либо
второй аргумент (рисунок 4.3).

Рисунок 4.3. Добавляем к существующей паре имя-значение.

90

118 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Таким образом, когда мы вызываем rainfall.get (city_
name, 0), Python проверяет, существует ли уже ключ city_
name в rainfall. Если да, то вызов rainfall.get вернет
значение, связанное с этим ключом. Если city_name отсут-
ствует в rainfall, то мы получим 0.

В качестве альтернативного решения можно использовать
defaultdict, класс, определенный в модуле collections,
который позволяет вам определить словарь, работающий так же,
как и обычный — до тех пор, пока вы не запросите у него не-
существующий ключ. В таких случаях defaultdict вызывает
функцию, с помощью которой он был определен, например:

from collections import defaultdict
rainfall = defaultdict (int)
rainfall [‘Boston’] += 30
 rainfall # defaultdict (<type ‘int’>,
{‘Boston’: 30})

rainfall [‘Boston’] += 30
 rainfall # defaultdict (<type ‘int’>, {‘Boston’:
60})

Решение

def get_rainfall ():
rainfall = {}

while True:
city_name = input (‘Введите название города: ‘)
if not city_name:

break

defaultdict(int) означает, что, если
мы зададим rainfall[k] и k не входит
в rainfall, функция int выполнится
без аргументов, вернув нам int 0.

Мы не знаем, какие города
введет пользователь, поэтому
мы создаем пустой словарь,
готовый к заполнению.

Если вы живете в США, то, воз-
можно, вы удивитесь, узнав, что
в других странах осадки измеря-
ются в миллиметрах.

1194. Словари и множества

 mm_rain = input (‘Введите количество осадков
в мм: ‘) rainfall [city_name] = rainfall.get
(city_name,

0) + int (mm_rain)

for city, rain in rainfall.items ():
print (f’{city}: {rain}’)

get_rainfall ()

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr91].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr92].

После выполнения упражнения
Довольно стандартно использовать словари для отслежива-

ния накопленных значений (таких как количество событий или
сумма денег), связанных с произвольными значениями. Ключи
могут представлять то, что вы отслеживаете, а значения могут от-
слеживать данные, имеющие отношение к ключу. Вот некоторые
дополнительные возможности:

1. Вместо того чтобы печатать только общее количество осад-
ков для каждого города, напечатайте общее количество
осадков и среднее количество осадков за определенные
дни. Таким образом, если бы вы ввели 30, 20 и 40 для Бо-
стона, вы бы увидели, что общее число равно 90, а среднее
значение равно 30.

2. Откройте файл журнала из системы Unix/Linux, напри-
мер, из сервера Apache. Для каждого кода ответа (т.е.

91

92

При первом упоминании города, мы
добавляем 0 к его текущему количе-
ству осадков. В следующие разы мы
добавим текущее количество осадков
к ранее сохраненному. dict.get делает
это возможным.

120 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

трехзначного кода, указывающего на успех или неудачу
HTTP-запроса) сохраните список IP-адресов, которые вы-
дали этот код.

3. Чтение через текстовый файл на диске. Используйте сло-
варь для отслеживания количества слов каждой длины
в файле — то есть, сколько трехбуквенных слов, четырех-
буквенных слов, пятибуквенных слов и так далее. Отобра-
зите результаты.

Упражнение 16.
Dictdiff

Умение работать со словарями имеет решающее значение
для вашей карьеры Python-разработчика. Более того, как только
вы научитесь эффективно использовать dict.get, вы обнару-
жите, что ваш код стал короче, элегантнее и удобнее в обслу-
живании.

Напишите функцию dictdiff , которая принимает два сло-
варя в качестве аргументов. Функция вернет новый словарь, ко-
торый будет представлять собой разницу между двумя слова-
рями.

Если между словарями нет различий, dictdiff вернет пустой
словарь. Для каждой отличающейся пары ключ-значение воз-
вращаемое значение dictdiff будет иметь пару ключ-значе-
ние, в которой значение представляет собой список, содержащий
значения из двух разных словарей. Если один из словарей не со-
держит этого ключа, он должен содержать None. Ниже приве-
дены некоторые примеры:

d1 = {‘a’:1, ‘b’:2, ‘c’:3}
d2 = {‘a’:1, ‘b’:2, ‘c’:4}
print (dictdiff (d1, d1))
print (dictdiff (d1, d2))

Выведет «{}», потому что мы
сравниваем d1 с самим собой.

Выведет «{‘c’: [3, 4]}», потому
что у d1 есть c:3, а у d2 — c:4.

1214. Словари и множества

d3 = {‘a’:1, ‘b’:2, ‘d’:3}
d4 = {‘a’:1, ‘b’:2, ‘c’:4}
print (dictdiff (d3, d4))

d5 = {‘a’:1, ‘b’:2, ‘d’:4}
print (dictdiff (d1, d5))

Обсуждение
Давайте начнем с размышлений об общей идее этой про-

граммы:
1. Мы создаем пустой output словарь.
2. Мы проходим по каждому из ключей в fi rst и second.
3. Для каждого ключа мы проверяем, существует ли он в дру-

гом словаре.
4. Если ключ существует в обоих, то проверяем, одинаковы ли

значения.
5. Если значения одинаковы, то мы ничего не делаем для

output.
6. Если значения различны, то мы добавляем к output пару

ключ-значение, содержащую текущий ключ и список зна-
чений из fi rst и second.

7. Если ключ не существует ни в одном словаре, то в качестве
значения мы задаем None.

Все это звучит хорошо, но есть проблема с этим подходом:
это означает, что мы перебираем все ключи в fi rst, а затем все
ключи в second. Учитывая, что по крайней мере некоторые
ключи, как мы надеемся, будут пересекаться, такой подход ка-
жется неэффективным. Лучше и рациональнее было бы собрать
все ключи из fi rst и second, поместить их в множество (га-
рантируя, что каждый из них появится только один раз), а затем
выполнить итерацию по ним.

Обратите внимание, dict.keys () возвращает специ-
альный объект типа dict_keys. Но этот объект реализует
несколько тех же методов, которые доступны для множеств,
включая | (объединение) и & (пересечение)! Результатом яв-

Выведет «{‘c’: [3, 4]}»,
потому что у d1 есть
c:3, а у d2 — c:4.

Выведет «{‘c’: [3,
None], ‘d’: [None, 4]}»,
потому что у d1 есть
c:3, а у d5 — d:4.

122 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ляется множество, содержащее уникальные ключи из обоих
словарей вместе:

all_keys = fi rst.keys () | second.keys ()

ПРИМЕЧАНИЕ В Python 2 dict.keys и многие подоб-
ные методы возвращали списки, поддерживающие опера-
тор +. В Python 3 почти все подобные методы были моди-
фицированы для возврата итераторов. Когда возвращаемый
результат мал, разница между реализациями практически
отсутствует. Но когда возвращаемый результат большой,
то разница велика, и большинство предпочитает исполь-
зовать итератор. Таким образом, логика работы в Python 3
предпочтительнее, даже если она непривычна для людей,
перешедших с Python 2.

Поскольку множество — это фактически словарь без значе-
ний, мы точно знаем, что, помещая эти списки в наше множе-
ство all_keys, мы пройдем через каждый ключ только один
раз. Вместо того чтобы проверять, существует ли ключ в каж-
дом словаре, затем извлекать его значение, а затем проверять,
одинаковы ли значения, я использовал метод dict.get. Это
спасет нас от получения исключения KeyError. Более того,
если в одном из словарей отсутствует нужный ключ, мы по-
лучим обратно None. Мы можем использовать это не только
для проверки того, одинаковы ли словари, но и для извлече-
ния значений.

Теперь давайте пройдемся по каждому из приведенных при-
меров и посмотрим, что произойдет:

d1 = {‘a’:1, ‘b’:2, ‘c’:3}
print (dictdiff (d1, d1))

Мы видим этот пример на рисунке 4.4. На рисунке видно, что
локальные переменные fi rst и second указывают на один
и тот же словарь — d1.

1234. Словари и множества

Рисунок 4.4 Вычитаем d1 из самого себя.

Когда мы выполняем итерацию над объединенным множе-
ством ключей (рисунок 4.5), мы фактически выполняем итера-
цию над ключами d1. Поскольку мы никогда не находим ни-
каких различий, возвращаемое значение (output) — {} (пустой
словарь).

Рисунок 4.5. Итерация по ключам d1.

Сравнивая d1 и d2, мы видим, что fi rst и second ука-
зывают на два разных словаря (рисунок 4.6). Они также имеют
одинаковые ключи, но разные значения для ключа c. На ри-
сунке 4.7 показано, как наш словарь output получает новую
пару ключ-значение, представляющую различные значения
ключа c.

124 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Рисунок 4.6 Сравнение d1 и d2.

Сравнивая d3 и d4, мы видим, как все усложняется. Теперь
наш результирующий словарь будет содержать две пары ключ-зна-
чение, и каждое значение будет (как указано) списком. Таким об-
разом, вы можете увидеть, как мы создаем наш словарь из ничего,
чтобы поместить в него различия между двумя аргументами.

1254. Словари и множества

Решение
def dictdiff (fi rst, second):
output = {}
all_keys = fi rst.keys () | second.keys ()

for key in all_keys:
if fi rst.get (key)!= second.get (key):

output [key] = [fi rst.get (key),
second.get (key)]

 return output

d1 = {‘a’:1, ‘b’:2, ‘c’:3}
d2 = {‘a’:1, ‘b’:2, ‘d’:4}
print (dictdiff (d1, d2))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr93].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr94].

После выполнения упражнения
Функции Python могут возвращать любой объект, в том числе

и словари. Зачастую полезно написать функцию, которая со-
здает словарь: функция может объединять или суммировать дру-
гие словари (как в этом упражнении), или превращать другие
объекты в словари. Вот несколько идей, которые вы можете ре-
ализовать:

1. Метод dict.update объединяет два словаря. Напишите
функцию, которая принимает любое количество словарей
и возвращает словарь, представляющий собой комбина-

93

94

Получаем все ключи как
из первого, так и из вто-
рого, без повторений.

Используется тот факт, что
dict.get возвращает None,
если ключ не существует.

126 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

цию из них. Если один и тот же ключ появляется более
чем в одном словаре, то в выходных данных должно по-
явиться значение самого последнего объединенного сло-
варя.

2. Напишите функцию, которая принимает любое четное
количество аргументов и возвращает на их основе сло-
варь. Аргументы с четным индексом становятся ключами
словаря, а аргументы с нечетным номером становятся
значениями словаря. Таким образом, вызов функции с ар-
гументами (‘a’, 1, ‘b’, 2) приведет к возвращению словаря
{‘a’:1, ‘b’:2}.

3. Напишите функцию dict_partition, которая прини-
мает один словарь (d) и функцию (f) в качестве аргумен-
тов. dict_partition вернет два словаря, каждый из ко-
торых содержит пары ключ-значение из d. Решение о том,
куда поместить каждую из пар ключ-значение, будет при-
ниматься в соответствии с выходными данными f, кото-
рые будут выполняться для каждой пары ключ-значение
в d. Если f возвращает True, то пара ключ-значение
будет помещена в первый результирующий словарь. Если
f возвращает False, то пара ключ-значение будет поме-
щена во второй результирующий словарь.

Упражнение 17.
Сколько всего разных чисел?

В моей консультационной работе мне иногда интересно
найти сообщения об ошибке, IP-адреса или имена пользователей
в файле журнала. Но если сообщение, адрес или имя пользова-
теля появляется дважды, то никакой пользы от этого нет. Таким
образом, я хотел бы убедиться, что я просматриваю каждое зна-
чение только один раз без возможности повторения.

В этом упражнении вы можете предположить, что ваша про-
грамма Python содержит список целых чисел. Мы хотим напеча-
тать, сколько различных целых чисел содержится в этом списке.
Таким образом, рассмотрим следующее:

1274. Словари и множества

numbers = [1, 2, 3, 1, 2, 3, 4, 1]

При таком определении выполнение len (numbers) вернет
7, поскольку список содержит семь элементов. Как мы можем
получить в результате 4, указывающую на то, что список содер-
жит четыре различных значения? Напишите функцию с именем
how_many_diff erent_numbers, которая принимает один спи-
сок целых чисел и возвращает количество различных целых чи-
сел, которые он содержит.

Обсуждение
Множество по определению содержит уникальные эле-

менты — точно так же, как и ключи словаря являются гарантиро-
ванно уникальными. Таким образом, если у вас есть список зна-
чений, из которого вы хотите удалить все дубликаты, вы можете
просто создать множество. Вы можете создать множество, как по-
казано в коде решения

unique_numbers = set (numbers)

или вы можете создать пустое множество, а затем добавить в него
новые элементы:

 numbers = [1, 2, 3, 1, 2, 3, 4, 1] unique_
numbers = set ()
for number in numbers:
unique_numbers.add (number)

В этом примере используется функция set.add, которая до-
бавляет один новый элемент во множество. Вы можете добавлять
большое количество элементов с помощью set.update, кото-
рая принимает в качестве аргумента итерируемый объект:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = set ()

128 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

unique_numbers.update (numbers)

Наконец, у вас может возникнуть соблазн использовать син-
таксис фигурных скобок для множеств:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = {numbers} Не работает!

Этот код не будет работать, потому что Python думает, что вы
хотите добавить список numbers к множеству как один эле-
мент. А так как списки не могут быть ключами словаря, они также
не могут быть элементами множества.

Но, конечно, мы не хотим добавлять numbers. Скорее, мы
хотим добавить элементы внутри numbers. Здесь мы можем ис-
пользовать оператор * (splat), но несколько иначе, чем мы
видели раньше:

numbers = [1, 2, 3, 1, 2, 3, 4, 1]
unique_numbers = {*numbers}

Мы сообщаем Python, что он должен брать элементы numbers
и передавать их (в своем роде цикл for) в фигурные скобки.
И действительно, это прекрасно работает.

Что лучше: использовать set без * или {} с *? На ваше
усмотрение. Я предпочитаю фигурные скобки и *, но я также
понимаю, что * может сбить с толку многих людей и сделать
ваш код менее читабельным и удобным для новичков.

Решение
def how_many_diff erent_numbers (numbers):

unique_numbers = set (numbers)
return len (unique_numbers)

Вы можете использовать set.update только с
итерируемым объектом. Считайте это сокра-
щением выполнения цикла for для каждого
из элементов числа, вызывая set.add для теку-
щего элемента итерации.

Вызывает множество чисел, таким
образом возвращая множество с
уникальными элементами из чисел.

1294. Словари и множества

 print (how_many_diff erent_numbers
([1,2,3,1,2,3,4,1]))

Вы можете ознакомиться с кодом в Python
Tutor по ссылке [qr95].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr96].

После выполнения упражнения
Всякий раз, когда я встречаю уникальный или отличающийся

в спецификации проекта, я думаю о множествах, потому что они
автоматически обеспечивают уникальность и работают с последо-
вательностью значений. Поэтому если у вас есть последователь-
ность имен пользователей, дат, IPадресов, адресов электронной
почты или продуктов и вы хотите свести ее к последовательности,
содержащей те же данные, но с каждым элементом, появляющимся
только один раз, то множества могут быть чрезвычайно полезны.

Если вы хотите попрактиковаться в работе с множествами, мо-
жете попробовать выполнить следующие задания:

1. Просмотрите файл журнала сервера (например, Apache
или nginx). Какие различные IP-адреса пытались полу-
чить доступ к вашему серверу?

2. Просматривая тот же журнал сервера, постарайтесь от-
ветить, какие коды ответов были возвращены пользовате-
лям? Код 200 означает «ОК», но есть также ошибки 403,
404 и 500. (Регулярные выражения здесь необязательны,
но, возможно, помогут.)

3. Используйте os.listdir, чтобы получить имена файлов
в текущем каталоге. Какие расширения файлов (т.е. суф-
фиксы, следующие за конечным символом «.») находятся
в этом каталоге? Вероятно, будет полезно использовать
os.path.splitext.

96

95

130 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Подводя итоги
Словари, без сомнения, являются самой универсальной и важ-

ной структурой данных в мире Python. Научиться использовать их
эффективно и результативно — очень важно для того, чтобы чув-
ствовать себя уверенно. В этой главе мы рассмотрели несколько
способов их использования, включая отслеживание количества
элементов и хранение данных, полученных от пользователя. Мы
также увидели, что можно использовать dict.get для получе-
ния данных из словаря, не опасаясь, что ключ не существует.

При работе со словарями помните:
1. Ключи должны быть хэшируемыми, например, число или

строка.
2. Значения могут быть любыми, включая другой словарь.
3. Ключи уникальны.
4. Можно выполнять итерации по ключам в цикле for или

в генераторе.

5. Файлы

Файлы — неотъемлемая часть мира компьютеров, а значит,
и программирования. Мы читаем данные из файлов и пи-
шем в файлы. Даже когда что-то не является файлом —

например, сетевое соединение — мы стараемся использовать ин-
терфейс, похожий на файловый, потому что он нам хорошо знаком.

Для обычных пользователей существуют различные типы
файлов — Word, Excel, Power Point, PDF и другие.

Для программистов все и проще, и сложнее. Проще в том
смысле, что мы рассматриваем файлы как структуры данных,
в которые можно записывать строки и из которых можно чи-
тать строки. Но работа с файлами также сложнее потому, что при
считывании строки в память нам может понадобиться распар-
сить ее в структуру данных.

Работа с файлами — одна из самых простых и понятных вещей
в Python. Это также одна из самых распространенных вещей, ко-
торые нам нужно делать, поскольку программы, не взаимодей-
ствующие с файловой системой, довольно скучны.

В этой главе мы будем практиковать работу с файлами: читать,
записывать и обрабатывать данные, которые они содержат. Попутно
вы познакомитесь с некоторыми концепциями, которые обычно
используются при работе с файлами в Python, такие как итерация
по содержимому файла и запись в файлы при помощи with.

В некоторых случаях мы будем работать с данными в формате
CSV (значения, разделенные запятыми) или JSON (объектная но-
тация JavaScript) — два распространенных формата, с которыми
работают модули стандартной библиотеки Python. Если вы за-

132 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

были основы работы с CSV или JSON, в этой главе приведены не-
которые краткие напоминания.

После этой главы вам будет не только удобнее работать
с файлами, но вы также будете лучше понимать, как можно пере-
ходить от структур данных в памяти (например, списков и сло-
варей) к форматам данных на диске (например, CSV и JSON)
и обратно. Таким образом, файлы позволяют сохранять струк-
туры данных в неизменном виде — даже когда программа не ра-
ботает или компьютер выключен — или же передавать такие
структуры данных на другие компьютеры.

Таблица 5.1. Что вам нужно знать

Понятие Что это? Пример Чтобы узнать
подробнее

Файлы Описание работы
с файлами в Python.

f = open
(‘/etc/
passwd’)

with Помещает объект
в контекстный мене-
джер; обеспечивает
очистку файла и закры-
вает его к концу блока.

with open
(‘fi le.
text’) as
f:

Контекстный
менеджер

Позволяет вашим соб-
ственным объектам ра-
ботать с оператором
with.

with
MyObject
() as m:

set.update Добавляет элементы
к множеству.

s.update
([10, 20,
30])

os.stat Извлекает информацию
(размер, разрешения,
тип) о файле.

os.stat
(‘fi le.
txt’)

1335. Файлы

Понятие Что это? Пример Чтобы узнать
подробнее

os.listdir Возвращает список
файлов каталога.

os.listdir
(‘/etc/’)

glob.glob Возвращает список
файлов, соответствую-
щих шаблону.

glob.glob
(‘/etc/*.
conf’)

Генератор
словаря

Создает словарь
на основе итератора.

{word: len
(word)for
word in
‘ab cde’.
split ()}

str.split Разбивает строки на ча-
сти, возвращая список.

Воз-
вращает
[‘ab’,
‘cd’,
‘ef’]‘ab
cd ef’.
split ()

hashlib Модуль с криптографи-
ческими функциями.

import
hashlib

csv Модуль для работы
с файлами CSV.

x = csv.
reader (f)

json Модуль для работы
с JSON.

json.loads
(json_
string)

Окончание таблицы

134 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 18. Последняя строка
Очень часто начинающие Python-программисты изучают,

как можно перебирать строки файла, выводя по одной строке
за раз. Но что, если меня не интересует каждая строка или даже
большинство строк? Что, если меня интересует только одна
строка файла — последняя?

Получение последней строки файла может показаться
не слишком полезным действием. Но вспомните утилиты Unix
head и tail, которые показывают первую и последнюю строки
файла соответственно и которые я постоянно использую для
просмотра файлов, особенно файлов журналов и конфигураций.
Более того, умение читать определенные части файла, а не весь
файл целиком, является полезным практическим навыком.

В этом упражнении вы напишите функцию (get_fi nal_line),
которая принимает в качестве аргумента имя файла. Функция
должна печатать на экран последнюю строку этого файла.

Обсуждение
В коде решения используется ряд распространенных идиом

Python, которые я сейчас объясню. По ходу дела вы увидите, как
использование этих идиом приводит не только к более читабель-
ному коду, но и к более эффективному выполнению.

В зависимости от того, какие аргументы вы используете при ее
вызове, встроенная функция open может вернуть несколько раз-
личных объектов, таких как TextIOWrapper или Buff eredReader.
Все эти объекты реализуют один и тот же API для работы с файлами
и поэтому описываются в мире Python как «файлоподобные
объекты». Использование такого объекта позволяет нам забыть
о множестве различных типов файловых систем и думать только
в «файловых» терминах. Такой объект также позволяет нам восполь-
зоваться преимуществами любых оптимизаций, таких как буфери-
зация, которые может использовать операционная система.

Вот как обычно вызывается open:

f = open (fi lename)

1355. Файлы

В данном случае fi lename — это строка, представляющая со-
бой корректное имя файла. Если мы вызываем open только с од-
ним аргументом, этим аргументом обязательно будет имя файла.
Второй, необязательный аргумент, — это строка, которая может
включать несколько символов, указывающих, хотим ли мы чи-
тать из файла, записывать или добавлять в него (используя r, w
или a), а также читать ли файл посимвольно (по умолчанию)
или побайтно (параметр b, в этом случае мы будем использовать
rb, wb или ab). (См. сноску про параметр b и чтение файла
в байтовом, или двоичном, режиме.) Таким образом, я могу за-
писать предыдущую строку кода в более полном виде как:

f = open (fi lename, ‘r’)

Поскольку мы читаем из файлов чаще, чем пишем в них,
r является значением по умолчанию для второго аргумента.
Обычно программы на Python не указывают r при чтении
из файла.

Как вы могли заметить, мы поместили полученный объект
в переменную f. А поскольку все файлоподобные объекты яв-
ляются итерируемыми объектами, возвращая одну строку за
итерацию, то:

for current_line in f:
print (current_line)

Но если вы планируете выполнить итерацию по f только
один раз, то зачем вообще создавать ее как переменную? Мы мо-
жем обойтись без определения переменной и просто проитери-
ровать файловый объект, который возвращает open:

for current_line in open (fi lename):
print (current_line)

При каждой итерации над файлоподобным объектом мы по-
лучаем следующую строку из файла до символа новой строки

136 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

\n включительно. Таким образом, в этом коде line всегда бу-
дет строкой, которая всегда содержит один символ \n в конце.
Пустая строка в файле будет содержать только символ новой
строки \n.

Теоретически файлы должны заканчиваться \n, так что вы ни-
когда не закончите файл на середине строки. На практике я видел
много файлов, которые не заканчиваются \n. Помните об этом,
когда будете распечатывать содержимое файла: предположение,
что файл всегда будет заканчиваться символом новой строки, мо-
жет привести к проблемам.

А как насчет закрытия файла? Этот код будет работать и напе-
чатает длину каждой строки в файле. Однако такой код не одо-
бряется в мире Python, потому что он явно не закрывает файл.
Когда речь идет о чтении из файлов, это не такая уж большая
проблема, особенно если вы открываете только небольшое их
количество за раз. Но если вы пишете в файлы или открываете
много файлов одновременно, то вам следует закрывать файлы как
для экономии ресурсов, так и для того, чтобы убедиться, что файл
действительно закрыт.

Это можно сделать с помощью конструкции with. Я могу
переписать предыдущий код следующим образом:

with open (fi lename) as f:
for one_line in f:
print (len (one_line))

Вместо того чтобы открывать файл и присваивать файловый
объект непосредственно f, мы открыли его при помощи with,
присвоили его f как часть оператора with, а затем открыли
блок.

Более подробно об этом говорится в сноске про with
и «контекстные менеджеры», но вы должны знать, что это стан-
дартный питоновский способ открыть файл — в немалой сте-
пени потому, что он гарантирует, что файл будет закрыт к концу
блока.

1375. Файлы

Бинарный режим с использованием b
Что произойдет, если открыть нетекстовый файл, напри-

мер, PDF или JPEG, с помощью open, а затем попытаться
выполнить итерации по одной строке за раз?

Во-первых, скорее всего, вы сразу же получите ошибку,
потому что Python ожидает, что содержимое файла будет
действительной строкой Unicode в формате UTF-8. Двоич-
ные файлы по определению не используют Unicode. Когда
Python попытается прочитать строку не в формате Unicode,
он выдаст исключение, объясняя, что не может определить
строку с таким содержимым.

Чтобы избежать этой проблемы, вы можете и должны
открыть файл в бинарном или байтовом режиме, добавив b
к r, w или a во втором аргументе к open, например:

for current_line in open (fi lename, ‘rb’):
print (current_line)

Теперь вас не будет сдерживать отсутствие символов
Unicode.

Но подождите. Помните, что с каждой итерацией Python
возвращает все до следующего символа \n включительно.
В двоичном файле такой символ не будет появляться в конце
каждой строки, потому что там нет строк, о которых можно
было бы говорить. Без такого символа то, что вы получите в ре-
зультате каждой итерации, скорее всего, будет бессмыслицей.

В итоге, если вы читаете из двоичного файла, то не забы-
вайте использовать флаг b. Но, когда вы это сделаете, вы об-
наружите, что не хотите читать файл по строкам. Вместо этого
вы должны использовать метод read для получения фикси-
рованного количества байт. Когда read возвращает 0 байт,
вы будете знать, что находитесь в конце файла, например:

Открывает файл в ре-
жимах r (чтение) и b
(двоичный).

Здесь тип current_line — байто-
вый, подобно строке, но без
символов Unicode.

138 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

with open (fi lename, ‘rb’) as f:
 while True:

one_chunk = f.read (1000)
if not one_chunk:
break

 print (f’This chunk contains {len (one_
chunk)} bytes’)

В этом конкретном упражнении вас попросили вывести по-
следнюю строку файла. Один из способов:

for current_line in open (fi lename):
pass

print (current_line)

Этот трюк работает, потому что мы перебираем строки файла
и присваиваем current_line на каждой итерации, но на
самом деле мы ничего не делаем в теле цикла for. Скорее, мы
используем pass, который является способом сказать Python
ничего не делать. (Python требует, чтобы у нас была хотя бы одна
строка в блоке с отступом, например, тело цикла for.) Причина,
по которой мы выполняем этот цикл, заключается в его побоч-
ном эффекте — а именно в том, что конечное значение, присво-
енное current_line, остается на месте после выхода из цикла.

Однако перебор строк файла только для того, чтобы полу-
чить последнюю, кажется мне немного странным, даже если этот
способ работает. Мое любимое решение, показанное на рисунке
5.1, заключается в итерационном просмотре каждой строки
файла, получении текущей строк и немедленном присвоении ей
значения fi nal_line.

Когда мы выйдем из цикла, fi nal_line будет содержать все,
что было в самой последней строке. Таким образом, мы можем
вывести ее на печать.

Используем with в
«контекстном ме-
неджере», чтобы
открыть файл.Считывает до 1000 байт и возвра-

щает их в виде объекта bytes.

1395. Файлы

Рисунок 5.1. Перед печатью последней строки.

Обычно print добавляет новую строку после печати че-
го-либо на экран. Однако, когда мы итерируем файл, каждая
строка уже заканчивается символом новой строки. Это может
привести к удвоению пробельных символов между выводимыми
данными. Решение состоит в том, чтобы запретить print выво-
дить что-либо на экран, переопределив значение по умолчанию
\n в параметре end. Передавая end=’’, мы указываем print
добавить ‘’, пустую строку, после печати fi nal_line. С более
подробной информацией об аргументах, которые можно пере-
давать в print, ознакомтесь здесь:

http://mng.bz/RAAZ.

Решение
def get_fi nal_line (fi lename):

fi nal_line = ‘’
for current_line in open (fi lename):

fi nal_line = current_line
 return fi nal_line

 print (get_fi nal_line (‘/etc/
passwd’))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr109].

109

Итерируем каждую строку
файла. Вам не нужно объ-
являть переменную: про-
сто выполняйте итерацию
непосредственно над ре-
зультатом open.

140 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Симуляция файлов в Python Tutor
Сайт Python Tutor Филипа Гуо, который я использую для

иллюстраций, а также для того, чтобы вы могли экспери-

ментировать с решениями книги, не поддерживает работу

с файлами. Это вполне объяснимо — свободную серверную

систему, позволяющую людям запускать произвольный

код, достаточно сложно создать и поддерживать. Разре-

шение людям работать с произвольными файлами доба-

вило бы множество проблем с доставкой и безопасностью.

Однако существует решение — StringIO. Объекты

StringIO — это то, что Python называет «файлоподобными

объектами». Они реализуют тот же API, что и объекты fi le,

позволяя нам читать из них и записывать в них так же, как

в файлы. Однако, в отличие от файлов, объекты StringIO
никогда не обращаются к файловой системе.

StringIO не был разработан для использования в Python

Tutor, хотя он отлично подходит для решения проблем,

связанных с его ограничениями. Чаще всего я вижу (и ис-

пользую) StringIO в автоматизированных тестах. В конце

концов, вы же не хотите, чтобы тест обращался к файло-

вой системе — это сделает работу намного медленнее. Вме-

сто этого вы можете использовать StringIO для имитации

файла. Если вы занимаетесь тестированием программ-

ного обеспечения, вам стоит обратить серьезное внима-

ние на StringIO, часть стандартной библиотеки Python.

Вы можете загрузить его с помощью from io import
StringIO.

Таким образом, версии кода в Python Tutor будут немного

отличаться от версий в самой книге. Однако они должны

работать одинаково, позволяя вам изучать код наглядно.

К сожалению, отсутствует возможность добавить упражне-

ния со списками каталогов и поэтому отсутствуют ссылки

на Python Tutor.

1415. Файлы

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr110].

После выполнения упражнения
При работе с Python очень важно уметь итерировать файлы

и понимать, как работать с их содержимым в процессе (и после)
итерации. Также важно понимать, как превратить содержимое
файла в структуру данных Python — то, что мы еще несколько
раз рассмотрим в этой главе. Вот несколько идей того, что можно
делать при таком итерационном просмотре файлов:

1. Итерация по строкам текстового файла. Найдите все слова
(без пробелов в записи слова и не окруженные пробелами),
которые содержат только целые числа, и росуммируйте их.

2. Создайте текстовый файл (с помощью редактора, не обяза-
тельно Python), содержащий два столбца, разделенных та-
буляцией, каждый из которых содержит число. Затем с по-
мощью Python прочитайте созданный файл. Для каждой
строки умножьте каждое первое число на второе, а затем
просуммируйте результаты всех строк. Игнорируйте все
строки, которые не содержат двух числовых столбцов.

3. Прочитайте текстовый файл, строка за строкой С помо-
щью словаря подсчитайте, сколько раз каждая гласная (a, e,
i, o и u) встречается в файле. Распечатайте полученную та-
блицу.

Упражнение 19.
Создаем словарь из /etc/passwd

Принято (и полезно) рассматривать файлы как последова-
тельности строк. В конце концов, когда вы итерируете файло-
вый объект, вы получаете каждую из строк файла в виде строки,
по одной за раз. Но часто имеет смысл превратить файл в более
сложную структуру данных, такую как словарь.

110

142 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

В этом упражнении вы напишите функцию passwd_to_
dict, которая считывает данные из «файла паролей» в стиле
Unix, обычно хранящегося в файле /etc/
passwd, и возвращает на его основе словарь.
Если у вас нет доступа к такому файлу, вы мо-
жете скачать его по адресу [qr111].

Вот пример того, как выглядит файл:

 nobody:*:—2:—2::0:0: Unprivileged User:/var/
empty:/usr/bin/false root:*:0:0::0:0: System
Administrator:/var/root:/bin/sh
 daemon:*:1:1::0:0: System Services:/var/root:/
usr/bin/false

Каждая строка — это одна запись пользователя, состоящая
из полей, разделенных двоеточием. Первое поле (индекс 0) — это
имя пользователя, а третье поле (индекс 2) — уникальный иден-
тификационный номер пользователя. (В системе, из которой
я взял файл /etc/passwd, nobody имеет ID –2, root — ID 0,
а daemon — ID 1.) Для наших целей вы можете игнорировать
все поля, кроме этих двух.

Иногда файл содержит строки, которые не соответствуют этому
формату. Например, мы обычно игнорируем строки, не содержа-
щие ничего, кроме пробелов. Некоторые производители (напри-
мер, Apple) включают комментарии в свои файлы /etc/passwd,
в которых строка начинается с символа #.

Функция passwd_to_dict должна возвращать словарь
на основе /etc/passwd, в котором ключами словаря являются
имена пользователей, а значениями — идентификаторы пользо-
вателей.

Как строковые методы могут немного помочь
При проведении такого рода анализа и различных про-

цедур полезны строковые методы str.startswith, str.
endswith и str.strip.

111

1435. Файлы

Например, str.startswith возвращает True или
False, в зависимости от того, начинается ли строка с опре-
деленной строки или нет:

s = ‘abcd’
s.startswith (‘a’) # Возвращает True
s.startswith (‘abc’) # Возвращает True
s.startswith (‘b’) # Возвращает False

Аналогично, str.endswith сообщает нам, заканчива-
ется ли строка определенной строкой:

s = ‘abcd’
s.endswith (‘d’) # Возвращает True
s.endswith (‘cd’) # Возвращает True
s.endswith (‘b’) # Возвращает False

str.strip удаляет пробелы, а также \n, \r, \t и даже
\v — с обеих сторон строки. Методы str.lstrip и str.
rstrip удаляют пробелы только слева и справа соответ-
ственно.

Все эти методы возвращают строки:

s = ‘ \t\t\ta b c \t\t\n’
s.strip () # возвращает ‘a b c’
s.lstrip () # возвращает ‘a b c \t\t\n’
s.rstrip () # возвращает ‘ \t\t\ta b c’

Обсуждение
И снова мы открываем текстовый файл и итерируем его строки

по одной за раз. Здесь мы предполагаем, что знаем формат файла
и можем извлекать поля из каждой записи.

В данном случае мы разделяем каждую строку символом «:», ис-
пользуя метод str.split. str.split всегда возвращает список

144 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

строк, хотя длина этого списка зависит от того, сколько раз символ:
встречается в строке. В случае с /etc/passwd мы будем считать,
что любая строка, содержащая «:», является корректной записью
пользователя и, следовательно, содержит все необходимые поля.

Однако файл может содержать строки комментариев, начина-
ющиеся с #. Если бы мы вызвали str.split для этих строк, мы бы
получили список, содержащий только один элемент, что при-
ведет к исключению IndexError, если мы попытаемся получить
user_info [2].

Поэтому важно игнорировать те строки, которые начинаются
с #. К счастью, мы можем использовать метод str.startswith.
В частности, я нахожу и стираю комментарии и пустые строки
при помощи следующего кода: if not line.startswith
((‘#’, ‘\n’)):

При вызове функции str.startswith передается кортеж
из двух строк. str.startswith вернет True, если одна из строк
в этом кортеже находится в начале строки. Поскольку каждая
строка содержит новую строку, включая пустые строки, можно
сказать, что строка, начинающаяся с \n, является пустой строкой.

Предполагая, что запись о пользователе найдена, наша про-
грамма добавит новую пару ключ-значение в users. Ключ —
user_info [0], а значение — user_info [2]. Обратите вни-
мание, пока значение переменной user_info [0] содержит
строку, мы можем использовать ее в качестве ключа словаря.

Здесь я использую with для открытия файла, это гарантирует
его закрытие после завершения блока.

(См. сноски о with и контекстных мене-
джерах.) [qr112]

Решение
def passwd_to_dict (fi lename):

users = {}
with open (fi lename) as passwd:

for line in passwd:
if not line.startswith ((‘#’, ‘\n’)):

112

Игнорирует
комментарии и
пустые строки.

1455. Файлы

user_info = line.split (‘:’)
 users [user_info [0]] =
int (user_info [2])

 return users

print (passwd_to_dict (‘/etc/passwd’))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr113].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr114].

После выполнения упражнения
В определенный момент своей карьеры в Python вы переста-

нете воспринимать файлы как последовательности символов,
хранящихся на диске, и начнете видеть в них сырой материал,
который можно преобразовать в структуры данных Python. Наши
программы обладают большей семантической силой при работе
со структурированными данными (например, со словарями), чем
со строками. Мы также можем делать больше и мыслить глубже,
если читать файл как структуру данных, а не просто как строку.

Например, представьте себе CSV-файл, в котором каждая
строка содержит название страны и ее население. Если читать
этот файл как строку, то сравнить, например, население Фран-
ции и Таиланда будет возможно, но утомительно. Но если вы
прочитаете этот файл как словарь, то такое сравнение будет до-
вольно простым.

На самом деле, я большой поклонник чтения файлов в сло-
вари, в немалой степени потому, что многие форматы файлов
поддаются такому переводу, но вы можете использовать и бо-
лее сложные структуры данных. Вот несколько дополнительных
упражнений, которые могут помочь вам увидеть эту связь и осу-
ществить преобразование в вашем коде:

113

114

Превращает строку
в список строк.

146 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

1. Прочитайте /etc/passwd, создав словарь, в котором
входы в систему (последнее поле в каждой строке) являются
ключами. Каждое значение будет представлять собой спи-
сок пользователей, для которых эта оболочка определена
как оболочка входа в систему.

2. Попросите пользователя ввести целые числа, разделенные
пробелами. Из этого ввода создайте словарь, ключами ко-
торого являются коэффициенты для каждого числа, а зна-
чениями — списки, содержащие те целые числа пользова-
теля, которые кратны этим коэффициентам.

3. Из /etc/passwd создайте словарь, в котором ключами
будут имена пользователей (как в основном упражнении),
а значениями — сами словари с ключами (и соответствую-
щими значениями) для ID пользователя, домашнего ката-
лога и оболочки.

with и контекстные менеджеры
Как мы уже видели, обычно файл открывается следую-

щим образом:

with open (‘myfi le.txt’, ‘w’) as f:
f.write (‘abc\n’)
f.write (‘def\n’)

Большинство людей правильно полагает, что использо-
вание with гарантирует, что файл f будет очищен и за-
крыт в конце блока. (Таким образом, вам не нужно явно
вызывать f.close (), чтобы обеспечить удаление содер-
жимого.) Но поскольку with в подавляющем большинстве
случаев используется с файлами, многие разработчики счи-
тают, что между with и файлами существует некая вну-
тренняя связь. Правда в том, что with — это гораздо более
общая конструкция Python, известная как контекстный ме-
неджер. Основная идея заключается в следующем:

1475. Файлы

1. Вы используете with вместе с объектом и перемен-
ной, которой вы хотите присвоить объект.

2. Объект должен знать, как вести себя внутри
контекстного менеджера.

3. Когда блок запускается, with обращается к объекту.
Если для объекта определен метод __enter__,
то он вызывается. В случае с файлами метод опре-
делен, но ничего не делает, кроме как возвращает
сам файловый объект. Все, что возвращает этот ме-
тод, присваивается переменной as в конце строки
with.

4. Когда блок заканчивается, with снова обращается
к объекту, выполняя метод __exit__. Этот метод
дает объекту возможность изменить или восстановить
состояние, в котором он находился.

Итак, совершенно очевидно, каким образом with ра-
ботает с файлами. Возможно, метод __enter__ не важен
и мало что делает, но метод __exit__, безусловно, важен
и делает многое — в частности, выполняет сброс и закры-
вает файл. Если вы передаете в with двое или более объектов,
методы __enter__ и __exit__ вызываются для каждого
из них по очереди.

Другие объекты придерживаются протокола контекстного
менеджера. Действительно, если вы хотите, вы можете напи-
сать свои собственные классы так, чтобы они знали, как ве-
сти себя внутри оператора with. (Подробности о том, как
это сделать, приведены в таблице «Что нужно знать» в начале
главы.)

Используются ли контекстные менеджеры только для
работы с файлами? Нет, но это самый распространенный
случай. Два других распространенных случая — (1) при
обработке транзакций баз данных и (2) при блокировке
определенных секций в многопоточном коде. В обеих
 ситуациях вы хотите иметь участок кода, который

148 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 выполняется в определенном контексте — и здесь на по-
мощь приходит контекстное управление Python через
with.

Если вы хотите узнать больше
о контекстных менеджерах, вот хорошая
статья на эту тему: [qr115].

Упражнение 20. Счетчик слов
Unix-системы содержат множество служебных функций. Одна

из самых полезных для меня — wc, программа подсчета слов.
Если запустить wc на текстовом файле, она подсчитает символы,
слова и строки, которые содержит файл.

Задача этого упражнения — написать функцию wordcount,
имитирующую команду wc Unix. Функция будет принимать
на вход имя файла и печатать четыре строки вывода:

1 Количество символов (включая пробельные символы).
2 Количество слов (разделенных пробелами).
3 Количество линий.
4 Количество уникальных слов (с учетом регистра, поэтому

NO будет отличаться от no).
Я разместил тестовый файл (wcfile.txt)

на сайте [qr116]. Вы можете загрузить и ис-
пользовать этот файл для тестирования ва-
шей реализации wc. Подойдет любой файл,
но, если вы используете этот, ваши результаты
будут совпадать с моими. Содержимое этого файла будет выгля-
деть следующим образом:

Это тестовый файл.
Он содержит 28 слов и 20 различных слов.
Он также содержит 165 символов.
Он также содержит 11 строк.

115

116

1495. Файлы

Он также является самореферентной.
Вау!

Это упражнение, как и многие другие в этой главе, пытается
помочь вам увидеть связь между текстовыми файлами и встроен-
ными структурами данных Python. Очень часто Python исполь-
зуется для работы с файлами журналов и конфигурационными
файлами, собирая и представляя эти данные в удобочитаемом
формате.

Обсуждение
Эта программа демонстрирует ряд возможностей Python, ко-

торые многие программисты используют ежедневно. Прежде
всего, многие новички в Python считают, что если им нужно по-
лучить информацию о четырех аспектах файла, то они должны
прочитать его четыре раза. Это может означать, что нужно
открыть файл один раз и прочитать его четыре раза, или даже
открыть его четыре отдельных раза. Но в Python чаще всего файл
просматривается один раз, итерация по каждой строке и на-
копление всех данных, которые программа может найти в этой
строке.

 Как мы будем хранить эти данные? Мы могли бы использовать
отдельные переменные, и в этом нет ничего плохого. Но я пред-
почитаю использовать словарь (рисунок 5.2), поскольку подсчеты
тесно связаны между собой, а также потому, что это сокращает
объем кода, необходимого для создания отчета.

Итак, когда мы итерируем строки файла, как мы можем под-
считать число различных элементов? Подсчитывать строки проще
всего: каждая итерация проходит через одну строку, поэтому мы
можем просто добавить 1 к counts [‘lines’] в начале цикла.

Далее мы хотим подсчитать количество символов в файле. По-
скольку мы уже выполняем итерацию по файлу, работы не так
много. Мы получаем количество символов в текущей строке,
вычисляя len (one_line), а затем добавляем его к counts
[‘characters’].

150 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Многие удивляются, что в это число входят пробелы и сим-
волы табуляции, а также символы новой строки. Да, даже «пу-
стая» строка содержит один символ новой строки. Но если бы
у нас не было символов новой строки, то для компьютера
не было бы очевидно, когда он должен начинать новую строку.
Поэтому такие символы необходимы, и они занимают некото-
рое место.

Далее мы хотим подсчитать количество слов. Для этого превра-
тим one_line в список слов, вызвав one_line.split. Ре-
шение вызовет split без каких-либо аргументов, что в свою
очередь вынудит его использовать все пробельные символы —
пробелы, табуляцию и новые строки — в качестве разделителей.
Результат помещаем в counts [‘words’].

Последний пункт для подсчета — это уникальные слова. Тео-
ретически мы могли бы использовать список для хранения но-
вых слов. Но гораздо проще позволить Python сделать эту работу
за нас, используя множество для гарантии уникальности. Так, мы
создаем множество unique_words в начале программы, а затем
используем unique_words.update для добавления всех слов
в текущей строке в это множество (рисунок 5.3). Чтобы отчет ра-
ботал с нашим словарем, мы добавим новую пару ключ-значе-
ние в counts, используя len (unique_words) для подсчета
количества слов во множестве.

Рисунок 5.2. Инициализированные подсчеты в словаре.

1515. Файлы

Рисунок 5.3. Структуры данных, включая уникальные слова,
после нескольких строк.

Решение
def wordcount (fi lename):

counts = {‘characters’: 0,
‘words’: 0,
‘lines’: 0}

unique_words = set ()

for one_line in open (fi lename):
counts [‘lines’] += 1
counts [‘characters’] += len (one_line)
counts [‘words’] += len (one_line.split ())

unique_words.update (one_line.split ())

counts [‘unique words’] = len (unique_words)
for key, value in counts.items ():

print (f’{key}: {value}’)

wordcount (‘wcfi le.txt’)

Вы можете создавать
множества с фигур-
ными скобками, но
только если они пу-
стые! Используйте set()
для создания нового
пустого множества.

set.update добавляет все
элементы итерируемого
объекта во множество.

Подставляет длину
множества в counts
для комбинирован-
ного отчета.

152 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr117].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr118].
После выполнения упражнения
Создание отчетов на основе файлов — рас-

пространенное применение Python, исполь-
зование словарей для сбора информации
из этих файлов также распространено. Вот некоторые дополни-
тельные задания, которые вы можете попробовать выполнить:

1. Попросите пользователя ввести имя текстового файла, а за-
тем (в одной строке, разделенной пробелами) слова, ча-
стота которых должна быть подсчитана в этом файле. Под-
считайте, сколько раз эти слова встречаются в словаре,
используя введенные пользователем слова в качестве клю-
чей, а подсчеты (counts) — в качестве значений.

2. Создайте словарь, в котором ключами будут имена файлов
в вашей системе, а значениями — размеры этих файлов.
Для вычисления размера можно использовать os.stat.

3. В заданном каталоге прочитайте каждый файл и подсчи-
тайте частоту встречаемости каждой буквы. (Сделайте
буквы строчными и игнорируйте небуквенные символы.)
Используйте словарь для отслеживания частоты букв. Ка-
кие пять букв наиболее часто встречаются во всех этих
файлах?

Упражнение 21.
Самое длинное слово в файле

До сих пор мы работали с отдельными файлами. Однако мно-
гие задачи требуют анализа данных в нескольких файлах —
например, всех файлов в словаре. Это упражнение поможет вам

117

118

1535. Файлы

попрактиковаться в работе с несколькими файлами, объединяя
измерения для всех них.

В этом упражнении напишите две функции. fi nd_longest_
word принимает в качестве аргумента имя файла и возвращает
самое длинное слово, найденное в файле. Вторая функция, fi nd_
all_longest_words, принимает имя каталога и возвращает
словарь, в котором ключами являются имена файлов, а значени-
ями — самые длинные слова из каждого файла.

Если у вас нет текстовых файлов, которые
можно использовать для этого упражнения,
вы можете загрузить и использовать zip-файл,
который я создал из пяти самых популярных
книг в Project Gutenberg qr119. Вы можете за-
грузить zip-файл с сайта qr120.

ПРИМЕЧАНИЕ Существует несколько
способов решения данной проблемы. Если
вы уже знаете, как использовать генераторы, а особенно гене-
раторы словарей, то это, вероятно, самый питоновский под-
ход. Но если вы еще не освоились с ними и не хотите пока что
читать о них в главе 7, то не беспокойтесь — вы можете ис-
пользовать классический цикл for, и все будет в порядке.

Обсуждение
В этом случае вас просят взять имя каталога, а затем найти

самое длинное слово в каждом текстовом файле в этом каталоге.
Как уже отмечалось, ваша функция должна возвращать словарь,
ключами которого являются имена файлов, а значениями сло-
варя — самые длинные слова в каждом файле.

Всякий раз, когда вы слышите, что вам нужно преобразовать
коллекцию входных данных в коллекцию выходных, вы должны
сразу же подумать о генераторах — чаще всего это генераторы
списков, но также полезны генераторы множеств и генера-
торы словарей. В данном случае мы будем использовать генера-
тор словарей — это означает, что мы создадим словарь на основе

119

120

154 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

итерации над исходным. В нашем случае источником будет спи-
сок имен файлов. Имена файлов также будут ключами словаря,
а значениями — результаты передачи имен файлов в функцию.

Другими словами, наш генератор словарей будет:
1 Итерировать список файлов в указанном каталоге, поме-

стив имя файла в переменную fi lename.
2 Для каждого файла вызываем функцию fi nd_longest_

word, передав в качестве аргумента имя файла. Возвраща-
емым значением будет самая длинная строка в файле.

3 Каждая комбинация слов с самым длинным именем файла
станет парой ключ-значение в создаваемом нами словаре.

Как мы можем реализовать fi nd_longest_word? Мы можем
считать все содержимое файла в строку, превратить эту строку
в список, а затем найти самое длинное слово в списке с помо-
щью sorted. Хотя это хорошо работает для коротких файлов, для
файлов даже среднего размера будет использоваться много памяти.

Мое решение заключается в итерации по каждой строке файла,
а затем по каждому слову в строке. Если мы находим слово, ко-
торое длиннее, чем текущее longest_word, мы заменяем ста-
рое слово новым. Когда мы закончим итерировать содержимое
файла, мы возвращаем самое длинное слово, которое мы нашли.

Обратите внимание на os.path.join, который объединяет
имя каталога с именем файла. Вы можете рассматривать os.path.
join как специфическую версию str.join для имен файлов.
У него есть и дополнительные преимущества, например, учет те-
кущей операционной системы. В Windows os.path.join бу-
дет использовать обратные косые черты, в то время как в систе-
мах Mac и Unix/Linux он будет использовать прямую косую черту.

Решение
import os

def fi nd_longest_word (fi lename): longest_word = ‘’
for one_line in open (fi lename):

for one_word in one_line.split ():

1555. Файлы

 if len (one_word) > len (longest_
word):

longest_word = one_word
 return longest_word

def fi nd_all_longest_words (dirname):
 return {fi lename:

 fi nd_longest_word (os.path.join
(dirname, fi lename))
for fi lename in os.listdir (dirname)
 if os.path.isfi le (os.path.join (dirname,
fi lename))}

print (fi nd_all_longest_words (‘.’))

Поскольку эти функции работают с каталогами, ссылка
на Python Tutor отсутствует.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr121].

После выполнения упражнения
Вы часто будете создавать отчеты о файлах и их содержимом

с помощью словарей и других базовых структур данных в Python.
Вот несколько дополнительных упражнений для дальнейшей от-
работки:

1. Используйте модуль hashlib стандартной библиотеки
Python и его функцию md5, чтобы вычислить хэш MD5 для
содержимого каждого файла в указанном пользователем
каталоге. Затем выведите все имена файлов и их MD5-х-
эши.

121

Получает имя
файла и полный
путь к нему.

Перебирает все файлы
в каталоге dirname.

Нас интересуют только
файлы, а не каталоги или
специальные файлы.

156 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Запросите у пользователя имя каталога. Покажите все
файлы в каталоге, а также то, как давно каталог был изме-
нен. Вы, вероятно, захотите выбрать лег-
кий путь решения задачи и использо-
вать комбинацию os.stat и пакета
Arrow на PyPI [qr122].

3. Откройте файл журнала HTTP-сер-
вера. (Если у вас его нет, то вы можете
воспользоваться следующим файлом
[qr123].) Просуммируйте число запро-
сов, которые привели к числовым кодам
ответа — 202, 304 и т.д.

Списки каталогов
Для языка, который утверждает, что «есть всего один

способ реализации», в Python слишком много способов
перечислить файлы в каталоге. Два наиболее распростра-
ненных — os.listdir и glob.glob, оба из которых
я уже упоминал в этой главе. Третий способ — использовать
pathlib, который предоставляет нам объектно-ориенти-
рованный API к файловой системе.

Самой простой и стандартной из них является
os.listdir, функция из модуля os. Она возвращает спи-
сок строк, имена файлов в каталоге: например,

fi lenames = os.listdir (‘/etc/’)

Хорошая новость заключается в том, что понять
os.listdir и работать с ней очень просто. Плохая но-
вость заключается в том, что она возвращает список имен
файлов без имени каталога, что означает, что для открытия
или работы с файлами вам придется добавить имя каталога
в начале — в идеале с помощью os.path.join, который
работает кроссплатформенно.

122

123

1575. Файлы

Другая проблема с os.listdir заключается в том,
что вы не можете фильтровать имена файлов по шаблону.
Вы получаете все, включая подкаталоги и скрытые файлы.
Поэтому, если вам нужны только все файлы .txt в ката-
логе, os.listdir будет недостаточно.

Именно здесь на помощь приходит модуль glob. Он
позволяет вам использовать шаблоны, иногда называемые
globbing, для описания нужных вам файлов. Более того,
он возвращает список строк, каждая из которых содержит
полный путь к файлу. Например, я могу получить полные
пути к файлам конфигурации в каталоге /etc/ на моем
компьютере с помощью модуля glob:

fi lenames = glob.glob (‘/etc/*.conf’)

В этом случае мне не нужно беспокоиться о других
файлах или подкаталогах, что значительно облегчает ра-
боту. Долгое время функция glob.glob была моей па-
лочкой-выручалочкой для поиска файлов.

Есть еще модуль pathlib, который входит в стандарт-
ную библиотеку Python и во многом облегчает работу. Вы
начинаете с создания объекта pathlib.Path, который
представляет собой файл или каталог:

import pathlib
p = pathlib.Path (‘/etc/’)

Когда у вас есть этот объект Path, вы можете делать с ним
множество вещей, для которых раньше требовались отдель-
ные функции, включая те, которые я только что описал.
Например, вы можете получить итератор, возвращающий
файлы в каталоге с помощью iterdir:

for one_fi lename in p.iterdir ():
print (one_fi lename)

158 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

В каждой итерации вы получаете не строку, а объект Path
(точнее, на моем Mac я получаю объект PosixPath). Наличие
полноценного объекта Path, а не строки, позволяет не только
выводить имя файла, но и открывать и проверять его.

Если вы хотите получить список файлов, соответствую-
щих шаблону, как я это делал с glob.glob, вы можете ис-
пользовать метод glob:

for one_fi lename in p.glob (‘*.conf’):
print (one_fi lename)

pathlib — отличное дополнение к по-
следним версиям Python. Если у вас есть
возможность использовать его, сделайте
это: я обнаружил, что он проясняет и со-
кращает довольно много моего кода. Хо-
рошее введение в pathlib можно найти здесь: [qr124].

Упражнение 22. Чтение и запись в CSV
В файле CSV каждая запись хранится в одной строке, а поля

разделяются запятыми. CSV широко используется для обмена
информацией, особенно (но не только) в мире науки о данных.
Например, файл CSV может содержать информацию о различ-
ных овощах:

салат, зеленый, мягкая
морковь, апельсин, твердый
перец, зелень, твердый
баклажан, фиолетовый, мягкий

Каждая строка в этом CSV-файле содержит три поля, разде-
ленные запятыми. Здесь нет заголовков, описывающих поля, хотя
во многих CSV-файлах они есть.

124

1595. Файлы

Иногда запятая заменяется другим символом, чтобы избежать
потенциальной двусмысленности. Мне лично больше всего нра-
вится использовать символ TAB (\t в строках Python).

Python поставляется с модулем csv, который осуществляет за-
пись в CSV-файлы и чтение из них. Например, вы можете запи-
сать в CSV-файл следующий код:

import csv

with open (‘/tmp/stuff .csv’, ‘w’) as f:
o = csv.writer (f)
o.writerow (range (5))
o.writerow ([‘a’, ‘b’, ‘c’, ‘d’, ‘e’])

Не все файлы CSV обязательно выглядят как файлы CSV. Напри-
мер, в стандартном файле Unix /etc/passwd, который содер-
жит информацию о пользователях в системе (но не пароли поль-
зователей, несмотря на имя), поля разделяются символами «:».

Для этого упражнения создайте функцию passwd_to_csv,
которая принимает в качестве аргументов два имени файлов:
первое — это файл в стиле passwd для чтения, а второе — имя
файла, в который нужно записать вывод.

Содержимым нового файла является имя пользователя (ин-
декс 0) и ID пользователя (индекс 2). Обратите внимание, что за-
пись может содержать комментарий, в этом случае она не будет
иметь ничего в индексе 2: вы должны принять это во внимание
при записи файла. Выходной файл должен использовать символы
TAB для разделения элементов. Таким образом, входные данные
будут выглядеть следующим образом

 root:*:0:0::0:0: System Administrator:/var/
root:/bin/sh
 daemon:*:1:1::0:0: System Services:/var/root:/
usr/bin/false

Создает объект csv.writer, обернув в
него наш файлоподобный объект f.

Записывает в файл целые
числа от 0 до 4, разделенные
запятыми.

Сохраняет этот список строк
как запись в файл CSV, разде-
ляя их запятыми.

160 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Это строка комментария
_ ftp:*:98:—2::0:0: FTP Daemon:/var/empty:/usr/
bin/false

и вывод будет выглядеть следующим образом:

root 0
daemon 1
_ftp 98

Обратите внимание, что строка комментария во входном
файле не помещается в выходной файл. Можно предположить,
что любая строка, содержащая, по крайней мере, два поля, разде-
ленных двоеточием, является допустимой.

 Как Python обрабатывает конец строки
и новые строки на разных ОС

Различные операционные системы по-разному указы-
вают на то, что мы достигли конца строки. Системы Unix,
включая Mac, используют ASCII 10 (перевод строки, или LF).
Системы Windows используют два символа, а именно ASCII
13 (возврат каретки, или CR) + ASCII 10. В старых компью-
терах Mac используется только ASCII 13.

Python пытается устранить эти пробелы, проявляя гиб-
кость здесь и делая некоторые хорошие подсказки при чте-
нии файлов. Поэтому у меня редко возникали проблемы
с использованием Python для чтения текстовых файлов, со-
зданных с помощью Windows. Точно так же мои студенты
(которые часто используют Windows) обычно не испыты-
вают проблем с чтением файлов, которые я создал на Mac.
Python сам определяет, какое окончание строки исполь-
зуется, поэтому нам не нужно давать никаких дополни-
тельных подсказок. Внутри программы Python окончание
строки обозначается символом \n.

1615. Файлы

Запись в файлы, напротив, немного сложнее. Python по-
пытается использовать окончание строки, соответствующее
операционной системе. Так, если вы пишете в файл под
Windows, он будет использовать CR+LF (иногда показано
как \r\n). Если вы пишете в файл на машине Unix, то бу-
дет использоваться LF.

Обычно это работает просто замечательно. Но иногда
при чтении из файла вы можете увидеть слишком много
или слишком мало новых строк. Это может означать, что
Python угадал неправильно или что в файле используется
несколько разных окончаний строк, что сбивает с толку ал-
горитм угадывания Python.

В таких случаях вы можете передать значение параметра
newline в функцию open, используемую для открытия
файлов. Вы можете попробовать явно использовать newline-
=’\n’ для принудительного перевода строки в стиле Unix или
newline=’\r\n’ для принудительного перевода строки
в стиле Windows. Если это не решит проблему, возможно, вам
придется дополнительно изучить файл,
чтобы увидеть, как он был определен.

Полное введение в работу с файлами
CSV в Python смотрите на странице
[qr125].

Обсуждение
Программа решения использует ряд аспектов Python, которые

полезны при работе с файлами. Мы уже познакомились с with
и обсудили его в этой главе. Здесь вы увидите, как можно ис-
пользовать with для открытия двух отдельных файлов или во-
обще для определения любого количества объектов. Как только
наш блок завершится, оба файла будут автоматически закрыты.

В операторе with мы определяем две переменные для двух
файлов, с которыми мы будем работать. Файл passwd открыва-
ется для чтения из /etc/passwd. Файл output открыт для записи

125

162 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

и записывается в /tmp/output.csv. Наша программа будет дей-
ствовать как промежуточное звено, переводя данные из входного
файла и помещая переформатированное подмножество в выход-
ной файл.

Для этого мы создадим один экземпляр csv.reader, который
будет обернут passwd. Однако, поскольку /etc/passwd ис-
пользует двоеточия (:) для разделения полей, мы должны сооб-
щить это csv.reader. В противном случае он попытается ис-
пользовать запятые, что, скорее всего, приведет к ошибке или,
что еще хуже, не приведет, несмотря на некорректный парсинг
файла. Аналогично мы определяем экземпляр csv.writer, обора-
чивая наш файл output и указывая, что мы хотим использовать \t
в качестве разделителя.

Теперь, когда у нас есть объекты для чтения и записи данных
CSV, мы можем просмотреть входной файл, записывая строку
(линию) в выходной файл для каждого объекта входных дан-
ных. Мы берем имя пользователя (из индекса 0) и идентификатор
пользователя (из индекса 2), создаем кортеж и передаем этот кор-
теж в csv.writerow. Наш объект csv.writer знает, как взять
наши поля и вывести их в файл, разделив \t.

Возможно, самое сложное здесь — убедиться, что мы не пыта-
емся преобразовать строки, содержащие комментарии, то есть те,
которые начинаются с символа хэша (#). Есть несколько способов
сделать это, но здесь я просто проверил количество полей, кото-
рые мы получили для текущей строки ввода. Если есть только одно
поле, то это должна быть строка комментария или, возможно,
другой тип неправильно сформированной строки. В этом слу-
чае мы игнорируем строку полностью. Другим хорошим мето-
дом будет проверка наличия # в начале строки, возможно, с по-
мощью str.startswith.

Решение
import csv
def passwd_to_csv (passwd_fi lename, csv_fi lename):

with open (passwd_fi lename) as passwd,

1635. Файлы

? open (csv_fi lename, ‘w’) as output:
 infi le = csv.reader (passwd,

delimiter=’:’)
outfi le = csv.writer (output,

delimiter=’\t’)
for record in infi le:

if len (record) > 1:
 outfi le.writerow ((record [0],
record [2]))

Поскольку мы не можем записывать в файлы в Python Tutor,
для этого упражнения нет ссылки.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr126].

После выполнения упражнения
Файлы CSV чрезвычайно полезны и распространены, и модуль

csv, поставляемый вместе с Python, отлично с ними работает.
Если вам нужно что-то более продвинутое, то вам стоит обратить
внимание на pandas, который работает с большим числом ва-
риаций CSV, а также со многими другими форматами.

Вот несколько дополнительных упражнений для улучшения
навыков работы с файлами CSV:

1. Расширьте это упражнение, попросив пользователя ввести
разделенный пробелами список целых чисел, указываю-
щих, какие поля должны быть записаны в выходной CSV-
файл. Также спросите пользователя, какой символ должен
использоваться в качестве разделителя в выходном файле.
Затем считайте данные из /etc/passwd, записывая выбран-
ные пользователем поля, разделенные выбранным пользо-
вателем разделителем.

126

Поля во входном
файле разделяются
двоеточиями («:»).

Поля в выходном файле раз-
деляются табуляторами («\t»).

164 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Напишите функцию, которая записывает словарь в CSV-
файл. Каждая строка CSV-файла должна содержать три
поля: (1) ключ, который мы будем считать строкой, (2) зна-
чение и (3) тип значения (например, str или int).

3. Создайте CSV-файл, в котором каждая строка содержит
10 случайных целых чисел от 10 до 100. Теперь считайте
файл и выведите сумму и среднее значение чисел в каж-
дой строке.

Упражнение 23. JSON
JSON — это популярный формат для обмена данными.

В частности, многие веб-службы и API отправляют и получают
данные с помощью JSON.

Данные в кодировке JSON могут быть прочитаны в очень
большом количестве языков программирования, включая Python.
В стандартную библиотеку Python входит модуль json, кото-
рый можно использовать для преобразования строк в кодировке
JSON в объекты Python и наоборот. Метод json.load считы-
вает строку в кодировке JSON из файла и возвращает комбина-
цию объектов Python.

В этом упражнении вы будете анализировать данные те-
стов в средней школе. В файловой системе содержится каталог
scores, содержащий несколько файлов в формате JSON. Каждый
файл содержит оценки для одного класса. Напишите функцию
print_scores, которая принимает в качестве аргумента имя
каталога и печатает в кратком виде найденные оценки учащихся.

Если вы пытаетесь проанализировать оценки из класса 9a, они
будут находиться в файле под названием 9a.json, который вы-
глядит следующим образом:

 [{“математика”: 90, “литература”: 98, “естество-
знание”: 97},
 {“математика”: 65, “литература”: 79, “естество-
знание”: 85},

1655. Файлы

 {“математика”: 78, “литература”: 83, “ естество-
знание”: 75},
 {“математика”: 92, “литература”: 78, “ естество-
знание”: 85},
 {“математика”: 100, “литература”: 80, “ естество-
знание”: 90}]

В каталоге также могут содержаться файлы для 10-го класса
(10a.json, 10b.json и 10c.json), и других классов, и классов
средней школы. Каждый файл содержит JSON-эквивалент списка
словарей, причем каждый словарь содержит баллы по несколь-
ким различным школьным предметам.

ПРИМЕЧАНИЕ В правильном JSON используются двой-
ные кавычки (“), а не одинарные кавычки (‘). Это может уди-
вить и расстроить разработчиков Python.

Ваша функция должна вывести наивысшие, наименьшие
и средние тестовые баллы по каждому предмету в каждом классе.
Для файлов (9a.json и 9b.json) в каталоге scores мы получим
следующий результат:

scores/9a.json
 естествознание: минимум 75, максимум 97, сред-
нее 86,4
литература: минимум 78, максимум 98, среднее 83,6
 математика: минимум 65, максимум 100, среднее 85.0
scores/9b.json
 естествознание: минимум 35, максимум 95, в сред-
нем 82,0
литература: минимум 38, максимум 98, среднее 72.0
 математика: минимум 38, максимум 100, среднее 77,0

Вы можете скачать zip-файл с этими
файлами JSON по ссылке [qr127].

127

166 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обсуждение
Во многих языках первым ответом на подобную проблему было

бы: «Давайте создадим собственный класс!» Но в Python, хотя мы
можем (и часто так и делаем) создавать собственные классы, зача-
стую проще и быстрее использовать встроенные структуры дан-
ных: списки, кортежи и словари.

В данном конкретном случае мы читаем из файла JSON. JSON —
это представление данных, как и XML, сам по себе он не является
типом данных. Таким образом, если мы хотим создать JSON, мы
должны использовать модуль json, чтобы превратить наши
данные Python в строки в формате JSON. А если мы хотим читать
из файла JSON, мы должны прочитать содержимое файла в виде
строк в нашей программе, а затем преобразовать его в структуры
данных Python.

Однако в этом упражнении вас попросят поработать с несколь-
кими файлами в одном каталоге. Мы знаем, что каталог называ-
ется scores и что все файлы имеют суффикс .json. Поэтому
мы можем использовать os.listdir для каталога, фильтруя
(возможно, с помощью генератора списка) все эти имена файлов
так, чтобы работать только с теми, которые заканчиваются на
.json.

Тем неменее, кажется более подходящим использовать glob,
который принимает шаблон имени файла в стиле Unix, со-
держащий (среди прочих) символы * и? и возвращает список
имен файлов, соответствующих шаблону. Таким образом, вы-
звав glob.glob (‘scores/*.json’), мы получим все файлы,
заканчивающиеся на .json в пределах каталога scores. За-
тем мы можем перебирать этот список, присваивая текущее имя
файла (строку) fi lename.

Затем мы создадим новую запись в словаре scores, где бу-
дут храниться оценки. На самом деле это будет словарь словарей,
в котором на первом уровне будет имя файла и, следовательно,
класса, из которого мы будем считывать данные. Ключами вто-
рого уровня будут предметы, значениями словаря — список оце-
нок, на основе которых мы сможем вычислить нужную нам ста-

1675. Файлы

тистику. Таким образом, как только мы определили fi lename,
мы сразу же добавляем имя файла в качестве ключа к scores,
а в качестве значения — новый пустой словарь.

Иногда вам нужно прочитать каждую строку файла в Python,
а затем вызвать json.loads, чтобы превратить эту строку в дан-
ные. В нашем случае, однако, файл содержит один массив JSON.
Поэтому мы должны использовать json.load для чтения
из файлового объекта infi le, который превращает содержимое
файла в список словарей Python.

Поскольку json.load возвращает список словарей, мы смо-
жем проитерировать его. Каждый результат теста помещается
в переменную result, которая представляет собой словарь,
где ключами являются предметы, а значениями — баллы. Наша
цель — выявить некоторую статистику по каждому из предметов
в классе, что означает, что в то время, как входной файл сообщает
о баллах каждого ученика, наш отчет будет игнорировать учени-
ков в пользу предметов.

Учитывая, что result является словарем, мы можем пере-
бирать пары ключ-значение с помощью result.items (),
используя параллельное присваивание для итерации по ключу
и значению (здесь они называются subject (предмет) и score
(оценка)). Теперь мы не знаем заранее, какие предметы бу-
дут в нашем файле, и не знаем, сколько будет тестов. Исходя
из этого, нам проще всего хранить баллы в списке. Это означает,
что в нашем словаре scores будет один ключ верхнего уровня
для каждого имени файла и один ключ второго уровня для каж-
дого предмета. Значение второго уровня будет списком, кото-
рый мы будем добавлять с каждой итерацией через распарсен-
ный JSON-список.

Мы хотим добавить оценку в список:

scores [fi lename] [subject]

Прежде чем это сделать, нам нужно убедиться, что список су-
ществует. Один из простых способов сделать — это использо-
вать dict.setdefault, который назначает пару ключ-значе-

168 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ние в словарь, но только если ключ еще не существует. Другими
словами, d.setdefault (k, v) — это то же самое, что и

if k not in d:
d [k] = v

Мы используем dict.setdefault для создания списка, если
он еще не существует. В следующей строке мы добавляем оценку
в список для этого предмета в этом классе.

Когда мы завершили наш начальный цикл for, у нас есть все
оценки для каждого класса. Затем мы можем перебирать каждый
класс, печатая имя класса.

Затем мы итерируем каждый предмет класса. Мы снова ис-
пользуем метод dict.items, чтобы вернуть пару ключ-значе-
ние — в данном случае мы называем их subject (для названия
класса) и subject_scores (для списка оценок по этому пред-
мету). Затем мы используем f-строку для получения вывода, ис-
пользуя встроенные min и max, а затем комбинируя функции
sum и len, чтобы получить средний балл.

Хотя эта программа считывает данные из файла, содержа-
щего JSON, и выводит их на экран пользователя, она может с та-
ким же успехом считывать данные из сетевого соединения в фор-
мате JSON, и/или записывать их в файл или сокет в формате JSON.
Пока мы используем встроенные и стандартные структуры дан-
ных Python, модуль json сможет принимать наши данные
и превращать их в JSON.

Решение
import json
import glob

def print_scores (dirname):
scores = {}

for fi lename in glob.glob (f’{dirname} /*.json’):
scores [fi lename] = {}

1695. Файлы

with open (fi lename) as infi le:
for result in json.load (infi le):

for subject, score in result.items ():
 scores [fi lename].setdefault
(subject, [])
 scores [fi lename] [subject].
append (score)

for one_class in scores:
print (one_class)
 for subject, subject_scores in scores
[one_class].items ():

min_score = min (subject_scores)
max_score = max (subject_scores)
 average_score = (sum (subject_
scores) /

len (subject_scores))

print (subject)
print (f’\tmin {min_score}’)
print (f’\tmax {max_score}’)
 print (f’\taverage {average_
score}’)

Поскольку эти функции работают с каталогами, ссылка
на Python Tutor отсутствует.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr128].

После выполнения упражнения
Вот еще несколько задач, которые вы можете попробовать вы-

полнить с использованием JSON:

128

Читает из файла infile и преобразо-
вывает из JSON в объект Python.

Убедитесь, что subject
существует как ключ
в scores[filename].

Суммирует баллы.

170 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

1. Преобразовать файл /etc/passwd из формата CSV
в JSON. Файл JSON будет содержать эквивалент списка кор-
тежей Python, причем каждый кортеж будет представлять
одну строку из файла.

2. Для решения несколько иной задачи превратите каждую
строку в файле в словарь Python. Для этого потребуется иден-
тифицировать каждое поле с уникальным именем столбца
или ключа. Если вы не уверены, что делает каждое поле в /
etc/passwd, вы можете выбрать ему произвольное имя.

3. Спросите у пользователя имя каталога. Переберите все
файлы в этом каталоге (игнорируя подкаталоги), получите
(через os.stat) размер файла и время его последнего из-
менения. Создайте на диске файл в формате JSON, содер-
жащий имя каждого файла, его размер и временную метку
модификации. Затем снова прочитайте файл и определите,
какие файлы были изменены чаще всего и наименее не-
давно, а также какие файлы являются самыми большими
и самыми маленькими в этом каталоге.

Упражнение 24. Переворачиваем строки
Во многих случаях мы хотим взять файл в одном формате

и сохранить его в другом формате. В этой функции мы реализуем
базовую версию этой идеи. Функция принимает два аргумента:
имена входного файла (который будет считан из файла) и выход-
ного файла (который будет создан). Например, если файл выгля-
дит следующим образом:

abc def
ghi jkl

то выходной файл будет иметь вид

fed cba
lkj ihg

1715. Файлы

Обратите внимание, что новая строка остается в конце строки,
а все остальные символы меняются местами.

Преобразование файлов из одного формата в другой и получе-
ние данных из одного файла и создание на их основе другого —
обычные задачи. Например, вам может понадобиться перевести
даты в другой формат, перевести временные метки из восточного
летнего времени в среднее время по Гринвичу или преобразо-
вать цены из евро в доллары. Также может потребоваться из-
влечь из входного файла только некоторые данные, например,
для определенной даты или местоположения.

Обсуждение
Это решение зависит не только от того, что мы можем ите-

рировать файл по одной строке за раз, но и от того, что мы мо-
жем работать с более чем одним объектом в операторе with.
Помните, что оператор with принимает один или несколько
объектов и позволяет присваивать им переменные. Мне особенно
нравится, что, когда я хочу прочитать из одного файла и записать
в другой, я могу просто использовать with, чтобы открыть один
файл для чтения, второй — для записи, а затем сделать то, что
я показал здесь.

Затем я читаю каждую строку входного файла. Далее перево-
рачиваю строку, используя синтаксис срезов Python, — помните,
что s [::-1] означает, что нам нужны все элементы s, от на-
чала до конца, но я использую размер шага –1, что возвращает
обратную версию строки.

Однако перед тем, как перевернуть строку, мы сначала хотим
удалить символ новой строки, который является последним сим-
волом в строке. Поэтому мы сначала выполняем str.rstrip()
на текущей строке, а затем переворачиваем ее. Затем мы записы-
ваем ее в выходной файл, добавляя символ новой строки, чтобы
фактически спуститься на одну строку.

Использование with гарантирует, что оба файла будут за-
крыты по завершении блока. Когда мы закрываем файл, откры-
тый для записи, он автоматически очищается, что означает, что

172 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

нам не нужно беспокоиться о том, были ли данные действи-
тельно сохранены на диск.

Следует отметить, что люди часто спрашивают меня, как читать
из одного и того же файла и записывать в него. Python поддер-
живает это, используя режим r+. Но я считаю, что это открывает
двери для многих потенциальных проблем из-за возможно-
сти перезаписать неправильный символ и тем самым испортить
формат редактируемого файла. Я предлагаю использовать код
по типу «читать из одного, записывать в другой», который дает
примерно тот же эффект, но без потенциальной опасности ис-
портить исходный файл.

Решение
def reverse_lines (infi lename, outfi lename):
 with open (infi lename) as infi le, open

(outfi lename, ‘w’) as outfi le:
for one_line in infi le:

 outfi le.write (f’{one_line.rstrip
() [::—1]} \n’)

Поскольку эти функции работают с каталогами, ссылка
на Python Tutor отсутствует.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr129]

После выполнения упражнения
Вот еще несколько идей для упражнений по переводу файлов

из одного формата в другой с использованием такого метода
и with:

1. «Зашифруйте» текстовый файл, превратив все его символы
в их числовые эквиваленты (с помощью встроенной функ-

129

str.rstrip удаляет все про-
бельные символы из пра-
вой части строки.

1735. Файлы

ции ord) и записав этот файл на диск. Теперь «расшиф-
руйте» файл (с помощью встроенной функции chr),
превратив числа обратно в исходные символы.

2. На основе существующего текстового файла создайте два
новых текстовых файла. Каждый из новых файлов бу-
дет содержать столько же строк, сколько и входной файл.
В один выходной файл вы запишите все гласные (a, e, i, o
и u) из входного файла. В другом — все согласные. (Вы мо-
жете игнорировать пунктуацию и пробелы.)

3. Последнее поле в /etc/passwd — это shell, командный
интерпретатор Unix, который вызывается при входе поль-
зователя в систему. Создайте файл, содержащий одну строку
для каждой оболочки, в которой будет записано имя обо-
лочки, а затем все имена пользователей, которые исполь-
зуют эту оболочку, например:

/bin/bash: root, jci, user, reuven, atara
/bin/sh: spamd, gitlab

Подводя итоги
Практически невозможно представить себе написание про-

грамм без использования файлов. И хотя существует множе-
ство различных типов файлов, Python особенно хорошо подхо-
дит для работы с текстовыми файлами — особенно, но не только,
включая файлы журналов и конфигурационные файлы, а также
файлы, отформатированные такими стандартными способами,
как JSON и CSV.

При работе с файлами важно помнить несколько вещей:
1. Обычно вы открываете файлы для чтения или записи.
2. Вы можете (и должны) итерировать файлы по одной строке

за раз, а не считывать в память сразу весь файл.
3. Использование with при открытии файла для записи га-

рантирует, что файл будет очищен и закрыт.
4. Модуль csv позволяет легко читать из файлов CSV и запи-

сывать в них.

174 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

5. Функции dump и load модуля json позволяют нам
перемещаться между структурами данных Python и стро-
ками в формате JSON.

6. Чтение из файлов во встроенные типы данных Python —
распространенная и мощная техника.

6. Функции

Функции являются одним из важнейших элементов про-
граммирования — но не потому, что в них есть техни-
ческая необходимость. Мы могли бы программировать

и без функций, если бы это было действительно необходимо.
Но функции дают ряд больших преимуществ.

Во-первых, они позволяют нам избежать повторений в нашем
коде. Во многих программах есть инструкции, которые повторя-
ются: например, запрос пользователя на вход в систему, чтение
данных из определенного типа конфигурационного файла или
вычисление длины MP3. Хотя компьютер не будет возражать (или
даже жаловаться), если один и тот же код появится в несколь-
ких местах, мы и люди, которым придется поддерживать код по-
сле того, как мы закончим работу с ним, будут страдать и, скорее
всего, жаловаться. Такое повторение трудно запомнить и отсле-
дить. Более того, вы, скорее всего, обнаружите, что код нуждается
в улучшении и обслуживании: если он встречается в вашей про-
грамме несколько раз, то вам придется находить и исправлять его
каждый раз.

Как уже упоминалось в главе 2, при программировании хо-
рошо помнить о фразе «не повторяйся» (DRY). А написание
функций — это отличный способ применить правило «избавь
код от повторов».

Второе преимущество функций заключается в том, что они
позволяют нам (как разработчикам) мыслить на более высоком
уровне абстракции. Как нельзя водить машину, если постоянно
думать о том, что делают различные части вашего автомобиля,

176 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

так и нельзя программировать, если постоянно думать обо всех
частях вашей программы и о том, что они делают. С семанти-
ческой и когнитивной точки зрения мы оборачиваем функци-
ональность в пакет с именем, а затем используем это имя для
ссылки на него.

В естественном языке мы постоянно создаем новые гла-
голы, например, «программировать» и «писать». Конечно, мы
могли бы описать эти действия с помощью гораздо большего ко-
личества слов и с гораздо большим количеством деталей, но это
утомительно и отвлекает от работы.

Функции — это глаголы программирования. Они позволяют
нам определять новые действия на основе старых и, таким об-
разом, позволяют нам мыслить более сложными терминами.

По всем этим причинам функции являются полезным инстру-
ментом и доступны во всех языках программирования. Но функ-
ции Python являются особенными еще и потому, что они являются
объектами, то есть с ними можно обращаться как с данными. Мы
можем хранить функции в структурах данных и извлекать их от-
туда. Использование функций таким образом кажется странным
многим новичкам в Python, но это мощная техника, которая поз-
воляет сократить объем кода и повысить гибкость.

Более того, Python не допускает многократного определения
одной и той же функции. В некоторых языках функцию можно
определить несколько раз, каждый раз с разной сигнатурой.
Например, можно один раз определить функцию, принимаю-
щую в качестве аргумента строку, второй раз как принимающую
в качестве аргумента — список, третий раз как принимающую —
словарь, а четвертый раз как принимающую три аргумента типа
fl oat.

В Python такой функциональности не существует: когда вы
определяете функцию, вы присваиваете переменную. И так же,
как вы не ждете, что x будет одновременно содержать значения 5
и 7, вы точно так же не можете ожидать, что функция будет со-
держать несколько реализаций.

В Python эта проблема решается с помощью гибких парамет-
ров. Между значениями по умолчанию, переменным количе-

1776. Функции

ством аргументов (*args) и аргументами с ключевыми словами
(**kwargs) мы можем писать функции, которые справляются
с различными ситуациями.

По мере изучения этой книги вы уже написали несколько
функций, поэтому целью данной главы не является научить вас
писать функции. Скорее, цель состоит в том, чтобы показать, как
использовать различные техники, связанные с функциями. Это
позволит вам не только написать код один раз и использовать его
множество раз, но и создать иерархию новых глаголов, описыва-
ющих все более сложные и высокоуровневые задачи.

Таблица 6.1. Что вам нужно знать

Понятие Что это? Пример Чтобы узнать
подробнее

def Ключевое слово для
определения функ-
ций и методов.

def double
(x): return
x * 2

глобальное
пространство

В функции указы-
вает на то, что пере-
менная должна быть
глобальной.

global x

nonlocal Во вложенной
функции указывает,
что переменная яв-
ляется локальной
для внешней функ-
ции.

nonlocal

модуль
operator

Коллекция мето-
дов, реализующих
встроенные опера-
торы.

operator.
add (2,4)

178 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Значения параметров по умолчанию
Допустим, я могу написать простую функцию, которая

возвращает дружеское приветствие:

def hello (name):
return f’Hello, {name}!’

Это будет работать нормально, если я предоставлю зна-
чение для name:

>>> hello (‘world’)
‘Hello, world!’

Но что, если нет?

>>> hello ()
Traceback (последний вызов):

 Файл “<stdin>”, линия 1, в <module>
TypeError: hello () отсутствует 1 обя-
зательный позиционный аргумент: ‘name’

Другими словами, Python знает, что функция принимает
один аргумент. Поэтому если вы вызовете функцию с од-
ним аргументом, все будет в порядке. Вызовите ее без аргу-
ментов (или с двумя аргументами, если на то пошло) и по-
лучите сообщение об ошибке.

Откуда Python знает, сколько аргументов должна при-
нять функция? Он знает, потому что объект функции, ко-
торый мы создали, когда определяли функцию с помощью
def, отслеживает такие вещи. Вместо того чтобы вызывать
функцию, мы можем заглянуть внутрь объекта функции.
Атрибут __code__ (см. рисунок 6.1) содержит ядро функ-
ции, включая байткоды, в которые была скомпилирована
ваша функция. Внутри этого объекта находится ряд подска-
зок, которые Python хранит в себе, включая эту:

1796. Функции

>>> hello.__code__.co_argcount
1

Рисунок 6.1. Объект функции вместе с __
code__.

Другими словами, когда мы определяем нашу функ-
цию с параметром, объект функции отслеживает его в co_
argcount. И когда мы вызываем функцию, Python срав-
нивает количество аргументов с co_argcount. Если есть
несоответствие, то мы получаем ошибку, как мы видели
чуть раньше. Однако есть еще способ определить функцию
так, чтобы аргумент был необязательным: мы можем доба-
вить к параметру значение по умолчанию:

def hello (name=’world’):
return f’Hello, {name}!’

Сейчас Python будет давать нам больше свободы дей-
ствий. Если мы передаем аргумент, то это значение присва-
ивается параметру name. Но если мы не передаем аргумент,
тогда строке world присваивается значение name, как было
по умолчанию (см. таблицу 6.2). Таким образом, мы можем
вызывать нашу функцию либо без аргументов, либо с одним
аругентом — при этом два аргумента недопустимы.

Таблица 6.2. Вызов hello
Вызываем Значение name Возвращаемое

знаечние
hello () world, спасибо значе-

нию по умолчанию.
Hello, world!

hello (‘out
there’)

out there. Hello, out
there!

hello (‘a’, ‘b’) Ошибка: слишком
много аргументов.

Нет возвращае-
мого значения.

180 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ПРИМЕЧАНИЕ Параметры со значениями по умолча-
нию должны идти после параметров без значений по умол-
чанию.

ПРЕДУПРЕЖДЕНИЕ Никогда не используйте в каче-
стве значения по умолчанию параметра изменяемое зна-
чение, например, список или словарь, поскольку значения
по умолчанию сохраняются и повторно используются при
каждом вызове функции. Это означает, что, если вы изме-
ните значение по умолчанию в одном вызове, это измене-
ние будет и в следующем вызове. Большинство анализато-
ров кода и IDE предупредят вас, но об этом нужно помнить.

Упражнение 25. Генератор XML
Python часто используют не только для парсинга данных,

но и для форматирования. В этом упражнении вы напишете
функцию, которая использует комбинацию различных пара-
метров и типов параметров для получения различных выходных
данных.

Напишите функцию myxml, которая позволяет создавать про-
стой вывод XML. Вывод функции всегда будет строкой. Функция
может быть вызвана несколькими способами, как показано в та-
блице 6.3.

Таблица 6.3. Вызов myxml
Вызываем Возвращаемое знаечние

myxml (‘foo’) <foo></foo>
myxml (‘foo’, ‘bar’) <foo>bar</foo>
myxml (‘foo’, ‘bar’, a=1,
b=2, c=3)

<foo a=”1” b=”2”
c=”3”>bar</foo>

Обратите внимание, что во всех случаях первым аргументом
является имя тега. В двух последних случаях вторым аргументом
является содержимое (текст), расположенное между открываю-

1816. Функции

щим и закрывающим тегами. В третьем случае, пара имя-значе-
ния будет превращена в атрибуты внутри открывающего тега.

Обсуждение
Предположим, что наша функция принимает только один ар-

гумент — имя тега. Это достаточно легко записать. Мы можем
написать

def myxml (tagname): return
f’< {tagname} ></ {tagname} >’

Если мы захотим передать второй (необязательный) аргумент,
то потерпим поражение. Поэтому некоторые люди полагают, что
наша функция должна принимать *args, то есть любое коли-
чество аргументов, помещенных в кортеж. Как правило, *args
предназначен для ситуаций, в которых вы не знаете, сколько зна-
чений получите, и хотите принимать любое число.

Я обычно руководствуюсь следующим правилом: *args сле-
дует использовать тогда, когда вы собираетесь поместить значе-
ние в цикл for, и что если вы берете элементы из *args с чи-
словыми индексами, то, вероятно, вы делаете что-то не так.

Другой вариант — использовать значение по умолчанию. Я вы-
брал последний вариант. Первый параметр является обязатель-
ным, а второй — необязательным. Если я сделаю второй пара-
метр (который я здесь назвал content) пустой строкой, то я буду
знать, что либо пользователь передает content, либо content
пуст. В любом случае функция работает. Таким образом, я могу
определить ее следующим образом:

def myxml (tagname, content=’’): return
f’< {tagname} > {content} </ {tagname} >’

Но как насчет пар ключ-значение, которые мы можем пере-
дать и которые затем помещаются в качестве атрибутов в откры-
вающий тег?

182 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Когда мы определяем функцию с **kwargs, мы говорим
Python, что можем передать любую пару имя-значение в стиле
name=value. Данные аргументы не передаются как обычно,
а рассматриваются отдельно как аргументы ключевого слова. Они
используются для создания словаря, который обычно обозначают
как kwargs, ключами которого являются имена ключевых слов,
а значениями — значения ключевых слов. Таким образом, мы
можем написать:

def myxml (tagname, content=’’, **kwargs):
attrs = ‘’.join ([f’ {key} =”{value}”’
for key, value in kwargs.items ()])

 return f’< {tagname} {attrs} > {content} </
{tagname} >’

Как вы видите, я не просто беру пары ключ-значение
из **kwargs и помещаю их в строку. Сначала я должен взять
этот словарь и превратить его в пару имя-значение в формате
XML. Я делаю это при помощи генератора списков, запущенного
для словаря. Для каждой пары ключ-значение я создаю строку,
следя за тем, чтобы первый символ в строке был пробелом, чтобы
не «столкнуться» с tagname в открывающем теге.

В этом коде используется несколько общих парадигм Python.
Поэтому давайте пройдемся по коду шаг за шагом, чтобы все
стало понятнее:

1 tagname будет строкой (именем тега) в теле myxml,
content будет строкой (чтобы ни находилось между те-
гами), а kwargs будет словарем (с парами имя-значение
атрибутов).

2 И content, и kwargs могут быть пустыми, если пользо-
ватель не передал никаких значений для этих параметров.

3 Мы используем генератор списка для перебора элементов
kwargs.items (). Так мы сможем получить одну пару
 ключ-значение для каждой итерации.

4 Мы используем пару ключ-значение, присвоенную
переменным key и value, для создания строки вида

1836. Функции

 key=”value”. Мы получаем одну такую строку для каж-
дой пары ключ-значение, переданной пользователем.

5 Результатом генератора списка будет список строк. Мы
объединяем эти строки с помощью str.join, при этом
между элементами будет пустая строка.

6 Наконец, мы возвращаем комбинацию открывающего тега
(с любыми атрибутами, которые мы могли получить), со-
держимого и закрывающего тега.

Решение

def myxml (tagname, content=’’, **kwargs):
attrs = ‘’.join ([f’ {key} =”{value}”’

for key, value in kwargs.items ()])
 return f’< {tagname} {attrs} > {content} </

{tagname} >’

print (myxml (‘tagname’, ‘hello’, a=1, b=2, c=3))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr134].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr135].

После выполнения упражнения
Обучение работе с функциями и типами параметров, которые

вы можете определять, занимает некоторое время, но оно того
стоит. Вот несколько упражнений, которые помогут вам потре-
нироваться работать с параметрами функций:

134

135

Функция содержит один обя-
зательный параметр, один по
умолчанию и **kwargs.

Используем гене-
ратор списка для
создания строки
из kwargs.

Возвращаем строку
в формате XML.

184 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

1. Напишите функцию copyfi le, которая принимает один
обязательный аргумент — имя входного файла — и любое
количество дополнительных аргументов: имена файлов,
в которые следует скопировать входные данные. Вызов
copyfi le (‘myfi le.txt’, ‘copy1.txt’, ‘copy2.
txt’, ‘copy3.txt’) создаст три копии myfi le.txt:
по одной в каждом файле copy1.txt, copy2.txt
и copy3.txt.

2. Напишите функцию factorial, которая принимает лю-
бое количество числовых аргументов и возвращает ре-
зультат умножения их всех друг на друга.

3. Напишите функцию anyjoin, которая работает анало-
гично str.join, за исключением того, что первым ар-
гументом является последовательность любых типов
(не только строк), а вторым аргументом по умолчанию бу-
дет “ “ (пробел), своеобразный «клей», который мы поме-
щаем между элементами. Поэтому anyjoin ([1,2,3])
вернет 1 2 3, а anyjoin (‘abc’, pass:’**’) вернет
pass: a**b**c.

Область видимости переменных в Python
Область видимости переменных — это одна из тех тем,

которые многие предпочитают игнорировать — сначала
потому, что это скучно, а затем потому, что это очевидно.
Дело в том, что определение области видимости перемен-
ных в Python сильно отличается от того, что я видел в других
языках. Более того, это многое объясняет о том, как работает
язык, и почему были приняты определенные решения.

Термин область видимости относится к переменным
и всем именам внутри программы. Если я установлю зна-
чение переменной внутри функции, повлияю ли я на нее
и за пределами функции? Что, если я устанавливаю значе-
ние переменной внутри цикла for? В Python есть четыре
уровня видимости переменной:

1. Локальная область функции.

1856. Функции

2. Область внешней функции.
3. Глобальное пространство.
4. Встроенная область видимости.
Они известны под аббревиатурой LEGB. Если вы находитесь

в функции, то поиск будет осуществляться по всем четырем
по порядку. Если вы находитесь вне функции, то поиск ве-
дется только в двух последних (глобальном и встроенном).
Как только идентификатор найден, Python прекращает поиск.

Это важное примечание, о котором следует помнить.
Если вы не определили функцию, вы работаете на глобаль-
ном уровне. Отступы встречаются повсеместно в Python,
но они совершенно не влияют на определение области ви-
димости переменной.

Но что, если вы напишите int (‘s’)? Является ли int
глобальной переменной? Нет, она находится в пространстве
имен встроенных функций. В Python очень мало зарезерви-
рованных слов, многие из наиболее распространенных ти-
пов и функций, которые мы используем, не являются ни гло-
бальными, ни зарезервированными ключевыми словами.
Python выполняет поиск во встроенном пространстве имен
после глобального, прежде чем сдаться и выдать исключение.

Что, если вы определите глобальное имя, которое иден-
тично одному из встроенных? Тогда вы эффективно скроете
это значение. Я постоянно вижу это на своих курсах, когда
люди пишут что-то вроде:

sum = 0
for i in range (5):

sum += i
print (sum)

print (sum ([10, 20, 30]))

TypeError: объект ‘int’ не является вызываемым

186 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Почему мы получаем эту странную ошибку? Потому что

в дополнение к функции sum, заданной во встроенном про-

странстве имен, мы также определяем глобальную пере-

менную с именем sum. А посколько глобальные перемен-

ные идут перед встроенными в пути поиска Python, Python

находит, что sum является целым числом, и отказывается

вызывать эту функцию.

Немного расстраивает тот факт, что язык не прове-

ряет и не предупреждает вас о переделке имен во встроен-

ных модулях. Однако существуют инструменты (например,

pylint), которые подскажут вам, если вы случайно (или

нет) создали несовместимое имя.

Локальные переменные
Если я определяю переменную внутри функции, то она

считается локальной переменной. Локальные переменные

существуют только до тех пор, пока существует функция:

когда функция исчезает, исчезают и определенные ею ло-

кальные переменные, например:

x = 100

def foo ():
x = 200

 print (x)

print (x)
foo ()
print (x)

Этот код выведет 100, 200 и затем еще раз 100. В коде мы

определили две переменные: x, расположенная в глобаль-

ной области видимости и равная 100, и никогда не будет

1876. Функции

меняться, и x в локальной области видимости, доступная
только внутри функции foo, ее значение равно 200 и также
не меняется. Тот факт, что обе переменные называются x,
не вызовет противоречий в Python, поскольку внутри функ-
ции он будет видеть локальную x и полностью игнориро-
вать глобальную.

Рисунок 6.2 x внутри vs. вовне.

Ключевое слово global
Что, если внутри функции я хочу изменить глобальную

переменную? Для этого необходимо использовать ключевое
слово global, которое сообщает Python, что вы не заин-
тересованы в создании локальной переменной в этой функ-
ции. Скорее, любые извлечения или присваивания должны
влиять на глобальную переменную, например:

x = 100

def foo ():
 global x

x = 200
 print (x)

print (x)

188 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

foo ()
print (x)

Этот код выведет 100, 200, а затем 200, потому что есть
только один x благодаря ключевому слову global.

Изменение глобальных переменных внутри функции —
почти всегда плохая идея. Однако в редких случаях это
необходимо. Например, вам может понадобиться обновить
параметр конфигурации, который установлен как глобаль-
ная переменная.

Область внешней функции
Наконец, рассмотрим работу внутренних функций

на примере следующего кода:

def foo (x):
def bar (y):

return x * y
 return bar

f = foo (10)
print (f (20))

Уже сейчас этот код кажется немного странным. Что
происходит, когда мы определяем bar внутри foo? Дан-
ная внутренняя функция, иногда называемая замыканием,
является функцией, которая определяется при выполне-
нии foo. Действительно, каждый раз, когда мы вызываем
foo, мы получаем обратно новую функцию с именем bar.
Но, конечно, bar — это имя локальной переменной вну-
три foo: мы можем называть возвращаемую функцию как
угодно.

Когда мы выполняем код, результат равен 200. Логично,
что когда мы вызываем f, то мы выполняем bar, который

1896. Функции

foo вернула. И мы можем понять, почему bar имеет до-
ступ к y, поскольку это локальная переменная. Но что на-
счет x? Почему функция bar имеет доступ к x, локальной
переменной в foo?

Конечно, благодаря LEGB:
1 Сначала Python ищет x локально, в локальной функ-

ции bar.
2 Далее Python ищет x во внешней функции foo.
3 Если бы x не было в foo, то Python продолжил бы по-

иск на глобальном уровне.
4 И если бы x не был глобальной переменной, то Python

искал бы x во встроенном пространстве имен.
Что, если я хочу изменить значение x, локальной пере-

менной, расположенной во внешней функции? Она не яв-
ляется глобальной, поэтому ключевое слово global
не будет работать. В Python 3, однако, у нас есть ключевое
слово nonlocal. Это ключевое слово сообщает Python: «Лю-
бое присваивание, которое мы делаем этой переменной,
должно идти во внешнюю функцию, а не в (новую) локаль-
ную переменную», например:

def foo ():
call_counter = 0
def bar (y):

nonlocal call_counter
call_counter += 1
 return f’y = {y}, call_counter =
{call_counter}’

 return bar
b = foo ()

for i in range (10, 100, 10):
print (b (i))

Инициализирует call_counter как
локальную переменную в foo.
Сообщает bar, что присваивание
call_counter влияет на перемен-
ную в foo.

Увеличивает call_counter, зна-
чение которой сохраняется во
всех прогонах bar.

Итерируем числа 10, 20, 30, … 90. Вызываем
b для каждого числа в данном диапазоне.

190 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Вывод будет выглядеть следующим образом:

y = 10, call_counter = 1
y = 20, call_counter = 2
y = 30, call_counter = 3
y = 40, call_counter = 4
y = 50, call_counter = 5
y = 60, call_counter = 6
y = 70, call_counter = 7
y = 80, call_counter = 8
y = 90, call_counter = 9

Поэтому всякий раз, когда вы увидите, как Python об-
ращается к переменной или устанавливает ее — а это бывает
часто — вспомните о правиле определения области види-
мости LEGB и о том, что оно всегда, без исключения, ис-
пользуется для поиска всех идентификаторов, включая дан-
ные, функции, классы и модули.

Упражнение 26. Калькулятор
с префиксной нотацией

В Python, как и в реальной жизни, мы обычно записываем ма-
тематические выражения с использованием инфиксной нотации,
то есть 2+3. Но существует также так называемая префиксная но-
тация, в которой оператор предшествует аргументам. Префикс-
ная нотация записывается как + 2 3. Существует также постфикс-
ная нотация, иногда известная как «обратная польская нотация»
(или RPN, прим. пер. от reverse Polish notation), которая до сих
пор используется на калькуляторах марки HP. Это будет выгля-
деть как 2 3 +. И да, числа должны быть разделены пробелами.

Префиксная и постфиксная нотации полезны тем, что позво-
ляют выполнять сложные операции без скобок. Например, если
вы пишете 2 3 4 + * в RPN, вы говорите системе сначала сло-

1916. Функции

жить 3+4, а затем умножить 2*7. Именно поэтому на калькуля-
торах HP есть клавиша Enter, но нет клавиши =, что сильно путает
новичков. В языке программирования Lisp префиксная нотация
позволяет применять оператор ко многим числам (например,
(+ 1 2 3 4 5)), а не путаться в большом количестве знаков +.

Для этого упражнения я хочу, чтобы вы написали функцию
(calc), которая принимает один аргумент — строку, содержа-
щую простое математическое выражение в префиксной нотации
с оператором и двумя числами. Ваша программа будет анализи-
ровать входные данные и выдавать соответствующий вывод. Для
наших целей достаточно будет шесть основных арифметических
операций в Python: сложение, вычитание, умножение, деле-
ние (/), модуль (%) и экспоненция (**). Обычные математические
правила Python должны работать, например, при делении все-
гда получается число с плавающей точкой. Для наших целей мы
сделаем так, что аргумент будет содержать только один из шести
операторов и два действительных числа.

Но подождите, здесь есть подвох — или подсказка, если хо-
тите: вы должны реализовать каждую из операций как отдельную
функцию, и вы не должны использовать оператор if, чтобы ре-
шить, какая функция должна быть запущена. Еще одна подсказка:
посмотрите на модуль operator, функции которого реализуют
многие операторы Python.

Обсуждение
В этом решении используется техника, известная как таблица

диспетчеризации, вместе с модулем Python — operator. Это
мое любимое решение данной проблемы, однако существуют
еще решение — и, скорее всего, не то, о котором вы подумали
в первую очередь.

Давайте начнем с самого простого решения и дойдем до того,
которое я написал. Нам понадобится функция для каждого
из операторов. Но затем нам нужно будет как’то преобразо-
вать строку оператора (например, + или **) в функцию, кото-
рую мы хотим вызвать. Мы могли бы использовать оператор if,

192 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

но более распространенным способом в Python является исполь-
зование словарей. В конце концов, нет ничего необычного в том,
чтобы ключи содержали в себе строки, а поскольку в значении
мы можем хранить что угодно, то это включает и функции.

ПРИМЕЧАНИЕ Многие мои студенты спрашивают меня,
как создать оператор switch-case в Python. Они удив-
ляются, хотя уже знают ответ, услышав, что в Python нет та-
кого оператора и что вместо него мы используем if. Это часть
философии Python — иметь один, и только один, способ сде-
лать что-то. Это сокращает выбор у программистов, но делает
код более понятным и простым в сопровождении.

Затем мы можем извлечь функцию из словаря и вызвать ее
с помощью круглых скобок:

def add (a, b):
return a + b

def sub (a, b):
return a — b

def mul (a, b):
return a * b

def div (a, b):
return a / b

def pow (a, b):
return a ** b

def mod (a, b):
return a% b

def calc (to_solve):
 operations = {‘+’: add,

Ключи в операциях над слова-
рями — это операторы строк, ко-
торые пользователь может ввести,
а значения — это наши функции,
связанные с этими строками.

1936. Функции

‘—’: sub,
‘*’: mul,
‘/’: div,
‘**’: pow,
‘%’: mod}

 op, fi rst_s, second_s = to_solve.split ()
fi rst = int (fi rst_s)
second = int (second_s)

return operations [op] (fi rst, second)

Возможно, моя любимая часть кода — это последняя строка.
У нас есть словарь, в котором функции являются значениями. Та-
ким образом, мы можем получить нужную нам функцию с по-
мощью operations [operator], где operator — это пер-
вая часть строки, которую мы разделили с помощью str.split.
Получив функцию, мы можем вызвать ее с помощью круглых
скобок, передав ей два операнда, fi rst и second.

Но как мы получим fi rst и second? Из строки ввода поль-
зователя, в которой, как мы предполагаем, содержится три эле-
мента. Мы используем str.split, чтобы разделить их на части,
и сразу же распаковываем, чтобы присвоить их трем переменным.

Хеджирование ставок с помощью maxsplit
Если вам не нравится идея вызывать str.split, ожи-

дая, что мы получим три результата, есть простой способ
решить эту проблему. При вызове str.split передайте
значение необязательному параметру maxsplit. Этот па-
раметр указывает, сколько разбиений будет фактически вы-

Разбивает ввод поль-
зователя на части.

Превращает каждый поль-
зовательский ввод из строк
в целые числа.

Использует выбранный пользова-
телем оператор как ключ в опе-
рациях, возвращая функцию,
которую мы затем вызываем,
передавая ей first и second в каче-
стве аргументов.

194 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

полнено. Другими словами, это индекс последнего эле-
мента в возвращаемом списке. Например, если я напишу

>>> s = ‘a b c d e’
>>> s.split ()
[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

Как видите, я получаю (как всегда) список строк. По-
скольку я вызвал str.split без каких-либо аргумен-
тов, Python использовал пробельные символы в качестве
разделителей. Но если я передам значение 3 в maxsplit,
то я получу следующее:

>>> s = ‘a b c d e’
>>> s.split (maxsplit=3)
[‘a’, ‘b’, ‘c’, ‘d e’]

Обратите внимание, что возвращаемый список теперь
состоит из четырех элементов. В документации Python го-
ворится, что maxsplit указывает str.split, сколько
должно быть частей. Я предпочитаю думать об этом значе-
нии как о наибольшем индексе в возвращаемом списке —
поскольку возвращаемый список содержит четыре эле-
мента, последний элемент будет иметь индекс 3. В любом
случае maxsplit гарантирует, что при использовании
распаковки результата мы не столкнемся с ошибкой.

Все это хорошо, но этот код не выглядит соответствующим
принципу DRY. Тот факт, что мы должны определять каждую
из наших функций, даже если они так похожи друг на друга и яв-
ляются повторением существующей функциональности, немного
расстраивает и не совсем соответствует Python.

К счастью, нам может помочь модуль operator, который по-
ставляется вместе с Python. Импортировав operator, мы полу-
чим именно те функции, которые нам нужны: add, sub, mul,

1956. Функции

truediv/ fl oordiv, mod и pow. Нам больше не нужно опре-
делять свои собственные функции, потому что мы можем ис-
пользовать те, которые предоставляет модуль. Функция add
в operators делает то, что мы обычно ожидаем от оператора +:
она смотрит налево, определяет тип первого параметра и исполь-
зует его, чтобы узнать, что вызывать. operator.add, как функ-
ция, не нуждается в том, чтобы смотреть налево: она проверяет
тип своего первого аргумента и использует его, чтобы определить,
какую версию + вызывать.

В этом конкретном упражнении мы ограничили вводимые
пользователем данные целыми числами, поэтому мы не прово-
дили никакой проверки типов. Но вы можете представить себе
версию этого упражнения, в которой мы могли бы работать с раз-
личными типами, а не только с целыми числами. В этом случае
различные функции из operator будут знать, что делать с лю-
быми типами, которые мы им передадим.

Решение
import operator

def calc (to_solve):
operations = {‘+’: operator.add,

‘—’: operator.sub,
‘*’: operator.mul,
‘/’: operator.truediv,
‘**’: operator.pow,

 op, fi rst_s, second_s = to_solve.split ()
fi rst = int (fi rst_s)

 second = int (second_s) return

operations [op] (fi rst, second)

print (calc (‘+ 2 3’))

Модуль оператора предостав-
ляет функции, реализующие
все встроенные операторы.

Да, функции мо-
гут быть значени-
ями в словаре!

Вы можете выбрать
между truediv, ко-
торый возвращает
число типа float, как
и оператор /, или
floordiv, который воз-
вращает целое число,
как и оператор //.

Разделяет строку,
присваивание че-
рез распаковку.

Вызывает функцию, по-
лученную через оператор,
передавая first и second в
качестве аргументов.

196 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Вы можете ознакомиться с одной из вер-

сий этого кода в Python Tutor.

Скринкаст решения
Посмотрите короткое видео с объяснением ре-

шения.

После выполнения упражнения
Для многих новичков в Python достаточно

странно воспринимать функции как данные и хранить их

в структурах данных. Но это позволяет использовать методы, ко-

торые гораздо сложнее в других языках. Вот три упражнения, ко-

торые еще больше расширят эту идею:

1. Расширьте программу, которую вы написали, так, чтобы

ввод пользователя мог содержать любое количество чисел

(а не только два, как сейчас). Таким образом, программа

будет обрабатывать + 3 5 7 или / 100 5 5 и будет приме-

нять оператор слева направо, давая ответы 15 и 4 соот-

ветственно.

2. Напишите функцию apply_to_each, которая принимает

два аргумента: функцию, принимающую один аргумент,

и итерируемый объект. Верните список, значения кото-

рого являются результатом применения функции к каж-

дому элементу итерируемого объекта. (Если это звучит зна-

комо, возможно, так и есть — это реализация классической

функции map, все еще доступной в Python. Описание map
можно найти в главе 7.)

3. Напишите функцию transform_lines, которая прини-

мает три аргумента: функцию, принимающую один ар-

гумент, имя входного файла и имя выходного файла. Вы-

зов запустит функцию на каждой строке входного файла,

а результаты будут записаны в выходной файл. (Подсказка:

предыдущее и это упражнение тесно связаны.)

1976. Функции

Упражнение 27. Генератор паролей
Даже сегодня многие люди используют один и тот же пароль

на разных компьютерах. Это означает, что если кто-то узнает ваш
пароль на системе A, то он сможет войти в системы B, C и D, где вы
использовали тот же пароль. По этой причине многие люди (вклю-
чая меня) используют программное обеспечение, которое создает
(и затем запоминает) длинные пароли, сгенерированные рандомно.
Если вы пользуетесь такой программой, то даже если система A бу-
дет взломана, ваши входы в системы B, C и D будут в безопасности.

В этом упражнении мы создадим функцию генерации паролей.
Фактически мы создадим своеобразную фабрику для функций ге-
нерации паролей. Например, мне может понадобиться сгенериро-
вать большое количество паролей, все из которых используют одно
и то же множество символов. (Вы знаете, как это бывает. Некоторые
приложения требуют сочетания заглавных и строчных букв, цифр
и символов; другие требуют использования только букв; третьи раз-
решают использовать и буквы, и цифры.) Таким образом, вы будете
вызывать функцию create_password_generator со строкой.
Эта строка вернет функцию, которая сама принимает целочис-
ленный аргумент. Вызов этой функции вернет пароль указанной
длины, используя строку, из которой он был создан, например:

alpha_password = create_password_generator (‘abcdef’)
symbol_password = create_password_generator (‘!@#$%’)

print (alpha_password (5)) # efeaa
print (alpha_password (10)) # cacdacbada

print (symbol_password (5)) #%#@%@
print (symbol_password (10)) # @!%%$%$%%#

Для реализации этой функции полезно знать
о модуле random, а точнее, о функции random.
choice из этого модуля. Эта функция возвращает
один (случайно выбранный) элемент из последо-
вательности.

198 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Смысл этого упражнения в том, чтобы понять, как работать
с внутренними функциями: определять их, возвращать и исполь-
зовать для создания множества подобных функций.

Обсуждение
Вот пример того, как можно использовать внутреннюю функ-

цию, иногда называемую замыканием. Идея заключается в том,
что мы вызываем функцию (create_password_generator), ко-
торая, в свою очередь, возвращает функцию (create_password).
Возвращаемая внутренняя функция знает, что мы сделали при
первоначальном вызове, но также обладает некоторыми собствен-
ными функциональными возможностями. В результате ее нужно
определить как внутреннюю функцию, чтобы она могла получить
доступ к переменным из первоначального (внешнего) вызова.

Определение внутренней функции происходит не тогда, когда
Python впервые выполняет программу, а при выполнении внеш-
ней функции (create_password_generator). Действительно,
мы создаем новую внутреннюю функцию один раз для каждого
вызова create_password_generator.

Затем эта новая внутренняя функция возвращается вызываю-
щей стороне. С точки зрения Python, здесь нет ничего особен-
ного — мы можем вернуть любой объект Python из функции:
список, словарь или даже функцию. Однако особенным здесь яв-
ляется то, что возвращаемая функция ссылается на переменную
во внешней функции, где она была изначально определена.

В конце концов, мы хотим получить функцию, в которую
можно передать целое число и из которой можно получить слу-
чайно сгенерированный пароль. Но пароль должен содержать
определенные символы, а разные программы имеют разные
ограничения на то, какие символы можно использовать для этих
паролей. Так, нам может понадобиться пять буквенно-цифровых
символов, или 10 цифр, или 15 символов, которые являются либо
буквенно-цифровыми, либо пунктуационными.

Таким образом, мы определяем нашу внешнюю функцию так,
чтобы она принимала единственный аргумент — строку, содер-

1996. Функции

жащую символы, из которых мы хотим создать новый пароль.
Результатом вызова этой функции, как было указано, является
функция — динамически определяемая create_password.
Эта внутренняя функция имеет доступ к исходной переменной
characters во внешней функции благодаря правилу LEGB
в Python для поиска переменных. (См. сноску «Область види-
мости переменных в Python».) Когда внутри create_password
мы ищем переменную characters, которая будет находиться
в области видимости внешней функции.

Если мы дважды вызовем create_password_generator,
как показано на изображении из Python Tutor (рис. 6.3), каждый
вызов будет возвращать отдельную версию create_password
с отдельным значением символов.

Рисунок 6.3. Визуализация (из Python Tutor) двух функций,
 генерирующих пароль.

Каждый вызов внешней функции возвращает новую функ-
цию со своими локальными переменными. В то же время каждая
из возвращаемых внутренних функций имеет доступ к локаль-
ным переменным своей внешней функции. Когда мы вызываем

200 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

одну из внутренних функций, мы получаем новый пароль, осно-
ванный на комбинации локальных переменных внутренней
функции и локальных переменных внешней функции.

ПРИМЕЧАНИЕ Работа с внутренними функциями и замы-
каниями может поначалу удивить и сбить с толку. Это проис-
ходит в основном потому, что мы инстинктивно полагаем,
что, когда функция возвращается, ее локальные переменные
и состояние исчезают. Действительно, обычно это так, но по-
мните, что в Python объект не освобождается и не удаляется
сборщиком мусора, если на него имеется хотя бы одна ссылка.
И если внутренняя функция все еще ссылается на фрейм стека,
в котором она была определена, то внешняя функция будет су-
ществовать до тех пор, пока существует внутренняя функция.

Решение
import random

def create_password_generator (characters):
def create_password (length):
output = []

for i in range (length):
output.append (random.choice (characters))
return ‘’.join (output)
return create_password

alpha_password = create_password_generator (‘abcdef’)
symbol_password = create_password_generator (‘!@#$%’)

print (alpha_password (5))
print (alpha_password (10))

print (symbol_password (5))
print (symbol_password (10))

Определяем внеш-
нюю функцию.

Определяем внутреннюю
функцию, при этом def
выполняется каждый
раз, когда мы вызываем
внешнюю. функцию.

Возвращает строку, основан-
ную на элементах вывода.

Какую длину пароля
мы хотим задать?

Добавляет новый случай-
ный элемент из символов в
выходной файл.

Возвращает внутреннюю функцию вызывающей стороне.

2016. Функции

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr136].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr137].

После выполнения упражнения
Представление о функциях как о данных позволяет работать

на еще более высоком уровне абстракции, чем обычные функ-
ции, и таким образом решать проблемы еще более высокого
уровня, не заботясь о деталях низкого уровня. Тем не менее мо-
жет потребоваться некоторое время, чтобы усвоить и понять, как
передавать функции в качестве аргументов другим функциям
или возвращать функции из других функций. Вот несколько до-
полнительных упражнений, которые вы можете попробовать для
лучшего понимания и работы с ними:

1. Теперь, когда вы написали функцию для создания паро-
лей, напишите функцию create_pass-word_checker,
которая проверяет, соответствует ли данный пароль кри-
териям приемлемости, установленным ИТ-сотрудни-
ками. Другими словами, создайте функцию с четырьмя
параметрами: min_uppercase, min_lowercase, min_
punctuation и min_digits. Это минимальное коли-
чество заглавных букв, строчных букв, знаков препинания
и цифр для приемлемого пароля. Выходным значением
функции create_password_ checker является функ-
ция, которая принимает на вход потенциальный пароль
(строку) и возвращает булево значение, указывающее, яв-
ляется ли эта строка приемлемым паролем.

2. Напишите функцию getitem, которая принимает один
аргумент и возвращает функцию f. Возвращенная f мо-
жет быть вызвана для любой структуры данных, элементы
которой могут быть выбраны с помощью квадратных ско-

136

137

202 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

бок, и затем вернет этот элемент. Так, если я вызову f =
getitem (‘a’) и если у меня есть словарь d = {‘a’:1,
‘b’:2}, то f (d) вернет 1. (Это очень похоже на operator.
itemgetter, очень полезную функцию для многих случаев.)

3. Напишите функцию doboth, которая принимает в каче-
стве аргументов две функции (f1 и f2) и возвращает одну
функцию g. Вызов g (x) должен вернуть тот же ре-
зультат, что и вызов f2 (f1 (x)).

Подводя итоги
Написать простые функции Python несложно. Но в чем функ-

ции Python действительно хороши — так это в гибкости, осо-
бенно когда речь идет об интерпретации параметров, и в том, что
функции тоже являются данными. В этой главе мы рассмотрели
все эти идеи, что должно натолкнуть вас на некоторые мысли
о том, как использовать преимущества функций в ваших соб-
ственных программах.

Если вы когда-нибудь обнаружите, что пишете похожий код
несколько раз, вам следует серьезно подумать о том, чтобы обоб-
щить его в функцию, которую вы сможете вызывать из этих мест.
Более того, если вы решили реализовать что-то, что вы, возможно,
захотите использовать в будущем, реализуйте это как функцию.
Кроме того, код, разбитый на функции, часто легче понять, под-
держивать и тестировать, поэтому даже если вы не беспокоитесь
о повторном использовании или более высоких уровнях абстрак-
ции, все равно может быть полезно писать код в виде функций.

7. Функциональное
программирование
с генераторами

Программисты всегда пытаются сделать больше, но с мень-
шим объемом кода, одновременно делая этот код более
надежным и легким для отладки. И действительно, специ-

алисты в области компьютерных наук разработали ряд методик,
каждая из которых призвана приблизить нас к этой цели — ко-
роткому, надежному, удобному в обслуживании, мощному коду.

Нам будет интересен следующий набор методик — функцио-
нальное программирование. Его цель — сделать программы бо-
лее надежными за счет коротких функций и неизменяемости
данных. Я думаю, большинство разработчиков согласятся, что
короткие функции — это хорошая идея, в немалой степени по-
тому, что их легче понимать, тестировать и поддерживать.

Но каким образом можно реализовать короткие функции?
Посредством неизменяемых данных. Если вы не можете изменять
данные внутри функции, то функция (по моему опыту) в итоге
будет короче, с меньшим количеством потенциальных способов
для проверки. Таким образом, функциональные программы в ко-
нечном итоге содержат много коротких функций — в отличие
от нефункциональных программ, которые часто имеют меньшее
количество очень длинных функций. Функциональное програм-
мирование также предполагает, что функции можно передавать

204 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

в качестве аргументов другим функциям, что, как мы уже убеди-
лись, имеет место в Python.

Хорошая новость заключается в том, что функциональные ме-
тоды способны сделать код коротким и элегантным. Плохая новость
заключается в том, что для многих разработчиков функциональные
техники непонятны. Отказ от модификации значений и отслежи-
вание состояния могут быть отличными способами сделать ваше
программное обеспечение более надежным, но они почти гаран-
тированно запутают и разочаруют многих разработчиков.

Рассмотрим, например, что у вас есть объект Person в чисто
функциональном языке. Если человек захочет изменить свое имя,
вам не повезет, поскольку все данные неизменяемы. Вместо этого
вам придется создать новый объект Person на основе старого,
но с измененным именем. Само по себе это не страшно, но, учи-
тывая, что реальный мир меняется и мы хотим, чтобы наши про-
граммы моделировали реальный мир, сохранение неизменности
абсолютно всего может вызывать разочарование.

Но опять же, поскольку функциональные языки не могут из-
менять данные, они обычно предоставляют механизмы для полу-
чения последовательности входных данных, преобразования их
каким-либо образом и получения последовательности выходных
данных. Мы можем не иметь возможности изменить один объект
Person, но мы можем написать функцию, которая принимает
список объектов Person, применяет к каждому из них выра-
жение Python, а затем получает обратно новый список объектов
Person. В таком сценарии мы, возможно, не изменили исход-
ные данные, но задачу выполнили. И код, необходимый для этого,
обычно довольно короткий.

Итак, Python не является функциональным языком — у нас есть
изменяемые типы данных и присваивание. Но некоторые функ-
циональные техники пробрались в язык и считаются стандарт-
ными питоновскими способами решения некоторых проблем.

В частности, в Python предлагаются генераторы — современ-
ный подход к классическим функциям, зародившийся в Lisp, од-
ном из первых изобретенных языков высокого уровня. Генера-
торы позволяют относительно легко создавать списки, множества

2057. Функциональное программирование с генераторами

и словари на основе других структур данных. Тот факт, что функ-
ции Python являются объектами и могут передаваться в качестве
аргументов или храниться в структурах данных, также пришел
из функционального мира.

В некоторых решениях упражнений уже использовались гене-
раторы, кое-какие упражнения были подготовкой для лучшего
понимания. В этой главе мы сосредоточимся на том, как и когда
использовать эти техники, и расширим способы их применения.

По моему опыту, обычно при первом знакомстве с функци-
ональными техниками, и особенно с генераторами, к ним от-
носятся равнодушно. Но со временем — да, на это могут уйти
годы — разработчики все лучше начинают понимать, как, когда
и зачем их применять. Так что даже если вы сможете решить
проблемы в этой главе без использования функциональных ме-
тодов, смысл здесь в том, чтобы потренироваться, попробовать
решить задачу с их помощью и увидеть логику и элегантность,
стоящую за этим способом решения задач. Преимущества могут
быть не сразу очевидны, но со временем они окупятся.

Если все это звучит очень теоретически, и вы хотите увидеть
несколько конкретных примеров генераторов в сравнении с тра-
диционным процедурным программированием, то обратите
внимание на сноску «Создание генераторов» в этой главе, где
я более подробно рассматриваю различия.

Таблица 7. Что вам нужно знать
Понятие Что это? Пример Чтобы узнать

подробнее
Генератор
списка

Создает список
на основе элемен-
тов итерируемого
объекта.

[x*x for
x in range
(5)]

Генератор
словаря

Создает словарь
на основе элемен-
тов итерируемого
объекта.

{x: 2*x for
x in range
(5)}

206 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Понятие Что это? Пример Чтобы узнать
подробнее

Генератор
множества

Создает множество
на основе элемен-
тов итерируемого
объекта.

{x*x for
x in range
(5)}

Таблица 7.1. Чтобы узнать подробнее
Понятие Что это? Пример Чтобы узнать

подробнее
input Предлагает поль-

зователю вве-
сти строку, за-
тем возвращает
строку.

input (‘Name:
‘)

str.isdigit Возвращает True
или False, если
строка непу-
стая и содержит
только 0–9.

Возвра-
щает True ‘5’.
isdigit ()

str.split Разбивает строки
на части, возвра-
щая список.

Возвращает
[‘ab’, ‘cd’,
‘ef’] ‘ab cd
ef’.split ()

str.join Объединяет
строки для со-
здания новой
строки.

Возвращает
‘ab*cd*ef’ ‘*’.
join ([‘ab’,
‘cd’, ‘ef’])
string.ascii

_lowercase Все английские
строчные буквы.

string.ascii_
lowercase

enumerate Возвращает
итератор двух-
элементных кор-
тежей с индек-
сом.

enumerate
(‘abcd’)

Окончание таблицы

2077. Функциональное программирование с генераторами

Упражнение 28. Объединение чисел
Люди часто спрашивают меня: «Когда я должен использовать

генератор, а не классический цикл for?»
Мой ответ в основном таков: когда вы хотите преобразовать

итерируемый объект в список, вам следует использовать генера-
тор. Но если вы просто хотите выполнить что-то для каждого эле-
мента итерируемого объекта, то лучше использовать цикл for.

Другими словами, является ли целью вашего цикла for созда-
ние нового списка? Если да, то используйте генератор. Но если ваша
цель — выполнить что-то один раз для каждого элемента итери-
руемого объекта, отбрасывая или игнорируя любое возвращаемое
значение, то предпочтительнее использовать цикл for. Например,
я хочу получить длину слов в строке s. Я могу написать:

[len (one_word)
for one_word in s.split ()]

В этом примере мне важен список, который мы создаем,
поэтому я использую генератор.

Но если моя строка s содержит список имен файлов, и я хочу
создать новый файл для каждого из этих имен, то меня не интере-
сует возвращаемое значение. Скорее, я хочу выполнить итера-
цию по именам файлов и создать файл, как показано ниже:

for one_fi lename in s.split ():
with open (one_fi lename, ‘w’) as f:

f.write (f’{one_fi lename} \n’)

В этом примере я открываю (и тем самым создаю) каждый файл
и записываю в него имя файла. Использование генератора в дан-
ном случае было бы неуместным, поскольку меня не интересует
возвращаемое значение.

Преобразования — получение значений в списке, строке, сло-
варе или другом итерируемом объекте и создание на их основе
нового списка — часто встречаются в программировании. Вам

208 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

может понадобиться преобразовать имена файлов в объекты
файлов, или слова в их длину, или имена пользователей в ID
пользователей. Во всех этих случаях генератор является наиболее
питоновским решением.

Это упражнение предназначено для того, чтобы вы начали по-
нимать эту идею и применять ее. Оно может показаться простым,
но в основе лежит глубокая и мощная идея, которая поможет вам
увидеть дополнительные возможности для использования гене-
раторов.

Для этого упражнения напишите функцию (join_numbers),
которая принимает диапазон (range) целых чисел. Функция
должна возвращать эти числа в виде строки с запятыми между
числами. То есть, получив на вход range (15), функция должна
вернуть следующую строку:

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14

Подсказка: если вы думаете, что str.join — это хорошая
идея, то вы, в общем, правы — но помните, что str.join не бу-
дет работать со списком целых чисел.

Обсуждение
В этом упражнении мы хотим использовать str.join для

диапазона, который похож на список целых чисел. Если мы по-
пытаемся сразу вызвать str.join, то получим ошибку:

>>> numbers = range (15)
>>> ‘,’.join (numbers)
Traceback (последний вызов):

Файл “<stdin>”, линия 1, в <module>
TypeError: элемент последовательности 0: ожидался
экземпляр str, найден int

Это потому, что str.join работает только с последователь-
ностью строк. Поэтому нам нужно преобразовать каждое из це-

2097. Функциональное программирование с генераторами

лых чисел в нашем диапазоне (numbers) в строку. Затем, когда
у нас будет список строк, основанный на нашем диапазоне целых
чисел, мы можем вызвать str.join.

Решение заключается в использовании генератора списка для
вызова функции str для каждого из чисел в диапазоне. В результате
получится список строк, чего и ожидает str.join. Как?

Рассмотрим следующее: генератор списка говорит, что мы
собираемся создать новый список. Все элементы нового списка
основаны на элементах в исходном итераторе после применения
выражения. Мы описываем новый список в терминах старого.

Вот несколько примеров, которые помогут вам понять, где
и как использовать генераторы списков:

1. Я хочу узнать возраст каждого ученика в классе. Итак, мы
начинаем со списка учеников и заканчиваем списком це-
лых чисел. Вы можете написать функцию student_age,
которая может быть применена для каждого студента для
получения его возраста:

[student_age (one_student)
for one_student in all_students]

2. Я хочу узнать, сколько мм осадков выпало в каждый день
предыдущего месяца. Итак, мы начинаем со списка дней
и заканчиваем списком плавающих значений. Вы можете
представить себе функцию daily_rain, применяемую
для каждого дня:

[daily_rain (one_day)
for one_day in most_recent_month]

3. Я хочу узнать, сколько гласных было использовано в книге.
Поэтому мы применим функцию number_of_vowels
к каждому слову в книге, а затем выполним функцию sum
для полученного списка:

[number_of_vowels (one_word)
for one_word in open (fi lename).read ().split ()]

210 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Если эти три примера выглядят очень похожими, то это по-
тому, что так оно и есть: часть силы генераторов списков заклю-
чается в простой формуле, которую мы повторяем. Каждый гене-
ратор списка содержит две части:

1 Исходный итерируемый объект.
2 Выражение, которое мы будем вызывать один раз для каж-

дого элемента.
В случае нашего упражнения у нас был список целых чисел.

Применив функцию str к каждому int в списке, мы получили
список строк. str.join отлично работает со списками строк.

ПРИМЕЧАНИЕ Мы рассмотрим особенности протоколов
итераторов в главе 10, которая посвящена этому вопросу. Вам
не нужно разбираться в этих деталях, чтобы использовать ге-
нераторы. Однако если вам особенно интересно, что счита-
ется «итерируемым объектом», то прочтите первую часть этой
главы, прежде чем продолжить.

Создаем генераторы
Генераторы обычно пишутся в одну строку:

[x*x for x in range (5)]

Я заметил, что для новичков в Python, как и иногда для
опытных разработчиков, трудно понять, что происходит.
Все становится сложнее, когда мы добавляем условие

[x*x for x in range (5) if x%2]

По этой причине я настоятельно рекомендую разра-
ботчикам Python разбивать генераторы списков на части.
Python снисходителен к пробелам, если мы находимся вну-
три круглых скобок, что всегда (по определению) имеет ме-
сто, когда мы находимся в генераторе. Мы можем разбить
генератор следующим образом:

2117. Функциональное программирование с генераторами

[x*x
for x in range (5)
if x%2]

Разделив выражение, итерацию и условие на разные
строки, генератор становится более понятным. Кроме того,
так легче экспериментировать с генераторами. Я буду пи-
сать большинство своих вычислений в этой книге, исполь-
зуя двухстрочный или трехстрочный формат, и я призываю
вас делать то же самое.

Обратите внимание, что при использовании этой тех-
ники вложенные генераторы списков также становятся бо-
лее понятными:

[(x, y)
for x in range (5)
if x%2
for y in range (5)
if y%3]

Другими словами, при таком генераторе списка полу-
чаются пары целых чисел, в которых первое число должно
быть нечетным, а второе не может быть кратным 3. Вло-
женные генераторы могут быть трудны для понимания,
но, когда каждая часть появляется в отдельной строке, по-
нять происходящее становится проще.

Вложенные генераторы списков отлично подходят для
работы со сложными структурами данных, такими как
списки списков или списки кортежей. Например, предпо-
ложим, что у меня есть словарь, описывающий страны и го-
рода, которые я посетил за последний год:

all_places = {‘USA’: [‘Philadelphia’, ‘New York’,
‘Cleveland’, ‘San Jose’, ‘San Francisco’],

Выражение

Итерация #1, от 0 до 4.

Условие #1, игнорирование четных чисел.

Итерация #2, от 0 до 4.

Условие #2, игнорирование чисел, кратных 3.

Выражение

Итерация

Условие

212 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 ‘China’: [‘Beijing’, ‘Shanghai’, ‘Guangzhou’],
 ‘UK’: [‘London’],
 ‘India’: [‘Hyderabad’]}

Если мне нужен список городов, в которых я побывал,
не обращая внимания на страны, я могу использовать вло-
женный генератор списка:

[one_city
for one_country, all_cities in all_places.items ()
for one_city in all_cities]
Я также могу создать список кортежей (city,
country):
[(one_city, one_country)
for one_country, all_cities in all_places.items ()
for one_city in all_cities]

И, конечно, я всегда могу отсортировать их с помощью
sorted:

[(one_city, one_country)
for one_country, all_cities sorted (all_places.
items ())
for one_city in sorted (all_cities)]

Теперь, если вы имеете дело с большими объемами данных,
то в результате работы генератора списка сразу же создается спи-
сок, что может привести к использованию большого количества

памяти. По этой причине многие разработчики Python утвер-
ждают, что лучше использовать генератор выражений.

Выражения-генераторы выглядят точно так же, как и генера-
торы списков, за исключением того, что вместо квадратных ско-
бок используются обычные круглые скобки. Однако, как ока-
залось, это имеет большое значение: генератор списка должен
создавать и возвращать свой выходной список одним махом, что

2137. Функциональное программирование с генераторами

потенциально может занимать много памяти. Генератор выра-
жений, напротив, возвращает вывод по одному фрагменту за раз.
Например, рассмотрим

sum ([x*x for x in range (100000)])

В этом коде у sum один входной параметр — список целых
чисел. Она выполняет итерации над списком целых чисел и сум-
мирует их. Но учтите, что перед тем, как sum сможет запуститься,
генератор должен завершить создание всего списка целых чисел.
Потенциально этот список может быть очень большим и зани-
мать много памяти.

Для сравнения рассмотрим следующий код:

sum ((x*x for x in range (100000)))

Здесь входные данные для sum — это не список, а генератор,
который мы создали с помощью нашего выражения генератора.
sum вернет точно такой же результат, как и раньше. Однако если
в нашем первом примере был создан список, содержащий 100 000
элементов, то в данном случае используется гораздо меньше па-
мяти. Генератор возвращает по одному элементу за раз, ожидая,
пока sum запросит следующий по очереди элемент. Таким об-
разом, за один раз мы потребляем память только на одно целое
число, а не на огромный список целых чисел. В итоге можно ска-
зать, что вы можете использовать выражения-генераторы прак-
тически везде, где вы можете использовать вычисления, но при
этом вы будете использовать гораздо меньше памяти.

Оказывается, когда мы помещаем выражение-генератор в вы-
зов функции, мы можем удалить внутренние круглые скобки:
sum (x*x for x in range (100000))

Итак, вот синтаксис, который вы видели в решении этого
упражнения, но с использованием выражения-генератора:

numbers = range (15)
print (‘,’.join (str (number)
for number in numbers))

214 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение
def join_numbers (numbers):

return ‘,’.join (str (number)
for number in numbers)

print (join_numbers (range (15)))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr147].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr148].

После выполнения упражнения
Вот несколько заданий, с помощью которых вы можете выйти

за рамки этого упражнения и познакомиться с новыми спосо-
бами использования генераторов списков:

1. Как и в упражнении, возьмите список целых чисел
и превратите их в строки. Однако вы хотите получить
строки только для целых чисел от 0 до 10. Для этого вам
потребуется понимание принципа работы оператора if
в генераторах списков.

2. Учитывая список строк, содержащих шестнадцатеричные
числа, просуммируйте эти числа.

3. Используйте генератор списка, чтобы изменить поря-
док слов в строках текстового файла. То есть, если первая
строка — abc def, а вторая — ghi jkl, то вы должны
вернуть список [‘def abc’, ‘jkl ghi’].

map, fi lter и генераторы
Генераторы, по своей сути, делают две разные вещи.

Во-первых, они преобразуют одну последовательность
в другую, применяя выражение к каждому элементу входной

147

148

Применяет str к каждому
числу и помещает новую
строку в список вывода.

Итерации над эле-
ментами чисел.

2157. Функциональное программирование с генераторами

последовательности. Во-вторых, они отфильтровывают эле-
менты из вывода.Приведем пример:

[x*x x в квадрате.

for x in range (10) Для каждого числа от 0 до 9.

if x%2 == 0] Только если x четное.

В первой строке происходит преобразование, а в тре-
тьей — фильтрация. До генераторов Python эти функции
традиционно реализовывались при помощи двух функций:
map и fi lter. Действительно, эти функции продолжают
существовать в Python, даже если они используются не так
часто. map принимает два аргумента: функцию и итери-
руемый объект. Он применяет функцию к каждому эле-
менту итерируемого объекта, возвращая новый итерируе-
мый объект, например:

words = ‘this is a bunch of words’.split ()
x = map (len, words)

print (sum (x))

Обратите внимание, что map всегда возвращает итери-
руемый объект той же длины, что и входное значение. Это
потому, что у него нет способа удалить элементы. Он при-
меняет свою функцию ввода один раз для каждого элемента
ввода. Таким образом, мы можем сказать, что map преоб-
разует, но не фильтрует.

Функция, передаваемая в map, может быть любой функ-
цией или методом, принимающим один аргумент. Вы мо-
жете использовать встроенные функции или написать свои
собственные. Главное, что нужно помнить, это то, что вывод
функции помещается в итерируемое выходное значение.

Создает список строк
и присваивает его words.

Применяет функцию len
к каждому слову, в результате
чего получается итерируемые
объекты (целые числа).

Использует функцию суммы
по x.

216 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

fi lter также принимает два аргумента — функцию
и итерируемый объект — и использует функцию к каждому
элементу. Но здесь выходное значение функции определяет,
появится ли элемент в выводе — он вообще не преобразует
элемент, например:

words = ‘this is a bunch of words’.split ()

def is_a_long_word (one_word):
return len (one_word) > 4

x = fi lter (is_a_long_word, words)
print (‘ ‘.join (x))

Хотя функция, переданная в fi lter, не обязательно
должна возвращать значение True или False, ее результат
будет интерпретироваться как булево значение и исполь-
зоваться для определения того, будет ли элемент помещен
в выходную последовательность. Поэтому обычно целе-
сообразно передавать функцию, возвращающую значение
True или False.

Комбинация map и fi lter означает, что вы можете взять
итерируемый объект, отфильтровать его элементы, а затем
применить функцию к каждому из его элементов. Это ока-
зывается чрезвычайно полезным и объясняет, почему map
и fi lter существуют так долго — около 50-ти лет.

Тот факт, что функции можно передавать в качестве аргу-
ментов, является ключевым для выполнения map и fi lter.
Это одна из причин, почему эти методы являются основной
частью функционального программирования, поскольку
они требуют, чтобы к функциям можно было относиться
как к данным.

Создает список строк и
присваивает его words.

Определяет функ-
цию, которая воз-
вращает значение
True или False в за-
висимости от пере-
данного ей слова.

Показывает отфильтрованные слова.

Применяет нашу
функцию для каж-
дого слова в words.

2177. Функциональное программирование с генераторами

При этом современным способом выполнения подобных
действий в Python считаются генераторы. В то время как мы
передаем функции в map и fi lter, мы передаем выраже-
ния в генераторы.

Почему же тогда map и fi lter продолжают существо-
вать в языке, если считается, что использование генераторов
лучше? Отчасти по ностальгическим и историческим при-
чинам, но также и потому, что иногда они могут делать то,
что не так просто сделать с помощью генераторов. Напри-
мер, map может принимать на вход несколько итерируе-
мых объектов, а затем применять функции, которые будут
работать с каждым из них:

import operator
letters = ‘abcd’
numbers = range (1,5)

x = map (operator.mul, letters, numbers)
print (‘ ‘.join (x))

В итоге вывод будет таким:

a bb ccc dddd

Используя генератор, мы могли бы переписать код как

import operator
letters = ‘abcd’
numbers = range (1,5)

 print (‘ ‘.join (operator.mul (one_
letter, one_number)

Соединяет строки вме-
сте с пробелами и печа-
тает результат.

Мы будем использовать
operator.mul в качестве
функции map.

Устанавливает четырех-
элементную строку.
Устанавливает диапазон
целых чисел из четырех
элементов.

Применяет operator.mul (умно-
жение) к соответствующим
элементам букв и цифр.

218 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 for one_letter, one_number in zip
(letters, numbers)))

Обратите внимание, что для одновременного перебора
букв и цифр мне пришлось использовать здесь zip.
Напротив, map может просто принимать дополнительные
итерируемые аргументы.

Что такое выражение?
Выражение — это все в Python, что возвращает значение.

Если это кажется вам немного абстрактным, то вы можете
просто думать о выражении как о чем-либо, что вы можете
присвоить переменной или вернуть из функции. Итак, 5 —
это выражение, как и 5+3, как и len (‘abcd’).

Когда я говорю, что генераторы используют выражения,
а не функции, я имею в виду, что мы не передаем функцию.
Скорее, мы просто передаем то, что хотим, чтобы Python
выполнил, подобно передаче тела функции без передачи
формального определения функции.

Упражнение 29. Сложение чисел
В предыдущем упражнении мы взяли последовательность

чисел и превратили ее в последовательность строк. На этот раз
мы поступим наоборот — возьмем последовательность строк,
превратим их в числа, а затем просуммируем. Но мы собира-
емся сделать это немного сложнее, потому что мы собираемся
отфильтровать те строки, которые нельзя преобразовать в целые
числа.

Наша функция (sum_numbers) будет принимать в качестве
аргумента строку, например:

10 abc 20 de44 30 55fg 40

2197. Функциональное программирование с генераторами

Учитывая ввод, функция должна вернуть 100. Это потому, что
функция будет игнорировать любое слово, содержащее не цифры.

Попросите пользователя ввести целые числа, все сразу, ис-
пользуя input.

Обсуждение
В этом упражнении нам дана строка, которая, как мы пред-

полагаем, содержит целые числа, разделенные пробелами. Мы
хотим получить отдельные целые числа из строки и затем сло-
жить их вместе. Самый простой способ сделать это — вызвать
команду str.split для строки, которая возвращает спи-
сок строк. Вызывая str.split без параметров, мы говорим
Python, что в качестве разделителя следует использовать любую
комбинацию пробелов.

Теперь у нас есть список строк, а не список целых чисел. Нам
нужно перебрать все строки, превращая каждую из них в це-
лое число путем вызова int. Самый простой способ превратить
список строк в список целых чисел — это использовать генера-
тор списка, как в коде решения. Теоретически мы можем вызвать
встроенную функцию sum для списка целых чисел, и все будет
готово.

Но есть одна загвоздка. Возможно, что пользователь вводит эле-
менты, которые нельзя превратить в целые числа. Нам нужно из-
бавиться от них: если мы попытаемся выполнить int на строке
abcd, программа завершится с ошибкой.

К счастью, генератор списков может помочь нам и здесь. Мы
можем использовать третью (фильтрующую) строку генератора,
чтобы указать, что только те строки, которые могут быть преоб-
разованы в числа, пройдут в первую строку. Для этого мы ис-
пользуем оператор if, применяя метод str.isdigit, чтобы
выяснить, можем ли мы успешно превратить слово в целое
число.

Затем мы вызываем sum для выражения-генератора, воз-
вращая целое число. Наконец, мы выводим сумму с помощью
f-строки.

220 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение
def sum_numbers (numbers):

return sum (int (number)
for number in numbers.split ()
if number.isdigit ())

print (sum_numbers (‘1 2 3 a b c 4’))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr149].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr150].

После выполнения упражнения
Исходя из своего опыта, могу сказать, что одним из наиболее

распространенных применений генераторов списков является
комбинация преобразования и фильтрации. Вот несколько до-
полнительных упражнений, которые помогут вам убедиться
в том, что вы не просто знаете синтаксис, но и умеете их при-
менять:

1. Выведите строки текстового файла длиною более 20 симво-
лов, которые содержат хотя бы одну гласную.

2. В США телефонные номера состоят из 10 цифр — трех-
значного кода региона, за которым следует семизначный
номер. Несколько раз в моем детстве в районных кодах за-
канчивались телефонные номера, что вынуждало поло-
вину населения получать новый районный код. После
такого разделения XXX-YYY-ZZZZ мог остаться XXX-YYY-
ZZZZ, а мог стать NNN-YYY-ZZZZ, причем NNN был но-
вым кодом города. Решение о том, какие номера должны
остаться, а какие измениться, часто принималось на основе

149

150

Создает целое число
на основе number.

Итерации по каждому
из слов в numbers.

Игнорирует слова, которые не могут
быть преобразованы в целые числа.

2217. Функциональное программирование с генераторами

последних семи цифр телефонных номеров. Используйте
генератор списка для возврата нового списка строк, в ко-
тором код города любого телефонный номера, чей YYY
начинается с цифр 0–5, будет изменен на XXX+1. Напри-
мер, у нас есть список строк: [‘123–456–7890’, ‘123–
333–4444’, ‘123–777–8888’], который мы хотим
преобразовать в [‘124–456–7890’, ‘124–333–4444’,
‘124–7778888’].

3. Задайте список из пяти словарей. Каждый словарь будет
содержать две пары ключ-значение, name и age, содер-
жащие имя человека и его возраст (в годах). Используйте
генератор списка для создания списка словарей, в котором
каждый словарь содержит три пары ключ-значение: name,
исходный age и третий ключ age_in_months, содер-
жащий возраст человека в месяцах. Однако в итоговый ре-
зультат не должны включаться любые исходные словари,
представляющие лиц старше 20 лет.

Упражнение 30. Сглаживание списка
В Python довольно часто используются сложные структуры

данных для хранения информации. Конечно, можно создать но-
вый класс, но зачем это делать, если можно просто использовать
комбинации списков, кортежей и словарей? Правда, это озна-
чает, что иногда вам придется превращать сложные структуры
данных в более простые.

В этом упражнении мы потренируемся в этом. Напишите
функцию, которая принимает список списков (глубиной всего
в один элемент) и возвращает простую, одномерную версию
списка. Таким образом, вызывая функцию

fl atten ([[1,2], [3,4]])

мы получим

[1,2,3,4]

222 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обратите внимание, что существует несколько возможных ре-
шений этой задачи: я прошу вас решить ее с помощью генера-
тора списков. Также не забудьте, что нам нужно сосредоточиться
на сглаживании двухуровневого списка.

Обсуждение
Как мы уже заметили, генераторы списков позволяют нам оце-

нивать выражение на каждом элементе итерируемого объекта.
Но для обычного генератора списка вы не можете вернуть больше
элементов, чем было во входном итерируемом объекте. Напри-
мер, если входной итерируемый объект содержит 10 элементов,
вы можете вернуть только 10, или меньше 10, если вы использу-
ете условие if.

Вложенные генераторы списков немного меняют эту ситуа-
цию, поскольку результат может содержать столько элементов,
сколько вложенных элементов у входного итерируемого объекта.
Если задан список списков, первый for цикл будет повторяться
для каждого элемента из mylist. Но второй цикл for будет
перебирать элементы внутреннего списка. Мы можем получить
один выходной элемент для каждого внутреннего входного эле-
мента, что мы и делаем:

def fl atten (mylist):
 return [one_element

for one_sublist in mylist
for one_element in one_sublist]

Решение
def fl atten (mylist):
 return [one_element

for one_sublist in mylist
for one_element in one_sublist]

print (fl atten ([[1,2], [3,4]]))

Итерация по каждому
элементу списка mylist.

Итерация по каждому эле-
менту списка one_sublist.

2237. Функциональное программирование с генераторами

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr151].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr152].

После выполнения упражнения
Вложенные генераторы списков поначалу

могут немного пугать, но они также весьма полезны во мно-
гих случаях. Вот несколько упражнений, которые вы можете
попробовать решить, чтобы лучше понять, как их использовать:

1. Напишите версию упомянутой ранее функции fl atten
под названием fl atten_odd _ints. Она будет делать то же
самое, что и fl atten, но на выходе будут только нечетные
целые числа. Входные данные, которые не являются ни не-
четными, ни целыми числами, должны быть исключены.
Входные данные, содержащие строки, которые могут быть
преобразованы в целые числа, должны быть преобразо-
ваны, а другие строки должны быть исключены.

Рисунок 7.1. Схема семьи для вложенных генераторов списков.

2. Определите словарь, содержащий детей и внуков в семье.
(Графическое представление см. на рисунке 7.1.) Каждый

151

152

224 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ключ будет именем ребенка, а каждое значение — списком
строк, представляющих его детей (т.е. внуков семьи). Та-
ким образом, словарь {‘A’: [‘B’, ‘C’, ‘D’], ‘E’:
[‘F’, ‘G’]} означает что А и Е — родные братья
и сестры; В, С и D — дети A; F и G — дети E. Используйте
генератор списка для создания списка имен внуков.

3. Повторите это упражнение, но замените имя каждого
внука (сейчас это строка) словарем. Каждый словарь бу-
дет содержать две пары имя-значение, name и age. Со-
здайте список имен внуков, отсортированный по возрасту,
от старшего к младшему.

Упражнение 31. Перевод содержимого
файла на поросячью латынь

Генераторы списков отлично подходят для преобразования
списка. Но на самом деле они могут работать с любым итери-
руемым объектом, то есть с любым объектом Python, на котором
можно запустить цикл for. Это означает, что исходными дан-
ными для генератора списка могут быть строка, список, кортеж,
словарь, множество или даже файл.

В этом упражнении я хочу, чтобы вы написали функцию, ко-
торая принимает в качестве аргумента имя файла. Она возвра-
щает строку с содержимым файла, но с переводом каждого слова
на поросячью латянь, как в нашей функции plword в главе 2
«Строки». Возвращаемый перевод может игнорировать новые
строки и не обязан обрабатывать прописные буквы и пунктуа-
цию каким-либо особым образом.

Обсуждение
Мы видели, что вложенные генераторы списков можно ис-

пользовать для итерации по сложным структурам данных. В дан-
ном случае мы итерируем содержимое файла. И действительно,
мы могли бы итерировать каждую строку файла.

2257. Функциональное программирование с генераторами

Но мы можем разбить задачу на части, используя вложенный
генератор списка для итерации сначала каждой строки файла,
а затем каждого слова в текущей строке. Тогда наша функция
plword сможет работать с одним словом за раз.

Я знаю, что может быть очень трудно понять вложенные гене-
раторы списков, по крайней мере, поначалу. Но со временем вы
поймете, что они помогают элегантно разбить проблему на части.

В нашем решении есть небольшая проблема, хотя сначала она
может показаться неочевидной. Как известно, генераторы списков
создают списки. Это означает, что если мы переведем большой файл
на поросячью латынь, то получим очень длинный список. Лучшим
решением бы было вернуть итератор для экономии памяти, вычис-
ляя только минимум, необходимый для каждой итерации.

Оказывается, сделать это довольно просто. Мы можем ис-
пользовать выражение-генератор (как было предложено в пер-
вом упражнении этой главы), которое выглядит почти так же,
как генератор списков, но с использованием круглых скобок,
а не квадратных. Мы можем поместить выражение-генератор
в вызов str.join, так же как и в генераторе списка, сэкономив
при этом память.

Вот как будет выглядеть такой код:

def plfi le (fi lename):
return ‘ ‘.join ((plword (one_word)

for one_line in open (fi lename)
for one_word in one_line.split ()))

Но подождите — оказывается, если внутри вызова функции
находится выражение-генератор, то оба набора круглых скобок
не нужны. Можно оставить одну из них, что означает, что код бу-
дет выглядеть следующим образом:

def plfi le (fi lename):
return ‘ ‘.join (plword (one_word)

for one_line in open (fi lename)
for one_word in one_line.split ())

226 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Теперь мы не только выполнили свою первоначальную задачу,
но и использовали меньше памяти, чем требуется для генератора
списка. Это может быть небольшой компромисс с точки зрения
скорости, но обычно это оправданно, учитывая потенциальные
проблемы, с которыми вы столкнетесь при считывании огром-
ного файла в память за один раз.

Решение
def plword (word):

if word [0] in ‘aeiou’:
return word + ‘way’

return word [1:] + word [0] + ‘ay’

def plfi le (fi lename):
return ‘ ‘.join (plword (one_word)

for one_line in open (fi lename)
for one_word in one_line.split ())

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr153].

Обратите внимание, что поскольку Python
Tutor не поддерживает работу с внешними
файлами, я использовал экземпляр StringIO
для симуляции файла.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr154].

После выполнения упражнения
При преобразовании и/или фильтрации сложных или вло-

женных структур данных, или (как в случае с файлом) того, что
можно рассматривать как вложенную структуру данных, часто
полезно использовать вложенный генератор списка:

153

154

Итерации по каж-
дой строке filename.

Итерация по каждому
слову в текущей строке.

2277. Функциональное программирование с генераторами

1. В этом упражнении plfi le применил функцию plword
к каждому слову в файле. Напишите новую функцию
funcfi le, которая будет принимать два аргумента — имя
файла и функцию. Выходом функции должна быть строка —
результат вызова функции для каждого слова в текстовом
файле. Вы можете рассматривать это как общую версию
plfi le, которая может возвращать любое строковое значе-
ние.

2. Используйте вложенный генератор списка для преобразо-
вания списка словарей в список двухэлементных кор-
тежей (имя-значение), каждый из которых представляет
одну из пар имя-значение в одном из словарей. Если более
чем в одном кортеже есть одна и та же пара имя-значение,
то кортеж должен появиться дважды.

3. Предположим, что у вас есть список словарей, в котором
каждый словарь содержит две пары имя-значение: name
и hobbies, где name — это имя человека, а hobbies —
это множество строк с его увлечениями. Каковы три самых
популярных хобби среди людей, перечисленных в слова-
рях?

Упражнение 32.
Переворачиваем словарь

Комбинация генераторов и словарей может быть довольно
мощной. Вы можете захотеть изменить существующий словарь,
удалив или изменив определенные элементы. Например, вы мо-
жете удалить всех пользователей, чей идентификационный но-
мер меньше 500. Или вы можете захотеть найти ID всех пользо-
вателей, чьи имена начинаются с буквы «A».

Также нередко возникает необходимость перевернуть словарь,
то есть поменять местами его ключи и значения. Представьте
себе словарь, в котором ключами являются имена пользователей,
а значениями — номера ID пользователей; может быть полезно
перевернуть его, чтобы можно было искать по номеру ID.

228 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Для этого упражнения сначала создайте словарь произволь-
ного размера, в котором ключи и значения уникальны. (Ключ
может быть значением, и наоборот). Пример:

d = {‘a’:1, ‘b’:2, ‘c’:3}

Переверните словарь так, чтобы ключи и значения поменя-
лись местами.

Обсуждение
Подобно тому, как генераторы списков обеспечивают про-

стой способ создания списков на основе другого итерируемого
объекта, генераторы словарей обеспечивают простой способ со-
здания словаря на основе итерируемого объекта. Синтаксис вы-
глядит следующим образом:

{KEY: VALUE
for ITEM in ITERABLE}

Другими словами:
1. В основе генератора словаря лежит итерируемый объект —

это, как правило, строка, список, кортеж, словарь, множе-
ство или файл.

2. Мы перебираем каждый такой элемент в цикле for.
3. Для каждого элемента мы выводим пару ключ-значение.
Обратите внимание, что двоеточие (:) отделяет ключ от значе-

ния. Это двоеточие является частью синтаксиса, что означает, что
выражения по обе стороны от двоеточия оцениваются отдельно
и не могут иметь общих данных.

В данном конкретном случае мы перебираем элементы сло-
варя с именем d. Для этого мы используем метод dict.items,
который при каждой итерации возвращает два значения — ключ
и значение. Эти два значения передаются путем параллельного
присвоения переменным key и value.

Другим способом решения этого упражнения является итери-
рование d, а не вывода d.items (). Это дало бы нам ключи,
требующие получения каждого значения:

2297. Функциональное программирование с генераторами

{d [key]: key for key in d}

При помощи генератора я пытаюсь создать новый объект,
основанный на старом. Все дело в значениях, возвращаемых вы-
ражением в начале генератора. Напротив, циклы for связаны
с командами и выполнением этих команд.

Подумайте, какова ваша цель и что вам больше подходит: ге-
нератор или цикл for, например:

1. Для данной строки вам нужен список значений ord для
каждого символа. Это должен быть генератор списка, по-
тому что вы создаете список на основе строки, которая яв-
ляется итерируемой.

2. У вас есть список словарей, в каждом из которых содер-
жатся имена и фамилии ваших друзей, и вы хотите внести
эти данные в базу данных. В этом случае вы будете исполь-
зовать обычный цикл for, потому что вас интересуют по-
бочные эффекты, а не возвращаемое значение.

Решение
def fl ipped_dict (a_dict):

return {value: key
for key, value in a_dict.items ()}

print (fl ipped_dict ({‘a’:1, ‘b’:2, ‘c’:3}))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr155].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr156].

После выполнения упражнения
Генераторы словарей предоставляет нам полезный способ со-

здания новых словарей. Они обычно используются, когда вы хо-

155

156

Все итерируемые объекты
допустимы в генераторах,
даже те, которые возвра-
щают двухэлементные кор-
тежи, такие как dict.items.

230 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

тите создать словарь на основе итерируемого объекта, такого как
список или файл. Мне особенно нравится использовать их, когда
я хочу прочитать файл и преобразовать его содержимое в сло-
варь. Вот несколько дополнительных идей, как попрактиковаться
в использовании генераторов словарей:

1. Дана строка, содержащая несколько слов (разделенных
пробелами), создайте словарь, в котором ключами будут
слова, а значениями — количество гласных букв в каждом
слове. Если строка имеет вид this is an easy test, то результи-
рующий словарь будет иметь вид {‘this’:1,’is’:1,
‘an’:1, ‘easy’:2, ‘test’:1}.

2. Создайте словарь, ключами которого являются имена
файлов, а значениями — их размеры. В качестве входных
данных может быть список файлов из os.listdir или
glob.glob.

3. Найдите конфигурационный файл, в котором строки вы-
глядят как «имя=значение». Используйте генератор сло-
варя для чтения из файла, превращая каждую строку в пару
«ключ-значение».

Упражнение 33.
Преобразование переменных

Это упражнение должно продемонстрировать, как можно по-
лучить функцию в качестве аргумента функции и как генераторы
могут помочь нам элегантно решать самые разные задачи.

Встроенная функция map принимает два аргумента: (a) функ-
цию и (b) итерируемый объект. Она возвращает новую последо-
вательность, которая является результатом применения функции
к каждому элементу входного итерируемого объекта. Полное об-
суждение map приведено в предыдущей сноске «map, filter и ге-
нераторы».

В этом упражнении мы создадим небольшую вариацию map,
которая будет применять функцию к каждому из значений словаря.
Результатом вызова этой функции, transform_values, является

2317. Функциональное программирование с генераторами

новый словарь, ключи которого те же, что и у входного словаря,
но значения которого были преобразованы функцией. (Название
функции взято из Ruby on Rails, который предоставляет одноимен-
ную функцию). Функция, передаваемая в transform_values,
должна принимать единственный аргумент — значение словаря.

Когда ваша функция transform_values заработает, вы сможете
вызвать ее следующим образом:

d = {‘a’:1, ‘b’:2, ‘c’:3}
transform_values (lambda x: x*x, d)

Результатом этого вызова будет следующий словарь:

{‘a’: 1, ‘b’: 4, ‘c’: 9}

Обсуждение
Идея transform_values проста: вы хотите многократно

вызывать функцию для значений словаря. Это означает, что вы
должны перебирать пары ключ-значение. Для каждой пары вы
хотите вызвать пользовательскую функцию для значения.

Мы знаем, что функции можно передавать в качестве аргумен-
тов, как и любые другие типы данных. В этом случае мы получаем
функцию от пользователя, чтобы использовать ее. Мы исполь-
зуем круглые скобки, поэтому, если мы хотим вызвать функ-
цию func, которую нам передал пользователь, мы просто пишем
func (). Или в данном случае, поскольку функция должна при-
нимать один аргумент, мы напишем func (value).

Мы можем перебирать пары ключ-значение в словаре с помо-
щью dict.items, который возвращает итератор, предоставляю-
щий одну за другой паруключ-значение в словаре. Но это не ре-
шает проблему, как взять эти пары ключ-значение и превратить
их обратно в словарь.

Самый простой, быстрый и самый питоновский способ созда-
ния словаря на основе существующего итерируемого объекта — это
использовать генератор словаря. Словарь, который мы возвращаем

232 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

из transform_values, будет иметь те же ключи, что и наш вход-
ной словарь. Но по мере итерации пар ключ-значение мы вызы-
ваем func (value), применяя предоставленную пользователем
функцию к каждому полученному значению и используя результат
этого выражения в качестве нашего значения. Нам даже не нужно
беспокоиться о том, какой тип значения вернет пользовательская
функция, потому что значения словаря могут быть любого типа.

Решение

def transform_values (func, a_dict):
return {key: func (value)

for key, value in a_dict.items ()}

d = {‘a’:1, ‘b’:2, ‘c’:3}
print (transform_values (lambda x: x*x, d))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr157].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr158].

После выполнения упражнения
Генераторы словарей — это мощный инструмент в арсенале

любого разработчика Python. Они позволяют нам создавать но-
вые словари на основе существующих итерируемых объектов.
Однако может потребоваться некоторое время, чтобы привык-
нуть к ним и начать ими пользоваться. Вот несколько дополни-
тельных упражнений для того, чтобы улучшить понимание и ис-
пользование генераторов словарей:

1. Расширьте упражнение transform_values, пусть бу-
дет не один, а два аргумента функции. Первый аргумент

157

158

Применяет функцию, задан-
ную пользователем, к каж-
дому значению в словаре.

Итерируем каждую пару
ключ-значение в словаре.

2337. Функциональное программирование с генераторами

функции работает как и раньше, применяется к значению
и выдает результат. Второй аргумент функции принимает
два аргумента, ключ и значение, и определяет, будет ли
вообще произведен вывод. То есть, вторая функция воз-
вращает True или False и позволяет нам выборочно
создать пару ключ-значение в конечном словаре.

2. Используйте генератор словарей для создания словаря,
в котором ключами являются имена пользователей, а зна-
чениями — (целочисленные) ID пользователей, на основе
файла /etc/passwd в стиле Unix. Подсказка: в типич-
ном файле /etc/passwd имена пользователей являются
первым полем в строке (т.е. индекс 0), а идентификаторы
пользователей — третьим полем в строке (т.е. индекс 2).
Если вам нужен пример файла /etc/passwd, вы можете
скачать его по адресу [qr159].

3. Обратите внимание, что этот файл со-
держит комментарии, поэтому вам
нужно будет удалить их при создании
своего словаря.

4. Напишите функцию, которая принимает в качестве аргу-
мента имя каталога (т.е. строку). Функция должна возвра-
щать словарь, в котором ключами являются имена файлов
в этом каталоге, а значениями — размеры файлов. Вы можете
использовать os.listdir или glob.glob для получе-
ния файлов, но, поскольку размеры имеют только обычные
файлы, вы захотите обработать результаты с помощью мето-
дов из os.path. Для определения размера файла вы можете
использовать os.stat или (если хотите) просто проверить
длину строки, полученной в результате чтения файла.

Упражнение 34.
Отчасти красота базовых структур данных Python заключается

в том, что их можно использовать для решения самых разных за-
дач. Но иногда, особенно поначалу, бывает непросто решить, ка-

159

234 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

кая из структур данных подходит и какой из их методов поможет
вам легче всего решать задачи. Зачастую наилучшим способом
оказывается комбинация методов.

В этом упражнении я хочу, чтобы вы написали функцию get_
sv, которая возвращает множество всех «супервокальных» слов
в словаре. Если вы никогда раньше не слышали термин суперво-
кальный, вы не одиноки: я узнал о таких словах только несколько
лет назад. Проще говоря, такие слова содержат все пять гласных
в английском языке (a, e, i, o и u), каждая из которых появляется
один раз и в алфавитном порядке.

Для целей данного упражнения я ослаблю определение,
подойдет любое слово, содержащее все пять гласных в любом по-
рядке и любое количество раз. Ваша функция должна найти все
слова, которые соответствуют этому определению (т.е. содержат
a, e, i, o и u), и вернуть множество этих слов.

Ваша функция должна принимать единственный аргумент:
имя текстового файла, содержащего по од-
ному слову в строке, как в словаре Unix/Linux.
Если у вас нет такого файла words, вы можете
загрузить его отсюда: [qr160].

Обсуждение
Прежде чем мы сможем создать множество супервокальных

слов или считать их из файла, нам нужно найти способ опреде-
лить, является ли слово супервокальным. (Опять же, это не точ-
ный термин). Как вариант, можно было бы использовать in пять
раз, по одному разу для каждой гласной. Но это кажется немного
экстремальным и неэффективным.

Вместо этого мы можем создать множество из нашего слова.
В конце концов, строка — это последовательность, и мы всегда
можем создать множество из любой последовательности благо-
даря встроенной функции set.

Хорошо, но как это нам поможет? Если у нас уже есть множе-
ство гласных, мы можем проверить, все ли они содержатся в слове,
с помощью оператора <. Обычно < проверяет, меньше ли одна

160

2357. Функциональное программирование с генераторами

точка данных, чем другая. Но в случае с множествами, он воз-
вращает True, если элемент слева является подмножеством эле-
мента справа.

Это означает, что для слова superlogical я могу сделать следую-
щее:

vowels = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}
word = ‘superlogical’

if vowels < set (word):
print (‘Да, это супервокальное слово!’)

else:
print (‘Нет, это обычное слово’)

Это подойдет для одного слова. Но как сделать это для большого
числа слов в файле? Вы могли бы использовать генератор списка.
В конце концов, мы можем рассматривать наш файл как итератор,
который возвращает строки. Если файл words содержит одно
слово в строке, то итерация по строкам файла означает итера-
цию по разным строкам. Если множество гласных является мно-
жеством, созданным из текущего слова, то мы будем считать его
супервокальным и включим текущее слово в выходной список.

Но нам нужен не список, а множество! К счастью, разница
между созданием генератороа списка и генератора множества за-
ключается в паре скобок. Мы используем квадратные скобки ([])
для генератора списка и фигурные скобки ({}) для генератора
множества. Генератор с фигурными скобками и двоеточием —
это генератор словаря, а без двоеточия — генератор множества.
Подводя итог:

1. Мы перебираем строки файла.
2. Превращаем каждое слово в множество и проверяем, что

гласные являются подмножеством букв нашего слова.
3. Если слово проходит эту проверку, мы включаем его (слово)

в вывод.
4. Все выходные данные помещаются в множество благодаря

генератору множества.

236 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Использование множеств в качестве основы для текстовых
сравнений может показаться неочевидным, по крайней мере,
сначала. Но полезно научиться мыслить подобным образом, ис-
пользуя преимущества структур данных Python таким образом,
о котором вы раньше не задумывались.

Решение
def get_sv (fi lename):
vowels = {‘a’, ‘e’, ‘i’,’o’, ‘u’}

return {word.strip ()
for word in open (fi lename)
if vowels < set (word.lower ())}

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr161]. Обратите
внимание, что поскольку Python Tutor не под-
держивает работу с внешними файлами,
то я использовал экземпляр StringIO для
симуляции файла.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr162].

После выполнения упражнения
Генераторы множеств отлично подходят в различных обстоя-

тельствах, в том числе когда у вас есть входные данные, и вы хо-
тите сократить их, чтобы получить только отдельные (уникаль-
ные) элементы.

Вот несколько дополнительных способов попрактиковаться
с генератором множеств:

1. В файле /etc/passwd, который вы использовали ранее,
какие различные оболочки (т.е. командные интерпрета-

161

162

Создает множество
гласных.

Возвращает слово без про-
белов по обеим сторонам.

Итерируем каждую
строку в filename.

Содержит ли это
слово все гласные?

2377. Функциональное программирование с генераторами

торы, названные в последнем поле каждой строки) назна-
чены пользователям? Используйте генератор множества,
чтобы собрать их.

2. У нас есть текстовый файл, какова длина различных слов?
Верните множество различных размеров слов в файле.

3. Создайте список, элементами которого являются строки,
содержащие имена людей в вашей семье. Теперь исполь-
зуйте генератор множества (а еще лучше — вложенный ге-
нератор множества), чтобы найти, какие буквы использу-
ются в именах членов вашей семьи.

Упражнение 35a. Гематрия, часть 1
В этом упражнении мы снова попробуем что-то, что нахо-

дится на пересечении строк и генераторов. На этот раз речь пой-
дет о генераторах словарей.

Когда вы были маленьким, вы могли создать или использовать
«секретный» код, в котором a было 1, b было 2, c было 3 и так
далее, до z (которое было 26). Этот тип кода является довольно
древним и использовался несколькими различными группами
более 2 000 лет назад. «Гематрия», как она известна на иврите, —
это способ, с помощью которого издавна нумеровались библей-
ские стихи. И, конечно же, не стоит называть это секретным ко-
дом, несмотря на то что вы могли думать так в детстве.

В этом упражнении, результат которого вы будете использо-
вать в следующем, вам предлагается создать словарь, ключами
которого являются (строчные) буквы английского алфавита,
а значениями — числа от 1 до 26. И да, вы можете просто ввести
{‘a’:1, ‘b’:2, ‘c’:3} и так далее, но я бы хотел, чтобы вы
использовали генератор словаря.

Обсуждение
В решении вы будете использовать ряд различных аспектов

Python, комбинируя их для создания словаря с минимальным
количеством кода.

238 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Во-первых, мы хотим создать словарь и поэтому обратимся
к генератору словаря. Нашими ключами будут строчные буквы
английского алфавита, а значениями — числа от 1 до 26.

Мы могли бы создать строку из строчных букв. Но вместо того
чтобы делать это самостоятельно, мы можем положиться на мо-
дуль string и его атрибут string.ascii_lowercase, кото-
рый очень полезен в таких ситуациях.

Но как мы можем пронумеровать буквы? Мы можем исполь-
зовать встроенный итератор enumerate, который будет ну-
меровать наши символы по одному. Затем мы можем перехва-
тить итерируемые кортежи с помощью распаковки, захватывая
отдельно индекс и символ:

{char: index
for index, char in enumerate (string.ascii_lowercase)}

Единственная проблема в том, что enumerate начинает от-
счет с 0, а мы хотим начать отсчет с 1. Конечно, мы могли бы
просто добавить 1 к значению index. Однако мы можем сделать
еще лучше, попросив enumerate начать считать с 1, и мы сде-
лаем это, передав ему 1 в качестве второго аргумента:

{char: index
for index, char in enumerate (string.ascii_lowercase, 1)}

И, конечно, это дает нужный нам словарь. Мы будем исполь-
зовать его в следующем упражнении.

Решение
import string

def gematria_dict ():
return {char: index

for index, char
in enumerate (string.ascii_lowercase,1)}

print (gematria_dict ())

Возвращает пару ключ-
значение, содержащую
символ и целое число.

Итерация по строч-
ным буквам с помо-
щью enumerate.

2397. Функциональное программирование с генераторами

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr163].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr164].

После выполнения упражнения
Словари также известны как пары ключ-

значение по той простой причине, что они содержат ключи
и значения, а также потому, что ассоциации между двумя
разными типами данных чрезвычайно распространены в про-
граммировании. Зачастую после помещения данных в словарь
с ними становится легче работать и управлять ими. По этой при-
чине важно знать, как добавлять информацию в словарь из раз-
личных форматов и источников. Вот несколько дополнительных
упражнений, чтобы попрактиковаться в этом:

1. Функциональность многих программ изменяется с по-
мощью конфигурационных файлов, которые часто зада-
ются с помощью пар «имя-значение». То есть каждая строка
файла содержит текст в виде name=value, где знак = отде-
ляет имя от значения. Я подготовил пример файла конфигу-
рации здесь [qr165]. Загрузите этот файл, а затем используйте
генератор словаря, чтобы прочитать его
содержимое с диска, превратив его в сло-
варь, описывающий предпочтения поль-
зователя. Обратите внимание, что все
значения будут строками.

2. Создайте словарь на основе файла конфигурации, как
в предыдущем упражнении, но на этот раз все значе-
ния должны быть целыми числами. Это означает, что вам
нужно отфильтровать (и игнорировать) те значения, кото-
рые нельзя преобразовать в целые числа.

3. Иногда бывает полезно преобразовать данные из одного
формата в другой. Загрузите список 1000 крупнейших го-

163

164

165

240 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

родов США в формате JSON по ссылке [qr166]. Используя
генератор словаря, превратите его в словарь, в котором
ключи — это названия городов, а значения — население
этих городов. Почему в этом словаре всего 925 пар
 ключ-значение? Теперь создайте новый
словарь, но установите для каждого
ключа кортеж, содержащий штат и го-
род. Гарантирует ли это, что будет 1000
пар ключ-значение?

Упражнение 35b. Гематрия, часть 2
В предыдущем упражнении вы создали словарь, который поз-

воляет получить числовое значение из любой строчной буквы.
Как вы понимаете, мы можем использовать этот словарь не только
для нахождения числового значения одной буквы, но и для сум-
мирования значений букв в слове, таким образом получая «зна-
чение» слова. Одна из игр, в которую любят играть еврейские
мистики (хотя они, вероятно, пришли бы в ужас, если бы услы-
шали, что я называю это игрой), состоит в том, чтобы найти слова
с таким же значением гематрии. Если два слова имеют одинако-
вое значение гематрии, то они каким-то образом связаны.

В этом упражнении вы напишете две функции:
1. gematria_for, которая принимает одно слово (строку)

в качестве аргумента и возвращает значение гематрии для
этого слова.

2. gematria_equal_words, которая принимает одно слово
и возвращает список тех слов из словаря, чьи значения ге-
матрии совпадают со значениями текущего слова.

Например, если функция вызывается со словом cat, значе-
ние гематрии которого равно 24 (3 + 1 + 20), то функция вернет
список строк, все значения гематрии которых также равны 24.
(Это будет длинный список!) Любые нестрочные символы в вводе
пользователя должны учитываться как 0 в нашей окончатель-
ной оценке слова. Источником слов для словаря слов будет файл

166

2417. Функциональное программирование с генераторами

Unix, который вы использовали ранее в этой главе и который вы
можете загрузить в генератор списков.

Обсуждение
Это решение сочетает в себе большое количество методов,

которые мы уже обсуждали в этой книге и которые вы, веро-
ятно, будете использовать в своей работе по программированию
на Python. (Правда, я надеюсь, что вы не слишком много занима-
етесь вычислением гематрии).

Во-первых, как мы рассчитываем гематрическую оценку для
слова, учитывая наш gematria словарь? Мы хотим перебирать
каждую букву в слове, беря значение из словаря.

И если буквы нет в словаре, мы присвоим ей значение 0.
Стандартный способ сделать это — использовать цикл for

и dict.get:

total = 0
for one_letter in word:

total += gematria.get (one_letter, 0)

И в этом нет ничего плохого как такового. Но генератор обычно
является лучшим выбором, когда вы начинаете с одной итерации
и пытаетесь создать другую итерацию. И в этом случае мы можем
перебирать буквы в нашем слове в генераторе списка, вызывая
sum для списка целых чисел, в результате получим:

def gematria_for (word):
return sum (gematria.get (one_char,0)

for one_char in word)

Как только мы сможем вычислить гематрию для одного
слова, нам нужно найти все слова из словаря, которые ему эк-
вивалентны. Мы снова можем сделать это с помощью генератора
списка — на этот раз, используя условие if для фильтрации тех
слов, чьи значения гематрии не равны:

242 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

def gematria_equal_words (word):
our_score = gematria_for (input_word.lower ())
return [one_word.strip ()

 for one_word in open (‘/usr/share/dict/
words’)
 if gematria_for (one_word.lower ()) ==
our_score]

Как видите, нам нужны слова в нижнем регистре. Но мы не из-
меняем и не преобразуем слово в первой строке нашего генера-
тора. Скорее, мы просто фильтруем.

Тем временем мы итеративно перебираем все слова в файле
словаря. Каждое слово в этом файле заканчивается новой стро-
кой, что не влияет на наше значение гематрии, но это не то, что
мы хотим вернуть пользователю в нашем генераторе списка.

Наконец, это упражнение демонстрирует, что, когда вы ис-
пользуете комплексный подход и ваше выходное выражение яв-
ляется сложным, часто хорошей идеей является создание отдель-
ной функции, которую можно вызывать многократно.

Решение
import string

def gematria_dict ():
return {char: index

for index, char
in enumerate (string.ascii_lowercase,1)}

GEMATRIA = gematria_dict ()

def gematria_for (word):
return sum (GEMATRIA.get (one_char, 0)

for one_char in word)

Получает значение для текущего
символа, или 0, если символ не на-
ходится в словаре GEMATRIA.

П е р е б и -
рает сим-
волы в
word.

2437. Функциональное программирование с генераторами

def gematria_equal_words (input_word):
 our_score = gematria_for (input_word.

lower ())
 return [one_word.strip ()

for one_word in
open (‘/usr/share/dict/words’)

 if gematria_for (one_word.lower ()) ==
 our_score]

Примечание: для этого упражнения нет ссылки на Python
Tutor, поскольку в нем используется внешний файл.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr167].

После выполнения упражнения
Когда у вас есть данные в словаре, вы часто можете использо-

вать генератор для их преобразования различными способами.
Вот несколько дополнительных упражнений, которые вы можете
использовать, чтобы потренировать свои навыки работы со сло-
варями и генераторами словарей:

1. Создайте словарь, ключи которого — названия городов,
а значения — температуры в градусах Фаренгейта. Теперь
используйте генератор словаря, чтобы преобразовать этот
словарь в новый, сохранив старые ключи, но превратив
значения в температуру в градусах Цельсия.

2. Создайте список кортежей, в котором каждый кортеж со-
держит три элемента: (1) имя и фамилию автора, (2) назва-
ние книги и (3) цену книги в долларах США.

3. Используйте генератор словаря для превращения в сло-
варь, ключами которого являются названия книг, значени-

109

Получает
о б щ у ю
о ц е н к у
для вве-
денного
слова.

Удаляет ведущие
и последующие
пробельные сим-
волы из one_word.

Добавляет текущее слово в наш
список только в том случае, если
его гематрия совпадает с нашей.

Итерации по каждому слову
в англоязычном словаре.

244 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ями — другие (под-) словари, с ключами — (a) имя автора,
(b) фамилия автора и (c) цена книги в долларах США.

4. Создайте словарь, ключами которого будут названия ва-
лют, а значениями — значение этой валюты в долларах
США. Напишите функцию, которая спрашивает пользова-
теля, какую валюту он использует, а затем возвращает сло-
варь из предыдущего упражнения, как и раньше, но с це-
нами, преобразованными в запрашиваемую валюту.

Подводя итоги
Генераторы, без сомнения, являются одной из самых сложных

тем для изучения в Python. Синтаксис немного странный, и даже
не совсем очевидно, где и когда использовать генераторы. В этой
главе вы увидели множество примеров того, как и когда исполь-
зовать генераторы, что, надеюсь, поможет вам не только исполь-
зовать их, но и понимать, когда и где.

8. Модули и пакеты

Функциональное программирование, которое мы рассмот-
рели в предыдущей главе, — одна из самых запутанных
тем, с которыми вы столкнетесь в мире программирова-

ния. Я рад сообщить вам, что эта глава о модулях Python станет
разительным контрастом и будет одной из самых простых в этой
книге. Модули важны, при этом их очень просто создавать и ис-
пользовать. Так что, если вы обнаружите, что читаете эту главу
и думаете: «Эй, это довольно очевидно», что ж, ничего страшного.

Что такое модули в Python и как они нам помогают? Я уже
несколько раз упоминал в этой книге аббревиатуру DRY, сокра-
щение от «не повторяйся». Как программисты, мы стремимся
«высушить» (прим. перев. dry — сушить) наш код, беря одина-
ковые фрагменты кода и используя их несколько раз. Это упро-
щает понимание, управление и поддержку нашего кода. Тести-
рование такого кода тоже упрощается.

Когда у нас есть повторяющийся код в одной программе, мы
можем избавить его от повторов, написав функцию, а затем по-
вторно вызвав ее. Но что, если у нас есть повторяющийся код, ко-
торый используется в нескольких программах? Мы можем со-
здать библиотеку или, как говорят в мире Python, модуль.

Модули на самом деле выполняют две функции в Python.
Во-первых, они позволяют нам повторно использовать код
в разных программах, помогая нам улучшить возможность по-
вторного использования и удобство сопровождения нашего
кода. Таким образом, мы можем один раз определить функции
и классы, вставить их в модуль и повторно использовать сколько

246 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

угодно раз. Это не только уменьшает объем работы, которую нам
необходимо выполнить при внедрении новой системы, но и сни-
жает нашу когнитивную нагрузку, поскольку нам не нужно бес-
покоиться о деталях реализации.

Например, предположим, что ваша компания разработала спе-
циальную формулу ценообразования, содержащую данные о по-
годе и индексы фондового рынка. Вы захотите использовать эту
формулу ценообразования во многих частях вашего кода. Вместо
того чтобы повторять код, вы можете определить функцию один
раз, поместить ее в модуль, а затем использовать этот модуль везде
в вашей программе, где вы хотите вычислять и отображать цены.

В модуле можно определить любой объект Python — от про-
стых структур данных до функций и классов. Главный вопрос за-
ключается в том, хотите ли вы, чтобы он был общим для несколь-
ких программ, сейчас или в будущем.

Во-вторых, модули — это способ создания пространств имен
в Python. Если два человека совместно работают над программ-
ным проектом, вы же не хотите беспокоиться о коллизии между
выбранными ими именами переменных и функций? Каждый
файл — то есть модуль — имеет свое собственное пространство
имен, что гарантирует отсутствие конфликтов между ними.

Python содержит большее количество модулей, и даже самая
маленькая нетривиальная программа Python будет содержать
import, чтобы использовать один или несколько из них. В до-
полнение к стандартной библиотеке, как известно, программи-
сты Python могут воспользоваться большим количеством моду-
лей, доступных в Python Package Index. В этой главе мы
рассмотрим использование и создание модулей, включая пакеты.

ПОДСКАЗКА Если вы ознакомитесь с PyPI по ссылке
[qr168], вы обнаружите, что количество сторонних пакетов,
предоставляемых сообществом, порази-
тельно велико. На момент написания этой
книги на PyPI насчитывалось более 200 000
пакетов, многие из которых содержали
ошибки или не поддерживались. Как узнать,

168

2478. Модули и пакеты

какой из этих пакетов стоящий, а какой нет? Сайт Awesome
Python [qr169] является попыткой исправить эту ситуацию
и содержит отредактированные списки известных стабильных,
поддерживаемых пакетов по различным темам. Советую про-
верять здесь пакеты, прежде чем обращаться
к PyPI. Хотя это и не гарантирует, что пакет,
который вы используете, будет отличным,
это определенно повышает шансы на то,
что он таким и будет.

Таблица 8.1. Что вам нужно знать
Понятие Что это? Пример Чтобы узнать

подробнее

import Импортирование мо-
дулей.

import os

from X
import Y

Импортирует мо-
дуль X, но определяет
только Y как глобаль-
ную переменную.

from os
import sep

importlib.
reload

Повторно импорти-
рует уже загружен-
ный модуль, обычно
для обновления
определений в про-
цессе разработки.

importlib.
reload
(mymod)

pip Программа ко-
мандной строки для
установки пакетов
из PyPI.

pip install
packagename

Decimal Класс, который точно
обрабатывает числа
с плавающей точкой.

from
decimal
import
Decimal

169

248 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Импортирование модулей
Одна из крылатых фраз в мире Python — «батарейки

в комплекте». Это относится к многочисленным телеви-

зионным рекламным роликам, которые я видел в детстве

и которые тратили первые 29,5 секунд на то, чтобы убе-

дить нас купить их захватывающие, забавные, красивые иг-

рушки… И только в последние полсекунды говорили: «Ба-

тарейки в комплект не входят» — это означало, что для того,

чтобы наслаждаться продуктом, недостаточно купить его,

нужно еще купить батарейки.

Под «батарейками в комплекте» подразумевается тот факт,

что, когда вы скачиваете и устанавливаете Python, у вас есть

все необходимое для работы. Это не совсем так, как было

раньше, и PyPI (Python Package Index, описан отдельно в этой

главе) предоставляет нам огромную коллекцию сторонних

модулей Python, которые мы можем использовать для улуч-

шения наших продуктов. Но факт остается фактом: стан-
дартная библиотека, то есть то, что поставляется с Python

при его установке, включает огромное количество модулей,

которые мы можем использовать в наших программах.

Наиболее часто используемые вещи в стандартной биб-

лиотеке, такие как списки и словари, встроены в язык благо-

даря пространству имен, известному как builtins (или

встроенное пространство имен). Вам не нужно беспоко-

иться об импорте вещей из модуля builtins благодаря

правилу LEGB, о котором я рассказывал в главе 6. Но все

остальное из стандартной библиотеки должно быть загру-

жено в память, прежде чем его можно будет использовать.

Мы загружаем такой модуль с помощью import. Про-

стейшая версия оператора import выглядит следующим

образом:

import MODULENAME

2498. Модули и пакеты

Например, если я хочу использовать модуль os, то я пишу

import os

Обратите внимание на пару вещей:
Во-первых, это не функция, вы не говорите import

(os), скорее import os.
Во-вторых, мы не импортируем имя файла. Скорее,

мы указываем переменную, которую хотим определить,
а не файл, который должен быть загружен с диска. Поэтому
не пытайтесь импортировать os или даже импортиро-
вать os.py. Как def определяет новую переменную, ко-
торая ссылается на функцию, так и import определяет но-
вую переменную, которая ссылается на модуль.

Когда вы пишите import os, Python пытается найти
файл, который соответствует имени переменной, которую
вы определяете. Обычно он ищет os.py и os.pyc, где
первый — это исходный код, а второй — скомпилирован-
ная версия. (Python использует временную метку файловой
системы, чтобы определить, какая из них новее, и при необ-
ходимости создает новую байт-компилированную версию.
Так что не беспокойтесь о компиляции!)

Python ищет подходящие файлы в ряде каталогов, видимых
вам в sys.path. Это список строк, представляющих ката-
логи: Python будет перебирать имена каждому каталогу, пока
не найдет подходящее имя модуля. Если в нескольких ката-
логах содержится модуль с одинаковым именем, то загружа-
ется первый попавшийся модуль, а все последующие модули
полностью игнорируются. По моему опыту, это часто приво-
дит к путанице и конфликтам, поэтому старайтесь выбирать
нетривиальные, но понятные имена для своих модулей.

У import есть различные вариации, которые полезно
знать и которые вы, вероятно, увидите в представленном
коде, а также будете использовать в своем собственном.

250 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Тем не менее конечная цель одна и та же: загрузить модуль
и определить одно или несколько имен, связанных с моду-
лем, в пространстве имен.

Если вас устраивает загрузка модуля и использование его
имени в качестве переменной, то import MODULENAME —
отличное решение. Но иногда имя слишком длинное.
По этой причине вы захотите дать имени модуля псевдо-
ним. Вы можете сделать это с помощью

import mymod as mm

Когда вы используете as, имя mymod не будет опреде-
лено. Однако имя mm будет определено. Это излишне, если
имя модуля короткое. Но если имя длинное или вы собира-
етесь часто ссылаться на него, то вы вполне можете захотеть
дать ему более короткий псевдоним. Классическим приме-
ром является NumPy, который лежит в основе всех науч-
ных и численных вычислительных систем Python, включая
науку о данных и машинное обучение. Этот модуль обычно
импортируется с псевдонимом np:

import numpy as np

После импорта модуля все имена, которые были опре-
делены в глобальной области видимости файла, стано-
вятся доступны в качестве атрибутов через объект модуля.
Например, модуль os определяет sep, который указы-
вает, какая строка разделяет элементы пути к каталогу. Вы
можете получить доступ к этому значению при помощи
os.sep. Но если вы собираетесь использовать его часто,
то постоянно писать os.sep будет немного утомительно.
Не лучше ли просто называть его sep? Конечно, вы не мо-
жете этого сделать, потому что имя sep будет переменной,
тогда как os.sep — это атрибут.

2518. Модули и пакеты

Однако вы можете устранить разрыв и получить загрузку
атрибута, используя следующий синтаксис:

from os import sep

Обратите внимание, что это не определит переменную
os, но определит переменную sep. Вы можете использо-
вать from.. import для более чем одной переменной:

from os import sep, path

Теперь и sep, и path будут определены как перемен-
ные в глобальной области видимости.

Беспокоитесь о том, что один из этих импортирован-
ных атрибутов будет конфликтовать с существующей пере-
менной, методом или именем модуля? Тогда вы можете ис-
пользовать from.. import.. as:

from os import sep as s

Существует еще одна версия, которую я часто встре-
чаю и которую я обычно советую людям не использовать.
А именно:

from os import *

Это загрузит модуль os в память, но (что более важно)
возьмет все атрибуты из os и определит их как глобаль-
ные переменные в текущем пространстве имен. Учитывая,
что мы обычно хотим избегать глобальные переменные без
необходимости, я вижу проблему, когда мы позволяем мо-
дулю решать, какие переменные должны быть определены.

ПРИМЕЧАНИЕ Не все имена из модуля будут импор-
тированы с помощью import *. Имена, начинающиеся

252 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

с _ (подчеркивания), будут игнорироваться. Более того,
если модуль определяет список строк с именем __all__,
то только имена, указанные в модуле, будут загружены с по-
мощью import *. Однако from X import Y всегда бу-
дет работать, независимо от того, определено ли __all__.

В конце концов, import делает функции, классы и дан-
ные доступными для вас в вашем текущем пространстве
имен. Учитывая огромное количество модулей, доступных
как в стандартной библиотеке Python, так и на PyPI, это дает
вам огромную потенциальную мощь и объясняет, почему
так много программ на Python начинаются с нескольких
строк импорта.

Упражнение 36. Налог с продаж
Модули позволяют нам сосредоточиться на высокоуровневом

мышлении и не копаться в деталях реализации сложной функ-
циональности. Таким образом, мы можем реализовать функцию
один раз, поместить ее в модуль и использовать его много раз для
реализации алгоритмов, о которых мы не хотим думать на еже-
дневной основе. Если бы, например, для создания веб-приложе-
ния вам пришлось разбираться и продираться через вычисления,
связанные с интернет-безопасностью, вы бы никогда не закон-
чили работу.

В этом упражнении вам предстоит реализовать в модуле
несколько сложную (и причудливую) функцию для реализации
налоговой политики в Республике Фридония. Идея заключается
в том, что налоговая система настолько сложна, что правитель-
ство предоставит предприятиям модуль Python, выполняющий
расчеты за них.

Налог с продаж на покупки во Фридонии зависит от того, где
была совершена покупка, а также от времени покупки. Фридония
состоит из четырех провинций, каждая из которых взимает свой
процент налога:

2538. Модули и пакеты

1. Чико: 50%
2. Гроучо: 70%
3. Харпо: 50%
4. Зеппо: 40%
Да, в Фридонии довольно высокие налоги (настолько высо-

кие, что говорят, что у них марксистское правительство). Однако
эти налоги редко применяются в полном объеме. Это происхо-
дит потому, что размер налога зависит от часа, в который совер-
шается покупка. Процент налога всегда умножается на час, в ко-
торый была совершена покупка. В полночь (т.е. когда 24-часовые
часы показывают 0) налог с продаж не взимается. С 12 часов дня
до 13 часов дня применяется только 50% (12/24) налога. А с 11
часов вечера до полуночи применяется 95,8% (т.е. 23/24) налога.

Ваша задача — реализовать модуль Python freedonia.py. Он
должен предоставлять функцию calculate_tax, принимаю-
щую три аргумента: сумму покупки, область, в которой была со-
вершена покупка, и час (целое число от 0 до 24), в который это
произошло. Функция calculate_tax должна возвращать ко-
нечную цену в виде числа типа fl oat.

Таким образом, если я вызову функцию

calculate_tax (500, ‘Harpo’, 12

то покупка на 500 долларов в области Харпо (с 50% налогом)
стоила бы 750 долларов. Однако, поскольку покупка была совер-
шена в 12 часов дня, налог составляет только половину от макси-
мального, или $125, что в сумме составляет $625. Если бы покупка
была совершена в 9 часов вечера (то есть в 21:00 по 24-часовым
часам), то налог составил бы 87,5% от его полной ставки, или
43,75%, при общей цене $718,75.

Более того, я хочу, чтобы вы написали это решение, исполь-
зуя два отдельных файла. Функция calculate _tax, а также все
вспомогательные данные и функции должны находиться в файле
freedonia.py, модуле Python.

Программа, вызывающая calculate_tax, должна нахо-
диться в файле use_freedonia.py, который затем использует
import для загрузки функции.

254 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обсуждение
Модуль freedonia делает именно то, что должен делать мо-

дуль Python. А именно: он определяет структуры данных и функ-
ции, которые обеспечивают функциональность одной или
нескольких других программ. Предоставляя этот уровень аб-
стракции, он позволяет программисту сосредоточиться на том,
что для него важно, например, на реализации интернет-мага-
зина, не беспокоясь о тонкостях и деталях.

В то время как некоторые страны имеют чрезвычайно простые
системы расчета налога с продаж, в других странах, например,
в США, существует множество пересекающихся юрисдикций,
каждая из которых применяет свой собственный налог с про-
даж, часто по разным ставкам и на разные типы товаров. Таким
образом, хотя пример Фридонии несколько выдуман, приобре-
тение или использование библиотек для расчета налогов не яв-
ляется чем-то необычным.

Наш модуль определяет словарь (RATES), в котором ключами яв-
ляются области Фридонии, а значениями — налоговые ставки, ко-
торые должны там применяться. Таким образом, мы можем узнать
ставку налогообложения в области Гроучо с помощью RATES
[‘Groucho’]. Или мы можем попросить пользователя ввести на-
звание области в переменную province, а затем получить RATES
[province]. В любом случае это даст нам число с плавающей точ-
кой, которое мы можем использовать для расчета налога.

При расчете фридонского налогообложения возникает
проблема, связанная с тем, что с каждым днем налоги становятся
все выше и выше. Чтобы облегчить этот расчет, я написал функ-
цию time_percentage, которая просто берет час и возвращает
его в процентах от 24 часов.

ПРИМЕЧАНИЕ В Python 2 целочисленное деление всегда
возвращает целое число, даже если это означает отбрасывание
остатка. Если вы используете Python 2, убедитесь, что текущий
час делится не на 24 (целое число), а на 24.0 (число с плаваю-
щей точкой).

2558. Модули и пакеты

Наконец, функция calculate_tax принимает три пара-
метра: сумму продажи, название области, в которой произошла
продажа, и час, в который произошла продажа, и возвращает
число с плавающей точкой, указывающее фактическую ставку
налога на текущий момент.

Десятичная версия
Если вы действительно занимаетесь вычислениями, свя-

занными с серьезными деньгами, то почти наверняка вам
не следует использовать числа типа fl oat. Скорее, вам
следует использовать целые числа или класс Decimal,
оба из которых являются более точными. (Дополнитель-
ную информацию о неточности чисел c плавающей точ-
кой см. в главе 1). Я хотел, чтобы это упражнение было
посвящено созданию модуля, а не использованию класса
Decimal, поэтому я не настаиваю на его использовании.

Вот как выглядело бы мое решение с использованием
Decimal:

from decimal import Decimal

rates = {
‘Chico’: Decimal (‘0.5’),
‘Groucho’: Decimal (‘0.7’),
‘Harpo’: Decimal (‘0.5’),
‘Zeppo’: Decimal (‘0.4’)

}

def time_percentage (hour):
return hour / Decimal (‘24.0’)

def calculate_tax (amount, state, hour):
 return fl oat (amount + (amount *rates
[state] * time_percentage (hour)))

256 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обратите внимание, что этот код использует Decimal
для строк, а не для плавающих чисел, чтобы обеспечить

максимальную точность. В последний возможный момент

мы возвращаем число с плавающей точкой. Также обратите

внимание, что любое значение Decimal, умноженное или

деленное на число, остается Decimal, поэтому нам нужно

выполнить преобразование только в конце.

Вот программа, использующая наш модуль freedonia:

from freedonia import calculate_tax

tax_at_12noon = calculate_tax (100, ‘Harpo’, 12)
tax_at_9pm = calculate_tax (100, ‘Harpo’, 21)

print (f’You owe a total of: {tax_at_12noon}’)
print (f’You owe a total of: {tax_at_9pm}’)

Проверка ошибок питоновским способом
Поскольку модуль будет использоваться многими дру-

гими программами, важно, чтобы он был не только точ-

ным, но и имел достойную проверку ошибок. В нашем кон-

кретном случае, например, мы хотим проверить, что час

находится между 0 и 24.

Сейчас тот, кто передаст нашей функции недопустимый

час, все равно получит ответ, хотя и бессмысленный. Луч-

шим решением было бы заставить функцию вызывать ис-

ключение, если входные данные недействительны. И хотя

мы можем вызвать встроенное исключение Python (напри-

мер, ValueError), обычно лучше создать свой собствен-

ный класс исключений и вызвать его, например:

class HourTooLowError (Exception): pass
class HourTooHighError (Exception): pass

2578. Модули и пакеты

def calculate_tax (amount, state, hour):

if hour < 0:
raise HourTooLowError (f’Hour of
{hour} is < 0’)

if hour >= 24:
raise HourTooHighError (f’Hour of
{hour} is >= 24’)

 return amount + (amount * rates [state]
* time_percentage (hour))

Добавление таких исключений в ваш код считается очень
питоничным и гарантирует, что любой, кто использует ваш
модуль, не получит случайно плохой результат.

Решение
RATES = {
 ‘Chico’: 0.5,
 ‘Groucho’: 0.7,
 ‘Groucho’: 0.7,
 ‘Zeppo’: 0.4
 }

def time_percentage (hour):
return hour / 24

def calculate_tax (amount, state, hour):
 return amount + (amount * rates [state] *

time_percentage (hour))
print (calculate_tax (500, ‘Harpo’, 12))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr175].

175

Это означает, что мы по-
лучим 0% в полночь и
чуть меньше 100% в 23:59.

258 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Обратите внимание, что сайт Python Tutor не поддерживает
модули, поэтому данное решение было помещено в один файл
без использования import.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr176].

После выполнения упражнения
Теперь, когда вы написали простую функцию, скрывающую

более сложную функциональность, вот несколько других функ-
ций, которые вы можете написать в виде модулей:

1. Подоходный налог во многих странах представляет со-
бой не фиксированный процент, а скорее, комбинацию
различных «скобок». Таким образом, страна может не об-
лагать налогом ваши первые 1000 долларов дохода, затем
10% со следующих 10 000 долларов, затем 20% со следую-
щих 10 000 долларов, а затем 50% со всего, что выше этой
суммы. Напишите функцию, которая берет чей-то доход
и возвращает сумму налога, которую ему придется запла-
тить, суммируя проценты из разных скобок.

2. Напишите модуль, предоставляющий функцию, которая
по заданной строке возвращает словарь, указывающий,
сколько символов содержит результат True для каждой
из следующих функций: str.isdigit, str.isalpha
и str.isspace. Ключами должны быть isdigit,
isalpha и isspace.

3. Метод dict.fromkeys упрощает создание нового сло-
варя. Например, dict.fromkeys (‘abc’) создаст сло-
варь {‘a’: None, ‘b’: None, ‘c’: None}. Вы также
можете передать значение, которое будет присвоено каж-
дому ключу, например, dict.fromkeys (‘abc’, 5),
в результате чего получится словарь {‘a’:5, ‘b’:5,
‘c’:5}. Реализуйте функцию, которая делает то же самое,
что и dict.keys, но вторым аргументом которой яв-

176

2598. Модули и пакеты

ляется функция. Значение, связанное с ключом, будет ре-
зультатом вызова f (key).

Загрузка и перезагрузка модулей
Что происходит, когда вы используете import для за-

грузки модуля? Например, если вы напишите

import mymod

Python найдет mymod.py в нескольких каталогах, опре-
деленных в списке строк с именем sys.path. Если Python
встречает файл в одном из этих каталогов, он загружает
файл и прекращает поиск в любых других каталогах.

ПРИМЕЧАНИЕ Существует несколько способов изме-
нить sys.path, в том числе путем установки перемен-
ной среды PYTHONPATH и создания файлов с расшире-
нием .pth в каталоге пакетов установки
Python site-packages. Дополнитель-
ные сведения о настройке sys.path
смотрите в документации Python или
в этой полезной статье: [qr177].

Это означает, что import обычно делает две разные
вещи: загружает модуль и определяет новую переменную.
Но что произойдет, если ваша программа загрузит два мо-
дуля, каждый из которых, в свою очередь, загрузит еще мо-
дули? Например, предположим, что ваша программа им-
портирует как pandas, так и scipy, оба из которых
загружают модуль numpy. В таком случае Python загру-
зит модуль в первый раз, но определит переменную только
во второй раз. import загружает модуль только один раз,
но всегда будет определять переменную, которую вы по-
просили создать.

177

260 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Это делается с помощью словаря, определенного в sys,
который называется sys.modules. Его ключи — это имена
загруженных модулей, а его значения — фактические
объекты модуля. Таким образом, когда мы пишим import
mymod, Python сначала проверяет, находится ли mymod
в sys.modules. Если это так, то он не ищет и не загружает
модуль. Скорее, просто определяет имя.

Обычно это очень хорошо, поскольку нет необходимо-
сти перезагружать модуль после того, как программа на-
чала работать. Но когда вы отлаживаете модуль в рамках
интерактивного сеанса Python, вы хотите иметь возмож-
ность неоднократно перезагружать его, желательно без вы-
хода из текущего сеанса Python.

В таких случаях вы можете использовать функцию
reload, определенную в модуле importlib. Она прини-
мает объект модуля в качестве аргумента, поэтому модуль
уже должен быть определен и импортирован. И это то, что
вы, вероятно, будете использовать все время в разработке
и почти никогда в реальном производстве.

ПРИМЕЧАНИЕ В предыдущих версиях Python reload
была встроенной функцией. Начиная с Python 3, она нахо-
дится в модуле importlib, который вы должны импорти-
ровать, чтобы использовать ее.

УПРАЖНЕНИЕ 37. Меню
Если вы обнаружите, что пишете одну и ту же функцию

несколько раз в разных программах или проектах, вы почти навер-
няка захотите превратить эту функцию в модуль. В этом упражне-
нии вы напишете функцию, достаточно общего характера, чтобы
ее можно было использовать в самых разных программах.

В частности, напишите новый модуль под названием menu
(в файле menu.py). Модуль должен определять функцию, также

2618. Модули и пакеты

называемую menu. Функция принимает любое количество пар
ключ-значение в качестве аргументов. Каждое значение должно
быть вызываемым — с причудливым именем для функции или
класса в Python.

Когда функция вызывается, пользователю предлагается ввести
некоторые данные. Если пользователь вводит строку, которая со-
ответствует одному из аргументов ключевого слова, будет вызвана
функция, связанная с этим ключевым словом, и ее возвращае-
мое значение будет возвращено вызывающей стороне menu. Если
пользователь вводит строку, которая не является одним из аргу-
ментов ключевого слова, ему будет выдано сообщение об ошибке
и предложено повторить попытку.

Идея состоит в том, что вы сможете определить несколько
функций, а затем указать, какой пользовательский ввод будет вы-
зывать каждую функцию:

from menu import menu

def func_a ():
 return “A”

def func_b ():
 return “B”

return_value = menu (a=func_a, b=func_b)
print (f’Result is {return_value}’)

В этом примере return_value будет содержать A, если
пользователь выбирает a, или B, если пользователь выбирает b.
Если пользователь вводит любую другую строку, ему предлага-
ется повторить попытку. А затем мы напечатаем выбор пользова-
теля, просто для подтверждения.

Обсуждение
Представленное здесь решение является еще одним примером

таблицы диспетчеризации, которую мы видели ранее в книге
в упражнении «Калькулятор префиксов». На этот раз мы исполь-

262 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

зуем параметр **kwargs для динамического создания таблицы
диспетчеризации, а не с помощью «хардкодного» словаря (прим.
пер. хардкод — написание значения непосредственно в коде,
вместо того чтобы передавать его в качестве параметра).

В этом случае тот, кто вызывает функцию menu, предоста-
вит ключевые слова, которые функционируют как опции меню,
и функции, которые будут вызываться. Обратите внимание, что
все эти функции не принимают аргументов, хотя вы можете
представить сценарий, в котором пользователь мог бы предоста-
вить больше входных данных.

Здесь мы используем **, который уже видели в упражнении
по созданию XML. Вместо этого мы могли бы получить словарь
в качестве одного аргумента, но нам кажется, что более простым
способом создания словаря будет использование встроенного API
Python для преобразования **kwargs в словарь.

Хотя я не просил вас об этом, мое решение предоставляет поль-
зователю список допустимых пунктов меню. Я вызываю str.
join для словаря, в следствие чего создаются строки из клю-
чей с символами «/» между ними. Я также решил использовать
sorted, чтобы представить их в алфавитном порядке.

Теперь мы можем запрашивать у пользователя ввод из любой
функции с нулевым аргументом.

Почему мы проверяем __name__?
Одна из самых известных строк во всем Python выгля-

дит так:

if __name__ == ‘__main__’:

Что делает эта строка? Как она помогает? Эта строка яв-
ляется результатом нескольких разных вещей, происходя-
щих при загрузке модуля:

1. Во-первых, при загрузке модуля его код выполняется
с начала файла и до конца. Вы не просто определяете
вещи: любой код в файле фактически выполняется.

2638. Модули и пакеты

Это означает, что вы можете (теоретически) вызывать
print или использовать циклы for. В этом случае мы
используем if, чтобы заставить некоторый код вы-
полняться условно при его загрузке.

2. Во-вторых, переменная __name__ либо определя-
ется как __main__, что означает, что в настоящий
момент все работает в начальном пространстве имен,
по умолчанию и верхнем уровне, предоставленном
Python, либо определяется как имя текущего модуля.
Таким образом, if здесь проверяет, был ли модуль
запущен напрямую или он был импортирован дру-
гим фрагментом кода Python.

Другими словами, строка кода говорит: «Выполняйте при-
веденный ниже код (т. е. внутри оператора if), только если
выполняется программа верхнего уровня. Не обращайте вни-
мания на то, что в if, когда мы импортируем этот модуль».

Вы можете использовать этот код несколькими способами:
3. Многие модули запускают свои собственные тесты

при непосредственном вызове, а не при импорте.
4. Некоторые модули можно вызывать в интерактивном

режиме, предоставляя пользователю функциональ-
ные возможности и интерфейс. Данный код позво-
ляет это сделать, не вмешиваясь ни в какие определе-
ния функций.

5. В некоторых странных случаях, таких как модуль
мультипроцессинга в Windows, код позволяет разли-
чать версии программы, которые загружаются и вы-
полняются в отдельных процессах.

Хотя теоретически строк if __name__ == ‘__main__’
в коде может быть сколько угодно, обычно эта строка появ-
ляется только один раз в конце файла модуля.

Несомненно, вы, столкнетесь с этим кодом и, возможно,
даже писали его в прошлом. И теперь вы знаете, как это ра-
ботает!

264 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение

def menu (**options):
 while True:

 option_string = ‘/’.join (sorted (options))
choice = input (

f’Enter an option ({option_string}): ‘)
if choice in options:

 return options [choice])

 print (‘Not a valid option’)
def func_a ():

return “A”

def func_b ():
return “B”

return_value = menu (a=func_a, b=func_b)
print (f’Result is {return_value}’)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr178].

Обратите внимание, что сайт Python Tutor
не поддерживает модули, поэтому данное ре-
шение было помещено в один файл без ис-
пользования import.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr179].

После выполнения упражнения
Теперь, когда вы написали и использовали два разных модуля

Python, давайте пойдем дальше и поэкспериментируем с некото-
рыми более сложными методами и проблемами:

178

179

options — это словарь,
заполненный аргумен-
тами ключевого слова.

Бесконечный цикл, из
которого мы вырвемся,
когда пользователь вве-
дет правильный ввод.

Создает строку отсор-
тированных парамет-
ров, разделенных «/». Ввел ли пользователь

ключ из **options?
Если да, то верните результат
выполнения функции.

В противном случае отру-
гайте пользователя и попро-
сите егоповторить попытку.

2658. Модули и пакеты

1. Напишите свою версию menu.py, которую можно им-
портировать (как в упражнении), но которая при вызове
файла как отдельной программы из командной строки
тестирует функцию. Если вы не знакомы с программ-
ным обеспечением для тестирования, таким как pytest,
вы можете просто запустить программу и проверить ре-
зультат.

2. Сделайте menu.py пакетом Python и загрузите его в PyPI.
(Я предлагаю использовать ваше имя или инициалы, а за-
тем «меню», чтобы избежать конфликтов имен.) Смотрите
сноску о разнице между модулями и пакетами и о том, как
вы можете участвовать в экосистеме PyPI со своими соб-
ственными проектами с открытым исходным кодом.

3. Определите модуль stuff с тремя переменными — a, b
и c — и двумя функциями — foo и bar. Определите __
all__ так, чтобы from stuff import * вызывал импорт
a, c и bar, но не b и foo.

Модули vs. пакеты
Эта глава посвящена модулям — как их создавать, им-

портировать и использовать. Но вы могли заметить, что мы
часто используем другой термин, пакеты, при обсуждении
кода Python. В чем разница между модулем и пакетом?

Модуль — это файл с расширением .py. Мы можем за-
грузить модуль с помощью import, как мы уже видели.
Но что, если ваш проект достаточно большой, и было бы
разумнее иметь несколько отдельных файлов? Как вы мо-
жете распространять эти файлы вместе?

Благодаря пакету, представляющему собой каталог с од-
ним или более модулями Python. Например, предположим,
у вас есть модули fi rst.py, second.py и third.py
и вы хотите сохранить их вместе. Вы можете поместить их
все в каталог mypackage. Предполагая, что этот каталог на-
ходится в sys.path, вы можете написать

266 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

from mypackage import fi rst

Python перейдет в каталог mypackage, найдет fi rst.py
и импортирует его. Вы можете получить доступ ко всем его
атрибутам через fi rst.x, fi rst.y и так далее. В качестве
альтернативы можно использовать

import mypackage.fi rst

В этом случае Python все равно загрузит модуль fi rst,
но он будет доступен в вашей программе через длин-
ное имя mypackage.fi rst. Затем вы можете использовать
mypackage.fi rst.x и mypackage.fi rst.y.

В качестве альтернативы можно использовать

import mypackage

Но это будет полезно только в том случае, если в ка-
талоге mypackage есть файл с именем __init__.py.
В этом случае импорт mypackage фактически означает,
что файл __init__.py загружен и, следовательно, вы-
полняется. Внутри этого файла вы можете импортировать
один или несколько модулей пакета.

А что, если вы хотите сделать свой пакет доступным дру-
гим? В таком случае вам следует создать пакет. Если это зву-
чит странно, что вам нужен пакет для распространения
вашего пакета, то это потому, что один и тот же термин, па-
кет, используется для двух разных понятий. Пакет PyPI, или
дистрибутивный пакет, представляет собой оболочку па-
кета Python, содержащую информацию об авторе, совме-
стимых версиях и лицензировании, а также автоматические
тесты, зависимости и инструкции по установке.

Еще более запутанным, чем использование «пакета» для
описания двух разных вещей, является тот факт, что и пакет

2678. Модули и пакеты

дистрибутива, и пакет Python являются каталогами
и должны иметь одно и то же имя. Если ваш дистрибутив-
ный пакет называется mypackage, у вас будет каталог
с именем mypackage. Внутри этого каталога, среди прочего,
будет подкаталог с именем mypackage, в который помеща-
ется пакет Python.

Если вы хотите распространять пакеты
через PyPI, вам необходимо зарегистри-
роваться для получения имени пользо-
вателя и пароля на [qr180]. Как только
вы это сделаете, следуйте следующим инструкциям, чтобы
взять существующий пакет и загрузить его в PyPI с помощью
Poetry, используя команды оболочки Unix:

Создание дистрибутивного пакета означает созда-
ние файла с именем setup.py, и я должен признать, что
в течение многих лет я считал это настоящей рутиной. Ока-
зывается, я был не одинок, и ряд разработчиков Python
придумали способы относительно легкого создания дис-
трибутивных пакетов. Один из них, которым я пользуюсь
некоторое время, называется Poetry и делает весь процесс
простым и понятным.

$ poetry new mypackage
$ cd mypackage

$ cp —R ~/mypackage-code/* mypackage
$ poetry build
$ poetry publish

Обратите внимание, что вы не можете загрузить кон-
кретное имя mypackage в PyPI. Я рекомендую указывать

180

Создает новый скелет пакета
под названием mypackage.

Переходит в каталог
верхнего уровня.

Создает вер-
сии вашего па-
кета wheelfile
и tar.gz в ка-
талоге dist.Публикует пакет в PyPI, для

подтверждения вы вводите
свое имя пользователя и па-
роль при появлении запроса.

Копирует содер-
жимое пакета
Python в его под-
каталог.

268 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

в имени пакета ваше имя пользователя или инициалы, если
вы не собираетесь публиковать его для общественного ис-
пользования.

Вы можете добавить множество других шагов к тем, кото-
рые я перечислил, например, вы можете (и должны) редак-
тировать файл конфигурации pyproject.toml, в котором
вы описываете версию вашего пакета, лицензию и зависи-
мости. Но создание дистрибутивного пакета больше не яв-
ляется сложной задачей. Скорее, сложнее будет решить, ка-
ким кодом вы хотите поделиться с сообществом.

Подводя итоги
Модули и пакеты просты в написании и использовании, они

помогают нам сделать наш код более коротким (согласно прин-
ципу DRY) и удобным для сопровождения. Особенно когда вы
используете множество модулей и пакетов в стандартной биб-
лиотеке Python и на PyPI. Поэтому неудивительно, что многие
программы Python начинаются с нескольких строк import.
По мере того, как вы станете более свободно использовать
Python, вы познакомитесь с большим число сторонних моду-
лей, что позволит вам еще больше использовать их преимуще-
ства в своем коде.

9. Объекты

Объектно-ориентированное программирование стало
основным или даже главным способом подхода к про-
граммированию. Идея проста: вместо того чтобы опреде-

лять наши функции в одной части кода, а данные, над которыми
работают эти функции, в отдельной части кода, мы определяем
их вместе.

Или, если говорить языком, в традиционном процедурном
программировании мы пишем список существительных (данные)
и отдельный список глаголов (функции), оставляя на усмотрение
программиста выяснение того, что с чем сочетается. В объект-
но-ориентированном программировании глаголы (функции)
определяются вместе с существительными (данными), помогая
нам понять, что с чем сочетается.

В мире объектно-ориентированного программирования каж-
дое существительное — это объект. Мы говорим, что у каждого
объекта есть тип, или класс, к которому он принадлежит. А гла-
голы (функции), которые мы можем вызывать на каждом объекте,
называются методами.

Для примера традиционного процедурного программиро-
вания в сравнении с объектно-ориентированным програм-
мированием рассмотрим, как мы можем вычислить итоговую
оценку студента, основанную на среднем значении его тесто-
вых баллов. В процедурном программировании мы бы убеди-
лись, что оценки находятся в списке целых чисел, а затем на-
писали бы функцию average, которая возвращала бы среднее
арифметическое:

270 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

def average (numbers):
return sum (numbers) / len (numbers)

scores = [85, 95, 98, 87, 80, 92]
print (f’The fi nal score is {average (scores)}.’)

Этот код работает. И работает надежно. Но вызывающая сто-
рона отвечает за отслеживание чисел в виде списка… и за знание
того, что мы должны вызвать метод average… и за их правиль-
ное объединение.

В объектно-ориентированном мире мы бы решили эту
проблему, создав новый тип данных, который мы могли бы
назвать ScoreList. Затем мы бы создали новый экземпляр
ScoreList.

Даже если это одни и те же данные, ScoreList более явно
и конкретно связан с нашей областью, чем общий список Python.
Затем мы можем вызвать соответствующий метод для объекта
ScoreList:

class ScoreList ():
def __init__ (self, scores):

self.scores = scores

def average (self):
return sum (self.scores) / len (self.scores)

scores = ScoreList ([85, 95, 98, 87, 80, 92])
print (f’The fi nal score is {scores.average ()}.’)

Как видите, нет никаких отличий от процедурного метода
в том, что именно вычисляется, и даже в том, какую технику мы
используем для этого. Но есть организационная и семантическая
разница, которая позволяет нам мыслить по-другому.

Теперь мы мыслим на более высоком уровне абстракции и мо-
жем лучше рассуждать о нашем коде. Определение собственных
типов также позволяет нам использовать сокращение при опи-

2719. Объекты

сании понятий. Подумайте о разнице между тем, чтобы сказать
кому-то, что вы купили «книжную полку», и тем, чтобы описать
«деревянные доски, скрепленные гвоздями и шурупами, хра-
нящиеся вертикально и содержащие места для хранения книг».
Первый вариант короче, менее двусмысленен и семантически
сильнее, чем второй.

Еще одно преимущество заключается в том, что если мы ре-
шим вычислять среднее по-новому — например, некоторые
учителя могут отбросить самый низкий балл, — то мы можем
сохранить существующий интерфейс, изменив при этом базовую
реализацию.

Итак, каковы основные причины для использования объект-
ноориентированных методов?

1. Мы можем организовать наш код в виде отдельных объек-
тов, каждый из которых обрабатывает различные аспекты
нашего кода. Это облегчает планирование и сопровожде-
ние, а также позволяет разделить проект между несколь-
кими людьми.

2. Мы можем создавать иерархии классов, каждый дочерний
класс в иерархии наследует функциональность от своих
родителей. Это сокращает объем кода и одновременно
усиливает связи между схожими типами данных. Учиты-
вая, что многие классы являются незначительными моди-
фикациями других классов, это экономит время.

3. Благодаря созданию типов данных, которые работают
так же, как и встроенные типы Python, наш код ощущается
как естественное расширение языка, а не как костыль. Бо-
лее того, чтобы научиться использовать новый класс, тре-
буется изучить лишь небольшую часть синтаксиса, поэтому
вы можете сосредоточиться на основных идеях и функци-
ональности.

4. Хотя Python не скрывает код и не делает его приватным,
вы, скорее всего, услышите о разнице между реализацией
объекта и его интерфейсом. Если я использую объект, то мне
важен его интерфейс, то есть методы, которые я могу вы-
звать, и то, что они делают. То, как объект реализован вну-

272 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

три, не является для меня приоритетом и не влияет на мою
повседневную работу. Таким образом, я могу сосредото-
читься на кодировании, которое я хочу сделать, а не на вну-
треннем устройстве класса, который я использую, пользу-
ясь абстракцией, созданную мной с помощью класса.

Объектно-ориентированное программирование не яв-
ляется панацеей — с годами мы обнаружили, что, как и все
другие парадигмы, оно имеет как преимущества, так и недо-
статки. Например, легко создавать чудовищно большие объекты
с огромным количеством методов, фактически создавая про-
цедурную систему, замаскированную под объектно-ориен-
тированную. Можно злоупотреблять наследованием, создавая
иерархии, которые не имеют смысла. А если разбить систему
на множество мелких частей, возникает проблема тестирова-
ния и интеграции этих частей с таким количеством возможных
линий связи.

Тем не менее, объектная парадигма помогла многим програм-
мистам модифицировать свой код, сосредоточиться на конкрет-
ных аспектах программы, над которой они работают, и обмени-
ваться данными с объектами, написанными другими людьми.

В Python мы любим говорить, что «все является объектом».
По своей сути это означает, что язык является единообразным:
типы (такие как str и dict), которые поставляются с язы-
ком, определены как классы с методами. Наши объекты работают
так же, как и встроенные объекты, что сокращает кривую обуче-
ния как для тех, кто внедряет новые классы, так и для тех, кто их
использует.

Подумайте, что, когда вы изучаете иностранный язык, вы об-
наруживаете, что для существительных и глаголов есть всевоз-
можные правила. Но затем вы неизбежно сталкиваетесь с не-
соответствиями и исключениями из этих правил. Благодаря
единому набору правил для всех объектов Python устраняет
эти трудности для тех, кто не является носителем языка, предо-
ставляя нам, за неимением лучшего термина, эсперанто языков
программирования. Выучив правило, вы можете применять его
во всем языке.

2739. Объекты

ПРИМЕЧАНИЕ Одной из отличительных черт Python яв-
ляется его последовательность. Как только вы выучили пра-
вило, оно применяется ко всему языку без исключений. Если
вы понимаете поиск переменных (LEGB, описанный в главе 6)
и поиск атрибутов (ICPO, описанный далее в этой главе), вы
будете знать правила, которые Python применяет постоянно,
ко всем объектам без исключения — как к тем, которые вы со-
здаете, так и к тем, которые встроены в язык.

В то же время Python не заставляет вас писать все в объектно-о-
риентированном стиле. Действительно, в программах на Python
принято комбинировать парадигмы, используя смесь процедур-
ного, функционального и объектно-ориентированного стилей.
Какой стиль вы выберете и где, зависит только от вас. Но в конце
концов, даже если вы пишете не в объектно-ориентированном
стиле, вы все равно используете объекты Python.

Если вы собираетесь писать на Python, вы должны понимать
объектную систему Python — как создаются объекты, как опре-
деляются классы и взаимодействуют с родительскими и как мы
можем влиять на взаимодействие классов с остальным миром.
Даже если вы пишете в процедурном стиле, вы все равно будете
использовать классы, определенные другими людьми, и благо-
даря знанию того, как эти классы работают, ваше код станет бо-
лее простым и понятным.

Эта глава содержит упражнения, направленные на то, чтобы
помочь вам почувствовать себя более комфортно в работе с объек-
тами Python. В ходе выполнения этих упражнений вы будете со-
здавать классы и методы, создавать атрибуты на уровне объектов
и классов, а также работать с такими понятиями, как компози-
ция и наследование. По окончании вы будете готовы создавать
объекты Python и работать с ними, а значит, писать и сопрово-
ждать код Python.

ПРИМЕЧАНИЕ Предыдущая глава, посвященная моду-
лям, была короткой и простой. Эта глава, наоборот, длинная
и содержит много важных идей, на усвоение которых может

274 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

потребоваться некоторое время. Эта глава потребует времени,
но она стоит затраченных усилий. Понимание объектно-о-
риентированного программирования поможет вам не только
в написании собственных классов, оно также поможет вам по-
нять, как устроен сам Python и как работают встроенные типы.

Таблица 9.1. Что вам нужно знать
Понятие Что это? Пример Чтобы узнать

подробнее

class Ключевое слово
для создания
классов Python.

class Foo

__init__ Метод, вызывае-
мый автоматиче-
ски при создании
нового экзем-
пляра.

def __init__
(self):

__repr__ Метод, возвраща-
ющий строку, со-
держащую печат-
ное представление
объекта.

def __repr__
(self):

super
built — in

Возвращает
прокси-объект,
на котором могут
быть вызваны ме-
тоды; обычно ис-
пользуется для
вызова метода
на родительском
классе.

super ().__
init__ ()

dataclasses
.dataclass

Декоратор, упро-
щающий опреде-
ление классов.

@dataclass

2759. Объекты

Упражнение 38.
Ложка для мороженого

Если вы собираетесь программировать с использованием
объектов, то вы будете создавать классы —много классов. Каж-
дый класс должен представлять один тип объекта и его поведе-
ние. Вы можете рассматривать класс как фабрику для создания
объектов данного типа — так, класс Car будет создавать авто-
мобили, также известные как «объекты автомобиля» или «эк-
земпляры Car». Ваш побитый седан будет объектом автомо-
биля, как и новый шикарный внедорожник.

В этом упражнении вы определите класс Scoop, который
представляет одну ложку с мороженым. Каждый шарик дол-
жен иметь единственный атрибут, flavor (вкус), строку, кото-
рую вы можете инициализировать при создании экземпляра
Scoop.

После создания класса напишите функцию (create_scoops),
которая создает три экземпляра класса Scoop, каждый из кото-
рых имеет свой fl avor (рисунок 9.1). Поместите эти три экзем-
пляра в список под названием scoops (рисунок 9.2). Наконец,
проитерируйте список scoops, печатая fl avor каждого шарика
мороженого, который вы создали.

Рисунок 9.1. Три экземпляра Scoop, каждый из которых ссылается
на свой класс.

276 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Рисунок 9.2. Наши три экземпляра Scoop в списке.

Обсуждение
Ключом к пониманию объектов в Python — и большей части

языка Python — являются атрибуты. Каждый объект имеет тип

и один или несколько атрибутов. Python сам определяет некото-

рые из этих атрибутов: вы можете определить их по символу __
(в мире Python часто известному как дандер) в начале и конце

имен атрибутов, например __name__ или __init__.

Когда мы определяем новый класс, мы делаем это с помощью

ключевого слова class. Затем мы называем класс (в данном случае

Scoop) и указываем в круглых скобках класс или классы, от ко-

торых наследуется наш новый класс.

Наш метод __init__ вызывается после создания нового эк-

земпляра Scoop, но до того, как он будет возвращен тому, кто вы-

звал Scoop (‘fl avor’). Новый объект передается в __init__
в self (т.е. первым параметром) вместе с аргументами, которые

были переданы в Scoop (). Таким образом, мы присваиваем
self.fl avor = fl avor, создавая для нового экземпляра атрибут

flavor со значением параметра flavor.

2779. Объекты

Поговорим о self
Первый параметр в каждом методе традиционно называ-

ется self. Однако self не является зарезервированным
словом в Python: использование этого слова является услов-
ностью и пришло из языка Smalltalk, объектная система ко-
торого повлияла на структуру Python.

Во многих языках текущий объект известен как this.
Более того, в таких языках this — это не параметр,
а скорее специальное слово, обозначающее текущий
объект. В Python нет такого специального слова: экзем-
пляр, для которого был вызван метод, всегда будет изве-
стен как self, а self всегда будет первым параметром
в каждом методе. Теоретически вы можете использовать
любое имя для первого параметра, включая this. (Но,
правда, какой уважающий себя язык стал бы так посту-
пать?) Хотя ваша программа все равно будет работать,
предполагается, что первый параметр, представляющий
экземпляр, будет называться self, так что и вам следует
поступать так же.

Как и в случае с обычными функциями Python, здесь нет при-
нудительного применения типов. Предполагается, что fl avor
будет содержать значение str, поскольку документация указы-
вает, что ожидается именно это.

ПРИМЕЧАНИЕ Если вы хотите бо-
лее строгого контроля, то рассмотрите воз-
можность использования аннотаций типов
Python и Mypy или аналогичного инстру-
мента проверки типов. Более подробную
информацию о Mypy вы можете найти
на сайте [qr186]. Также вы можете найти от-
личное введение в аннотации типов Python
и их использование здесь [qr187].

186

187

278 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Чтобы создать три scoops, я использую генератор списка,
итерируя по fl avors и создавая новые экземпляры Scoop. В ре-
зультате получается список с тремя объектами Scoop, каждый
из которых имеет свой fl avor:

scoops = [Scoop (fl avor)
for fl avor in (‘chocolate’, ‘vanilla’, ‘persimmon’)]

Если вы привыкли работать с объектами на другом языке про-
граммирования, вам может быть интересно, где находятся ме-
тоды getter и setter для получения и установки значения
атрибута fl avor. В Python, поскольку все является публичным,
нет реальной необходимости в геттерах и сеттерах. И действи-
тельно, если у вас нет действительно веских причин для этого,
вам, вероятно, следует избегать их использования.

ПРИМЕЧАНИЕ Если вам понадобится

геттер или сеттер, вы можете рассмотреть

Python property, которое скрывает вызов

метода за API изменения или получения

атрибута. Вы можете узнать больше о свой-

ствах здесь: [qr188].

Я должен отметить, что даже наш простой класс Scoop де-
монстрирует несколько вещей, которые присущи почти всем
классам Python. У нас есть метод __init__, параметры ко-
торого позволяют нам устанавливать атрибуты для вновь со-
зданных экземпляров. Он хранит состояние внутри self,
и таким образом можно хранить любой тип объектов Python —
не только строки или числа, но и списки и словари, а также
другие типы объектов.

ПРИМЕЧАНИЕ Не советую готовить мороженое с хурмой.

Ваша семья никогда не позволит вам забыть об этом.

188

2799. Объекты

Решение
class Scoop ():

def __init__ (self, fl avor):
self.fl avor = fl avor

def create_scoops ():
scoops = [Scoop (‘chocolate’),

Scoop (‘vanilla’),
Scoop (‘persimmon’)]

for scoop in scoops:
print (scoop.fl avor)

create_scoops ()

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr189].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr190].

После выполнения упражнения
Если вы программируете на Python, то, скорее всего, вам при-

дется регулярно писать классы. И если вы это делаете, вы будете
писать много методов __init__, которые добавляют атрибуты
к объектам различного рода. Вот несколько дополнительных
простых классов, которые вы можете написать, чтобы попракти-
коваться в этом:

1. Напишите класс Beverage, экземплярами которого бу-
дут являться напитки. Каждый напиток должен иметь два
атрибута: название (описывающее напиток) и темпера-
туру.
 Создайте несколько напитков и убедитесь, что их названия
и температуры обрабатываются правильно.

189

190

Первым параметром каждого ме-
тода всегда будет self, представ-
ляющий текущий экземпляр.

Устанавливаем атрибут
flavor как значение в
параметре. flavor.

280 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Измените класс Beverage, чтобы можно было создать
новый экземпляр, указав имя, а не температуру. Если
вы это сделаете, то температура должна иметь значение
по умолчанию 75 градусов Цельсия. Создайте несколько
напитков и дважды проверьте, что температура имеет
это значение по умолчанию, в случае если она не ука-
зана.

3. Создайте новый класс LogFile, который должен быть
инициализирован именем файла. Внутри __init__
откройте файл для записи и назначьте его атрибуту, fi le,
который находится в экземпляре. Убедитесь, что запись
в файл возможна через атрибут fi le.

Что делает __init__?
Простой класс в Python выглядит так:

class Foo ():
def __init__ (self, x):

self.x = x

И действительно, с классом Foo мы можем сказать, что

f = Foo (10) print (f.x)

Это заставляет многих людей, особенно тех, кто пришел
из других языков, вызывать __init__ конструктор, то есть
метод, который фактически создает новый экземпляр Foo.
Но это не совсем так.

Когда мы вызываем Foo (10), Python сначала ищет
идентификатор Foo так же, как он ищет любую другую
переменную в языке, следуя правилу LEGB. Он находит
Foo как глобально определенную переменную, ссылаю-
щуюся на класс. Классы можно вызывать, то есть их можно
вызывать с помощью круглых скобок. И поэтому, когда мы

2819. Объекты

просим вызвать его и передать 10 в качестве аргумента,
Python соглашается.

Но что на самом деле выполняется? Разумеется, ме-
тод конструктора, известный как __new__. Теперь вы по-
чти никогда не должны реализовывать __new__ само-
стоятельно: в некоторых случаях это может быть полезно,
но в подавляющем большинстве случаев вы не хотите тро-
гать или переопределять его. Это потому, что __new__
создает новый объект, а мы не хотим иметь с этим дело.

Метод __new__ также возвращает вновь созданный эк-
земпляр Foo вызывающей стороне. Но перед этим он делает
еще одну вещь: ищет, а затем вызывает метод __init__.
Это означает, что __init__ вызывается после создания
объекта, но до его возврата.

А что делает __init__? Проще говоря, он добавляет
к объекту новые атрибуты.

В то время как другие языки программирования говорят
о «переменных экземпляра» и «переменных класса», у раз-
работчиков Python есть только один инструмент, а именно
атрибут. Когда в коде встречается a.b, можно сказать, что
b является атрибутом a, что означает (в той или иной сте-
пени), что b относится к объекту, связанному с a. Атри-
буты объекта можно рассматривать как его собственный
приватный словарь.

Таким образом, задача __init__ состоит в том, чтобы
добавить один или несколько атрибутов нашему новому эк-
земпляру. В отличие от таких языков, как C# и Java, в Python
мы не просто объявляем атрибуты: мы должны фактически
создавать и присваивать их во время выполнения, когда со-
здается новый экземпляр.

Во всех методах Python параметр self относится к эк-
земпляру. Любые атрибуты, которые мы добавляем к self,
останутся после возвращения метода. Поэтому предпочти-
тельнее присвоить кучу атрибутов self в __init__.

282 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Давайте шаг за шагом разберем как это работает. Во-пер-
вых, давайте определим простой класс Person, который
присваивает имя объекту:

class Person:
def __init__ (self, name):

self.name = name

Затем создадим новый экземпляр Person:

p = Person (‘myname’)

Что происходит внутри Python? Во-первых, метод __
new__, который мы никогда не определяем, работает «за
кулисами», создавая объект, как показано на рис. 9.3.

Рисунок 9.3. При создании объекта происходит вызов __new__.

Он создает новый экземпляр Person и сохраняет его
в качестве локальной переменной. Но затем __new__ вы-
зывает __init__. Он передает только что созданный
объект в качестве первого аргумента __init__, а затем
передает все дополнительные аргументы, используя *args
и **kwargs, как показано на рисунке 9.4.

Теперь __init__ добавляет один или несколько атри-
бутов к новому объекту, как показано на рисунке 9.5, из-
вестному как self, локальной переменной.

2839. Объекты

Рисунок 9.4. __new__ вызывает __init__.

Рисунок 9.5. __init__ добавляет атрибуты к объекту.

Наконец, __new__ возвращает вновь созданный объект
вызывающей стороне с добавленным атрибутом, как пока-
зано на рисунке 9.6.

Рисунок 9.6.

284 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Теперь можем ли мы добавить новые атрибуты к на-
шему экземпляру после выполнения __init__? Да, без-
условно — никаких технических препятствий для этого нет.
Но, как правило, вы хотите определить все свои атрибуты
в __init__, чтобы ваш код был максимально читабельным
и очевидным. Вы можете изменять значения позже, в дру-
гих методах, но первоначальное определение должно нахо-
диться в __init__.

Обратите внимание, что __init__ не использует клю-
чевое слово return. Это потому, что его возвращаемое
значение игнорируется и не имеет значения. Смысл __
init__ заключается в изменении нового экземпляра пу-
тем добавления атрибутов, а не в получении возвращаемого
значения. После того как функция __init__ завершила
свою работу, __new__ получает обновленный и изменен-
ный объект. После чего __new__ возвращает этот новый
объект вызывающему коду.

Упражнение 39.
Чашка для мороженого

Каждый раз, когда я преподаю объектно-ориентированное
программирование, я сталкиваюсь с людьми, которые изучали
его раньше и убеждены, что самое важное в нем — это наследова-
ние. Наследование, конечно, важно, и мы рассмотрим его в бли-
жайшее время, но более важной методикой является композиция,
когда один объект содержит другой объект.

Называть это методикой в Python — немного перебор, по-
скольку все является объектом, и мы можем присваивать объек-
там атрибуты. Итак, наличие одного объекта, принадлежащего
другому объекту, необходимо только для того, чтобы… связать
объекты вместе.

Тем не менее, композиция также является важной методи-
кой, потому что она позволяет нам создавать более крупные

2859. Объекты

объекты из более мелких. Я могу создать автомобиль из мотора,
колес, шин, коробки передач, сидений и так далее. Я могу со-
здать дом из стен, полов, дверей и тому подобное. Разделение
проекта на более мелкие части, определение классов, описываю-
щих эти части, а затем их объединение для создания более круп-
ных объектов — вот как работает объектно-ориентированное
программирование.

В этом упражнении мы увидим его уменьшенную версию.
В предыдущем упражнении мы создали класс Scoop, пред-
ставляющий собой один шарик мороженого. Однако, если мы
действительно собираемся моделировать реальный мир, у нас
должен быть еще один объект, в который мы можем поместить
scoops. Поэтому я хочу, чтобы вы создали класс Bowl, пред-
ставляющий миску, в которую мы можем положить наше моро-
женое (рис. 9.7), например:

s1 = Scoop (‘chocolate’)
s2 = Scoop (‘vanilla’)
s3 = Scoop (‘persimmon’)

b = Bowl ()
b.add_scoops (s1, s2)
b.add_scoops (s3)
print (b)

Рисунок 9.7. Новый экземпляр Bowl
с пустым списком scoops.

Результатом выполнения print (b) должно стать отображе-
ние трех вкусов мороженого в нашей чаше (рисунок 9.8). Обра-
тите внимание, что в миску можно добавить любое количество
шариков с помощью функции Bowl.add_scoops.

286 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Рисунок 9.8. Три объекта Scoop в нашей миске.

Обсуждение
Решение не требует изменений в классе Scoop. Скорее, мы

создаем нашу чашу таким образом, чтобы она могла содержать
любое количество экземпляров Scoop.

Прежде всего мы определяем атрибут self.scoops на-
шего объекта как список. Теоретически мы могли бы использо-
вать словарь или множество, но, учитывая, что нет никаких оче-
видных кандидатов на роль ключей и что мы, возможно, захотим
сохранить порядок scoops, я считаю, что список — более ло-
гичный выбор.

Помните, что мы храним экземпляры Scoop в self.scoops.
Мы не просто храним строку с описанием вкусов. У каждого эк-
земпляра Scoop будет свой атрибут fl avor — строка, содержа-
щая вкус мороженого.

Мы создаем атрибут self.scoops в виде пустого списка
в __init__.

Затем нам нужно определить add_scoops, который может
принимать любое количество аргументов — которые, как мы
предполагаем, являются экземплярами Scoop — и добавлять их

2879. Объекты

в миску. Это означает, почти по определению, что мы должны
использовать оператор splat (*) при определении параметра
*new_scoops.

В результате new_scoops будет кортежем, содержащим все
аргументы, которые были переданы add_scoops.

ПРИМЕЧАНИЕ Существует большая разница между пере-
менной new_scoops и атрибутом self.scoops. Пер-
вая является локальной переменной в функции и ссылается
на кортеж объектов Scoop, которые пользователь передал
в add_scoops. Вторая — это атрибут, присоединенный к ло-
кальной переменной self, который ссылается на экземпляр
объекта, над которым мы сейчас работаем.

Затем мы можем перебирать каждый элемент scoops, добав-
ляя его к атрибуту self.scoops. Мы делаем это в цикле for,
вызывая list.append для каждого scoop.

Наконец, для печати scoops мы просто вызываем print (b).
Это приводит к вызову метода __repr__ нашего объекта, пред-
полагая, что он определен. Наш метод __repr__ делает немного
больше, чем вызывает str.join для строк, которые мы извле-
каем из fl avors.repr и str.

repr vs. str
Вы можете определить __repr__ или __str__ (или

оба) для своих объектов. В теории __repr__ создает
строки, предназначенные для разработчиков и соответству-
ющие синтаксису Python. В противоположность этому, __
str__ — это то, как ваш объект должен выглядеть для ко-
нечных пользователей.

На практике я обычно определяю __repr__ и игно-
рирую __str__. Это потому, что __repr__ охватывает
оба случая, что просто прекрасно тогда, если я хочу, чтобы
все представления строк были эквивалентны. Если я захочу

288 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

указать различие между выводом строк для разработчиков
и для конечных пользователей, я всегда смогу добавить __
str__ позже.

В этой книге я буду использовать исключительно __
repr__. Но если вы хотите использовать __str__, то это
прекрасно, и, кроме того, это будет более официально пра-
вильный вариант.

Обратите внимание, однако, что мы не вызываем str.join для
генератора списка, потому что здесь нет квадратных скобок. Ско-
рее, мы вызываем его в выражении-генераторе, которое вы мо-
жете рассматривать как ленивую версию генератора списка.
Правда, в таком случае выигрыша в производительности дей-
ствительно нет. Я использовал его, чтобы продемонстрировать,
что почти везде, где вы можете использовать генератор списка,
вместо него можно использовать выражение-генератор.

is-a vs. has-a
Если у вас есть опыт объектно-ориентированного про-

граммирования, у вас может возникнуть соблазн написать
здесь, что Scoop наследуется от Bowl или что Bowl на-
следуется от Scoop. Ни то, ни другое неверно, потому что
наследование (которое мы рассмотрим позже в этой главе)
описывает отношение, известное в компьютерных науках
как «is-a». Мы можем сказать, что работник — это человек
или что машина — это транспортное средство, что указы-
вало бы на такое отношение.

В реальной жизни мы можем сказать, что миска содер-
жит одну или несколько мерных ложек. В терминах про-
граммирования мы бы описали это так: Bowl has-a Scoop.
Отношение «has-a» описывает не наследование, а компо-
зицию.

Я обнаружил, что относительные новички в объектно-о-
риентированном программировании часто убеждены, что

2899. Объекты

если задействованы два класса, то один из них, вероятно,

должен наследоваться от другого. Указание на правило

«is-a» для наследования по сравнению с правилом «has-a»

для композиции помогает прояснить два разных отноше-

ния и то, когда уместно использовать наследование или

композицию.

Решение
class Scoop ():

def __init__ (self, fl avor):
self.fl avor = fl avor

class Bowl ():
def __init__ (self):

self.scoops = []

def add_scoops (self, *new_scoops):
for one_scoop in new_scoops:

self.scoops.append (one_scoop)
def __repr__ (self):

return ‘\n’.join (s.fl avor for s in self.scoops)

s1 = Scoop (‘chocolate’)
s2 = Scoop (‘vanilla’)
s3 = Scoop (‘persimmon’)

b = Bowl ()
b.add_scoops (s1, s2)
b.add_scoops (s3)
print (b)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr191].

191

Инициализация self.scoops
пустым списком.

*new_scoops — это то
же самое, что и *args.
Вы можете использо-
вать любое название,
какое захотите.

Создает строку с помо-
щью str.join и выраже-
ния-генератора.

290 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr192].

После выполнения упражнения
Теперь вы увидели, как создать явное отношение «has-a» между

двумя классами. Вот еще несколько упражнений для знакомства
с этим типом отношений:

1. Создайте класс Book, который позволит вам созда-
вать книги с названием, автором и ценой. Затем создайте
класс Shelf, на котором вы можете разместить одну или
несколько книг с помощью метода add_book. Наконец,
добавьте к классу Shelf метод total_price, который
будет суммировать цены книг на полке.

2. Напишите метод Shelf.has_book, который принимает
единственный строковый аргумент и возвращает True
или False в зависимости от того, существует ли на полке
книга с указанным названием.

3. Измените класс Book так, чтобы он добавил еще один
атрибут, width. Затем добавьте атрибут width к каждому
экземпляру Shelf. Когда add_book попытается добавить
книги, чья суммарная ширина будет слишком велика для
полки, вызовите исключение.

 Сокращение избыточности
с помощью dataclass

Чувствуете ли вы, что определения ваших классов по-
вторяются? Если да, то вы не одиноки. Одна из самых
распространенных жалоб, которые я слышу от людей
по поводу классов Python, заключается в том, что ме-
тод __init__ в основном делает одно и то же в каждом
классе: принимает аргументы и присваивает их атрибу-
там self.

192

2919. Объекты

Начиная с Python 3.7, вы можете вырезать часть ша-
блонного кода для создания классов с помощью декора-
тора dataclass, сосредоточившись на коде, который вы
действительно хотите написать. Например, вот как должен
быть определен класс Scoop:

@dataclass class
Scoop ():
 Flavor: str

Обратите внимание: здесь нет метода __init__! Он здесь
не нужен — используемый декоратор @dataclass пишет
его за вас. Он также заботится о других вещах, таких как
сравнения и улучшенная версия __repr__. В общем, вся
суть классов данных заключается в том, чтобы уменьшить
вашу рабочую нагрузку.

Обратите внимание, что мы использовали аннотацию
типа (str), чтобы указать, что наш атрибут fl avor должен
принимать только строки. Аннотации типов обычно необя-
зательны в Python, но если вы объявляете атрибуты в классе
данных, то они обязательны. Python, как обычно, игнори-
рует эти аннотации типов: как упоминалось ранее в этой
главе, проверка типов выполняется внешними програм-
мами, такими как Mypy.

Также обратите внимание, что мы определяем fl avor
на уровне класса, даже если мы хотим, чтобы он был атри-
бутом наших экземпляров. Вы почти наверняка не захо-
тите иметь один и тот же атрибут у экземпляров и классов,
и это нормально: декоратор dataclass увидит атрибут
вместе с его аннотацией типа и обработает все соответству-
ющим образом. Как насчет нашего класса Bowl? Как мы
можем определить его с помощью класса данных? Оказы-
вается, нам нужно предоставить немного больше инфор-
мации:

292 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

from typing import List
from dataclasses import dataclass, fi eld

@dataclass class
Bowl ():

scoops: List [Scoop] = fi eld (default_factory=list)

def add_scoops (self, *new_scoops):
for one_scoop in new_scoops:

self.scoops.append (one_scoop)

def __repr__ (self):
return ‘\n’.join (s.fl avor for s in self.scoops)

Давайте проигнорируем методы add_scoops и __
repr__ и сосредоточимся на начале нашего класса.
Во-первых, мы снова используем декоратор @dataclass.
Но затем, когда мы определяем наш атрибут scoops, мы
задаем не просто тип, а значение по умолчанию.

Обратите внимание, что тип, который мы предостав-
ляем, List [int], имеет заглавную букву L. Это означает,
что он отличается от встроенного типа списка. Он берется
из модуля typing, который поставляется вместе с Python
и предоставляет нам объекты, предназначенные для исполь-
зования в аннотациях типов. Тип List, когда он исполь-
зуется сам по себе, представляет собой список любого типа.
Но в сочетании с квадратными скобками мы можем ука-
зать, что все элементы списка scoop будут объектами типа
Scoop.

Обычно значения по умолчанию могут быть просто при-
своены их атрибутам. Но поскольку scoops — это список,
а значит, изменяем, наша задача немного сложнее. Когда
мы создаем новый экземпляр Bowl, мы не хотим получить
ссылку на существующий объект. Скорее, мы хотим вызвать

2939. Объекты

list, возвращая новый экземпляр list и присваивая
его scoops. Для этого нам нужно использовать default_
factory, который указывает dataclass, что он не должен
повторно использовать существующие объекты, а должен
создавать новые.

В этой книге используется классический, стандартный
способ определения классов Python — отчасти для помощи
людям, все еще использующим Python 3.6, и отчасти для
того, чтобы вы могли понять, что происходит под капотом.
Но я не удивлюсь, если dataclass со временем станет стан-
дартным способом создания классов Python, и если вы захо-
тите использовать его в своих решениях, то не стесняйтесь.

Как Python ищет атрибуты
В главе 6 я рассказал о том, как Python ищет переменные

с помощью LEGB — сначала в локальной области видимо-
сти, затем в области внешней функции, затем в глобальной
и, наконец, во встроенном пространстве имен. Python по-
следовательно придерживается этого правила, и, зная его,
становится легче изучать язык.

Python аналогичным образом ищет атрибуты по стан-
дартному, четко определенному пути. Но этот путь сильно
отличается от правила LEGB для переменных. Я называю
это ICPO, что означает «instance (экземпляр), class (класс),
parents (родители) и object (объект)». Я объясню, как это ра-
ботает.

Когда вы запрашиваете у Python a.b, он сначала спра-
шивает у объекта a, есть ли у него атрибут с именем b. Если
это так, то возвращается значение, связанное с a.b, и это ко-
нец процесса. Это I в ICPO — мы сначала проверяем экзем-
пляр.

Но если у a нет атрибута b, то на этом Python не оста-
новится. Он проверяет класс a, каким бы он ни был. То есть,
если a.b не существует, мы ищем type (a).b. Если он

294 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

существует, то мы получаем значение обратно, и поиск за-
канчивается. Это и есть С в ICPO.

Этот механизм сразу же объясняет, почему и как методы
определены в классах, и при этом могут быть вызваны через
экземпляр. Рассмотрим следующий код:

s = ‘abcd’ print (s.upper ())

Здесь мы определяем s как строку. Затем мы вызы-
ваем s.upper. Python спрашивает s, есть ли у нее атри-
бут upper, и получает ответ «нет». Затем он спрашивает,
есть ли у str атрибут upper, и получает «да». Объект
метода извлекается из str и затем вызывается. В то же
время мы можем говорить о методе как о str.upper,
потому что он действительно определен в str и находится
там.

Что происходит, если Python не может найти атри-
бут экземпляра или класса? Он начинает проверять роди-
телей класса. До сих пор мы не сталкивались с этим; все
наши классы автоматически и неявно были унаследованы
от объекта. Но класс может наследоваться от любого другого
класса — и часто это хорошая идея, поскольку подкласс мо-
жет использовать функциональные возможности родитель-
ского класса.

Вот пример:

class Foo ():
def __init__ (self, x):

self.x = x
def x2 (self):

return self.x * 2
class Bar (Foo):

def x3 (self):
return self.x * 3

2959. Объекты

b = Bar (10)
print (b.x2 ()) Печатает 20
print (b.x3 ()) Печатает 30

В этом коде мы создаем экземпляр Bar — класса, наследу-

емого от Foo (рис. 9.9).

Когда мы создаем экземпляр Bar, Python ищет init. Где?
Сначала в экземпляре, но его там нет. Потом в классе (Bar),
но его там тоже нет. Затем он смотрит на родителя Bar —
Foo, и находит там init. Этот метод запускается, устанавли-
вая атрибут x, а затем возвращает, передавая нам b, экзем-
пляр Bar со значением x, равным 10 (рис. 9.10).

Рис. 9.9. Bar наследуется Рис. 9.10 b — экземпляр Bar.
от Foo, который
наследуется от объекта.

296 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

То же самое происходит, когда мы вызываем x2. Мы
ищем в b и не можем найти этот метод. Затем мы ищем
в type (b), или в Bar, и не можем найти этот метод.
Но когда мы проверяем родителя Bar, Foo, мы находим
его, и метод срабатывает. Если бы мы определили для Bar
собственный метод с именем x2, то он бы выполнился вме-
сто Foo.x2. Наконец, мы вызываем x3. Мы проверяем b
и не находим его. Мы проверяем Bar и находим его, и ме-
тод, таким образом, срабатывает.

Что, если во время нашего поиска ICPO атрибут не суще-
ствует в экземпляре, классе или родителе? Тогда мы обра-
тимся к главному родителю во всем Python — object. Вы
можете создать экземпляр object, но смысла в этом нет —
он существует исключительно для того, чтобы другие классы
могли наследоваться от него и таким образом получить до-
ступ к его методам.

В результате, если вы не определите метод __init__, то бу-
дет запущен object.__init__. А если вы не определите __
repr__, то будет запущен object.__repr__ и так далее.

Последнее, что нужно запомнить при использовании
пути поиска ICPO — это то, что побеждает первое сов-
падение. Это означает, что, если два атрибута в пути по-
иска имеют одинаковые имена, Python никогда не обна-
ружит второй атрибут. Как правило, это даже к лучшему,
так как позволяет нам переопределять методы в подклассах.
Но если вы не ожидаете, что это произойдет, то вы можете
в конечном итоге быть удивлены.

Упражнение 40. Ограничения для чаши
В Python мы можем добавить атрибут практически к любому

объекту. При написании классов типично и традиционно опре-
делять атрибуты данных для экземпляров и атрибуты методов для
классов. Но нет причин, по которым мы не можем определять
атрибуты данных и для классов.

2979. Объекты

В этом упражнении я хочу, чтобы вы определили атрибут

класса, который будет функционировать как константа, гаран-

тируя, что нам не придется «хардкодить» какие-либо значения

в нашем классе.

В чем заключается задача здесь? Вы, наверное, заметили недо-

статок нашего класса Bowl, который, несомненно, нравится де-

тям и ненавистен их родителям: вы можете положить в миску

столько объектов Scoop, сколько захотите.

Давайте заставим детей грустить, а их родителей радоваться,

ограничив количество черпаков в миске тремя. То есть вы мо-

жете добавлять столько ложек для каждого вызова Bowl.add_
scoops, сколько захотите, и можете вызывать этот метод столько

раз, сколько хотите, но только первые три ложечки будут дей-

ствительно добавлены. Все остальные ложки будут проигнори-

рованы.

Обсуждение
Для того чтобы это сработало, нам нужно внести всего два из-

менения в наш оригинальный класс Bowl.

Во-первых, нам нужно определить атрибут класса Bowl.

Это проще всего сделать, задав атрибут в определении класса

(рисунок 9.11). Установить max_scoops = 3 в блоке класса —

это то же самое, что написать впоследствии: Bowl.max_
scoops = 3.

Рисунок 9.11 max_scoops находится в классе, поэтому даже пустой
экземпляр имеет к нему доступ.

Но подождите, действительно ли нам нужно определять max_

scoops в классе Bowl? Теоретически у нас есть два других вари-

анта:

298 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

1. Определить максимум для экземпляра, а не для класса.
Это сработает (например, добавьте self.max_scoops =
3 в __init__), при этом будет означать, что у каждой
миски будет разное максимальное количество ложек. По-
местив атрибут на класс (рисунок 9.12), мы указываем, что
все чашки будут иметь одинаковый максимум.

2. Мы могли бы также захардкодить значение 3 в нашем
коде, а не использовать символическое имя, такое как
max_scoops. Но это снизит нашу гибкость, особенно если
мы захотим использовать наследование (как мы увидим
позже). Более того, если мы решим изменить максималь-
ное значение в дальнейшем, проще сделать это в одном
месте с помощью назначения атрибута, а не в нескольких
местах.

Рисунок 9.12. Экземпляр Bowl, содержащий scoop, с max_scoops,
определенным в классе.

Во-вторых, нам нужно изменить Bowl.add_scoops, до-
бавим оператор if, чтобы добавление новых scoops зависело
от текущей длины self.scoops и значения Bowl.max_
scoops.

2999. Объекты

 Атрибуты класса — это просто статические
переменные?

Если вы пришли из мира Java, C# или C++, то атрибуты
класса очень похожи на статические переменные. Но они
не являются статическими переменными, и вы не должны
их так называть.

Вот несколько отличий атрибутов класса от статических
переменных, хотя их использование может быть схожим:

Во-первых, атрибуты класса — это просто еще один
пример атрибутов объекта Python. Это означает, что мы
можем и должны рассуждать об атрибутах класса так же,
как и обо всех остальных, используя правило поиска ICPO.
Вы можете получить доступ к ним через класс (например,
ClassName.attrname) или через экземпляр (например,
one_instance.attrname). Первый вариант будет ра-
ботать, потому что вы используете класс, а второй — по-
тому что после проверки экземпляра Python проверяет его
класс.

В решении для этого упражнения Bowl.max_scoops —
это атрибут класса Bowl. Теоретически мы могли бы при-
своить max_scoops каждому отдельному экземпляру Bowl,
но логичнее сказать, что все объекты Bowl имеют одина-
ковое максимальное количество ложек.

Во-вторых, статические переменные совместно исполь-
зуются экземплярами и классом. Это означает, что при-
своение переменной класса через экземпляр имеет тот же
результат, что и присвоение ей через класс. В Python есть
большая разница между присвоением переменной класса
через экземпляр и присвоением через класс: в первом слу-
чае к экземпляру будет добавлен новый атрибут, что эффек-
тивно блокирует доступ к атрибуту класса.

То есть, если мы присваиваем Bowl.max_scoops, то мы
изменяем максимальное количество ложек, которое мо-

300 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

жет быть у всех мисок. Но если мы присвоим one_bowl.

max_scoops, мы установим новый атрибут для экземпляра

one_bowl. Это поставит нас в ужасную ситуацию, когда

для Bowl.max_scoops будет задано одно значение, а для
one_bowl.max_scoops — другое. Более того, поиск one_
bowl.max_scoops (согласно правилу ICPO) будет оста-

новлен после нахождения атрибута в экземпляре и никогда

не пойдет дальше искать в классе.

В-третьих, методы на самом деле тоже являются атри-

бутами класса. Но мы не думаем о них таким образом, по-

тому что они определяются по-другому. В любом случае

методы создаются с помощью def внутри определения

класса.

Когда я вызываю b.add_scoops, Python ищет в b
атрибут add_scoops и не находит его. Затем он ищет

его в Bowl (т.е. в классе b) и находит его — и извлекает

объект метода. Затем скобки вызывают метод. Это работает

только в том случае, если метод действительно определен

в классе, а это так и есть. Методы почти всегда определены

в классе, и благодаря правилу ICPO Python будет искать их

там.

Наконец, в Python нет констант, но мы можем имитиро-

вать их с помощью атрибутов класса. Как и в случае с max_
scoops, я часто определяю атрибут класса, к которому за-

тем можно получить доступ по имени как через класс, так

и через экземпляры.

Например, атрибут класса max_scoops используется здесь

как своего рода константа. Вместо того чтобы хранить за-

кодированное число 3 везде, где мне нужно указать мак-

симальное количество ложек, которые можно положить

в миску, я могу обратиться к Bowl.max_scoops. Это до-

бавляет ясности в мой код и позволяет мне в будущем изме-

нить значение в одном месте.

3019. Объекты

Решение
class Scoop ():

def __init__ (self, fl avor):
self.fl avor = fl avor

class Bowl ():
max_scoops = 3

def __init__ (self):
self.scoops = []

def add_scoops (self, *new_scoops):
for one_scoop in new_scoops:

if len (self.scoops) < Bowl.max_scoops:
self.scoops.append (one_scoop)

def __repr__ (self):
return ‘\n’.join (s.fl avor for s in self.scoops)

s1 = Scoop (‘chocolate’)
s2 = Scoop (‘vanilla’)
s3 = Scoop (‘persimmon’)
s4 = Scoop (‘fl avor 4’)
s5 = Scoop (‘fl avor 5’)

b = Bowl ()
b.add_scoops (s1, s2)
b.add_scoops (s3)
b.add_scoops (s4, s5)
print (b)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr193].

193

max_scoops не является
переменной — это атри-
бут класса Bowl.

Использует Bowl.max_scoops для
получения максимального количе-
ства для чаши, заданного в классе.

302 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr194].

После выполнения упражнения
Как я уже говорил, вы можете использовать атрибуты класса

различными способами. Вот несколько дополнительных за-

дач, которые помогут вам понять, как определять и использовать

атрибуты класса:

1. Определите класс Person и атрибут класса population,

значение которого увеличивается каждый раз, когда

вы создаете новый экземпляр Person. Дважды про-

верьте, что после создания пяти экземпляров, названных

p1… p5, Person.population и p1.population
равны 5.

2. Python предоставляет метод __del__, который выполня-

ется, когда объект собирается в мусор. (По моему опыту,

удаление переменной или присвоение ее другому объекту

довольно быстро вызовает __del__.) Измените класс

Person так, чтобы при удалении эк-

земпляра Person счетчик населения

уменьшался на 1. Если вы плохо зна-

комы со сборщиком мусора или с тем,

как это работает в Python, взгляните

на эту статью: [qr195].

3. Определите класс Transaction, в котором каж-

дый экземпляр представляет либо депозит, либо снятие

средств с банковского счета. При создании нового экзем-

пляра Transaction вам нужно будет указать сумму —

положительную для депозита и отрицательную для сня-

тия. Используйте атрибут класса для отслеживания

текущего баланса, который должен быть равен значению

всех экземпляров, созданных на сегодняшний день.

194

195

3039. Объекты

Наследование в Python
Пришло время использовать наследование — важную

идею в объектно-ориентированном программировании.
Основная идея отражает тот факт, что мы часто хотим со-
здавать классы, которые очень похожи друг на друга. Та-
ким образом, мы можем создать родительский класс, в ко-
тором мы определяем общее поведение. А затем мы можем
создать один или несколько дочерних классов или под-
классов, каждый из которых наследуется от родительского
класса:

1. Если у меня уже есть класс Person, то я могу захотеть
создать класс Employee, который идентичен Person,
за исключением того, что у каждого сотрудника есть
идентификационный номер, отдел и зарплата.

2. Если у меня уже есть класс Vehicle, то я могу со-
здать класс Car, класс Truck и класс Bicycle.

3. Если у меня уже есть класс Book, то я могу создать
класс Textbook, а также класс Novel.

Как вы видите, идея подкласса заключается в том, что он
делает все то же самое, что и родительский класс, но при
этом содержит дополнительную функциональность. Насле-
дование позволяет нам применять принцип DRY к нашим
классам и сохранять их упорядоченность.

Как работает наследование в Python? Определите вто-
рой класс (т.е. подкласс), поместив родительский класс
в скобки:

class Person ():
def __init__ (self, name):

self.name = name

def greet (self):
return f’Hello, {self.name}’

304 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

class Employee (Person)
def __init__ (self, name, id_number):

self.name = name
self.id_number = id_number

С помощью этого кода мы можем создать экземпляр
Employee, как обычно:

e = Employee (‘empname’, 1)

Но что произойдет, если мы вызовем e.greet? По пра-
вилу ICPO, Python сначала ищет атрибут greet в экзем-
пляре e, но не находит его. Затем он ищет его в классе
Employee и не находит. Затем Python обращается к ро-
дительскому классу Person, находит его, извлекает ме-
тод и вызывает его. Другими словами, наследование — это
мощная технология, но в Python она является естественным
следствием правила ICPO.

В моей реализации Employee есть одна странность,
а именно то, что я установил self.name в ___init__.
Если вы работаете с таким языком, как Java, вам может
быть интересно, почему я вообще должен его устанав-
ливать, поскольку его уже устанавливает Person.__
init__. Но в том-то и дело: в Python __init__ дей-
ствительно нужно выполнить, чтобы установить атрибут.
Если бы мы удалили настройку self.name из Employee.
__init__, атрибут никогда бы не был задан. По правилу
ICPO всегда будет вызываться только один метод, и это
будет тот, который находится ближе всего к экземпляру.
Поскольку Employee.__init__ ближе к экземпляру,
чем Person. __init__, последний никогда не вызы-
вается.

Так мы сообщаем Python, что
Employee — это Person, то есть
он наследуется от Person.

Вам это кажется забав-
ным? Так и должно
быть — скоро увидите.

3059. Объекты

Хорошей новостью является то, что код, который я предо-
ставил, работает. Но плохая новость в том, что это нарушает
правило DRY, о котором я так часто упоминал.

Решение состоит в том, чтобы воспользоваться наследова-
нием через super. Встроенная функция super позволяет
нам вызывать метод для родительского объекта без явного
указания имени этого родителя. Таким образом, в нашем
коде мы могли бы переписать Employee.__init__ сле-
дующим образом:

class Employee (Person)
def __init__ (self, name, id_number):

super ().__init__ (name)
self.id_number = id_number

Упражнение 41. Чашка побольше
В то время как предыдущее упражнение, возможно, порадо-

вало родителей и расстроило детей, наша работа как продавцов
мороженого состоит в том, чтобы взволновать детей, а также за-
брать деньги у их родителей. Таким образом, наша компания на-
чала предлагать продукт BigBowl, который может содержать
до пяти мерных ложек.

 Реализуйте BigBowl для этого упражнения таким образом,
чтобы единственная разница между ним и классом Bowl, кото-
рый мы создали ранее, заключалась в том, что он может иметь
пять ложек, а не три. И да, это означает, что вы должны исполь-
зовать наследование для достижения этой цели.

Вы можете изменить Scoop и Bowl, если необходимо, но та-
кие изменения должны быть минимальными и оправданными.

ПРИМЕЧАНИЕ Как правило, целью наследования является
добавление или изменение функциональности существую-
щего класса без изменения родителя. Поэтому пуристам мо-

Неявный вызов.
Person.__init__
через super.

306 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

гут не понравиться эти инструкции, которые позволяют вно-
сить изменения в родительский класс. Однако реальный мир
не всегда идеален, и, если оба класса написаны одной и той же
командой, вполне возможно, что автор дочернего класса смо-
жет согласовать изменения в родительском классе.

Обсуждение
Это, надо признать, непростое дело, научит вас понимать, как

работают атрибуты и особенно как они взаимодействуют между
экземплярами, классами и родительскими классами. Если вы
действительно понимаете правило ICPO, то решение будет ра-
циональным.

В нашей предыдущей версии Bowl.add_scoops мы сказали,
что хотим использовать Bowl.max_scoops для отслеживания
максимально допустимого количества ложек. Все было нормально,
пока все подклассы хотели использовать одно и то же значение.

Но здесь мы хотим использовать другое значение. То есть при
вызове add_scoops для объекта Bowl максимальное значение
должно быть Bowl.max_scoops. А при вызове add_scoops
для объекта BigBowl максимальное значение должно быть
BigBowl.max_scoops. И мы хотим избежать двойного написа-
ния add_scoops.

Самое простое решение — изменить нашу ссылку в add_
scoops с Bowl.max_scoops на self.max_scoops. С этим
изменением все будет работать следующим образом:

1. Если мы вызовем Bowl.max_scoops, мы получим 3.
2. Если мы вызовем BigBowl.max_scoops, мы получим 5.
3. Если мы вызовем add_scoops для экземпляра Bowl,

то внутри метода мы запросим self.max_scoops. Со-
гласно правилу поиска ICPO, Python сначала посмотрит
на экземпляр, а затем на класс, которым в данном случае
является Bowl, и вернет Bowl.max_scoops со значе-
нием 3.

4. Если мы вызовем add_scoops для экземпляра BigBowl,
то внутри метода мы запросим self.max_scoops. Со-

3079. Объекты

гласно правилу поиска iCPO, Python сначала посмотрит
на экземпляр, а затем на класс, которым в данном слу-
чае является BigBowl, и вернет BigBowl.max_scoops
со значением 5.

Таким образом, мы воспользовались преимуществами насле-
дования и гибкостью self, чтобы использовать один и тот же ин-
терфейс для различных классов. Более того, мы смогли реали-
зовать BigBowl с минимальным количеством кода, используя то,
что мы уже написали для Bowl.

Решение
class Scoop ():

def __init__ (self, fl avor):
self.fl avor = fl avor

class Bowl ():
max_scoops = 3

def __init__ (self):
self.scoops = []

def add_scoops (self, *new_scoops):
for one_scoop in new_scoops:

if len (self.scoops) < self.max_scoops:
self.scoops.append (one_scoop)

def __repr__ (self):
return ‘\n’.join (s.fl avor for s in self.scoops)

class BigBowl (Bowl):
max_scoops = 5

s1 = Scoop (‘chocolate’)
s2 = Scoop (‘vanilla’)

Bowl.max_scoops
по-прежнему 3.

Использует self.max_scoops,
а не Bowl.max_scoops,
что бы получить атрибут из
правильного класса.

BigBowl.max_scoops
теперь равен 5. 5.

308 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

s3 = Scoop (‘persimmon’)
s4 = Scoop (‘fl avor 4’)
s5 = Scoop (‘fl avor 5’)

bb = BigBowl ()
bb.add_scoops (s1, s2) bb.add_scoops (s3)
bb.add_scoops (s4, s5)
print (bb)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr196].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr197].

После выполнения упражнения
Как я уже отмечал в этой главе, я думаю, что многие люди

преувеличивают необходимость использования наследования
в объектно-ориентированном коде. Но это не значит, что я счи-
таю наследование ненужным или даже бесполезным. Правильно
используемое, оно является мощным инструментом, который
может уменьшить размер кода и улучшить его сопровождение.

Вот еще несколько способов попрактиковаться в использова-
нии наследования:

1. Напишите класс Envelope с двумя атрибутами, weight
(плавающая величина, измеряющая граммы) и was_sent
(булево значение, по умолчанию False). Должно быть
три метода: (1) send, который отправляет письмо и меняет
значение was_sent на True, но только после того, как
на конверте будет достаточно почтовых марок; (2) add_
postage, который добавляет почтовые марки, равные зна-
чению его аргумента; и (3) postage_needed, который
указывает, сколько почтовых марок требуется конверту
в целом. Необходимое количество почтовых марок будет

196

197

3099. Объекты

равно весу конверта, умноженному на 10. Теперь напи-
шите класс BigEnvelope, который работает так же, как
Envelope, за исключением того, что почтовые расходы
будут в 15 раз больше веса, а не в 10.

2. Создайте класс Phone, представляющий мобильный теле-
фон. (Стационарные телефоны еще существуют?) Телефон
должен реализовать метод dial, который набирает но-
мер телефона (или имитирует это). Реализуйте подкласс
SmartPhone, который использует метод Phone.dial,
но при этом реализует свой собственный метод run_
app. Теперь реализуйте подкласс iPhone, который реа-
лизует не только метод run_app, но и свой собственный
метод dial, который вызывает метод dial родитель-
ского класса, но вывод которого в знак его крутости напи-
сан в нижнем регистре.

3. Определите класс Bread, представляющий буханку хлеба.
Мы должны иметь возможность вызвать метод get_
nutrition для объекта, передав целое число, представ-
ляющее количество ломтиков, которые мы хотим съесть.
В ответ мы получим словарь, пары ключ-значение кото-
рой будут представлять калории, углеводы, натрий, сахар
и жир, указывая статистику питания для данного количе-
ства ломтиков.

Теперь реализуйте два новых класса, которые наследуются
от Bread, а именно WholeWheatBread и RyeBread. Каждый
класс должен реализовать один и тот же метод get_nutrition,
но с разной информацией о питании, где это необходимо.

Упражнение 42. FlexibleDict
Я уже говорил, что основной смысл наследования заключа-

ется в использовании преимуществ существующей функцио-
нальности. Есть несколько способов и причин сделать это, и одна
из них — создать новое поведение, которое похоже на существу-

310 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

ющий класс, но отличается от него. Например, Python постав-
ляется не только с dict, но и с Counter и defaultdict.
Наследуясь от dict, эти два класса могут реализовать только
те методы, которые отличаются от dict, полагаясь на исходный
класс для большинства функций.

В этом упражнении мы также реализуем подкласс dict, ко-
торый я назову FlexibleDict. Ключи словаря — это объекты
Python, и как таковые они идентифицируются с типом. Поэтому
если вы используете ключ 1 (целое число) для хранения значе-
ния, то вы не можете использовать ключ ‘1’ (строка) для извле-
чения этого значения. Однако FlexibleDict позволяет это
сделать. Если он не найдет ключ пользователя, он попытается
преобразовать ключ в str и int, прежде чем сдаться, напри-
мер:

fd = FlexibleDict ()

fd [‘a’] = 100
print (fd [‘a’])

fd [5] = 500
print (fd [5])

fd [1] = 100
print (fd [‘1’])

fd [‘1’] = 100 print (fd [1])

Обсуждение
Класс в этом упражнении, FlexibleDict, является приме-

ром того, почему вы можете захотеть наследовать от встроенного
типа. Это довольно редко, но, как вы можете заметить, это позво-
ляет нам создать альтернативный тип словаря.

Спецификация FlexibleDict указывает, что все должно
работать как обычный словарь, за исключением поиска. Таким

Печатает 100, как
обычный словарь.

Печатает 500, как
обычный словарь.

Печатает 100, хотя мы
передали строку str.

str key.

int ключ.

Печатает 100, хотя
мы передали int.

3119. Объекты

образом, нам нужно переопределить только один метод — __

getitem__, который всегда связан с квадратными скобками

в Python. В самом деле, если вы когда-нибудь задавались вопро-

сом, почему строки, списки, кортежи и словари определяются

по-разному, но все используют квадратные скобки, причина

в этом методе.

Поскольку все должно быть таким же, как dict, за исклю-

чением этого единственного метода, мы можем наследоваться

от словаря, написать один метод и готово.

Этот метод получает ключевой аргумент. Если ключа нет

в словаре, то пытаемся превратить его в строку и целое число.

Поскольку мы можем столкнуться с ошибкой ValueError, пы-

тающейся преобразовать ключ в целое число, мы по пути пере-

хватываем эту ошибку. На каждом шагу мы проверяем, может ли

на самом деле работать версия ключа с другим типом, и если

да, то мы переназначаем значение ключа.

В конце метода мы вызываем наш родительский метод __

getitem__. Почему бы нам просто не использовать квадрат-

ные скобки? Потому что это приведет к бесконечному циклу,

поскольку квадратные скобки определены для вызова __

getitem__. Другими словами, a [b] превращается в a.__

getitem__ (b). Если мы затем включим self [b] в опреде-

ление __getitem__, мы получим вызов самого метода. Таким

образом, нам нужно явно вызвать родительский метод, который

в любом случае вернет связанное значение.

ПРИМЕЧАНИЕ Хотя FlexibleDict (и некоторые из за-

дач «Помимо упражнений») могут быть отличными для обу-

чения навыкам работы с Python, встраивание такой гибкости

в Python совершенно не соответствует Python и не рекомен-

дуется. Одна из ключевых идей в Python — код должен быть

однозначным, Python лучше получить ошибку, чем предпо-

лагать.

312 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Решение
class FlexibleDict (dict):

def __getitem__ (self, key):
try:

if key in self:
pass

elif str (key) in self:
 key = str (key)

 elif int (key) in self:
key = int (key)

 except ValueError:
pass

return dict.__getitem__ (self, key)

fd = FlexibleDict ()

fd [‘a’] = 100
print (fd [‘a’])

fd [5] = 500
print (fd [5])

fd [1] = 100
print (fd [‘1’])

fd [‘1’] = 100
print (fd [1])

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr198].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr199].

198

199

Попробуйте использо-
вать обычный словарь __
getitem__, либо с ориги-
нальным ключом, либо с
модифицированным.

Если мы не можем превра-
тить его в целое число, то
игнорируем его.

Если нет, то
пытаемся
превратить
его в целое
число.

Если нет, то попро-
буем преобразо-
вать его в строку.

Есть ли у нас
запрашивае-
мый ключ?

__getitem__ —
это то, что вы-
зывают квадрат-
ные скобки [].

3139. Объекты

После выполнения упражнения
Теперь мы увидели, как расширить встроенный класс с помо-

щью наследования. Вот еще несколько упражнений, в которых вы

также поэкспериментируете с расширением некоторых встроен-

ных классов:

1. С FlexibleDict мы разрешили пользователю исполь-

зовать любой ключ, но при этом были гибкими при извле-

чении. Реализуйте StringKeyDict, который преобразует

свои ключи в строки как часть назначения. Таким образом,

сразу после того, как вы напишите skd [1] = 10, вы смо-

жете написать skd [‘1’] и получить возвращенное зна-

чение 10. Это может пригодиться, если вы будете считывать

ключи из файла и не сможете отличить строки от целых

чисел.

2. Класс RecentDict работает так же, как dict, за ис-

ключением того, что он содержит заданное пользова-

телем количество пар ключ-значение, которое опреде-

ляется при создании экземпляра. В RecentDict (5)
сохраняются только пять последних пар ключ-значение:

если пар больше пяти, то самый старый ключ удаляется

вместе со своим значением. Примечание: ваша реали-

зация может учитывать тот факт, что современные сло-

вари хранят свои пары ключ-значение в хронологиче-

ском порядке.

3. Класс FlatList наследуется от списка и переопреде-

ляет метод append. Если append передается итерируе-

мый объект, то он должен добавлять каждый элемент ите-

рируемого объекта отдельно. Это означает, что fl .append
([10, 20, 30]) не добавит список [10, 20, 30] к fl ,
а добавит отдельные целые числа 10, 20 и 30. Вы можете

использовать встроенную функция iter, чтобы опреде-

лить, действительно ли переданный аргумент является ите-

рируемым.

314 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 43. Животные
Для последних трех упражнений в этой главе мы собираемся

создать набор классов, объединяющих все идеи, рассмотренные
в этой главе: классы, методы, атрибуты, композицию и насле-
дование. Одно дело изучать и использовать их по отдельности,
но, когда вы объединяете эти техники вместе, вы видите их воз-
можности и понимаете организационные и семантические пре-
имущества, которые они дают.

Для целей этих упражнений вы — директор по информацион-
ным технологиям в зоопарке. В зоопарке содержится несколько
различных видов животных, и по бюджетным соображениям не-
которые из них должны быть размещены вместе с другими жи-
вотными.

Мы будем представлять животных в виде объектов Python,
причем каждый вид определяется как отдельный класс. Все
объекты определенного класса будут иметь одинаковый вид и ко-
личество лап, но цвет будет отличаться у разных экземпляров. Та-
ким образом, мы можем создать белую овцу:

s = Sheep (‘white’)

Аналогичным образом я могу получить информацию о жи-
вотном из объекта, извлекая его атрибуты:

print (s.species)
print (s.color)
print (s.number_of_legs)

Если я преобразую animal в строку (используя str или
print), я получу строку, объединяющую все эти детали:

print (s)

Мы будем считать, что в нашем зоопарке содержатся четыре
разных типа животных: овцы, волки, змеи и попугаи (зоопарк

Напечатает sheep.

Напечатает white.

Напечатает «4».

Напечатает White
sheep, 4 legs.

3159. Объекты

испытывает некоторые бюджетные трудности, поэтому коллек-
ция животных у нас небольшая и необычная). Создайте классы
для каждого из этих типов, чтобы мы могли распечатать каждый
из них и получить отчет о цвете, виде и количестве лап.

Обсуждение
Конечная цель очевидна: мы хотим создать четыре различ-

ных класса (Wolf, Sheep, Snake и Parrot), каждый из которых при-
нимает единственный аргумент (цвет). Результатом вызова каж-
дого из этих классов будет новый экземпляр с тремя атрибутами:
species, color и number_of_legs.

Наивная реализация просто создаст каждый из этих четырех
классов. Но, конечно, часть смысла здесь заключается в ис-
пользовании наследования, и тот факт, что поведение в каждом
классе в основном идентично, означает, что мы действительно
можем воспользоваться этим. Но что войдет в класс Animal,
от которого все наследуют, и что войдет в каждый из отдельных
подклассов?

Поскольку все классы животных будут содержать одина-
ковые атрибуты, мы можем определить __repr__ в классе
Animal, от которого они все наследуют. В моей версии исполь-
зуется f-строка и атрибуты берутся из self. Обратите внимание,
что self в этом случае будет экземпляром не Animal, а одного
из классов, которые наследуются от Animal.

Итак, что еще должно быть в Animal и что должно быть в под-
классах? Здесь нет жесткого и однозначного правила, но в дан-
ном конкретном случае я решил, что Animal.__init__ бу-
дет местом назначения, а метод __init__ в каждом подклассе
будет вызывать Animal.__init__ с жестко заданным коли-
чеством лап, а также цветом, указанным пользователем (рису-
нок 9.13).

Теоретически, __init__ в подклассе может вызывать
Animal.__init__ напрямую и по имени. Но у нас также есть
доступ к super, который возвращает объект, для которого наш ме-
тод должен быть вызван.

316 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 класс Animal

 класс Wolf [расширяет класс Animal]

 экземпляр Wolf

Рисунок 9.13. Wolf наследуется от Animal.

Обратите внимание, какие методы где определены.

Другими словами, вызывая super ().__init__, мы знаем,

что нужный метод будет вызван для нужного нам объекта, и мы

можем просто передать аргументы color и number_of_legs.

Но подождите, а как же атрибут species? Как мы можем за-

дать его без участия пользователя?

Мое решение этой проблемы состояло в том, чтобы восполь-

зоваться тем фактом, что классы Python очень похожи на модули

со схожим поведением. Точно так же, как модуль имеет атри-

бут __name__, отражающий, какой модуль был загружен, так

и классы содержат атрибут __name__, представляющий собой

строку, содержащую имя текущего класса. Таким образом, если

я вызываю self.__class__ для объекта, я получаю его класс,

а если я вызываю self.__class__.__name__, я получаю стро-

ковое представление класса.

3179. Объекты

Абстрактные базовые классы
Здесь класс Animal — это то, что другие языки могли бы

назвать абстрактным базовым классом, что означает, что эк-
земпляр данного класса на самом деле не будет создан, но от
которого будут наследоваться другие классы. В Python вам
не нужно объявлять такой класс абстрактным, но вы также
не получите принудительного исполнения, как в других
языках. Если вы действительно хотите, вы можете импор-
тировать ABC–Meta из модуля abc (абстрактный базо-
вый класс). Следуя его инструкциям, вы сможете объявить
определенные методы абстрактными, что означает, что они
должны быть переопределены в дочернем элементе.

Я не большой поклонник абстрактных базовых классов:
я думаю, что достаточно задокументировать класс как аб-
страктный, без накладных расходов или языкового прину-
ждения. Является ли это разумным подходом, зависит
от нескольких факторов, в том числе от характера и размера
проекта, над которым вы работаете, и от того, имеете ли вы
опыт работы с динамическими языками. Большой проект
с участием большого количества разработчиков, вероятно,
выиграет от дополнительных мер безопасности, предостав-
ляемых абстрактным базовым классом.

Если вы хотите узнать больше об аб-
страктных базовых классах в Python, вы
можете прочитать об ABCMeta здесь:
[qr200].

Решение
class Animal ():

def __init__ (self, color, number_of_legs):
self.species = self.__class__.__name__
self.color = color
self.number_of_legs = number_of_legs

200

Наш базовый класс
Animal принимает цвет
и количество лап.

Превращает те-
кущий объект
класса в строку.

318 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

def __repr__ (self):
return f’{self.color} {self.species},

 {self.number_of_legs} legs’

class Wolf (Animal):
def __init__ (self, color):

super ().__init__ (color, 4)

class Sheep (Animal):
def __init__ (self, color):

super ().__init__ (color, 4)

class Snake (Animal):
def __init__ (self, color):

super ().__init__ (color, 0)

class Parrot (Animal):
def __init__ (self, color):

super ().__init__ (color, 2)

wolf = Wolf (‘black’)
sheep = Sheep (‘white’)
snake = Snake (‘brown’)
parrot = Parrot (‘green’)

print (wolf)
print (sheep)
print (snake)
print (parrot)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr201].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr202].

201

202

Использует f-строку для
получения соответству-
ющего вывода.

3199. Объекты

После выполнения упражнения
В этом упражнении мы ввели несколько классов как часть

иерархии. Вот некоторые дополнительные способы работы с на-

следованием и размышления о последствиях принимаемых нами

проектных решений. Я должен отметить, что эти вопросы, а также

вопросы, приведенные в этой главе, будут сочетать практическую

практику с некоторыми более глубокими философскими вопро-

сами о «правильном» способе работы с объектно-ориентирован-

ными системами:

1. Вместо того чтобы каждый класс животных наследо-

вался напрямую от Animal, определите несколько но-

вых классов ZeroLeggedAnimal, TwoLeggedAnimal

и FourLeggedAnimal, каждый из которых наследуется

от Animal, и определите количество лап для каждого эк-

земпляра.

 Теперь измените Wolf, Sheep, Snake и Parrot так,

чтобы каждый класс наследовался от одного из этих новых

классов, а не непосредственно от Animal. Как это влияет

на определения ваших методов?

2. Вместо того чтобы писать метод __init__ в каждом под-

классе, мы могли бы также использовать атрибут класса,

number_of_legs, в каждом подклассе — аналогично

тому, что мы делали ранее с Bowl и BigBowl. Реали-

зуйте иерархию таким образом. Вам вообще нужен ме-

тод __init__ в каждом подклассе или будет достаточно

Animal.__init__?

3. Предположим, что метод __repr__ каждого класса дол-

жен печатать звук животного, а также стандартную строку,

которую мы реализовали ранее. Другими словами, str

(sheep) будет Baa — белая овца, 4 ноги. Как бы вы

использовали наследование для максимального повтор-

ного использования кода?

320 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 44. Клетки
Теперь, когда мы создали несколько животных, пришло время

поместить их в клетки. Для этого упражнения создайте класс
Cage, в который вы можете поместить одно или несколько жи-
вотных, следующим образом:

c1 = Cage (1)
c1.add_animals (wolf, sheep)

c2 = Cage (2)
c2.add_animals (snake, parrot)

Когда вы создаете новую клетку (Cage), вы присваиваете ей
уникальный идентификационный номер. (Уникальность не обя-
зательна, но это поможет нам различать клетки.) Затем
вы сможете вызывать add_animals для новой клетки, передавая
любое количество животных, которые будут помещены в клетку.
Я также хочу, чтобы вы определили метод __repr__, чтобы
при печати клетки печатался не только идентификатор клетки,
но и каждое из содержащихся в ней животных.

Обсуждение
Определение класса Cage в решении в чем-то похоже

на класс Bowl, который мы определили ранее в этой главе.
Когда мы создаем новую клетку, метод __init__ инициа-

лизирует self.animals пустым списком, что позволяет нам
добавлять (и даже удалять) животных по мере необходимости.
Мы также храним переданный нам идентификационный номер
в параметре id_number.

Затем мы реализуем Cage.add_animals, в котором исполь-
зуются методы, аналогичные тем, что мы использовали в Bowl.
add_scoops. И снова мы используем оператор splat (*), чтобы
получить все аргументы в одном кортеже (animals). Хотя мы
могли бы использовать list.extend для добавления всех новых
животных в list.animals, я все равно буду использовать здесь
цикл for, чтобы добавлять их по одному. Вы можете увидеть, как
Python Tutor изображает двух животных в клетке на рисунке 9.14.

3219. Объекты

класс Animal

класс Wolf (расширяет Animal)

класс Sheep (расширяет Animal)

класс Cage

экземпляр Wolf

экземпляр Sheep

экземпляр Cage

Рисунок 9.14. Экземпляр Cage, содержащий одного волка и одну овцу.

322 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

На мой взгляд, самая интересная часть нашего определения
Cage — это использование __repr__ для создания отчета. Для
клетки c1 команда print (c1) напечатает идентификатор
клетки, а затем всех животных в клетке, используя их наглядные
представления. Мы делаем это, сначала печатая базовый заголо-
вок, что не так уж и сложно. Но затем мы берем каждое животное
в self.animals и используем выражение-генератор (то есть
ленивую форму генератора списка), чтобы вернуть последова-
тельность строк. Каждая строка в этой последовательности будет
состоять из табуляции и описания животного. Затем мы передаем
результат нашего выражения-генератора в str.join, который
помещает символы новой строки между каждым животным.

Решение
class Animal ():

def __init__ (self, color, number_of_legs):
self.species = self.__class__.__name__
self.color = color self.number_of_legs =

 number_of_legs

def __repr__ (self):
 return f’{self.color} {self.species}, {self.

number_of_legs} legs’

class Wolf (Animal):
def __init__ (self, color):

super ().__init__ (color, 4)

class Sheep (Animal):
def __init__ (self, color):

super ().__init__ (color, 4)

class Snake (Animal):
def __init__ (self, color):

super ().__init__ (color, 0)

3239. Объекты

class Parrot (Animal):
def __init__ (self, color):

super ().__init__ (color, 2)

class Cage ():
def __init__ (self, id_number):

self.id_number = id_number
self.animals = []

def add_animals (self, *animals):
for one_animal in animals:

self.animals.append (one_animal)

def __repr__ (self):
output = f’Cage {self.id_number} \n’
output += ‘\n’.join (‘\t’ + str (animal)

for animal in self.animals)

return output

wolf = Wolf (‘black’)
sheep = Sheep (‘white’)
snake = Snake (‘brown’)
parrot = Parrot (‘green’)

c1 = Cage (1)
c1.add_animals (wolf, sheep)
c2 = Cage (2)
c2.add_animals (snake, parrot)

print (c1)
print (c2)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr203].

203

Устанавливает идентификацион-
ный номер для каждой клетки,
чтобы мы могли различать их.

Устанавливает
пустой список,
в который мы
будем поме-
щать. живот-
ных.

Строка для каждой клетки
будет в основном состоять
из строки, основанной на
выражении-генераторе.

324 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr204].

После выполнения упражнения
Мы снова видим потребность в композиции в наших клас-

сах — создании объектов, которые являются контейнерами для
других объектов. Вот несколько возможных расширений этого
кода, все они основаны на идеях, которые мы уже видели в этой
главе и которые вы увидите повторяющимися почти в каждой
объектно-ориентированной системе, которую вы будете созда-
вать и с которой столкнетесь:

1. Как видите, нет никаких ограничений на количество жи-
вотных, которые потенциально могут быть помещены
в клетку. Точно так же, как мы установили ограничение
в три ложки в Bowl и пять в BigBowl, вы должны ана-
логичным образом создать классы Cage и BigCage, ко-
торые ограничивают количество помещенных животных.

2. Не очень реалистично говорить, что мы будем ограничи-
вать количество животных в клетке. Скорее, имеет смысл
описать, сколько места необходимо каждому животному,
и убедиться, что общее количество места, необходимое для
каждого животного, не превышает пространство в каждой
клетке.
 Таким образом, вам следует изменить каждый из подклассов
Animal, чтобы включить атрибут space_required. За-
тем измените классы Cage и BigCage, чтобы отразить,
сколько места есть в каждом из них. Добавление большего
количества животных, чем может вместить клетка, должно
вызвать исключение.

3. Наши смотрители зоопарка обладают мрачным чувством
юмора, когда дело доходит до размещения животных вме-
сте: они помещают волков и овец в первую клетку, а змей
и птиц — в другую. (Хорошая новость заключается в том,
что при такой конфигурации зоопарк сможет сэкономить

204

3259. Объекты

на корме для половины животных.) Определите словарь,
описывающий, какие животные могут находиться вме-
сте с другими. Ключами в словаре будут классы, а значе-
ниями — списки классов, которые могут быть размещены
вместе с ключами. Затем, при добавлении новых животных
в текущую клетку, вы будете проверять их совместимость.
Попытка добавить животное в клетку, в которой уже содер-
жится несовместимое животное, вызовет исключение.

УПРАЖНЕНИЕ 45. Зоопарк
Наконец, пришло время создать наш объект Zoo. Он будет со-

держать объекты вольеров, а они, в свою очередь, будут содер-
жать животных. Наш класс Zoo должен поддерживать следую-
щие операции:

1. Мы должны иметь возможность распечатать все клетки
зоопарка z (с их идентификационными номерами) и жи-
вотных, находящихся в них, просто вызвав print (z).

2. Мы должны иметь возможность получить животных опре-
деленного цвета, вызвав метод z.animals_by_color.
Например, мы можем получить всех черных животных,
вызвав метод z.animals_by_color (‘black’). Ре-
зультатом должен быть список объектов Animal.

3. Мы должны иметь возможность получить живот-
ных с определенным количеством ног, вызвав метод
z.animals_by_legs. Например, мы можем получить
всех четвероногих животных, вызвав метод z.animals_
by_legs (4). Результатом должен быть список объектов
Animal.

4. Наконец, у нас есть потенциальный спонсор нашего зоо-
парка, который хочет предоставить носки для всех живот-
ных. Таким образом, нам нужно иметь возможность вы-
звать z.number_of_legs () и получить подсчет общего
количества ног (или лап) у всех животных в нашем зоо-
парке.

326 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Следовательно, задача состоит в том, чтобы создать класс Zoo,
для которого мы можем вызвать следующие функции:

z = Zoo ()
z.add_cages (c1, c2)

print (z)
print (z.animals_by_color (‘white’))
print (z.animals_by_legs (4))
print (z.number_of_legs ())

Обсуждение
В некотором смысле наш класс Zoo очень похож на наш класс

Cage. У него есть список атрибутов, self.cages, в котором мы
будем хранить клетки. У него есть метод add_cages, который
принимает *args и, таким образом, принимает любое количе-
ство входов. Даже метод __repr__ похож на то, что мы делали
с Cage.__repr__. Мы просто используем str.join для вы-
вода, полученного в результате выполнения str для каждой клетки,
точно так же, как клетки запускают str для каждого животного.
Аналогично мы будем использовать выражение-генератор, кото-
рое будет немного эффективнее, чем генератор списка.

Но затем, когда дело дойдет до трех методов, которые нам
нужно было создать, мы немного поменяем направление. В ме-
тодах animals_by_color и animals_by_legs мы хотим
получить животных определенного цвета или с определенным
количеством лап. Здесь мы воспользуемся тем, что зоопарк со-
держит список клеток, а каждая клетка содержит список живот-
ных. Тем самым мы можем использовать вложенный генератор
списка, получив список всех животных.

Но, конечно, нам не нужны все животные, поэтому у нас есть
оператор if, который отсеивает тех, кто нам не нужен. В случае
с animals_by_color мы включаем только тех животных, ко-
торые имеют нужный цвет, а что касается animals_by_legs —
мы сохраняем только тех животных, у которых есть требуемое ко-
личество лап.

3279. Объекты

Но у нас также есть number_of_legs, который работает
немного по-другому. Здесь мы хотим получить целое число, от-
ражающее количество лап во всем зоопарке. Здесь мы можем
воспользоваться встроенным методом sum, передав ему выраже-
ние-генератор, осуществив проход через каждую клетку и полу-
чив количество лап у каждого животного. Таким образом, метод
вернет целое число.

Хотя лагеря объектно-ориентированного и функционального
программирования десятилетиями спорят о том, какой под-
ход лучше, я думаю, что методы класса Zoo показывают нам,
что у каждого из них есть свои сильные стороны и что наш код
может быть коротким, элегантным и точным, если мы объеди-
ним эти методы. Тем не менее, я часто встречаю сопротивление
от студентов, которые видят этот код и говорят, что это наруше-
ние объектно-ориентированного принципа инкапсуляции, ко-
торый гарантирует, что мы не можем (или не должны) напрямую
обращаться к данным других объектов.

Правильно это или нет, но такие нарушения довольно часто
встречаются и в мире Python.

Поскольку все данные являются общедоступными (т.е. нет
ни private, ни protected), считается хорошим и разумным
просто «вычерпывать» данные из объектов. Однако это также
означает, что тот, кто пишет класс, обязан документировать его
и поддерживать API — или документировать элементы, которые
в будущем могут устареть или которые могут удалить.

Решение
Это самое длинное и сложное определение класса

в этой главе — и тем не менее, каждый из методов использует
приемы, которые мы обсуждали как в этой главе, так и в этой
книге:

class Zoo ():
def __init__ (self):

self.cages = []

Устанавливает атрибут self.
cages, список, в котором
мы будем хранить клетки.

328 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

def add_cages (self, *cages):
for one_cage in cages:

self.cages.append (one_cage)

def __repr__ (self):
return ‘\n’.join (str (one_cage)

for one_cage in self.cages)

def animals_by_color (self, color):
return [one_animal

for one_cage in self.cages
for one_animal in one_cage.animals
if one_animal.color == color]

def animals_by_legs (self, number_of_legs):
return [one_animal

for one_cage in self.cages
for one_animal in one_cage.animals
if one_animal.number_of_legs ==

number_of_legs]

def number_of_legs (self):
return sum (one_animal.number_of_legs

for one_cage in self.cages
for one_animal in one_cage.animals)

wolf = Wolf (‘black’)
sheep = Sheep (‘white’)
snake = Snake (‘brown’)
parrot = Parrot (‘green’)

print (wolf)
print (sheep)

Определяет метод, который будет
возвращать объекты животных, со-
ответствующие выбранному цвету.

Определяет метод, который будет
возвращать объекты животных, со-
ответствующие количеству лап.

Возвращает коли-
чество лап.

3299. Объекты

print (snake)
print (parrot)

c1 = Cage (1)
c1.add_animals (wolf, sheep)

c2 = Cage (2)
c2.add_animals (snake, parrot)

z = Zoo ()
z.add_cages (c1, c2)

print (z)
print (z.animals_by_color (‘white’))
print (z.animals_by_legs (4))
print (z.number_of_legs ())

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr205].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr206].

После выполнения упражнения
Теперь, когда вы увидели, как все эти элементы сочетаются

друг с другом в нашем классе Zoo, вот несколько дополнитель-
ных упражнений, которые вы, возможно, захотите попробовать,
чтобы расширить то, что мы уже сделали, и лучше понять объект-
но-ориентированное программирование на Python:

1. Измените множество animals_by_color так, чтобы оно
принимал любое количество цветов. Животные любого
из перечисленных окрасов должны быть возвращены. Ме-
тод должен вызвать исключение, если цвета не переданы.

2. В настоящее время мы обращаемся с нашим классом Zoo

205

206

330 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

так, будто это одноэлементный объект, то есть класс, кото-
рый имеет только один экземпляр. Каким грустным был бы
мир, если бы в нем был только один зоопарк! Предполо-
жим, что у нас есть два экземпляра Zoo, представляю-
щие два разных зоопарка, и мы хотим перенести животное
из одного в другой. Реализуйте метод Zoo.transfer_
animal, который принимает target_zoo и подкласс
Animal в качестве аргументов. Первое животное указан-
ного типа удаляется из зоопарка, для которого мы вызвали
метод, и помещается в первую клетку нужного зоопарка.

3. Объедините методы animals_by_color и animals_
by_legs в один метод get_animals, который исполь-
зует kwargs для получения имен и значений. Единствен-
ными допустимыми именами были бы color и legs.
Затем метод будет использовать одно или оба этих ключе-
вых слова для создания запроса, который возвращает тех
животных, которые соответствуют переданным критериям.

Подводя итоги
Объектно-ориентированное программирование — это набор

методов, но это также и образ мышления. Во многих языках вам
навязывают объектно-ориентированное программирование, так
что вы постоянно пытаетесь программировать согласно его син-
таксису и структуре. Python пытается найти баланс, предлагая
все объектно-ориентированные функции, которые мы, вероятно,
захотим или используем, но простым, бесконфликтным спосо-
бом. Таким образом, объекты Python предоставляют нам струк-
туру и организацию, которые могут облегчить написание, чтение
и (самое главное) сопровождение нашего кода.

10. Итераторы
и генераторы

Вы когда-нибудь замечали, что многие объекты Python
знают, как вести себя внутри цикла for? Это не случайно.
Итерация настолько полезна и настолько распространена,

что Python позволяет легко сделать объект итерируемым. Для
этого достаточно реализовать несколько моделей поведения, из-
вестных как протокол итератора.

В этой главе мы рассмотрим этот протокол и то, как его можно
использовать для создания итерируемых объектов. Мы сделаем
это тремя способами:

1 Мы создадим собственные итераторы с помощью классов
Python, непосредственно реализуя протокол.

2 Мы создадим генераторы, объекты, реализующие прото-
кол, на основе чего-то, что очень похоже на функцию. Неудиви-
тельно, что они известны как функции-генераторы.

3 Мы также будем создавать генераторы с помощью выра-
жения-генераторов, которые очень похожи на списки.

Даже новички в Python знают, что если вы хотите перебрать
символы в строке, то вы можете написать:

for i in ‘abcd’:
print (i)

Это кажется само собой разумеющимся, и в этом весь смысл.
А что, если вам нужно просто выполнить фрагмент кода пять раз?

Напечатает каж-
дое из a, b, c и d, в
отдельной строке.

332 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Можете ли вы выполнить итерацию над целым числом 5? Многие
новички в Python полагают, что ответ «да», и пишут следующее:

for i in 5:
print (i)

Этот код выдает ошибку:

TypeError: объект ‘int’ не является итерируемым

Из этого мы видим, что в то время как строки, списки и сло-
вари являются итерируемыми, целые числа таковыми не яв-
ляются. Они не являются таковыми, потому что не реализуют
протокол итератора, который состоит из трех частей:

1. Метод __iter__, который возвращает итератор.
2. Метод __next__, который должен быть определен для

итератора.
3. Исключение StopIteration, которое итератор выдает

при окончании итерации.
Последовательности (строки, списки и кортежи) являются

наиболее распространенной формой итерируемых объектов,
но большое количество других объектов, таких как файлы и сло-
вари, также являются итераторами. Лучше всего то, что при опре-
делении собственных классов вы можете сделать их итерируе-
мыми. Все, что вам нужно сделать, это убедиться, что протокол
итератора применен к объекту.

С учетом данных трех пунктов мы можем теперь понять, что
на самом деле делает цикл for:

1. Он спрашивает объект, является ли он итерируемым, ис-
пользуя встроенную функцию iter. Эта функция вызы-
вает метод __iter__ для нужного объекта. То, что воз-
вращает __iter__, называется итератором.

2. Если объект является итерируемым, то цикл for вызывает
следующую встроенную функцию у возвращенного итера-
тора. Эта функция вызывает __next__ у итератора.

3. Если __next__ вызывает исключение Stopiteration,
то цикл завершается.

Это не сработает.

33310. Итераторы и генераторы

Этот протокол объясняет пару вещей, которые обычно озада-
чивают новичков в Python:

1 Почему нам не нужны индексы? В языках, подобных C, нам
нужен числовой индекс для наших итераций. Это нужно для того,
чтобы цикл мог пройтись по каждому элементу коллекции по оче-
реди. В этих случаях цикл отвечает за отслеживание текущего ме-
стоположения. В Python за создание следующего элемента отвечает
сам объект. Цикл for не знает, находимся ли мы на первом эле-
менте или на последнем. Но он знает, когда мы достигли конца.

2 Как получается, что разные объекты ведут себя по-разному
в циклах for? Ведь строки возвращают символы, словари воз-
вращают ключи, а файлы возвращают строки. Ответ заключается
в том, что объект-итератор может возвращать все, что захочет.
Поэтому строковые итераторы возвращают символы, словари-и-
тераторы возвращают ключи, а файловые итераторы возвращают
строки в файле.

Если вы определяете новый класс, вы можете сделать его ите-
рируемым следующим образом:

1. Определите метод __iter__, который принимает в каче-
стве аргумента только self и возвращает self. Другими
словами, когда Python спросит ваш объект: «Ты итериру-
мый?» Ответ будет: «Да, и я сам себе итератор».

2. Определите метод __next__, который принимает в ка-
честве аргумента только self. Этот метод должен либо
возвращать значение, либо исключение StopIteration.
Если он никогда не возвращает StopIteration, то любой
цикл for на этом объекте никогда не завершится.

Есть и более сложные способы, включая возврат другого
объекта из __iter__. Я покажу и объясню это позже.

Вот простой класс, который реализует протокол, оборачивая
себя вокруг итерируемого объекта, указывая, когда он проходит
через каждый этап итерации:

class LoudIterator ():
def __init__ (self, data):
print (‘\tТеперь в __init__’)

334 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

self.data = data
self.index = 0

def __iter__ (self):
print (‘\tТеперь в __iter__’)
return self

def __next__ (self):
print (‘\tТеперь в __next__’)
if self.index >= len (self.data):

print (
 f’\tself.index ({self.index})
слишком большой; выходим’)

 raise StopIteration

value = self.data [self.index]
self.index += 1

 print (‘\tПолучил значение {value},
увеличил индекс до {self.index}’)
return value

for one_item in LoudIterator (‘abc’):
 print (one_item)

Если мы выполним этот код, то получим следующий результат:

Теперь в __init__
Теперь в __iter__
Теперь в __next__
Получил значение a, увеличил индекс до 1

a
Теперь в __next__
Получил значение b, увеличил индекс до 2

b
Теперь в __next__
Получил значение c, увеличил индекс до 3

Наш __iter__ делает самое про-
стое — возвращает self.

Вызывает
StopIteration, если
наш self.index до-
стиг конца.

Захватывает
текущее зна-
чение, но
пока не воз-
вращает его.

Увеличивает
self.index

Сохраняет данные в
атрибуте self.data.

Создает атрибут индекса, отсле-
живая нашу текущую позицию.

33510. Итераторы и генераторы

c
Теперь в __next__
self.index (3) слишком большой; выходим

Этот вывод показываем нам процесс итерации, который мы
уже видели ранее, начиная с вызова __iter__ и затем повто-
ряющихся вызовов __next__. Цикл завершается, когда итератор
вызывает StopIteration.

Добавление таких методов в класс работает, когда вы создаете
свои собственные новые типы. В Python есть еще два способа со-
здания итераторов:

1 Можно использовать выражение-генератор, которое мы
уже видели и использовали. Как вы, возможно, помните, выра-
жения-генераторы выглядят и работают так же, как и генера-
торы списков, за исключением того, что вы используете круглые
скобки, а не квадратные. Но в отличие от генераторов списков,
которые возвращают списки, занимающие много памяти, выра-
жения-генераторы возвращают по одному элементу за раз.

2 Вы можете использовать функцию-генератор — нечто, что
выглядит как функция, но при выполнении действует как итера-
тор, например:

def foo ():
yield 1
yield 2
yield 3

Когда мы вызываем foo, тело функции не выполняется. Вме-
сто этого мы получаем обратно объект-генератор, то, что реали-
зует протокол итератора. Таким образом, мы можем поместить
его в цикл for:

g = foo ()
for one_item in g:
print (one_item)

Этот цикл выведет 1, 2 и 3. Почему? Потому что с каждой
итерацией (т.е. каждый раз, когда мы вызываем next на g)

336 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

функция выполняет следующий оператор yield, возвращает зна-
чение, полученное из yield, и затем «засыпает», ожидая сле-
дующей итерации. Когда функция-генератор выходит из цикла,
она автоматически вызывает StopIteration, тем самым за-
вершая цикл.

Итераторы широко распространены в Python, потому что они
очень удобны — и во многом они стали удобными именно по-
тому, что широко распространены. В этой главе вы попрактику-
етесь в написании всех этих типов итераторов и поймете, когда
следует использовать каждый из этих методов.

Итерируемый объект vs. итератор
Термины «итерируемый объект» и «итератор» очень по-

хожи, но имеют разное значение:
1. Итерируемый объект может быть помещен в цикл

for или в генератор списка. Чтобы объект был ите-
рируемым, он должен реализовать метод __iter__.
Этот метод должен возвращать итератор.

2. Итератор — это объект, реализующий метод __
next__.

Во многих случаях итерируемый объект является своим
собственным итератором. Например, файловые объекты
являются собственными итераторами. Но во многих дру-
гих случаях, например, строки и списки, итерируемый
объект возвращает в качестве итератора отдельный, другой
объект.

Таблица 10.1. Что вам нужно знать
Понятие Что это? Пример Чтобы узнать

подробнее

iter Встроенная функ-
ция, которая воз-
вращает итератор
объекта.

iter (‘abcd’)

33710. Итераторы и генераторы

Понятие Что это? Пример Чтобы узнать
подробнее

next Встроенная функ-
ция, которая
запрашивает сле-
дующий объект
из итератора.

next (i)

Stop
Iteration

Исключение, воз-
никающее при за-
вершении цикла.

raise Stop-
Iteration

enumerate Помогает нам
пронумеро-
вать итерируемые
объекты.

for i, c in
enumerate
(‘ab’): print
(f’{i}: {c}’)

Итерируе-
мый объект

Категория данных
в Python.

Итерируе-
мые объекты
можно помещать
в циклы for или
передавать многим
функциям.

itertools Модуль с мно-
жеством классов
для реализации
итерируемого
объекта.

import
itertools

range Возвращает ите-
рируемую после-
довательность це-
лых чисел.

каждое тре-
тье целое
число, от 10 #
до (не включая)
50 range (10,
50, 3)

os.listdir Возвращает спи-
сок файлов ката-
лога.

os.listdir (‘/
etc/’)

Продолжение таблицы

338 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Понятие Что это? Пример Чтобы узнать
подробнее

os.walk Итерации
по файлам в ката-
логе.

os.walk (‘/
etc/’)

yield Временно воз-
вращает управле-
ние циклу, по же-
ланию возвращая
значение.

yield 5

os.path.
join

Возвращает
строку, основан-
ную на компо-
нентах пути.

os.path.
join (‘etc’,
‘passwd’)

time.perf_
counter

Возвращает ко-
личество секунд,
прошедших с мо-
мента запуска
программы (в виде
плавающей ве-
личины).

time.perf_
counter ()

zip Принимает n ите-
рируемых объек-
тов в качестве
аргументов и воз-
вращает итератор
кортежей длины n.

возвращает
[(‘a’, 10),
(‘b’, 20),
(‘c’, 30)] zip
(‘abc’, [10,
20, 30])

Упражнение 46. MyEnumerate
Встроенная функция enumerate позволяет нам получить

не только элементы последовательности, но и индекс каждого
элемента, как в примере:

for index, letter in enumerate (‘abc’):
print (f’{index}: {letter}’)

Окончание таблицы

33910. Итераторы и генераторы

Создайте свой собственный класс MyEnumerate, чтобы кто-то
мог использовать его вместо enumerate. Он должен будет воз-
вращать кортеж при каждой итерации, причем первый элемент
кортежа будет индексом (начиная с 0), а второй — текущим эле-
ментом из базовой структуры данных. Попытка использовать
MyEnumerate с неитерируемым аргументом приведет к ошибке.

Обсуждение
В этом упражнении наш класс MyEnumerate будет прини-

мать один итерируемый объект. При каждой итерации мы бу-
дем получать обратно не один из элементов аргумента, а кортеж
из двух элементов.

Это означает, что в конце концов нам понадобится метод __
next__, который будет возвращать кортеж. Более того, он дол-
жен будет отслеживать текущий индекс. Поскольку __next__,
как и все методы и функции, теряет свою локальную область ви-
димости между вызовами, нам нужно будет хранить текущий
индекс в другом месте. Где? В самом объекте, в качестве атрибута.

Следовательно, наш метод __init__ инициализирует два
атрибута: self.data, где хранится объект, который мы итери-
руем, и self.index, который будет начинаться с 0 и увели-
чиваться с каждым вызовом __next__. Наша реализация __
iter__ будет стандартной, которую мы видели до сих пор,
а именно return self.

Наконец, __next__ проверяет, не превысил ли self.index
длину self.data. Если да, то мы вызываем StopIteration, что
приводит к завершению цикла for.

Многоклассовые итераторы
До сих пор мы видели, что наш метод __iter__ дол-

жен состоять из строки return self и не более. Часто это
вполне приемлемый способ. Но вы можете попасть в беду.
Например, что произойдет, если я использую наш класс
MyEnumerate следующим образом?

340 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

e = MyEnumerate (‘abc’)

print (‘** A **’)
for index, one_item in e:

print (f’{index}: {one_item}’)

print (‘** B **’)
for index, one_item in e:

print (f’{index}: {one_item}’)

Мы увидим следующее:

** A **
0: a
1: b
2: c
** B **

Почему мы не получили во втором раунде a, b и c? По-
тому что каждый раз мы используем один и тот же объек-
т-итератор. В первый раз self.index проходит через 0,
1 и 2, а затем останавливается. Во второй раз self.index
уже равен 2, что больше len (self.data), и поэтому он
немедленно выходит из цикла.

Наше решение return self для __iter__ подходит,
если вы хотите именно такого поведения. Но во многих
случаях нам нужно что-то более сложное. Самое простое
решение — использовать второй класс — класс-помощ-
ник, который, если хотите, будет итератором для нашего
класса. Многие встроенные классы Python уже делают это,
включая строки, списки, кортежи и словари. В этом слу-
чае мы реализуем __iter__ в основном классе, но его
задача — вернуть новый экземпляр вспомогательного
класса:

34110. Итераторы и генераторы

в MyEnumerate
def __iter__ (self):

return MyEnumerateIterator (self.data)

Затем мы определяем MyEnumerateIterator, новый
и отдельный класс, чей __init__ похож на тот, который
мы уже определили для MyIterator, а __next__ берется
непосредственно из MyIterator.

У такой конструкции есть два преимущества:
1 Как мы уже видели, отделив итерируемый объект

от итератора, мы можем поместить наш итерируемый
объект в любое количество циклов for, не беспокоясь
о потери итераций.

2 Второе преимущество — организационное. Если мы
хотим сделать класс итерируемым, то итерации — это не-
большая часть функциональности. Таким образом, действи-
тельно ли мы хотим загромождать класс __next__, а также
атрибутами, используемыми только при итерации? Пере-
давая такие проблемы вспомогательному классу итератора,
мы отделяем аспекты итерируемого объекта и позволяем
каждому классу сосредоточиться на своей роли.

Многие считают, что проблему можно решить более
простым способом, просто сбрасывая self.index к 0 при
каждом вызове __iter__. Но это тоже имеет свои недо-
статки. Это означает, что если мы захотим использовать
одну и ту же итерабельную переменную в двух разных цик-
лах одновременно, то они будут мешать друг другу. С вспо-
могательным классом таких проблем не возникнет.

Решение
class MyEnumerate ():

def __init__ (self, data):
self.data = data
self.index = 0

Инициализирует MyEnumerate с
итерируемым аргументом, data.

Сохраняет data
в объекте как
self.data.

Инициализирует self.
index значением 0.

342 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

 def __iter__ (self):
 return self

def __next__ (self):
if self.index >= len (self.data):

raise StopIteration
value = (self.index, self.data [self.index])
self.index += 1

 return value

for index, letter in MyEnumerate (‘abc’):
print (f’{index}: {letter}’)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr220].

Обратите внимание, что Python Tutor ино-
гда выводит сообщение об ошибке, когда воз-
никает ошибка StopIteration.

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr221].

После выполнения упражнения
Теперь, когда вы создали простой класс итератора, давайте

копнем немного глубже:
Перепишите MyEnumerate так, чтобы он использовал вспомо-

гательный класс (MyEnumerateIterator), как описано в разделе
«Обсуждение». В итоге у MyEnumerate будет метод __iter__,
возвращающий новый экземпляр MyEnumerateIterator,
а вспомогательный класс будет реализовывать __next__.

Он должен работать так же, но будет выдавать результаты, если
мы будем итерировать по нему два раза подряд.

220

221

Поскольку наш
объект будет соб-
ственным итера-
тором, возвра-
щается self.

Мы достигли конца
данных? Если да, то воз-
никает StopIteration.

Устанавливает значение в виде
кортежа, с индексом и значением.

Увеличивает self.index.Возвращает кортеж.

34310. Итераторы и генераторы

1. Встроенный метод enumerate принимает второй необя-
зательный аргумент — целое число, представляющее пер-
вый индекс, который должен быть использован. (Это осо-
бенно удобно при нумерации вещей для нетехнарей,
которые считают, что нумерация начинается с 1, а не с 0.)

2. Переопределите MyEnumerate как функцию-генератор,
а не как класс.

Упражнение 47. Круг
Из рассмотренных нами примеров может показаться, что

в случае с итерируемым объектом просто перебираются элементы
любых данных, которые он хранит, а затем происходит выход.
Но итератор может делать все что угодно и возвращать любые дан-
ные, вплоть до того момента, когда он вызовет StopIteration.
В этом упражнении мы увидим, как это работает.

Определите класс Circle, который при определении прини-
мает два аргумента: последовательность и число. Идея заключа-
ется в том, что объект будет возвращать элементы определенное
количество раз. Если число больше, чем количество элементов,
то последовательность повторяется по мере необходимости. Вы
должны определить класс так, чтобы он использовал помощника
(который я называю CircleIterator). Например:

c = Circle (‘abc’, 5)
print (list (c))

Обсуждение
Во многих отношениях наш класс Circle — это простой

итератор, перебирающий все свои значения. Но нам может по-
требоваться предоставить больше выходов, чем входов, пройдя
по кругу к началу один или несколько раз.

Хитрость здесь заключается в использовании оператора
modulus (%), который возвращает целочисленный остаток
от операции деления. Modulus часто используется в програм-

П е ч а т а е т
a, b, c, a, b.

344 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

мах, чтобы гарантировать, что мы можем выполнить цикл столько
раз, сколько нам нужно.

В данном случае мы получаем данные из self.data, как
обычно. Но элементом будет не self.data [self.index],
а self.data [self.index% len (self.data)].

Поскольку self.index, скорее всего, окажется больше, чем
len (self.data), мы больше не сможем использовать его в ка-
честве теста на то, следует ли нам выдавать StopIteration. Ско-
рее, нам понадобится отдельный атрибут self.max_times, который
скажет нам, сколько итераций мы должны выполнить.

Как только мы все это установили, реализация становится до-
вольно простой. Наш класс Circle остается только с __init__
и __iter__, последний из которых возвращает новый экзем-
пляр CircleIterator. Обратите внимание, что мы должны
передать self.data и self.max_times в CircleIterator,
и поэтому нам нужно сохранить их как атрибуты в нашем экзем-
пляре Circle.

Затем наш итератор использует логику, которую мы опи-
сали в методе __next__, чтобы возвращать по одному элементу
за раз, пока у нас не будет элементов self.max_times.

Другое решение
Оливер Хах и Рейк Торманн, которые читали предыду-

щее издание этой книги, поделились со мной элегантным
решением:

class Circle ():

def __init__ (self, data, max_times):
self.data = data
self.max_times = max_times

def __iter__ (self):
n = len (self.data)
 return (self.data [x% n] for x in range
(self.max_times))

34510. Итераторы и генераторы

В этой версии Circle мы используем тот факт, что
итерируемый класс может возвращать любой итератор,
а не только self и не только экземпляр вспомогательного
класса. В этом случае возвращается выражение-генератор,
которое по всем стандартам является итератором.

Выражение-генератор выполняет итерации опреде-
ленное количество раз, определяемое self.max_times,
и передает его в range. Затем мы можем выполнить итера-
цию по range, возвращая соответствующий элемент self.
data с каждой итерацией.

Таким образом, мы видим, что существует множество
способов ответить на вопрос «Что должен возвращать __
iter__?».

Пока он возвращает объект итератора, неважно, будет ли
это итерируемый self, экземпляр вспомогательного класса
или генератор.

Решение
class CircleIterator ():

def __init__ (self, data, max_times):
self.data = data
self.max_times = max_times self.index = 0

def __next__ (self):
if self.index >= self.max_times:

raise StopIteration
value = self.data [self.index% len (self.data)]
self.index += 1
return value

class Circle ():
def __init__ (self, data, max_times):

self.data = data
self.max_times = max_times

346 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

def __iter__ (self):
return CircleIterator (self.data,

self.max_times)

c = Circle (‘abc’, 5)
print (list (c))

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr222].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr223].

После выполнения упражнения
Надеюсь, вы начинаете понимать потенциал итераторов и то,

что их можно писать по-разному. Вот несколько дополнитель-
ных упражнений, которые заставят вас задуматься о том, какими
могут быть эти способы:

1. Вместо того чтобы писать помощника, вы можете опре-
делить возможности итерации в классе, а затем наследо-
ваться от него. Реализуйте Circle как класс, наследую-
щий от CircleIterator, который реализует __init__
и __next__. Конечно, родительский класс должен знать,
что возвращать на каждой итерации — добавьте новый
атрибут в Circle, self.returns, список имен атрибу-
тов, которые должны быть возвращены.

2. Реализуйте Circle как функцию-генератор, а не как
класс.

3. Реализуйте класс MyRange, возвращающий итератор, кото-
рый работает так же, как range, по крайней мере, в циклах
for. (Современные объекты range обладают множеством
других возможностей, например, возможностью подписки.
Не думайте об этом.) Класс, как и range, должен прини-
мать один, два или три целочисленных аргумента.

222

223

34710. Итераторы и генераторы

Упражнение 48. Все строки, все файлы
Файловые объекты, как мы видели, являются итераторами:

когда мы помещаем их в цикл for, каждый итератор возвра-
щает следующую строку из файла. Но что, если мы хотим прочи-
тать несколько файлов? Было бы неплохо иметь итератор, кото-
рый проходит через каждый из них.

В этом упражнении я хочу, чтобы вы создали именно такой
итератор, используя функцию-генератор. То есть эта функ ция-
генератор будет принимать в качестве аргумента имя каталога.
При каждой итерации генератор должен возвращать одну строку
из одного файла в этом каталоге. Таким образом, если каталог
содержит пять файлов и каждый файл содержит 10 строк, то ге-
нератор вернет в общей сложности 50 строк — каждую строку
из файла 0, затем каждую строку из файла 1, затем каждую строку
из файла 2, пока не переберет все строки из файла 4.

Если вы столкнулись с файлом, который не может быть
открыт — потому что это каталог, потому что у вас нет разреше-
ния на чтение из него и так далее — вам следует просто игнори-
ровать проблему.

Обсуждение
Начнем обсуждение с того, что если вы действительно хо-

тите сделать все правильно, то вам следует использовать функ-
цию os.walk, которая проходит через каждый файл в каталоге,
а затем спускается в его подкаталоги. Но мы проигнорируем это
и будем работать над пониманием функции-генератора all_
lines, которую я создал здесь.

Сначала мы вызываем os.listdir в path. Будет возвра-
щен список строк. Важно помнить, что os.listdir возвращает
только имена файлов, а не полный путь к ним. Это означает, что
мы не можем просто открыть имя файла: нам нужно объединить
путь с именем файла.

Мы могли бы использовать str.join, или даже просто +,
или f-строку. Но есть лучший подход, а именно os.path.
join, который принимает любое количество параметров

348 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

(благодаря *args) и затем соединяет их вместе со значением
os.sep, символа разделения каталогов для текущей операци-
онной системы. Таким образом, нам не нужно думать о том, где
мы находимся — в системе Unix или Windows — Python может
сделать эту работу за нас.

Что, если возникнет проблема с чтением из файла? Мы отлав-
ливаем это с помощью исключения OSError, в котором у нас
нет ничего, кроме pass. Ключевое слово pass означает, что
Python не должен ничего делать: оно необходимо из-за струк-
туры синтаксиса Python, который требует, чтобы после двоето-
чия следовал отступ. Но мы не хотим ничего делать в случае воз-
никновения ошибки, поэтому используем pass.

А если проблемы нет? Тогда мы просто возвращаем текущую
строку с помощью yield. Сразу после yield функция перехо-
дит в спящий режим, ожидая следующего раза, когда цикл for
вызовет next.

ПРИМЕЧАНИЕ Использование except без указания того,
какое исключение вы можете получить, вообще не одобряется,
тем более, если вы используете его в паре с pass. Если вы сдела-
ете это в производственном коде, вы, несомненно, столкнетесь
с проблемами в какой-то момент, и поскольку вы не отло-
вили конкретные исключения и не записали ошибки в жур-
нал, у вас возникнут проблемы с реше-
нием проблемы. Хорошее (хотя и немного
устаревшее) введение в исключения Python
и то, как их следует использовать, смотрите
на сайте: qr224.

Решение
import os

def all_lines (path):
for fi lename in os.listdir (path):

full_fi lename = os.path.join (path,
fi lename)

224

Получает список
файлов в path.

Использует os.path.
join для создания пол-
ного имени файла,
который мы будем
открывать.

34910. Итераторы и генераторы

try:
for line in open (full_fi lename):

yield line

except OSError:
 pass

Сайт Python Tutor не работает с файлами, поэтому ссылки
на него нет. Но вы можете просмотреть все строки из всех файлов
в каталоге /etc/ на вашем компьютере с помощью команды

for one_line in all_lines (‘/etc/’):
print (one_line)

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr225].

После выполнения упражнения
Если что-то, что вы хотите сделать в качестве итератора, не со-

ответствует существующему классу, но может быть определено
как функция, то использование функции-генератора, вероятно,
будет хорошим решением. Функции-генераторы особенно по-
лезны при получении потенциально больших объемов данных,
их разбивке на части и возврате выходных данных в темпе, кото-
рый не перегружает систему.

Вот некоторые другие проблемы, которые можно решить с по-
мощью функций-генераторов:

1. Модифицируйте all_lines таким образом, чтобы она
возвращала не строку при каждой итерации, а кортеж.
Кортеж должен содержать четыре элемента: имя файла, те-
кущий номер файла (из всех возвращенных os.listdir),
номер строки в текущем файле и текущую строку.

225

Открывает и итери-
рует каждую строку
в full_filename.

Возвращает строку с ис-
пользованием yield, необ-
ходимого в итераторах.

Игнорирует проблемы,
связанные с файлами.

350 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Текущая версия функции all_lines возвращает все
строки из первого файла, затем все строки из второго файла
и так далее. Измените функцию так, чтобы она возвращала
первую строку из каждого файла, затем вторую строку
из каждого файла, пока не будут возвращены все строки
из всех файлов. Когда вы закончите печатать строки из бо-
лее коротких файлов, игнорируйте эти файлы, продолжая
выводить строки из более длинных файлов.

3. Измените all_lines так, чтобы она принимала два ар-
гумента — имя каталога и строку. Возвращаются только
те строки, которые содержат строку (т.е. для которых можно
написать s in line). Если вы умеете работать с регуляр-
ными выражениями и модулем re в Python, то можете
воспользоваться ими.

ПРИМЕЧАНИЕ В функциях-генераторах нам не нужно
явно вызывать StopIteration. Это происходит автоматиче-
ски, когда генератор достигает конца функции. Действительно,
вызывать StopIteration внутри генератора не следует. Если
вы хотите преждевременно выйти из функции, лучше использо-
вать оператор return. Использование return со значением
(например, return 5) в функции-генераторе не является ошибкой,
но значение будет проигнорировано. Таким образом, в функци-
и-генераторе yield означает, что вы хотите продолжить работу
генератора и вернуть значение для текущей итерации, а return
означает, что вы хотите полностью завершить работу.

Упражнение 49.
Сколько времени прошло

Иногда смысл итератора не в том, чтобы изменить существу-
ющие данные, а в том, чтобы предоставить данные в дополнение
к тем, которые мы получили ранее. Более того, генератор не обя-
зательно предоставляет все свои значения сразу: можно запро-

35110. Итераторы и генераторы

сить тогда, когда нам понадобится дополнительное значение.
Действительно, тот факт, что генераторы сохраняют свое состо-
яние во время сна между итерациями, означает, что они могут
зависать, «слоняться» без дела в ожидании, пока не понадобится
следующее значение.

В этом упражнении напишите функцию-генератор, аргумент
которой должен быть итерируемым. При каждой итерации гене-
ратор будет возвращать двухэлементный кортеж. Первым элемен-
том кортежа будет целое число, показывающее, сколько секунд
прошло с момента предыдущей итерации. Вторым элементом
кортежа будет следующий элемент из переданного аргумента.

Обратите внимание, что время должно относиться к преды-
дущей итерации, а не к моменту, когда генератор был впервые
создан или вызван. Следовательно, значение тайминга в первой
итерации будет равно 0.

Вы можете использовать time.perf_counter, который
возвращает количество секунд с момента запуска программы.
Можно использовать time.time, но perf_counter считается
более надежным для таких целей.

Обсуждение
Функция генератора решения принимает один фрагмент дан-

ных и выполняет итерацию по нему. Однако для каждого эле-
мента она возвращает двухэлементный кортеж, в котором пер-
вый элемент — это время, прошедшее с момента выполнения
предыдущей итерации.

Чтобы это работало, мы должны всегда знать, когда была вы-
полнена предыдущая итерация. Таким образом, мы всегда вы-
числяем и устанавливаем last_time, перед тем как выдать те-
кущие значения delta и item.

При этом нам нужно иметь значение для delta в первый раз,
когда мы получаем результат. Оно должно быть равно 0. Чтобы
обойти это, мы установим last_time в None в верхней части
функции. Затем, на каждой итерации, мы вычисляем delta как раз-
ницу между current_time и last_time или current_time.

352 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Если значение last_time равно None, то мы получим зна-
чение current_time. Это должно произойти только один раз —
после первой итерации значение last_time никогда не будет
равно нулю.

Обычно вызов функции несколько раз означает, что локальные
переменные сбрасываются при каждом вызове. Однако функци-
я-генератор работает по-другому: она вызывается только один раз
и поэтому имеет один стековый кадр. Это означает, что локальные
переменные, включая параметры, сохраняют свои значения при
каждом вызове. Таким образом, мы можем установить такие значе-
ния, как last_time, и использовать их в последующих итерациях.

Решение
import time

def elapsed_since (data):
last_time = None
for item in data:

current_time = time.perf_counter ()
delta = current_time — (last_time
or current_time)
last_time = time.perf_counter ()

yield (delta, item)

for t in elapsed_since (‘abcd’):
 print (t)
 time.sleep (2)

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr226].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr227].

226

227

Инициализирует last_
time значением None.

Получает соот-
ветствующее зна-
чение времени.

Вычисляет дельту
между прошлым
временем и насто-
ящим.

Возвращает
двухэлемент-
ный кортеж.

35310. Итераторы и генераторы

После выполнения упражнения
В этом упражнении мы увидели, как мы можем комбиниро-

вать предоставленные пользователем данные с дополнительной

информацией из системы. Вот еще несколько упражнений для

практики написания таких функций генератора:

1. Существующая функция elapsed_since сообщала,

сколько времени прошло между итерациями. Теперь

напишите функцию-генератор, которая принимает

два аргумента — часть данных и минимальное коли-

чество времени, которое должно пройти между итера-

циями. Если следующий элемент запрашивается че-

рез протокол итератора (т.е. next), а время, прошедшее

с момента предыдущей итерации, превышает установ-

ленный пользователем минимум, то значение возвраща-

ется. Если нет, то генератор использует time.sleep для

ожидания, пока не истечет соответствующее количество

времени.

2. Напишите функцию генератора, fi le_usage_timing,

которая принимает в качестве аргумента одно имя ка-

талога. С каждой итерацией мы получаем кортеж, со-

держащий не только текущее имя файла, но и три от-

чета о последнем использовании файла: время доступа

(atime), время модификации (mtime) и время создания

(ctime). Подсказка: все они доступны через функцию

os.stat.

3. Напишите функцию-генератор, которая принимает два

элемента: итерируемый объект и функцию. На каждой

итерации вызывается функция для текущего элемента.

Если результат True, то элемент возвращается в исход-

ном виде. В противном случае, пока функция не вернет

значение True, будет проверяться следующий элемент.

Альтернатива: реализовать как обычную функцию, кото-

рая возвращает выражение-генератор.

354 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 50. MyChain
Как вы можете себе представить, паттерны итераторов имеют

тенденцию повторяться. По этой причине Python поставляется
с модулем itertools, который упрощает создание множества
типов итераторов. Классы в itertools были оптимизированы
и отлажены во многих проектах и часто включают функции, ко-
торые вы, возможно, не рассматривали. Определенно стоит по-
мнить об этом модуле для своих собственных проектов.

Один из моих любимых объектов в itertools называется
chain. Он принимает любое количество итерируемых объектов
в качестве аргументов, а затем возвращает каждый из их элемен-
тов по одному, как если бы все они были частью одного итериру-
емого объекта, например:

from itertools import chain

for one_item in chain (‘abc’, [1,2,3], {‘a’:1, ‘b’:2}):
print (one_item)

Этот код напечатает:

a
b
c
1
2
3
a
b

Финальные ‘a’ и ‘b’ исходят из переданного нами словаря,
поскольку в результате итерирования по словарю его ключи воз-
вращаются.

Хотя itertools.chain удобен и продуман, его не так
уж сложно реализовать. В данном упражнении именно это вы

35510. Итераторы и генераторы

и должны сделать: реализовать функцию-генератор с именем
mychain, которая принимает любое количество аргументов,
каждый из которых является итерируемым. С каждой итерацией
он должен возвращать следующий элемент из текущего итериру-
емого объекта или первый элемент из последующего итерируе-
мого объекта — если только вы не находитесь в конце, и в этом
случае он должен завершиться.

Обсуждение
Это правда, что вы могли бы создать для этого класс Python,

реализующий протокол итератора, с __iter__ и __call__.
Но, как видите, код намного проще, легче для понимания и эле-
гантнее, когда мы используем функцию-генератор.

Наша функция принимает *args в качестве параметра, что
означает, что args будет кортежем при выполнении нашей
функции. Поскольку это кортеж, мы можем перебирать его эле-
менты, сколько бы их ни было.

Мы указали, что каждый аргумент, передаваемый в mychain,
должен быть итерируемым, что означает, что мы также должны
иметь возможность итерировать эти аргументы. Затем во вну-
треннем цикле for мы просто возвращаем значение текущей
строки. Это возвращает вызывающему объекту текущее значе-
ние, но также сохраняет текущее место в функции-генераторе.
Таким образом, в следующий раз, когда мы вызовем __next__
для нашего объекта итерации, мы получим следующий элемент
в серии.

Решение
def mychain (*args):

for arg in args:
for item in arg:

yield item

for one_item in mychain (‘abc’, [1,2,3], {‘a’:1, ‘b’:2}):
 print (one_item)

args — кортеж
итерируемых
переменных.

Проходимся по каж-
дому итерируемому
объекту.

Перебираем каждый эле-
мент на каждой итерации
и возвращаем его.

356 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Вы можете ознакомиться с одной из версий
этого кода в Python Tutor [qr228].

Скринкаст решения
Посмотрите короткое видео с объяснением

решения: [qr229].

После выполнения упражнения
В этом упражнении мы разобрали неко-

торые встроенные функции, чтобы повторно реализовать их
самостоятельно. В частности, мы увидели, как можно создать
собственную версию itertools.chain в качестве функ ции-
генератора. Вот некоторые дополнительные задачи, которые вы
можете решить с помощью функций-генераторов:

1. Встроенная функция zip возвращает итератор, который,
учитывая итерируемые аргументы, возвращает кортежи,
взятые из элементов этих аргументов. Первая итерация
вернет кортеж из аргумента с индексом 0, вторая итерация
вернет кортеж из аргумента с индексом 1 и т. д., остано-
вившись, когда закончится самый короткий из аргументов.
Таким образом, zip (‘abc’, [10, 20, 30]) вер-
нет итератор, эквивалентный [(‘a’, 10), (‘b’, 20),
(‘c’, 30)]. Напишите функцию-генератор, которая
переопределяет zip таким образом.

2. Повторно реализуйте функцию all_lines из упражне-
ния 49, используя mychain.

3. В разделе «После выполнения упражнения» для упраж-
нения 48 вы реализовали класс MyRange, который ими-
тирует встроенный класс range. Теперь сделайте то же
самое, но используя выражение-генератор.

Подводя итоги
В этой главе мы рассмотрели протокол итератора и то, как

мы можем реализовать и использовать его различными спосо-
бами. Хотя нам нравится говорить, что в Python есть только один

228

229

35710. Итераторы и генераторы

способ делать что-либо, вы можете наблюдать, что существует
как минимум три разных способа создания итератора:

1. Добавьте в класс соответствующие методы.
2. Напишите функцию-генератор.
3. Используйте выражение-генератор.
Протокол итератора распространен и удобен в Python. К на-

стоящему моменту ситуация напоминает проблему курицы
и яйца: стоит ли добавлять протокол итератора к вашим объек-
там, потому что большое количество программ будет ожидать,
что объекты будут его поддерживать? Или программы используют
протокол итератора, потому что его поддерживает очень много
программ? Ответ может быть не совсем понятен, но выводы ясны.
Если у вас есть коллекция данных или что-то, что можно ин-
терпретировать как коллекцию, то стоит добавить в класс соот-
ветствующие методы. И если вы не создаете новый класс, вы все
равно можете воспользоваться преимуществами итерируемых
объектов с функциями-генараторами и выражениями-генерато-
рами.

Я надеюсь, что упражнения из этой главы помогут вам понять:
1. Как добавить протокол итератора в ваш класс.
2. Как добавить протокол итератора в класс через вспомога-

тельный класс итератора.
3. Как писать функции-генераторы, которые фильтруют, из-

меняют и добавляют к итераторам, которые вы иным об-
разом создали или использовали

4. Как использовать более эффективные выражения-генера-
торы, чем генераторы списков.

Заключение
Поздравляем! Вы дошли до конца книги, а это (если вы не за-

глядываете наперед) означает, что вы выполнили большое коли-
чество упражнений по Python. В результате ваши навыки Python
улучшились.

Во-первых, теперь вы лучше знакомы с синтаксисом и ме-
тодами Python. Подобно изучению иностранного языка: у вас

358 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

раньше мог быть определенный словарный запас и знание не-
которых грамматических структур, но теперь вы можете гово-
рить свободнее. Вам не нужно долго думать, чтобы решить, какое
слово выбрать. Вы не будете использовать конструкции, которые
работают, но считаются непитоновскими.

Во-вторых, вы видели достаточное количество различных
проблем и использовали Python для их решения, чтобы знать, что
делать при возникновении новых трудностей. Вы будете знать,
какие вопросы задавать, как разбивать проблемы на составляю-
щие и какие конструкции Python лучше всего соответствуют ва-
шим решениям. Вы сможете сравнить преимущества различных
вариантов, а затем внедрить лучшие из них в свой код.

В-третьих, вы теперь ближе знакомы с тем, как работает
Python, и со словарным запасом, который используется языком
для решения задач. Это означает, что вам легче будет понять до-
кументацию Python, а также экосистему сообщества, состоя-
щую из блогов, учебников, статей и видео. Описания будут иметь
больше смысла, а примеры будут более эффективными.

Таким образом, более свободное владение Python поможет
вам писать более качественный код за меньшее время, сохраняя
его читабельность и питоничность. Это также означает, что вы
сможете учиться дальше на своем пути разработчика.

Я желаю вам успехов в вашей карьере разработчика Python
и надеюсь, что вы продолжите находить все новые способы,
чтобы и дальше практиковать Python.

Содержание

Предисловие . 5

Благодарности . 7

Об этой книге . 9

Для кого эта книга . 10

Из чего состоит эта книга: дорожная карта 10

Об этой книге . 11

О коде . 12

Требования к программному/

аппаратному обеспечению . 14

Форум для обсуждений liveBook . 14

Об авторе . 16

Об иллюстрации на обложке . 17

1. Числовые типы . 18

Упражнение 1. Игра «Угадай число» 20

Упражнение 2. Сложение чисел . 30

Упражнение 3. Время выполнения 34

Упражнение 4. Шестнадцатеричный вывод 39

360 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

2. Строки . 44

Упражнение 5. Поросячья латынь 46

Упражнение 6. Предложения
на поросячьей латыни . 52

Упражнение 7. Убби-Дубби . 55

Упражнение 8. Сортировка строк 59

3. Списки и кортежи . 63

Упражнение 9. Первый-последний 66

Упражнение 10. Суммируем что угодно 77

Упражнение 11. Упорядочение имен по алфавиту 81

Упражнение 12. Слово с наибольшим
количеством повторяющихся букв 91

Упражнение 13. Печать записей кортежей 96

4. Словари и множества . 101

Упражнение 14. Ресторан . 107

Упражнение 15. Дождевые осадки 111

Упражнение 16. Dictdiff . 119

5. Файлы . 129

Упражнение 18. Последняя строка 132

Упражнение 19. Создаем словарь из /etc/passwd 139

Упражнение 20. Счетчик слов . 146

Упражнение 21. Самое длинное слово в файле 150

Упражнение 22. Чтение и запись в CSV 156

Упражнение 23. JSON . 162

Упражнение 24. Переворачиваем строки 168

361Содержание

6. Функции . 173

Упражнение 25. Генератор XML 178

Упражнение 26. Калькулятор с префиксной нотацией . 188

Упражнение 27. Генератор паролей 195

7. Функциональное программирование с генераторами 201

Упражнение 28. Объединение чисел 205

Упражнение 29. Сложение чисел 216

Упражнение 30. Сглаживание списка 219

Упражнение 31. Перевод содержимого
файла на поросячью латынь . 222

Упражнение 32. Переворачиваем словарь 225

Упражнение 33. Преобразование переменных 228

Упражнение 34. 231

Упражнение 35a. Гематрия, часть 1 235

Упражнение 35b. Гематрия, часть 2 238

8. Модули и пакеты . 243

Упражнение 36. Налог с продаж 250

Упражнение 37. Меню. 258

9. Объекты . 267

Упражнение 38. Ложка для мороженого 273

Упражнение 39. Чашка для мороженого 282

Упражнение 40. Ограничения для чаши 294

Упражнение 41. Чашка побольше 303

Упражнение 42. FlexibleDict . 307

362 Лернер Реувен. Python-интенсив: 50 быстрых упражнений

Упражнение 43. Животные . 312

Упражнение 44. Клетки . 318

Упражнение 45. Зоопарк . 323

10. Итераторы и генераторы . 329

Упражнение 46. MyEnumerate . 336

Упражнение 47. Круг . 341

Упражнение 48. Все строки, все файлы 345

Упражнение 49. Сколько времени прошло 348

Упражнение 50. MyChain . 352

Заметки

Заметки

Заметки

Заметки

Заметки

Серия «Программирование для всех»

Издание для досуга

Демалысқа арналған баспа

Реувен Л.
PYTHON-ИНТЕНСИВ: 50 БЫСТРЫХ УПРАЖНЕНИЙ

Заведующая редакций О. Максимова
Ответственный редактор А. Семенова

Менеджер проекта В. Живина
Дизайнер обложки А. Шмулий

Технический редактор Н. Чернышева
Верстальщик О. Недосекина

Подписано в печать 01.12.2023
Формат 70x100/16 Уcл. Печ. л. 28.6

 Печать офсетная. Гарнитура SonetSerif. Бумага офсетная.
Тираж экз. Заказ №

Произведено в Российской Федерации
Изготовлено в 2024 г.

Оригинал-макет подготовлен редакцией «Времена», импринт «Альфа»
Изготовитель: ООО «Издательство АСТ»

129085, Российская Федерация, г. Москва, Звездный бульвар, д. 21, стр. 1,
комн. 705, пом. I, этаж 7

Наш электронный адрес: WWW.AST.RU
E-mail: ask@ast.ru

Общероссийский классификатор продукции ОК-034-2014 (КПЕС 2008);
58.11.1 - книги, брошюры печатные

«Баспа Аста» деген ООО
129085, г. Мəскеу, Жулдызды гүлзар, д. 21, 1 кұрылым, 705 бөлме, пом. 1, 7-қабат

Бiздiн злектрондык мекенжаймыз : www.ast.ru
E-mail: ask@ast.ru

Интернет-магазин: www.book24.kz Интернет-дүкен: www.book24.kz
Импортер в Республику Казахстан и Представитель по приему претензий

в Республике Казахстан — ТОО РДЦ Алматы, г. Алматы.
Қазақстан Республикасына импорттаушы жəне Қазақстан Республикасында наразылықтарды

қабылдау бойынша өкiл -«РДЦ-Алматы» ЖШС, Алматы
 қ.,Домбровский көш., 3«а», Б литерi офис 1. Тел.: 8(727) 2 51 59 90,91 ,

факс: 8 (727) 251 59 92 iшкi 107; E-mail: RDC-Almaty@eksmo.kz , www.book24.kz
 Тауар белгici: «АСТ» Өндiрiлген жылы: 2024
 Өнiмнiн жарамдылық; мepзiмi шектелмеген.

Сертификация қарастырылмаған

Издадим вашу книгу! Рукопись присылать на litagent@ast.ru
Мы в социальных сетях. Присоединяйтесь!

vk.com/ast_nonfi ction

Автор, Лернер Реувен преподает Python и data sc1ence
компаниям по всему миру.

«Руthоn-интенсив: 50 быстрых упражнений» - пособие
по программированию для продолжающих, тех, кто
владеет теоретической базой языка Python.

Книга отлично подойдет всем, кто хочет применить свои
знания на практике. Перед каждым упражнением вы
найдете теоретическую выжимку, необходимую для
успешного выполнения заданий. Также пособие
содержит ссылки на разбор упражнений и полезные
материалы.

С помощью этой книги вы освоите такие базовые понятия
языка Python, как:

• основные структуры данных;
• функции;
• генераторы;
• объектно ориентированное программирование;
• итераторы.

ll рекомендовано
Библиотекой программиста

к н и г и д л я л ю б о г о н а с т р о е н и я з д е с ь

ИЗДАТЕЛЬСКАЯ ГРУППА АСТ

www.ast.ru I www.book24.ru

С1 vk.com/izdatelstvoast
О ok.ru/izdatelstvoast

• MANNING
ISBN 978-5-17-155721-8

111111111111111111111111
9 785171 557218 >

	1. Числовые типы
	Упр.1.
Игра «Угадай число»
	Упр.2. Сложение чисел
	Упр.3. Время выполнения
	Упр.4.
Шестнадцатеричный вывод

	2. Строки
	Упр.5. Поросячья латынь
	Упр.6. Предложения
на поросячьей латыни
	Упр.7. Убби-Дубби
	Упр.8. Сортировка строк

	3. Списки и кортежи
	Упр.9. Первый-последний
	Упр.10.
Суммируем что угодно
	Упр.11.
Упорядочение имен по алфавиту
	Упр.12.
Слово с наибольшим количеством
повторяющихся букв
	Упр.13.
Печать записей кортежей

	4. Словари и множества
	Упр.14. Ресторан
	Упр.15.
Дождевые осадки
	Упр.16.
Dictdiff
	Упр.17.
Сколько всего разных чисел?

	5. Файлы
	Упр.18. Последняя строка
	Упр.19.
Создаем словарь из /etc/passwd
	Упр.20. Счетчик слов
	Упр.21.
Самое длинное слово в файле
	Упр.22. Чтение и запись в CSV
	Упр.23. JSON
	Упр.24. Переворачиваем строки

	6. Функции
	Упр.25. Генератор XML
	Упр.26. Калькулятор
с префиксной нотацией
	Упр.27. Генератор паролей

	7. Функциональное программирование с генераторами
	Упр.28. Объединение чисел
	Упр.29. Сложение чисел
	Упр.30. Сглаживание списка
	Упр.31. Перевод содержимого
файла на поросячью латынь
	Упр.32.
Переворачиваем словарь
	Упр.33.
Преобразование переменных
	Упр.34.
	Упр.35a. Гематрия, часть 1
	Упр.35b. Гематрия, часть 2

	8. Модули и пакеты
	Упр.36. Налог с продаж
	Упр.37. Меню

	9. Объекты
	Упр.38.
Ложка для мороженого
	Упр.39.
Чашка для мороженого
	Упр.40. Ограничения для чаши
	Упр.41. Чашка побольше
	Упр.42. FlexibleDict
	Упр.43. Животные
	Упр.44. Клетки
	Упр.45. Зоопарк

	10. Итераторы и генераторы
	Упр.46. MyEnumerate
	Упр.47. Круг
	Упр.48. Все строки, все файлы
	Упр.49.
Сколько времени прошло
	Упр.50. MyChain

	Содержание

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (MELOVKA)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (MELOVKA)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Avanta_300'] Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (MELOVKA)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [14400.000 14400.000]
>> setpagedevice

